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Brownian motion conditioned on vanishing time integrals

Condition Brownian motion (W¢):co.1 in R on W& =0 for

1 1 SN—1 59
WN:<W1,/ Wsds,...,/ / / Wsldsl...dle)
0 0 JO 0

Strategy for determining conditioned process.

Find explicit expression by writing
N
We=LY+) BHw;
=1
for functions 51, ..., BN on [0,1] such that, forall I € {1,..., N},
E(LYwit| =0,

Two Gaussian random variables are independent if and only if they
have zero covariance. []



Brownian motion conditioned on vanishing time integrals
Proposition (H., JLMS, 2021)

Let QQ,, be the shifted Legendre polynomial of degree n on |0, 1].

For N € N, the stochastic process (Li\f ) te(0.1] in R defined by

N-—1 t 1
LN =w, — ;(277,“)/0 Qn(r) dfr/o Qn(r)dW,

has the same law as (Wy)icj0 1) conditioned on w1 =0.

Proof of the Proposition.

By integration by parts, we have lev’l = ﬁ fol(l —r)=taw, .
For all m € {0,..., N — 1}, we obtain, for all ¢t € [0, 1],

E [L{V /O1 Qo (1) dWT] =0. ]



Brownian motion conditioned on vanishing time integrals
Proposition (H., JLMS, 2021)

Let QQ,, be the shifted Legendre polynomial of degree n on [0, 1].

For N € N, the stochastic process (L{V ) te(0.1] in R defined by

N-1 t 1
LY =W, — ?;)(Qn—l—l)/o Qn(r) dr/o Qn(r)dW,

has the same law as (Wy)c(0.1] conditioned on wi =0.

The stochastic process (L;{V)te[o 1 Is a zero-mean Gaussian process

in R with covariance Cy given, for s,t € [0, 1], by

N—1 S t
Cn(s,t) = min(s,t) — ;::O(Qn + 1)/0 Qn(T) dr/O Qn(r)dr .



Brownian motion conditioned on vanishing time integrals

Theorem (H., JLMS, 2021)

Let Q"0 = {w € C([0,1],R): wg = w1 = 0} be the set of
continuous loops in R at zero. The laws of (W});c(0,1) conditioned

on le\/‘ = 0 converge weakly on Q% as N — oo to the unit mass
do at the zero path.

Proof.

Adapting the usual proof of Mercer’'s theorem shows that as
N — oo the sequence of covariances

N—1 S t
Cn(s,t) = min(s,t) — nZ:O(Qn + 1)/0 Qn(r) d'r'/O Qn(r)dr

converges uniformly on [0, 1] x [0, 1] to the zero function. ]



Brownian motion (W;);cjo.1] admits the polynomial approximation

N—1 t 1
(Z(2n+1)/0 Qn(r)dr/o Qn(r)dWr>

n=0 t€[0,1]

Approximations plotted for NV = 20, N = 50, N = 200, N = 500 .
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Fluctuations for the polynomial approximation

1.0

Plot of (s,t) — NCxn(s,t) for N = 16



Fluctuations for the polynomial approximation

We notice that pointwise, for s,t € [0, 1],

1 — if s =
lim NCyn(s,t) = { V=) I 5=t .
N—00 if s =£1

Theorem (H., JLMS, 2021)

The fluctuation processes (FtN ) te(0.1] where FN =/ NL}¥
converge in finite dimensional distributions as N — oo to the
collection (Fy):cjo1) of independent zero-mean Gaussian random

variables whose variances are given, fort € |0, 1], by

E[(7)?] = %ﬁa —9) .

The collection (F}):c[o 1] neither has a realisation as a process in
C'(|0,1],R) nor is it equivalent to a measurable process.



Fluctuations for Legendre polynomials

Theorem (H., JLMS, 2021)

Let P,, be the Legendre polynomial of degree n on |—1,1].
Fix x,y € |[—1,1] and, for N € N, set

Ry(x,y) =
N-1
2 1 [* Y
N (min(l +x,1+y) — Z n2+ / P, (2) dz/ P, (z) dz) .
n=0 -1 -1

Then, we have pointwise

1 2 : _

=41 — fo=
lim Ry(z,y) =<7 v I Y
N—o00 0 if x £y

Quantifies an integrated version of the completeness and
orthogonality property > °° ( 22EL P (2) P, (y) = 6(x — y) .



Fluctuations for Legendre polynomials

For the on-diagonal moment argument, we introduce
complex-valued polynomials on |[—1, 1] by setting

P_p—1(x) =1P,(x) forneNp.

Properties of Legendre polynomials extend well

a)f dx_22+1 forallm € Z

(b) (n+ 1)Pn+1( )=02n+ 1DxP,(x) —nP,_1(x) forallneZ

We can improve the off-diagonal argument to give, for y # 0,

lim RN(:E:E+N g ):O for 0<p<1,

N —o0

which provides a bound on the decorrelation scale.



Fluctuations for Brownian bridge expansions

For the standard Brownian bridge (Bt);c[o,1), define fluctuation
Processes (FtN’l)te(o,l) and (FtN’Q)te(O,l) by

N1 N9 sin(knt) (!
F,""=+vN | B, — Z - / cos(knr)dB, | ,
0

k=1

N
1
FtN,2 — V2N (Bt ~ 50 — Z (ag cos(2kmt) + by Siﬂ(2k7ﬂf))> .

k=1

Theorem (Foster-H., 2021)

The fluctuation processes converge in finite dimensional
distributions as N — oo to the collection (F})c(o,1) of independent
Gaussian random variables with mean zero and variance

K {(Ft)ﬂ = iz :

s



Asymptotic convergence rates of Lévy area approximations

The Lévy area of a Brownian motion
(Wi)ieo.1 in R? is the antisymmetric
d X d matrix Ag 1 with the entries

w®@

Let (Bt)tcpo,1) given by By = W; — tW; be the Brownian bridge in
R% associated with (Wt)te[0,1]1 and set, for k € Ny,

. 1 , . 1 ,
ag) = 2/0 cos(2kmr) B dr | bg) = 2/0 sin(2kmr)BY dr

and, for k € N, 1
e = / Qr(r)dB" .
0



Asymptotic convergence rates of Lévy area approximations
Theorem (Foster-H., 2021)

Define approximations A\n A,, and As,, of the Lévy area Ay by

n

n—1
Aq(;’]) " " <a,(€) <b](€j) ; kwwlm> - <b](€)  kr 1()) a,(g)) 7
k=1
2n—1

oy 1 A (4 ; . 1 A (4 ; .
A = L (WO — W) + 13 (e, - e,

n—1
69 = 2 (WD~ wOal) + 73k (a0~ 400,
k=1

Then, fort # 7 and as n — oo, we have the mean squared errors

1 1 3 (1 1/ 1
m ~ m ~ mp~—|—|.
KP,M 2\ 9, | KPW 2\ 9, ) P 3\ o,




Link fluctuations and asymptotic convergence rates

The error in approximating Brownian Lévy area using /N random
vectors is essentially given by

1 , . 1 . .
/ w @ ) / gV qgNG)
0 0

If one can argue that

1 . . . 1
SN0 g () _ N0 _ o (_> |
/O t ( t t ) N

then in terms of (F}");co.1] defined by F{Y = VN (W — SY), the
error of the Lévy area approximation can be expressed as

L[ NG o00) 1
\/—N/o FYO gy +O(N>'

It remains to apply [t0's isometry and Fubini’'s theorem.



