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Objective/OutlineObjective/Outline

 Motivation: flow of polymer solutions, question 
about heuristic models in Res. Engng

 Upscaling

– Introduction (generalized Stokes)

– Transition

– Induced anisotropy, effect of disorder, effect of 
size of the UC, ...

 Further problems: exclusion zone, viscoelastic
 Conclusions
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Multi-Scale AnalysisMulti-Scale Analysis

()=0

=g(x)

*(〈ψ〉)=0

〈ψ =〉= g*(x) 

Pore-Scale Darcy-Scale

 Sequential multi-scale pattern
 Used in DRP, Res. Engng, 

Hydro., etc...
 Objectives of macro-scale 

theories:
– Smoothing operator .  →  Macro ⟨.⟩ →  Macro ⟩ →  Macro 

variables, Eqs & BCs
– Micro-macro link → 

Determination of Effective 
Properties

 Needs Scale Separation:

         lβ ,lσ REV?≪REV?≪ ≪REV?≪ L

η-region

ω-region

L

Pore-Scale
V

Darcy-Scale

Reservoir-Scale

V∞

β-phase

σ-phase
lβ

lσ

lη
lω

(process dependent)
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Multi-Scale Analysis: Upscaling Multi-Scale Analysis: Upscaling 
TechniquesTechniques
 Form of the equations?

– averaging and TIP (Marle, Gray, Hassanizadeh, …)
– averaging and closure (Whitaker, …)
– homogenization (Bensoussan et al., Sanchez-Palencia, Tartar, …), also 

“closure”
– stochastic approaches (Dagan, Gelhar, ...)

 Effective properties calculations?
– Assuming the form of Eqs: interpret experiments or DNS
– Upscaling with “closure” (averaging, homogenization, stochastic): 

provides local Unit Cell problems
 Many Open Problems: High non-linearities, Strong couplings, 

Evolving pore-scale structure, ...
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A simple introduction to A simple introduction to 
upscaling with “closure”upscaling with “closure”

x

x

x

DNS

aver.c
Closure:

Macro

Micro

Macro-scale Equation

b
x

● Tomography
● Reconstruction
● Geostatistics
● ...

Effective property
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Flow of a non-Newtonian fluidFlow of a non-Newtonian fluid

 Pore-Scale problem (Re~0)

 Upscaling: (vol. aver. ⟨ψβ⟩=εβ ψ⟨ψ β⟩β with εβ=Vβ/V)? 



10-3 10-2 10-1 100 101 102 103

10-1

100

γ̇ / γ̇c

µ
/µ

0

plateau + power law
Carreau

cross-fluid

Rheology:

Case of Generalized Stokes equation
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Typical local (over a REV) featuresTypical local (over a REV) features

30°

velocity

viscosity

Pressure dev.

Remark (far from BCs)

⇓
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Upscaling flow of a non-Upscaling flow of a non-
Newtonian fluidNewtonian fluid

 Averaging (vol. aver. ⟨ψβ⟩=εβ ψ⟨ψ β⟩β with εβ=Vβ/V)

+...Closure?

macro

micro

 ⇒ Problem must be solved for each value of ⟨ψv
β
⟩β!
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““Closure”?Closure”?
Under several constraints: scale 
separation, far from BCs, ...

 ⇒ Problem must be solved for each value of v〈v
β
〉β!

Tentatively:

⇒
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A classical story: the linear case A classical story: the linear case 
and Darcy’s lawand Darcy’s law

 Closure (any solution is a linear combination of 
elementary solutions for ⟨ψvβ⟩β=ei for i=1,2,3)

 Macro-Scale equation and effective properties

Important: Proof of symmetry of K
0
 requires periodicity!

Intrinsic permeability:

Darcy’s law:

(see Sanchez-Palencia, Whitaker, ….)

over a UC!
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Calculations of the permeabilityCalculations of the permeability

 3 possibilities
– Initial closure problem

– Transformation of 
closure problem into 
~Stokes with source 
term and periodic 
pressure and velocity

– “permeameters”: no-
periodicity

 Making image periodic? 
– I: Percolation problem

– II: Loss of anisotropy

– III: potentially various bias

See discussion in Guibert et al., 2015

Case of “diffusion” problem: e.g., permeability, effective diffusion

● thin layers 
+ 
periodicity

● Eff. 
Medium

● …..

I II III
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Calculations over non-periodic Calculations over non-periodic 
imagesimages

 “permeameters”
– All methods have bias

– ⟨ψvx⟩β≠0

– Kxy≠Kyx

P
1

⇒
x

y P
2

⇒

P
1

P
2classical

Bamberger

See discussion in: Manwart et al. 2002; Piller et 
al. 2009; Guibert et al., 2015; ...

