Fluctuations for Brownian bridge expansions and convergence rates of Lévy area approximations

Karen Habermann

University of Warwick

Stochastic Differential Geometry and Mathematical Physics 8 June 2021

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで

Condition Brownian motion $(W_t)_{t\in[0,1]}$ in \mathbb{R} on $W_1^N = 0$ for

$$\boldsymbol{W}_{1}^{N} = \left(W_{1}, \int_{0}^{1} W_{s} \, \mathrm{d}s, \dots, \int_{0}^{1} \int_{0}^{s_{N-1}} \cdots \int_{0}^{s_{2}} W_{s_{1}} \, \mathrm{d}s_{1} \dots \, \mathrm{d}s_{N-1} \right)$$

Strategy for determining conditioned process.

Find explicit expression by writing

$$W_t = L_t^N + \sum_{l=1}^N \beta_l(t) \boldsymbol{W}_1^{N,l}$$

for functions β_1, \ldots, β_N on [0, 1] such that, for all $l \in \{1, \ldots, N\}$,

$$\mathbb{E}\left[L_t^N oldsymbol{W}_1^{N,l}
ight] = 0 \; .$$

Two Gaussian random variables are independent if and only if they have zero covariance.

▲□▶▲□▶▲■▶▲■▶ ■ のQ@

Proposition (H., JLMS, 2021)

Let Q_n be the shifted Legendre polynomial of degree n on [0, 1]. For $N \in \mathbb{N}$, the stochastic process $(L_t^N)_{t \in [0,1]}$ in \mathbb{R} defined by

$$L_t^N = W_t - \sum_{n=0}^{N-1} (2n+1) \int_0^t Q_n(r) \, \mathrm{d}r \int_0^1 Q_n(r) \, \mathrm{d}W_r$$

has the same law as $(W_t)_{t \in [0,1]}$ conditioned on $W_1^N = 0$.

Proof of the Proposition.

By integration by parts, we have $W_1^{N,l} = \frac{1}{(l-1)!} \int_0^1 (1-r)^{l-1} dW_r$. For all $m \in \{0, \ldots, N-1\}$, we obtain, for all $t \in [0, 1]$,

$$\mathbb{E}\left[L_t^N \int_0^1 Q_m(r) \,\mathrm{d}W_r\right] = 0 \;.$$

Proposition (H., JLMS, 2021)

Let Q_n be the shifted Legendre polynomial of degree n on [0,1]. For $N \in \mathbb{N}$, the stochastic process $(L_t^N)_{t \in [0,1]}$ in \mathbb{R} defined by

$$L_t^N = W_t - \sum_{n=0}^{N-1} (2n+1) \int_0^t Q_n(r) \, \mathrm{d}r \int_0^1 Q_n(r) \, \mathrm{d}W_r$$

has the same law as $(W_t)_{t \in [0,1]}$ conditioned on $W_1^N = 0$.

The stochastic process $(L_t^N)_{t\in[0,1]}$ is a zero-mean Gaussian process in \mathbb{R} with covariance C_N given, for $s, t \in [0,1]$, by

$$C_N(s,t) = \min(s,t) - \sum_{n=0}^{N-1} (2n+1) \int_0^s Q_n(r) \,\mathrm{d}r \int_0^t Q_n(r) \,\mathrm{d}r \,.$$

◆□ ▶ ▲目 ▶ ▲目 ▶ ▲目 ▶ ▲□ ▶

Theorem (H., JLMS, 2021)

Let $\Omega^{0,0} = \{w \in C([0,1],\mathbb{R}) : w_0 = w_1 = 0\}$ be the set of continuous loops in \mathbb{R} at zero. The laws of $(W_t)_{t \in [0,1]}$ conditioned on $W_1^N = 0$ converge weakly on $\Omega^{0,0}$ as $N \to \infty$ to the unit mass δ_0 at the zero path.

Proof.

Adapting the usual proof of Mercer's theorem shows that as $N\to\infty$ the sequence of covariances

$$C_N(s,t) = \min(s,t) - \sum_{n=0}^{N-1} (2n+1) \int_0^s Q_n(r) \,\mathrm{d}r \int_0^t Q_n(r) \,\mathrm{d}r$$

converges uniformly on $[0,1] \times [0,1]$ to the zero function.

