Cargèse Summer School 2018

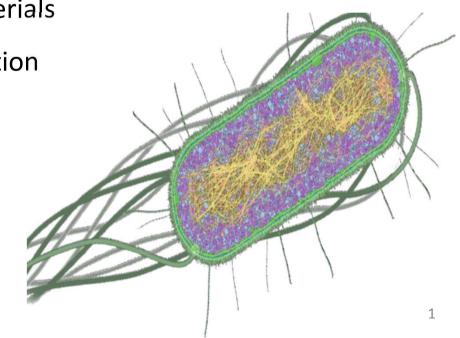
Bioenergetics and Geomicrobiology

(Are microbes better at thermodynamics than geochemists?)

Philippe Van Cappellen and Christina Smeaton

Canada Excellence Research Chairs

Chaires d'excellence en recherche du Canada

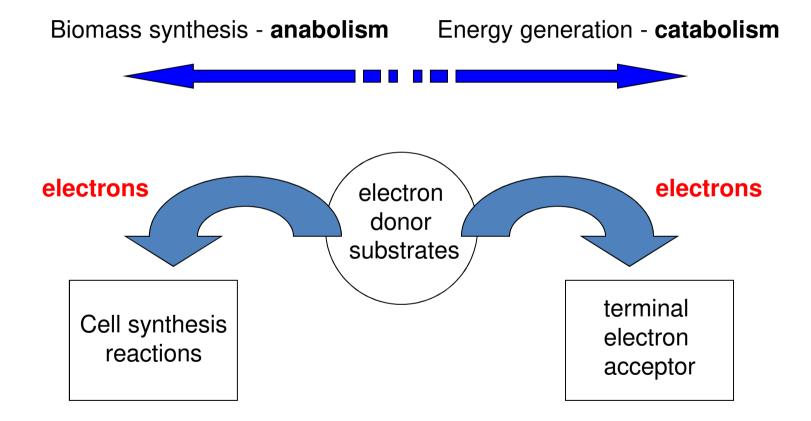


Geomicrobial Activity


- Cycling of carbon and nutrients (N, S, P, K, Si, Ca, Fe, ...)
- Weathering, soil formation, soil fertility, water quality
- Organic matter decomposition, transformation and preservation
- Production greenhouse (CO₂, CH₄, N₂O) and other reactive gases
- Biomineralization, bio(nano)materials
- Natural attenuation, bioremediation
- Biotechnology

. .

• Green (bio)chemistry



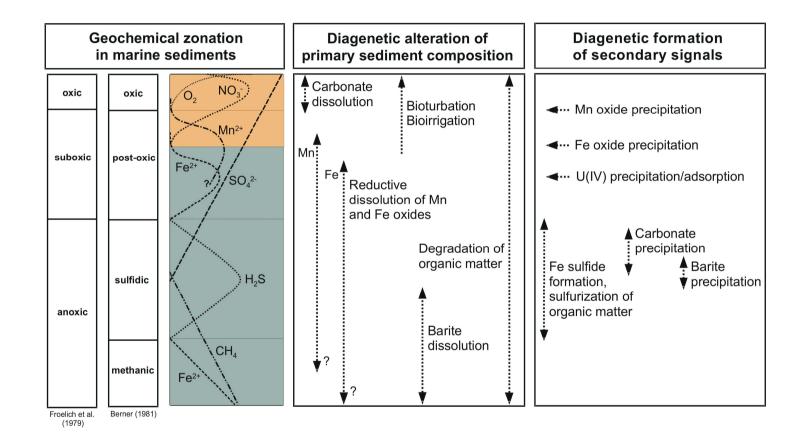
Geomicrobial Activity in the Subsurface

- Microbial ecosystems
- Ecological interactions
 - competition, syntrophy,
 - predation, energy flow
- Complex reaction networks
 - biotic-abiotic
- Energy-limited environments

