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General set-up

(M, g) compact smooth surface
A = Ag4 Laplace-Beltrami operator

A sequence of eigenfunctions
(A+ X)) =0

where {A;} C R discrete and
Aj — 00 asj— 00,

Figure: Picture borrowed
from Rennes 2019
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Yau'’s conjecture

The nodal set:
Z(fA) ={xeM:fi(x) =0}

Yau conjectured:

cmVA < £ (H) =Vol(Z(f)) < Cuvx

- Briining ('78) and Yau lower
bound surfaces

- Donnelly-Fefferman ('88) for real Figure: Toral
analytic metrics eigenfunction
- Logunov-Malinnikova (’18) lower

bound for smooth manifolds,

polynomial upper bound 3/20



The random wave model

Berry ('77): Laplace eigenfunctions
(on chaotic surfaces) should
behave like Random Waves
(RWM)

Berry’s Random Waves Gaussian
field on R?, spectral measure

Lebesgue measure on S' = R/Z.

Figure: Planck-scale

Equivalently,
E[Fo(x)Fo(y)] = Jo(Ix—yl)
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RWM and nodal length |

B C R? box of side 1, R > 1 fixed (large) constant
Berry:

R
E[ £ (Fo(R:),B)] = —=

[ (Fo(R-), B)] o
Berry’s cancellations

logR
Var[ £ (Fo(R-), B)] = ﬁ“ + or—oo(1))

-Also observed on the sphere (Wigman) and on the 2d-torus (KKW)
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RWM and nodal length 1l

For "generic" eigenfunctions:

)\1/2
< =—(1 ool
() 2J§( + 0x—oo(1))
We might expect:
Vol(B)
%(fr,B) = 271/5)‘1/2(1 + 0rmoo(1)),

for any ball B of radius r > O larger than the Planck-scale rA"? — oo.
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Toral eigenfunctions

f: T2 — Rsuchthat Af+ Af=0

L) =D ace({x E))
£e7?
[E]2=A

In this talk ag = 1 (Bourgain’s eigenfunctions)
Eigenvalue: 4%\ = 4n?(0 + 0O)

{A<x:A=0+0}=

/—(1 +0(1))
Multiplicity: N := N(\) = IOgO“)()\), the number of lattice points
in the circle of radius +/A.
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Asymptotic nodal length above Planck-scale

Let f : T? — R be a deterministic Bourgain eigenfunction
(coefficients all equal to 1)

Theorem (S.)

Let € > O, there exists a density one subset of eigenvalues such that

Vol(B)

242

uniformly for all ball B C T? of radius r > A\~V2*¢,

£(f,B) = A2(14 0xmo0(1),

Theorem holds (with different constant) for flat function: |ag|? < Ne.
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Distribution at Planck-scale |

Let f be Bourgain, R > 1 write Fxr(y) = Fx(y) =f (x + /\%) ;
Consider spacial average

Var(Z(F)) = /TZ (.%(Fx)— 2f/i)zdx

Theorem (S.)

There exists a density one subset of eigenvalues such that

logR
Var(Fy) = EU + 0r—oo(1))(1+ 0a50(1)),

where the order of limits is A — oo followed by R — ©0.
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Distribution at Planck-scale Il

Corollary

Let f be Bourgain, there exists a density one subset of eigenvalues

such that
2 (F) 1
lim lim Vol {XETZ:‘ o >e})—>0.
R—00 \— 00 R 2ﬁ

However, there also exist flat eigenfunctions f so that

Var[ £ (F,)] > R>.
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Spectrum of toral eigenfunctions and correlations

V=V():={E€Z?: |E|>?=1}
Bombieri-Bourgain: let £ € Z-q, for a density one of A’s there are no
non-trivial solutions to

E1+...+E[=O E,‘GV A([)
Notice & € Vthen—E € V

& =—& &3=—&4...

Cammarota-Klurman-Wigman: for a density one of A’s there are no
non-trivial solutions to

g+..+8=0 gev g=(g.8)
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Bourgain’s de-randomisation |

A(¢) implies (asymptotic) independence of {e(Ex) } ey for x € T?
chosen uniformly at random. For p; € Z

/1r2 He(Piﬁix)dx = ‘[(51,---,Em) ; Zp,-&; = OH =0
i=1 i

->Gaussianity together with derivatives

R
() =f (x + ‘/YX) _ ge(sx)e(sRy/m
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Bourgain’s de-randomisation |l

Pseudo-spectral measure

| FOIRGY = Y eterty—y /)
g

Erdds-Hall, Katai-Kérnei: V/A"Y? equidistributes on S' for a density

one of A:
d
Fx(y) — Fo c([—12 1/2]%).

Bourgain, Buckley-Wigman: asymptotic law for number of nodal
domains.
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Stability zero set

Stability of the zero set under C2-perturbations

2(F) -5 2(Fo)

Figure: 100~ "-perturbation Figure:
1000~ "-perturbation 14/20



Anti-concentration

)\1/2
()= / L(Fdx
R Jr2

We would like

? R
/11‘2 % (F)dx — E[ 2 (Fo)] = E,

We need p > 1,

/ £ (F)Pdx = 0,(1)
’]I‘Z
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Doubling index and log-integrability

Donnelly-Fefferman estimate

Sup.; |If]

£ (Fx) Srlog
supg If|

<log| sng Ifll + 1og [fOOII,

B = B(x, R/+/X) Since ||f||.2 = 1, f cannot assume large values too
often, thus

/ L(F)Pdx <np ] 110G |f()]Pdx.
T2 T2
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A theorem of Nazarov
Let g € L2(T)

Spec(g) = {n EZL: /g(x)e(nx)dx = O} .

Theorem (Nazarov)

Let € > O, suppose that S C Z satisfies A(2) for some £ > 4. Then for
all g € L?(T) with Spec(g) C Sand ||g||.2 = 1, we have

/T ll0g 190115~ dx < C(2, €)

A(£): no non-trivial solutions to

m+...+n=0, nj €V /20



Concluding the proof of anti-concentration

Recall
] LEYdx <rp ] l10g [F()Pdx = ] ] 1109 1f0x, x2)|Pdxecxs
T2 T2 T JT

Nazarov’s Theorem and A(Z = 4p + 2) condition for
sS={g:5=(g.8) 5> =a},i=12

| 1ogicorpax < o).
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Proof of Theorems (at macroscopic scale)

Anti-concentration and locality

< —)\ d )\E_Z = A
()= [, 2 E— SELLE] = -

logR
Var(& (F)) — Var(Z (Fo)) = EU + 0r—oo(1)).

Berry:
logR
Var(Z (F,)) = —— (14 or—oo(1)).
512
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Thank you!
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