Brownian motion $(W_t)_{t \in [0,1]}$ admits the polynomial approximation

$$\left(\sum_{n=0}^{N-1} (2n+1) \int_0^t Q_n(r) \, \mathrm{d}r \int_0^1 Q_n(r) \, \mathrm{d}W_r\right)_{t \in [0,1]}$$

Approximations plotted for $N=20,\ N=50,\ N=200,\ N=500$.

Fluctuations for the polynomial approximation

Plot of $(s,t) \mapsto NC_N(s,t)$ for N = 16

Fluctuations for the polynomial approximation

We notice that pointwise, for $s, t \in [0, 1]$,

$$\lim_{N \to \infty} NC_N(s,t) = \begin{cases} \frac{1}{\pi}\sqrt{t(1-t)} & \text{if } s = t\\ 0 & \text{if } s \neq t \end{cases}$$

Theorem (H., JLMS, 2021)

The fluctuation processes $(F_t^N)_{t\in[0,1]}$ where $F_t^N = \sqrt{N}L_t^N$ converge in finite dimensional distributions as $N \to \infty$ to the collection $(F_t)_{t\in[0,1]}$ of independent zero-mean Gaussian random variables whose variances are given, for $t \in [0,1]$, by

$$\mathbb{E}\left[(F_t)^2\right] = \frac{1}{\pi}\sqrt{t(1-t)} \ .$$

The collection $(F_t)_{t \in [0,1]}$ neither has a realisation as a process in $C([0,1],\mathbb{R})$ nor is it equivalent to a measurable process.

Fluctuations for Legendre polynomials

Theorem (H., JLMS, 2021)

Let P_n be the Legendre polynomial of degree n on [-1, 1]. Fix $x, y \in [-1, 1]$ and, for $N \in \mathbb{N}$, set

$$R_N(x,y) = N\left(\min(1+x,1+y) - \sum_{n=0}^{N-1} \frac{2n+1}{2} \int_{-1}^x P_n(z) \, \mathrm{d}z \int_{-1}^y P_n(z) \, \mathrm{d}z\right).$$

Then, we have pointwise

$$\lim_{N \to \infty} R_N(x, y) = \begin{cases} \frac{1}{\pi}\sqrt{1 - x^2} & \text{if } x = y\\ 0 & \text{if } x \neq y \end{cases}$$

Quantifies an integrated version of the completeness and orthogonality property $\sum_{n=0}^{\infty} \frac{2n+1}{2} P_n(x) P_n(y) = \delta(x-y)$.

きょうかい 川田 ・ 山田 ・ 山口 ・

Fluctuations for Legendre polynomials

For the on-diagonal moment argument, we introduce complex-valued polynomials on [-1, 1] by setting

$$P_{-n-1}(x) = \mathrm{i} P_n(x) \quad \text{for } n \in \mathbb{N}_0$$

Properties of Legendre polynomials extend well (a) $\int_{-1}^{1} (P_n(x))^2 dx = \frac{2}{2n+1}$ for all $n \in \mathbb{Z}$ (b) $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$ for all $n \in \mathbb{Z}$

We can improve the off-diagonal argument to give, for $y \neq 0$,

$$\lim_{N \to \infty} R_N \left(x, x + N^{-\beta} y \right) = 0 \quad \text{for} \quad 0 \le \beta < 1 \;,$$

which provides a bound on the decorrelation scale.

Fluctuations for Brownian bridge expansions

For the standard Brownian bridge $(B_t)_{t \in [0,1]}$, define fluctuation processes $(F_t^{N,1})_{t \in (0,1)}$ and $(F_t^{N,2})_{t \in (0,1)}$ by

$$F_t^{N,1} = \sqrt{N} \left(B_t - \sum_{k=1}^N \frac{2\sin(k\pi t)}{k\pi} \int_0^1 \cos(k\pi r) \, \mathrm{d}B_r \right) \,,$$

$$F_t^{N,2} = \sqrt{2N} \left(B_t - \frac{1}{2}a_0 - \sum_{k=1}^N \left(a_k \cos(2k\pi t) + b_k \sin(2k\pi t) \right) \right)$$

Theorem (Foster–H., 2021)