Life = Redox Chemistry

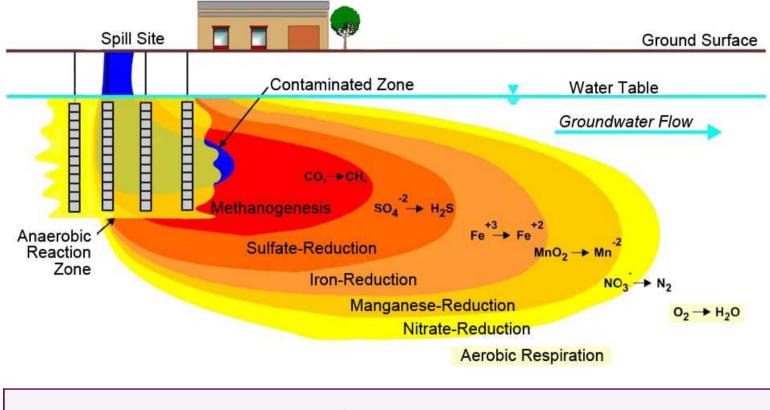
Example

Aerobic cell growth on citric acid: macrochemical reaction:


$${}^{+1}_{aC_{6}H_{8}O_{7}} + bO_{2} + cNH_{4}^{+} \longrightarrow dCH_{2}O_{0.6}N_{0.2} + eCO_{2} + fH^{+} + gH_{2}O$$

$${}^{-0.2}_{new biomass} + eCO_{2} + fH^{+} + gH_{2}O$$

Citric acid ($C_6H_8O_7$): both electron donor for energy production and for biomass synthesis.


Growth yield: Here: $Y_G = d/6a$ (mol C/mol C)

Redox Zonation

http://www.awi.de/fileadmin/user_upload/Research/Research_Divisions/Geosciences/Marine_Geochemistry

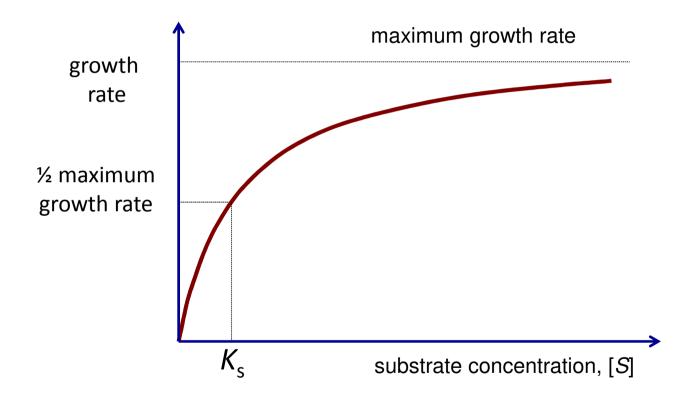
Redox Zonation \rightarrow Thermodynamics

Redox zonation:

subsurface microbial communities optimize catabolic energy production

Microbial Kinetics

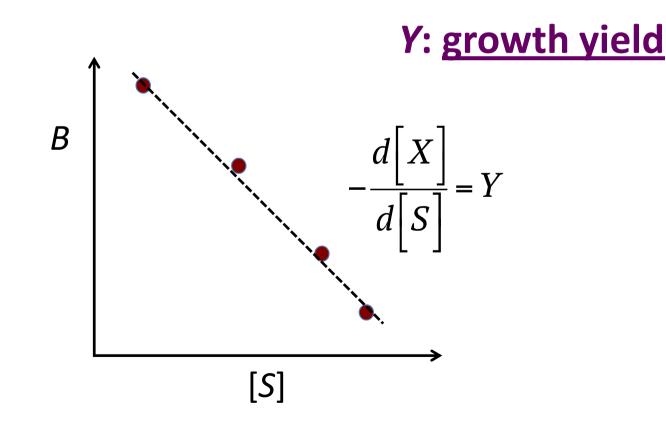
Microbial growth: *Monod kinetics*



- X: biomass
- μ : specific growth rate

 μ_{\max} : maximum μ

- S: limiting (growth) limiting
- $K_{\rm s}$: half-saturation constant


Saturation Kinetics

Growth Kinetics \rightarrow Geochemical Kinetics

Michaelis-Menten kinetics (substrate utilization):

$$-\frac{d[S]}{dt} = \frac{\mu_{\max}}{Y} \cdot X \cdot \frac{[S]}{K_s + [S]}$$

Example: Sulfate Reducers Growing on H₂

Electron donor:

$$\left[H_{2} \rightarrow 2H^{+} + 2e^{-} \right] \times 4$$

Electron acceptor:

$$\mathrm{SO}_4^{2-} + 8e^- + 10\mathrm{H}^+ \rightarrow \mathrm{H}_2\mathrm{S} + 4\mathrm{H}_2\mathrm{O}$$

