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Brownian motion conditioned on vanishing time integrals

Condition Brownian motion (Wt)t∈[0,1] in R on WN
1 = 0 for

WN
1 =

�
W1,

� 1

0
Ws ds, . . . ,

� 1

0

� sN−1

0
· · ·

� s2

0
Ws1 ds1 . . . dsN−1

�

Strategy for determining conditioned process.

Find explicit expression by writing

Wt = LN
t +

N�

l=1

βl(t)W
N,l
1

for functions β1, . . . ,βN on [0, 1] such that, for all l ∈ {1, . . . , N},

E
�
LN
t WN,l

1

�
= 0 .

Two Gaussian random variables are independent if and only if they
have zero covariance.



Brownian motion conditioned on vanishing time integrals

Proposition (H., JLMS, 2021)

Let Qn be the shifted Legendre polynomial of degree n on [0, 1].
For N ∈ N, the stochastic process

�
LN
t

�
t∈[0,1] in R defined by

LN
t = Wt −

N−1�

n=0

(2n+ 1)

� t

0
Qn(r) dr

� 1

0
Qn(r) dWr

has the same law as (Wt)t∈[0,1] conditioned on WN
1 = 0.

Proof of the Proposition.

By integration by parts, we have WN,l
1 = 1

(l−1)!

� 1
0 (1− r)l−1 dWr .

For all m ∈ {0, . . . , N − 1}, we obtain, for all t ∈ [0, 1],

E
�
LN
t

� 1

0
Qm(r) dWr

�
= 0 .



Brownian motion conditioned on vanishing time integrals

Proposition (H., JLMS, 2021)

Let Qn be the shifted Legendre polynomial of degree n on [0, 1].
For N ∈ N, the stochastic process

�
LN
t

�
t∈[0,1] in R defined by

LN
t = Wt −

N−1�

n=0

(2n+ 1)

� t

0
Qn(r) dr

� 1

0
Qn(r) dWr

has the same law as (Wt)t∈[0,1] conditioned on WN
1 = 0.

The stochastic process
�
LN
t

�
t∈[0,1] is a zero-mean Gaussian process

in R with covariance CN given, for s, t ∈ [0, 1], by

CN (s, t) = min(s, t)−
N−1�

n=0

(2n+ 1)

� s

0
Qn(r) dr

� t

0
Qn(r) dr .



Brownian motion conditioned on vanishing time integrals

Theorem (H., JLMS, 2021)

Let Ω0,0 = {w ∈ C([0, 1],R) : w0 = w1 = 0} be the set of
continuous loops in R at zero. The laws of (Wt)t∈[0,1] conditioned
on WN

1 = 0 converge weakly on Ω0,0 as N → ∞ to the unit mass
δ0 at the zero path.

Proof.

Adapting the usual proof of Mercer’s theorem shows that as
N → ∞ the sequence of covariances

CN (s, t) = min(s, t)−
N−1�

n=0

(2n+ 1)

� s

0
Qn(r) dr

� t

0
Qn(r) dr

converges uniformly on [0, 1]× [0, 1] to the zero function.



Brownian motion (Wt)t∈[0,1] admits the polynomial approximation
�

N−1�

n=0

(2n+ 1)

� t

0
Qn(r) dr

� 1

0
Qn(r) dWr

�

t∈[0,1]
.

Approximations plotted for N = 20, N = 50, N = 200, N = 500 .
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Fluctuations for the polynomial approximation

Plot of (s, t) �→ NCN (s, t) for N = 16



Fluctuations for the polynomial approximation

We notice that pointwise, for s, t ∈ [0, 1],

lim
N→∞

NCN (s, t) =

�
1
π

�
t(1− t) if s = t

0 if s �= t
.

Theorem (H., JLMS, 2021)

The fluctuation processes
�
FN
t

�
t∈[0,1] where FN

t =
√
NLN

t

converge in finite dimensional distributions as N → ∞ to the
collection (Ft)t∈[0,1] of independent zero-mean Gaussian random
variables whose variances are given, for t ∈ [0, 1], by

E
�
(Ft)

2
�
=

1

π

�
t(1− t) .

The collection (Ft)t∈[0,1] neither has a realisation as a process in
C([0, 1],R) nor is it equivalent to a measurable process.



Fluctuations for Legendre polynomials

Theorem (H., JLMS, 2021)

Let Pn be the Legendre polynomial of degree n on [−1, 1].
Fix x, y ∈ [−1, 1] and, for N ∈ N, set

RN (x, y) =

N

�
min(1 + x, 1 + y)−

N−1�

n=0

2n+ 1

2

� x

−1
Pn(z) dz

� y

−1
Pn(z) dz

�
.

