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General set-up

(M, g) compact smooth surface

Δ = Δg Laplace-Beltrami operator

A sequence of eigenfunctions

(Δ + λi)(fλi) = 0

where {λi} ⊂ R discrete and
λi→∞ as i→∞.

Figure: Picture borrowed
from Rennes 2019
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Yau’s conjecture
The nodal set:

Z (fλ) = {x ∈M : fλ(x) = 0}.

Yau conjectured:

cM
p
λ ≤ L (fλ) = Vol(Z (fλ)) ≤ CM

p
λ

- Brüning (’78) and Yau lower
bound surfaces
- Donnelly-Fefferman (’88) for real
analytic metrics
- Logunov-Malinnikova (’18) lower
bound for smooth manifolds,
polynomial upper bound

Figure: Toral
eigenfunction
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The random wave model

Berry (’77): Laplace eigenfunctions
(on chaotic surfaces) should
behave like RandomWaves
(RWM)

Berry’s RandomWaves Gaussian
field on R2, spectral measure
Lebesgue measure on S1 = R/Z.

Equivalently,
E[F0(x)F0(y)] = J0(|x− y|)

Figure: Planck-scale
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RWM and nodal length I

B ⊂ R2 box of side 1, R > 1 fixed (large) constant
Berry:

E[L (F0(R·),B)] =
R

2
p
2

Berry’s cancellations

Vr[L (F0(R·),B)] =
logR

512π
(1+ oR→∞(1))

-Also observed on the sphere (Wigman) and on the 2d-torus (KKW)
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RWM and nodal length II

For "generic" eigenfunctions:

L (fλ) =
λ1/2

2
p
2
(1+ oλ→∞(1))

We might expect:

L (fλ,B) =
Vol(B)

2
p
2

λ1/2(1+ oλ→∞(1)),

for any ball B of radius r > 0 larger than the Planck-scale rλ1/2→∞.
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Toral eigenfunctions

f : T2→ R such that Δf + λf = 0

fλ(x) =
∑︁
ξ∈Z2

|ξ|2=λ

aξe(〈x, ξ〉)

In this talk aξ = 1 (Bourgain’s eigenfunctions)
Eigenvalue: 4π2λ = 4π2(�+ �)

{λ ≤ X : λ = �+ �} = C Xp
log X
(1+ o(1))

Multiplicity: N := N(λ) ≈ logO(1)(λ), the number of lattice points
in the circle of radius

p
λ.
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Asymptotic nodal length above Planck-scale

Let f : T2→ R be a deterministic Bourgain eigenfunction
(coefficients all equal to 1)

Theorem (S.)

Let ϵ > 0, there exists a density one subset of eigenvalues such that

L (f,B) =
Vol(B)

2
p
2

λ1/2(1+ oλ→∞(1)),

uniformly for all ball B ⊂ T2 of radius r > λ−1/2+ϵ.

Theorem holds (with different constant) for flat function: |aξ|2 ≤ Nϵ.
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Distribution at Planck-scale I

Let f be Bourgain, R > 1 write Fx,R(y) = Fx(y) = f
(︁
x+ Ry

λ1/2

)︁
,

Consider spacial average

Vr(L (Fx)) =
∫︁
T2

(︂
L (Fx) −

R

2
p
2

)︂2

dx

Theorem (S.)

There exists a density one subset of eigenvalues such that

Vr(Fx) =
logR

512π
(1+ oR→∞(1))(1+ oλ→∞(1)),

where the order of limits is λ→∞ followed by R→∞.
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Distribution at Planck-scale II

Corollary

Let f be Bourgain, there exists a density one subset of eigenvalues
such that

lim
R→∞

lim
λ→∞

Vol

(︃{︃
x ∈ T2 :

⃒⃒⃒⃒
⃒L (Fx)R

−
1

2
p
2

⃒⃒⃒⃒
⃒ > ε

}︃)︃
−→ 0.

However, there also exist flat eigenfunctions f̃ so that

Vr[L (F̃x)] & R2.
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Spectrum of toral eigenfunctions and correlations

V = V(λ) := {ξ ∈ Z2 : |ξ|2 = λ}
Bombieri-Bourgain: let ℓ ∈ Z>0, for a density one of λ’s there are no
non-trivial solutions to

ξ1 + ...+ ξℓ = 0 ξi ∈ V Δ(ℓ)

Notice ξ ∈ V then −ξ ∈ V

ξ1 = −ξ2 ξ3 = −ξ4...