Catabolic reaction:

$$SO_4^{2-} + 4H_2 + 2H^+ \rightarrow H_2S + 4H_2O$$

Catabolic Reactions & Thermodynamics

$$SO_4^{2-} + 4H_2 + 2H^+ \rightarrow H_2S + 4H_2O$$

 $\Delta G < 0:$ energy yielding reaction
 $\Delta G \ge 0:$ energy demanding reaction

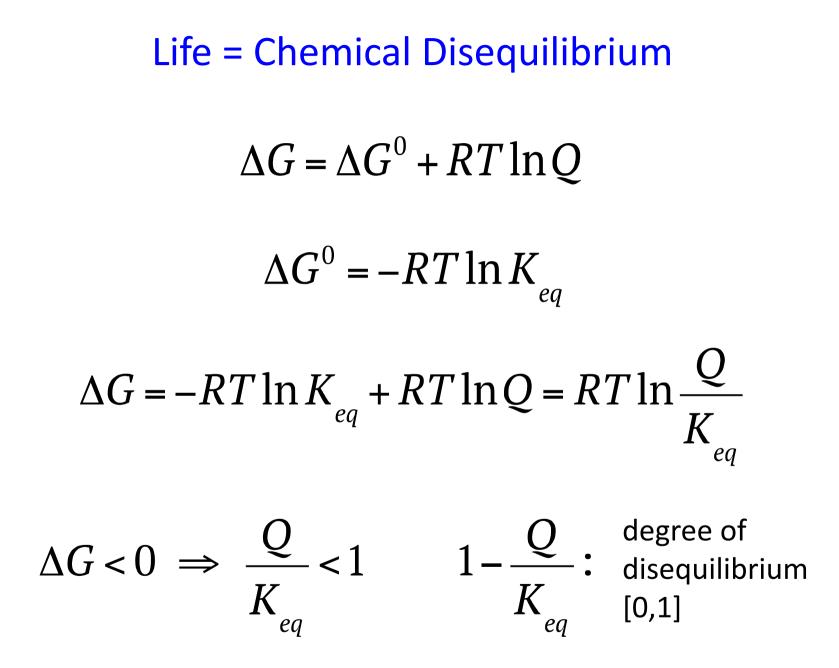
Catabolic reaction: $\Delta G < 0$

$$\Delta G = \Delta G^0 + RT \ln Q$$

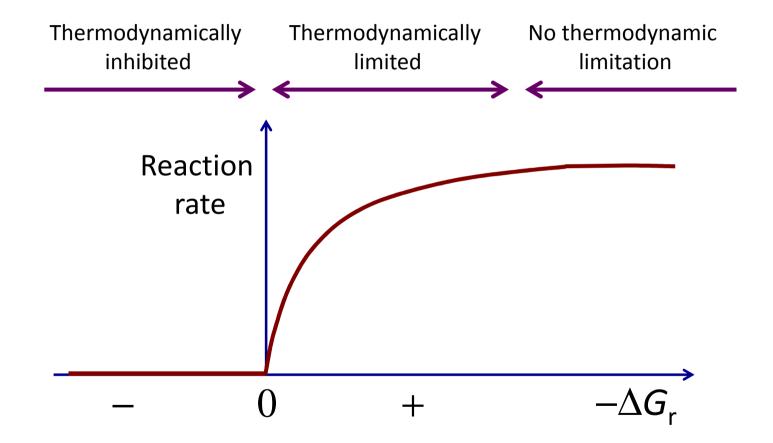
Gibbs Energy of Reaction

$$\Delta G = \Delta G^0 + RT \ln Q$$

$$\Delta G^{0}$$
: standard state Gibbs energy ($a_{i} = 1$)
 $\Delta G^{0} = f(P,T)$
 $\Delta G^{0} = -RT \ln K_{eq}$