The fluctuation processes converge in finite dimensional distributions as $N \to \infty$ to the collection $(F_t)_{t \in (0,1)}$ of independent Gaussian random variables with mean zero and variance

$$\mathbb{E}\left[(F_t)^2\right] = \frac{1}{\pi^2} \; .$$

Asymptotic convergence rates of Lévy area approximations

The Lévy area of a Brownian motion $(W_t)_{t\in[0,1]}$ in \mathbb{R}^d is the antisymmetric $d \times d$ matrix $A_{0,1}$ with the entries

$$A_{0,1}^{(i,j)} = \frac{1}{2} \left(\int_0^1 W_r^{(i)} \, \mathrm{d}W_r^{(j)} - \int_0^1 W_r^{(j)} \, \mathrm{d}W_r^{(i)} \right)$$

Let $(B_t)_{t \in [0,1]}$ given by $B_t = W_t - tW_1$ be the Brownian bridge in \mathbb{R}^d associated with $(W_t)_{t \in [0,1]}$, and set, for $k \in \mathbb{N}_0$,

$$a_k^{(i)} = 2 \int_0^1 \cos(2k\pi r) B_r^{(i)} \,\mathrm{d}r \,, \quad b_k^{(i)} = 2 \int_0^1 \sin(2k\pi r) B_r^{(i)} \,\mathrm{d}r$$

and, for $k \in \mathbb{N}$,

$$c_k^{(i)} = \int_0^1 Q_k(r) \, \mathrm{d}B_r^{(i)}$$

◆□▶ ◆□▶ ◆三▶ ◆三 ◆ ○ ◆ ○ ◆

Asymptotic convergence rates of Lévy area approximations

Theorem (Foster–H., 2021)

Define approximations \widehat{A}_n , \widetilde{A}_n and \overline{A}_{2n} of the Lévy area $A_{0,1}$ by

$$\begin{split} \widehat{A}_{n}^{(i,j)} &= \frac{1}{2} \left(a_{0}^{(i)} W_{1}^{(j)} - W_{1}^{(i)} a_{0}^{(j)} \right) + \pi \sum_{k=1}^{n-1} k \left(a_{k}^{(i)} b_{k}^{(j)} - b_{k}^{(i)} a_{k}^{(j)} \right), \\ \widetilde{A}_{n}^{(i,j)} &= \pi \sum_{k=1}^{n-1} k \left(a_{k}^{(i)} \left(b_{k}^{(j)} - \frac{1}{k\pi} W_{1}^{(j)} \right) - \left(b_{k}^{(i)} - \frac{1}{k\pi} W_{1}^{(i)} \right) a_{k}^{(j)} \right), \\ \overline{A}_{n}^{(i,j)} &= \frac{1}{k} \left(W^{(i)} c_{k}^{(j)} - c_{k}^{(i)} W^{(j)} \right) + \frac{1}{k\pi} \sum_{k=1}^{2n-1} \left(c_{k}^{(i)} c_{k}^{(j)} - c_{k}^{(i)} c_{k}^{(j)} \right) \\ \end{array}$$

$$A_{2n}^{(i,j)} = \frac{1}{2} \left(W_1^{(i)} c_1^{(j)} - c_1^{(i)} W_1^{(j)} \right) + \frac{1}{2} \sum_{k=1}^{\infty} \left(c_k^{(i)} c_{k+1}^{(j)} - c_{k+1}^{(i)} c_k^{(j)} \right).$$

Then, for $i \neq j$ and as $n \to \infty$, we have the mean squared errors

$$m_{KP,M} \sim \frac{1}{\pi^2} \left(\frac{1}{2n}\right), \quad m_{KPW} \sim \frac{3}{\pi^2} \left(\frac{1}{2n}\right), \quad m_P \sim \frac{1}{8} \left(\frac{1}{2n}\right)$$

Link fluctuations and asymptotic convergence rates

The error in approximating Brownian Lévy area using N random vectors is essentially given by

$$\int_0^1 W_t^{(i)} \, \mathrm{d}W_t^{(j)} - \int_0^1 S_t^{N,(i)} \, \mathrm{d}S_t^{N,(j)}$$

If one can argue that

$$\int_0^1 S_t^{N,(i)} d\left(W_t^{(j)} - S_t^{N,(j)}\right) = O\left(\frac{1}{N}\right) ,$$

then in terms of $(F_t^N)_{t \in [0,1]}$ defined by $F_t^N = \sqrt{N} (W_t - S_t^N)$, the error of the Lévy area approximation can be expressed as

$$\frac{1}{\sqrt{N}} \int_0^1 F_t^{N,(i)} \,\mathrm{d}W_t^{(j)} + O\left(\frac{1}{N}\right)$$

It remains to apply Itô's isometry and Fubini's theorem.