Then, we have pointwise

lim
N→∞

RN (x, y) =

�
1
π

√
1− x2 if x = y

0 if x �= y
.

Quantifies an integrated version of the completeness and
orthogonality property

�∞
n=0

2n+1
2 Pn(x)Pn(y) = δ(x− y) .



Fluctuations for Legendre polynomials

For the on-diagonal moment argument, we introduce
complex-valued polynomials on [−1, 1] by setting

P−n−1(x) = iPn(x) for n ∈ N0 .

Properties of Legendre polynomials extend well

(a)
� 1
−1 (Pn(x))

2 dx = 2
2n+1 for all n ∈ Z

(b) (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) for all n ∈ Z

We can improve the off-diagonal argument to give, for y �= 0,

lim
N→∞

RN

�
x, x+N−βy

�
= 0 for 0 ≤ β < 1 ,

which provides a bound on the decorrelation scale.



Fluctuations for Brownian bridge expansions

For the standard Brownian bridge (Bt)t∈[0,1], define fluctuation

processes (FN,1
t )t∈(0,1) and (FN,2

t )t∈(0,1) by

FN,1
t =

√
N

�
Bt −

N�

k=1

2 sin(kπt)

kπ

� 1

0
cos(kπr) dBr

�
,

FN,2
t =

√
2N

�
Bt −

1

2
a0 −

N�

k=1

(ak cos(2kπt) + bk sin(2kπt))

�
.

Theorem (Foster–H., 2021)

The fluctuation processes converge in finite dimensional
distributions as N → ∞ to the collection (Ft)t∈(0,1) of independent
Gaussian random variables with mean zero and variance

E
�
(Ft)

2
�
=

1

π2
.



Asymptotic convergence rates of Lévy area approximations

The Lévy area of a Brownian motion
(Wt)t∈[0,1] in Rd is the antisymmetric
d× d matrix A0,1 with the entries

 

 

𝑊ሺ2ሻ 

𝑊ሺ1ሻ 

A
(i,j)
0,1 =

1

2

�� 1

0
W (i)

r dW (j)
r −

� 1

0
W (j)

r dW (i)
r

�
.

Let (Bt)t∈[0,1] given by Bt = Wt − tW1 be the Brownian bridge in

Rd associated with (Wt)t∈[0,1], and set, for k ∈ N0,

a
(i)
k = 2

� 1

0
cos(2kπr)B(i)

r dr , b
(i)
k = 2

� 1

0
sin(2kπr)B(i)

r dr

and, for k ∈ N,

c
(i)
k =

� 1

0
Qk(r) dB

(i)
r .



Asymptotic convergence rates of Lévy area approximations

Theorem (Foster–H., 2021)

Define approximations �An, �An and Ā2n of the Lévy area A0,1 by

�A(i,j)
n =

1

2

�
a
(i)
0 W

(j)
1 −W

(i)
1 a

(j)
0

�
+ π

n−1�

k=1

k
�
a
(i)
k b

(j)
k − b

(i)
k a

(j)
k

�
,

�A(i,j)
n = π

n−1�

k=1

k

�
a
(i)
k

�
b
(j)
k − 1

kπ
W

(j)
1

�
−

�
b
(i)
k − 1

kπ
W

(i)
1

�
a
(j)
k

�
,

Ā
(i,j)
2n =

1

2

�
W

(i)
1 c

(j)
1 − c

(i)
1 W

(j)
1

�
+

1

2

2n−1�

k=1

�
c
(i)
k c

(j)
k+1 − c

(i)
k+1c

(j)
k

�
.

Then, for i �= j and as n → ∞, we have the mean squared errors

mKP,M ∼ 1

π2

�
1

2n

�
, mKPW ∼ 3

π2

�
1

2n

�
, mP ∼ 1

8

�
1

2n

�
.



Link fluctuations and asymptotic convergence rates

The error in approximating Brownian Lévy area using N random
vectors is essentially given by

� 1

0
W

(i)
t dW

(j)
t −

� 1

0
S
N,(i)
t dS

N,(j)
t .

If one can argue that

� 1

0
S
N,(i)
t d

�
W

(j)
t − S

N,(j)
t

�
= O

�
1

N

�
,

then in terms of (FN
t )t∈[0,1] defined by FN

t =
√
N

�
Wt − SN

t

�
, the

error of the Lévy area approximation can be expressed as

1√
N

� 1

0
F

N,(i)
t dW

(j)
t +O

�
1

N

�
.

It remains to apply Itô’s isometry and Fubini’s theorem.