Q: reaction quotient

$$Q = \frac{\Pi a_{\text{product } i}^{v_i}}{\Pi a_{\text{reactant } j}^{v_j}}$$


a: activity *v*: stoichiometric coefficient Example: Sulfate Reducers Growing on H₂

$$SO_{4}^{2-} + 4H_{2} + 2H^{+} \rightarrow H_{2}S + 4H_{2}O$$
Aqueous solute: $a_{SO_{4}^{2-}} \approx [SO_{4}^{2-}]; a_{H_{2}S} \approx [H_{2}S]$
Hydrogen ion: $a_{H^{+}} = 10^{-pH}$
Volatile species: $a_{H_{2}} \approx P_{H_{2}}$
Pure solid: $a_{solid} = 1$ solvent: $a_{H_{2}O} \approx 1$

$$Q = \frac{[H_{2}S]}{[SO_{4}^{2-}]P_{H_{2}}^{4}(10^{-pH})^{2}}$$

Kinetics and Thermodynamics

Thermodynamic Limitation

Example: Sulfate reducing bacteria growing on H₂

Classical "Monod" kinetics:

$$-\frac{d\left[SO_{4}^{2^{-}}\right]}{dt} = \frac{\mu_{\max} \cdot X}{Y} \cdot \left\{\frac{\left[H_{2}\right]}{K_{H_{2}} + \left[H_{2}\right]} \cdot \frac{\left[SO_{4}^{2^{-}}\right]}{K_{SO_{4}} + \left[SO_{4}^{2^{-}}\right]}\right\}$$

With thermodynamic limitation:

$$-\frac{d\left[SO_{4}^{2^{-}}\right]}{dt} = \frac{\mu_{\max} \cdot X}{Y} \cdot \left\{\frac{\left[H_{2}\right]}{K_{H_{2}} + \left[H_{2}\right]} \cdot \frac{\left[SO_{4}^{2^{-}}\right]}{K_{SO_{4}} + \left[SO_{4}^{2^{-}}\right]}\right\} \cdot F_{T}$$

Thermodynamic Driving Force, F_{T}

$$\Delta G_{cat}^* > 0: \quad F_T = 0$$

$$\Delta G_{cat}^* < 0: \quad F_T \text{ between 0 and 1}$$

$$\Delta G_{cat}^* << 0: \quad F_T \to 1$$

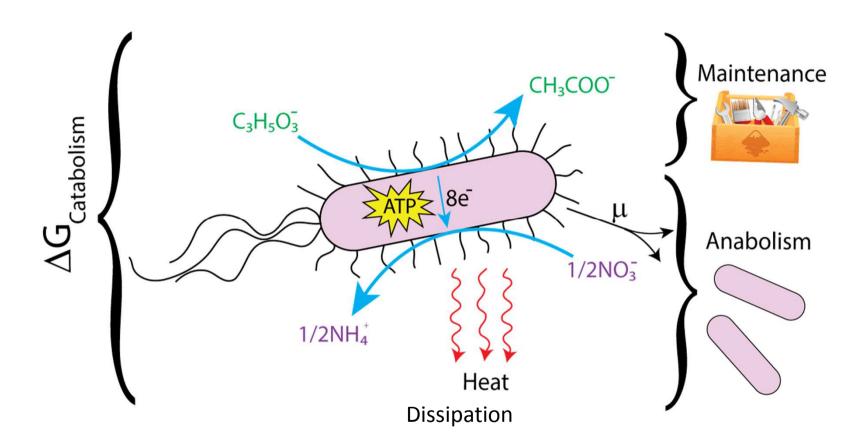
$$\Delta G_{\text{cat}}^* = \Delta G_{\text{cat}} + \Delta G_{\min} \text{ where } \Delta G_{\min} > 0$$

Model 1*: $\Delta G_{\min} = m \cdot \Delta G_{\text{ATP}}$
Model 2#: $\Delta G_{\min} = F \cdot \Delta \Psi$

*Jin Q. and Bethke C.M. (2003) *Appl. Environ. Microbiol.* **69**, 2340-2348 #LaRowe D.E. et al. (2012) *Geochim. Cosmochim. Acta* **90**, 96-109

