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Outline

e Spiked Wigner tensors
e Phase transition for one-spiked model
e Extension to two-spiked model

e Open questions
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Spiked Wigner tensors 3

e k-way n-dimensional symmetric tensors (k > 3,n > 4)

VT7 U ¢ (Rn)@)k 9 <T7 U> — Z T’il,...,ik Uil,...,ik

11yeeyik € [N]
e Spiked (Wigner) tensors
Y=Ac+ W
where A\ > 0 signal-to-noise ratio (SNR), o € (R™)®* unit norm, W such that

1 [2 ,,T
W gy Y

TEG,

with i.i.d standard Gaussians G;,...;, for indices 1 < ¢4,...,4x < n, G, is the set
of permutations of the set [n], and G7,..;, = Gr(iy)...x(i)-

DE CASTRO Yohann &) CENTRALELYON



One-Spiked model: perturbation of spherical spin glasses 4

The one-spiked tensor model (Richard et Montanari, 2014) is given by

O =01 :=u®k

and one would like to estimate the unit vector u € ™ 1.

MLE is the arg maximum of the tensor form over the sphere given by
VT € (R")®%, fr:ue8" ! — (T,u®%),

and one can prove that the tensor form T' — fr is injective on the space of
k-way n-dimensional symmetric tensors and the one-spiked MLE is given by:

u=arg max fy(u).

The null hypothesis (A = 0) is the spherical k-spin spin glasses model.
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One-Spiked model: Information goals 5

e Weak detection One can distinguish between IP), and P, with success
probability 1/2 + € (the so-called “better than random”) as n goes to in-
finity, for some £ > 0 that does not depend on n;

e Strong detection One can distinguish between P, and Py with success
probability 1 — 0,,(1) as n goes to infinity;

e Weak recovery holds if there exists a measurable function (an estimator)
u: (R")®* — $"~! such that

lim inf E|(u,u)| > e,

n—00

for some € > 0;

e Strong recovery holds if

lim inf E|(u,u)|=1.

n—00
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One-Spiked model: Phase transition 6

Theorem 1 Consider the one-spiked model such that u € $" ! is drawn ac-
cording to the spherical prior Usph. Then, there exist bounds A, < Aj.p both

low
behaving as v/2logk + o(1) as k — oo such that

o if A < Aj,, then weak detection and weak recovery are impossible;

o if A > ALy then strong delection and weak recovery are possible;

and 1t holds

(AL )? = 2logk + 2loglog k + 0(1)
(Mhign)? = 2logk + 2loglogk + 2 — 41og 2 + ok (1) ,

wn the limit kK — oo.

*

low — )‘Eigh = :(nle =V 210gk
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Interlude: Landscape of one-spiked tensor model 7

e Computational gap: no polynomial time algorithm is known to achieve

weak recovery for
k—2

A < )\comp — On (nT)
and power iteration for MLE estimation fails for

k—2

AL )\power — On (nT)

e (Ben Arous et al., 2019) showed that all the local maxima are either very close
to the unknown vector u (and to the global maximum) or they are on a narrow
spherical annulus orthogonal to u contained in |(u,o)| < O(A~1/(k=2)),

o Population risk Efy (c®*) = Xu, 0)* has large flat regions on the orthogonal
of u. Note that most of the volume concentrates around this hyperplane.

e Random initialization ensures that |(u,oo)| = ©(n~1/2) and it will not be
trapped in flat regions as soon as A > n(k=2)/2,
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Multiple Spiked model: From Spheres to Stiefel Manifolds 8

e Multiple spiked model of rank r > 1:

T
o=0, .= g aiu?k,
i=1

where u; € $"~! are orthogonal unit norm vectors and a := (a;) € $"~! has
unit norm (hence the tensor o, has unit Euclidean norm).

Theorem 1 MLFE o, is unique a.s., it has rank exactly r, and it holds
T
(/J\'r,a = A\ X Zagi?k,
/=1

where (a,X) € arg max { Z OéefY(Xﬁ)} :
/=1

subject to  (a,x) € 8"t x ($" ¥ st x; Lxo L ... Lx,,

and X =Y afy ().
£=1
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Multiple Spiked model: From Spheres to Stiefel Manifolds 9

Denote
O, = {(a;xl, LX) ER"XRY - a'la=1andU'U = Idr},

the manifold given by the Euclidean sphere times the standard Stiefel manifold.
Denote 8 = (a; U) a point of ®,, ,., we define

Zw(0) =Y (W, x5%) = apfw(xe) .
/=1

/=1
The null hypothesis is introduced as the Stiefel k-spin spin glasses model.
Goal: Non-asymptotic tail bound of the maximum of this Gaussian process

M = Zw (0
plex Zw(0)
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Two Spiked model: tractable Kac-Rice formula 10

e (Edelman et al., 1998) gives the Riemannian toolbox for Stiefel manifolds.

e (Azais and Wschebor, 2008) gives the Kac-Rice formula toolbox.
e Stiefel manifold (k =2) is M,, = {(z,y) € ($"')?: 2 L y}.
e It holds Zw = cos ¢ fw (x) + sin o fw ().

e By Kac-Rice formula Po(M > )\,,) is upper bounded by

400 p27
VOI(MR)/A /0 IE [Det (HessZw (¢, n ‘ Zw = v, gradZw = O]p(ZW eradZw ) (U, 0)dppdv

n

where vol(M ,) volume of M ,, gradZw ,HessZw Riemannian gradient and
hessian, p(zy, eradzy ) Jjoint distribution.

e For 1 < \,, one has
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Multiple Spiked model: open questions and their lead

11

e Give the landscape: compute the exponential growth rate of the number of
critical points (and local maxima) of Zy using Kac-Rice formula on $! x M,

as done by (Ben Arous et al., 2019) for the sphere.

e Give the lower and upper bounds Ajgy nhigh using the so-called “second
moment method” as in (Montanari, Reichman and Zeitouni, 2015).

e Study larger models of rank r > 3 using Riemannian toolbox of (Edelman

et al., 1998).
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THE GEOMETRY OF ALGORITHMS WITH ORTHOGONALITY
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Abstract. In this paper we develop new Newton and conjugate gradient algorithms on the
Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such
areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures
computations, and signal processing. In addition to the new algorithms, we show how the geometrical
framework gives penetrating new insights allowing us to create, understand, and compare algorithms.
The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide
a top level mathematical view of previously unrelated algorithms. It is our hope that developers of
new algorithms and perturbation theories will benefit from the theory, methods, and examples in
this paper.
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