Cammarota-Klurman-Wigman: for a density one of λ’s there are no
non-trivial solutions to

ξj1 + ...+ ξj
ℓ
= 0 ξi ∈ V ξ = (ξ1, ξ2)
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Bourgain’s de-randomisation I

Δ(ℓ) implies (asymptotic) independence of {e(ξx)}ξ∈V for x ∈ T2

chosen uniformly at random. For pi ∈ Z∫︁
T2

m∏︁
i=1

e(piξix)dx =

⃒⃒⃒⃒
⃒
{︃
(ξ1, ..., ξm) :

∑︁
i

piξi = 0

}︃⃒⃒⃒⃒
⃒ = 0

->Gaussianity together with derivatives

Fx(y) = f
(︂
x+

Ry
p
λ

)︂
=
∑︁
ξ

e(ξx)e(ξRy/
p
λ)
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Bourgain’s de-randomisation II

Pseudo-spectral measure∫︁
T2
Fx(y)Fx(y′) =

∑︁
ξ

e(ξR(y − y′)/
p
λ),

Erdös-Hall, Katai-Körnei: V/λ1/2 equidistributes on S1 for a density
one of λ:

Fx(y)
d−→ F0 C2([−1/2, 1/2]2).

Bourgain, Buckley-Wigman: asymptotic law for number of nodal
domains.
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Stability zero set
Stability of the zero set under C2-perturbations

L (Fx)
d−→ L (F0)
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Figure: 100−1-perturbation
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Figure:
1000−1-perturbation 14/20



Anti-concentration

L (fλ) =
λ1/2

R

∫︁
T2
L (Fx)dx

We would like ∫︁
T2
L (Fx)dx

?−→ E[L (F0)] =
R

2
p
2
,

We need p > 1, ∫︁
T2
L (Fx)pdx

?
= Op,R(1)
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Doubling index and log-integrability

Donnelly-Fefferman estimate

L (Fx) .R log

⃒⃒⃒⃒
⃒sp2B |f|spB |f|

⃒⃒⃒⃒
⃒ ≤ log | sp2B

|f|| + | log |f(x)||,

B = B(x,R/
p
λ) Since ||f||L2 = 1, f cannot assume large values too

often, thus ∫︁
T2
L (Fx)pdx .R,p

∫︁
T2
| log |f(x)||pdx.
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A theorem of Nazarov
Let g ∈ L2(T)

Spec(g) =
{︂
n ∈ Z :

∫︁
g(x)e(nx)dx 6= 0

}︂
.

Theorem (Nazarov)

Let ϵ > 0, suppose that S ⊂ Z satisfies Δ(ℓ) for some ℓ > 4. Then for
all g ∈ L2(T) with Spec(g) ⊂ S and ||g||L2 = 1, we have∫︁

T
|log |g(x)||

ℓ

4−ϵ dx ≤ C(ℓ, ϵ)

Δ(ℓ): no non-trivial solutions to

n1 + ....+ nℓ = 0, ni ∈ V 17/20



Concluding the proof of anti-concentration

Recall∫︁
T2
L (Fx)pdx .R,p

∫︁
T2
| log |f(x)||pdx =

∫︁
T

∫︁
T
| log |f(x1, x2)||pdx1dx2

Nazarov’s Theorem and Δ(ℓ = 4p+ 2) condition for
Si = {ξi : ξ = (ξ1, ξ2), |ξ|2 = λ}, i = 1, 2∫︁

T2
| log |f(x)||pdx ≤ C(p).
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Proof of Theorems (at macroscopic scale)

Anti-concentration and locality

L (fλ) =
λ

R

∫︁
T2
L (Fx)dx −→

λ

R
E[L (Fo)] =

λ

2
p
2

Vr(L (Fx)) −→ Vr(L (F0)) =
logR

512π
(1+ oR→∞(1)).

Berry:

Vr(L (Fo)) =
logR

512π
(1+ oR→∞(1)).

19/20



Thank you!
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