Thermodynamic Driving Force, F_T

Model 1: Transition State Theory


$$\begin{split} \Delta G_{\text{cat}} + m \Delta G_{\text{ATP}} < 0: \quad F_{T} = 1 - \exp\left(\frac{\Delta G_{\text{cat}} + m \Delta G_{\text{ATP}}}{\chi R T}\right) \\ \Delta G_{\text{cat}} + m \Delta G_{\text{ATP}} \ge 0: \quad F_{T} = 0 \end{split}$$

Model 2: Fermi-Dirac Statistics

$$F_T = \frac{1}{e^{\frac{E}{RT}} + 1}$$
 where $E = \Delta G_{cat} + F \Delta \Psi$

Active bacteria: $\Delta \Psi \ge 100 \text{ mV}$

Cellular Energy Balance

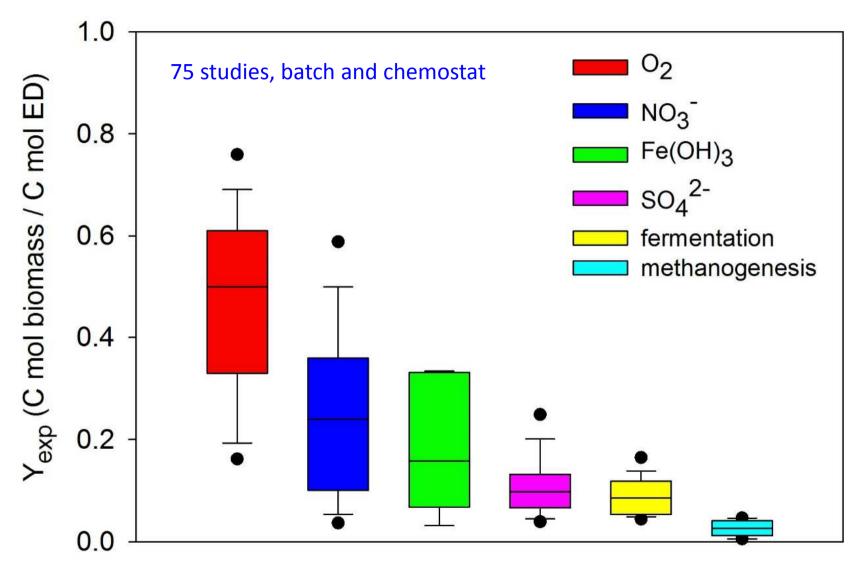
Catabolic energy production = growth + dissipation + maintenance

Anabolic Energy Demand

Anabolism (ANA):

Catabolism (CAT):

carbon source + nutrients (N, P, ...) + energy \rightarrow 1 C-mol biomass


electron donor + electron acceptor \rightarrow products + energy

Metabolic reaction (MET): MET = ANA + $\lambda_{cat} \bullet CAT$

 λ_{cat} : number of times the catabolic reaction must proceed in order to build 1 C-mol biomass

λ_{cat} is directly related to the growth yield!

Thermodynamics \rightarrow Growth Yields

Smeaton C. and Van Cappellen P. (2018) GCA – under review.

Example: Iron Reducers Growing on Acetate

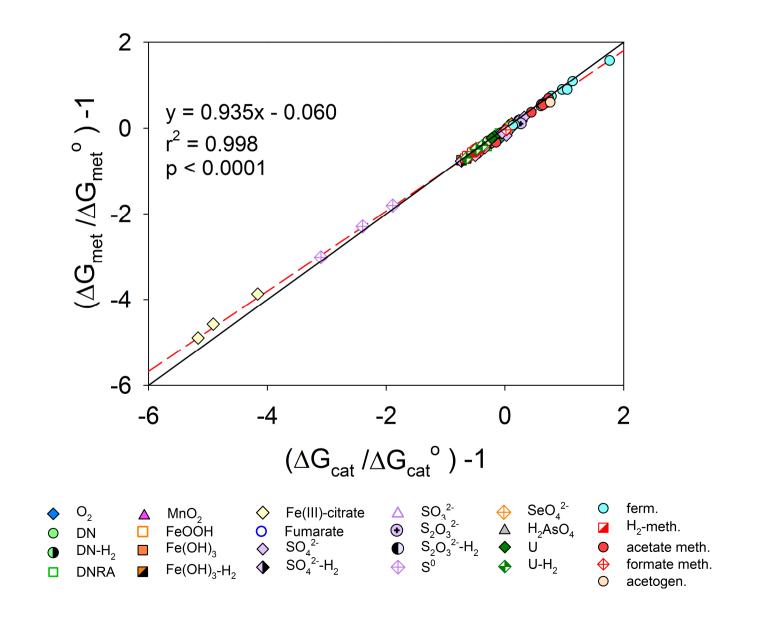
Anabolic reaction (ANA):

 $\begin{array}{rcl} 0.525 \ \text{C}_{2}\text{H}_{3}\text{O}_{2}^{-} + 0.2\text{NH}_{4}^{+} + 0.275\text{H}^{+} & \rightarrow & \text{CH}_{1.8}\text{O}_{0.5}\text{N}_{0.2}^{-} + 0.05\text{HCO}_{3}^{-} + 0.4\text{H}_{2}\text{O}_{1.8}^{-} \\ & \text{biomass} \end{array}$

$$\Delta G_{ANA}^0 = -17.8 \text{ kJ/C-mol biomass}$$
 (at 35°C)
 $v = 0.525 \text{ mol acetate/C-mol biomass}$

Catabolic reaction (CAT):

$$8Fe(OH)_{3} + C_{2}H_{3}O_{2}^{-} + 15H^{+} \rightarrow 8Fe^{2+} + 2HCO_{3}^{-} + 20H_{2}O^{-}$$
$$\Delta G_{CAT}^{0} = -475.9 \text{ kJ/mol acetate} \quad (at 35^{\circ}C)$$


Thermodynamics \rightarrow Growth Yield

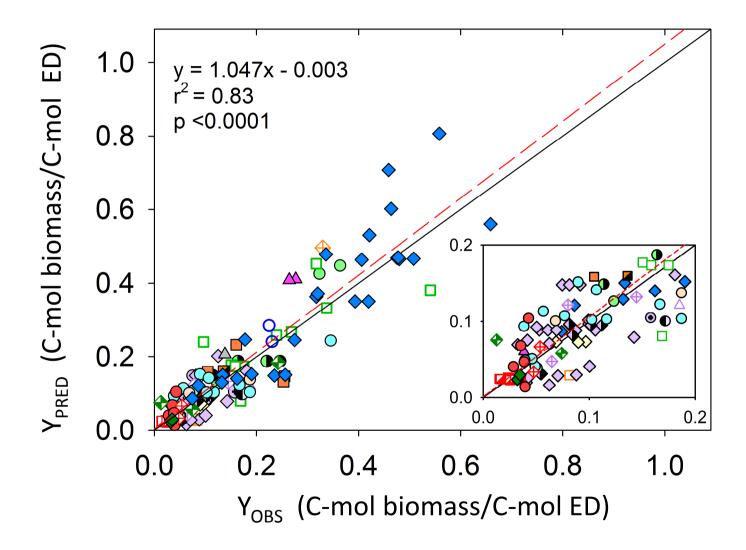
$$\lambda_{cat} \left[\text{mol acetate/C-mol biomass} \right]$$
$$Y \left[\text{C-mol biomass/mol acetate} \right]$$

$$\lambda_{\text{cat}} = \frac{1 - Y \cdot v}{Y} \qquad \Delta G_{\text{met}} = \Delta G_{\text{ana}} + \lambda_{\text{cat}} \Delta G_{\text{cat}}$$

$$Y = \frac{\Delta G_{\text{cat}}}{\Delta G_{\text{met}} + \Delta G_{\text{cat}} \cdot \upsilon - \Delta G_{\text{ana}}}$$

Departure from Standard State Conditions

Gibbs Energy Dynamic Yield Method (GEDYM)


Empirical relationship:

$$\left(\frac{\Delta G_{\text{met}}}{\Delta G_{\text{met}}^{0}} - 1\right) = m \cdot \left(\frac{\Delta G_{\text{cat}}}{\Delta G_{\text{cat}}^{0}} - 1\right) + b$$

Obtain ΔG_{met} and calculate:

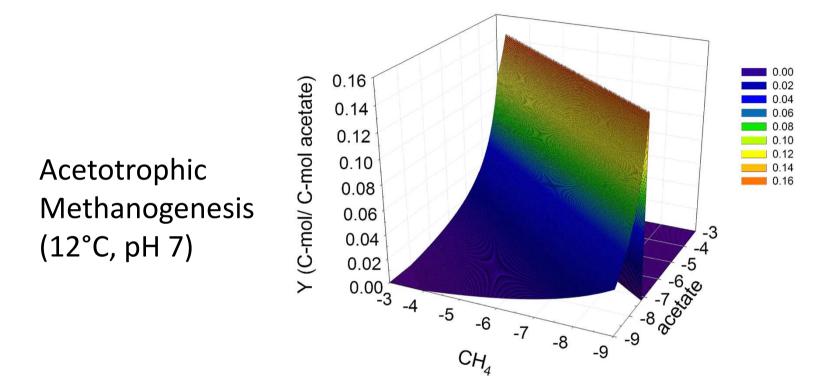
$$Y = \frac{\Delta G_{\text{cat}}}{\Delta G_{\text{met}} + \Delta G_{\text{cat}} \cdot \upsilon - \Delta G_{\text{ana}}}$$

Gibbs Energy Dynamic Yield Method (GEDYM)

Experimental Data: Acetate/Fe(OH)₃

Parameters	Units	Value
Physical and C	Chemical:	
Temperature	°C	35
H^{+}	log activity	-7
Acetate	log activity	-1.78
HCO_3^-	log activity	-1.59
Fe^{2+}	log activity	-6.54
Fe(OH) ₃	log activity	1
$\mathrm{NH_4}^+$	log activity	-2.43
Bioenergetic:		
ν	mol ED/C-mol biomass	0.525
$\Delta G_{cat \ 298K}^{\circ}$	kJ/ mol ED	-482.7
$\Delta G_{cat \ 308K}$	kJ/ mol ED	-475.9
$\Delta G_{cat 308K}$	kJ/ mol ED	-173.1
$\Delta G_{an 298K}$	kJ/ C-mol biomass	18.5
$\Delta G_{an 308K}^{"}$	kJ/ C-mol biomass	17.8
$\Delta G_{an 308K}$	kJ/ C-mol biomass	37.0
m		0.9306
b		-0.0690
Predicted Y	C-mol biomass/ C-mol ED	0.105

Experimental conditions: Caccavo et al. (1994) *Geobacter sulfurreducens* sp. nov., a hydrogenand acetate-oxidizing dissimilatory metal-reducing microorganism. *Applied and Environmental Microbiology* **60**, 3752-3759.


Metabolic (Macrochemical) Reaction

Y = 0.105 C-mol biomass (mol acetate)⁻¹

6.67
$$\operatorname{Fe(OH)}_{_{3}} + \operatorname{C}_{_{2}}\operatorname{H}_{_{3}}\operatorname{O}_{_{2}}^{-} + 0.064 \operatorname{NH}_{_{4}}^{+} + 12.59 \operatorname{H}^{+}$$

 $\rightarrow 0.318 \operatorname{CH}_{_{1.8}}\operatorname{O}_{_{0.5}}\operatorname{N}_{_{0.2}} + 6.67 \operatorname{Fe}^{^{2+}} + 1.68 \operatorname{HCO}_{_{3}}^{-} + 16.79 \operatorname{H}_{_{2}}\operatorname{O}_{_{3}}$

$$\Delta G_{\rm met} = -132.5 \text{ kJ} \text{ (mol acetate)}^{-1}$$

Dynamic Growth Yields

 $C_2H_3O_2^- + H_2O \rightarrow CH_4 + HCO_3^-$

Growth and Maintenance

Pirt Equation:

$$r_{s} = \frac{\mu \cdot X}{Y} + m_{s}$$

where

- r_{s} : substrate utilization rate
- μ : specific growth rate
- X: biomass
- Y : growth yield
- m_s : maintenance requirement (rate)

Bioenergetics and Reactive Transport

- 1. F_T : thermodynamic limitation on catabolic reaction
- 2. λ_{cat} : coupling catabolism and anabolism
- 3. m_e: maintenance requirement

The End

Source: http://www.jantoo.com/cartoon/12265265