Note: minimal bias if large sample 
and anisotropy along the axis
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Non-Linear Case: Non-Non-Linear Case: Non-
Newtonian FluidNewtonian Fluid

 Fluid rheology

 No generic closure 
independent of fluid 
velocity! Generic macro-
scale law:

 Representation as a 
deviation from Darcy’s 
law

– kn, P (rotation 
“matrix”): depend on 
⟨ψvβ⟩β

  (modulus and 
orientation)
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PLCO
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Test casesTest cases

HPC center EOS-Calmip:
Typically: 108 mesh cells
105 cores×hours

Clashach  Bentheimer  2D

Needs very fine grid!

often 
limited to
~ mm3!
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Resolution with OpenFoamResolution with OpenFoam
●  FVM with OpenFOAM (SIMPLE, second-order scheme)
●  Use of HPC, calculations up to 100 millions mesh elements
●  a total of 100000 hours of CPU time.
●  Conform orthogonal hexahedral elements.
●  Multi-criteria grid convergence study = OK.
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ResultsResults

 Computations allows 
to analyze various 
features:
– Properties of pore-

scale fields (PDFs)
– Transition:

• Starts in a few narrow 
constrictions

• Scaling for transition?
⟨Uc⟩FL

non-Newtonian  
regime

Newtonian 
regime

k n= 1

k n≠
1

⟨U ⟩FL
k 

 (
ap

pa
re

nt
)

⟨ψ.⟩
FL

 = intrinsic fluid 

average

∝U
(1

-n
)
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Structure of the Velocity FieldStructure of the Velocity Field
backflow

Normalized pdf ~similar between Newtonian and non-
Newtonian flow! Not valid for pdf of  ∇⟨ψp

β
⟩β

z

y

newtonian

non-newtonian
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Transition ScalingTransition Scaling
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Zami-Pierre et al., 2015



Transport in Porous Media 19/27M. Quintard

Impact of Domain SizeImpact of Domain Size
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● Anisotropy induced by non-linear behavior decreases with 
 ↗ L for disordered media

● Effective property variance decreases with  ↗ L

θ=22°

~x

~y

⟨v
n ≠1
β ⟩

α
⟨v

n =1
β ⟩

θ
 ∇⟨ p β⟩β-ρβg



Transport in Porous Media 20/27M. Quintard

Impact of Domain SizeImpact of Domain Size
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Disorder → no anisotropy induced by 
non-linearity if L large enough!

θ=22°

R
eq

 (pore size)

L Bentheimer



Transport in Porous Media 21/27M. Quintard

Impact of disorder and velocityImpact of disorder and velocity
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Practical ConsequencesPractical Consequences

 Eng. Practice: apparent Darcy’s law

 Discussion:
– P=I for all 〈vvβ〉β if isotropic disordered media and REV (→ need tests for 

various sizes)!

– Apparent permeability ~ scales with (K0)½ → classical scaling “may” 
introduce artificial dependence upon parameters such as porosity: 

– Description of transition near the critical velocity may not be well 
described by an apparent viscosity (no observed angle in the apparent 
permeability in the case of PLCO)

Fitting parameter (rock dependent)

versus
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Further upscalingFurther upscaling

η-region

ω-region

L

Pore-Scale

V

Darcy-Scale

Reservoir-Scale

V

β-phase

σ-phase
lβ

lσ

lη
lω

cont. DLVO

effective BC

zone model

SubPore-Scale

 Depletion layer 
treated as an 
effective BC

Zami-Pierre et al., 2017

see Chauveteau (1982), 
Sorbie & Huang (1991) 
(double-layer model)
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Further upscalingFurther upscaling

 Viscoelastic fluids

 Rheological models
FENE-P:

upper convected Derivative 
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⛐ -see previous discussion on “apparent permeability”, etc…
    - elastic turbulence?

Deborah number:

Example of results: De et al., soft matter, 2018Example of results: De et al., soft matter, 2018

...also Weissenberg number ☺

Normal stress along average flow 
direction

De= 0.001                  0.1

Steady-state!
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Further perspectives: N-momentum Further perspectives: N-momentum 
equations, multi-component aspects, ...equations, multi-component aspects, ...

 Superfluid: 2 momentum equations → complex behavior → macro-
scale model?

 Polymer solution as multi-component systems:

– Mechanical segregation, degradation (bio., mech.)

– Model?

• Momentum balances:
– diffusion theory or
– N-momentum equations

• Composition:
– Continuous models or
– PBM (population balance model), ...

see Allain et al. (2010, 2013, 2015), Soulaine et al. (2015, 2017) 

mol. weight

pd
f
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ConclusionsConclusions

 Upscaling tells that this is not always possible to separate in an 
apparent Darcy’s law permeability and viscosity

 Specific anisotropy effects
 Simplifications arise for disordered media
 Various results published in the literature for various rheology: 

power-law (...),  Ellis and Herschel–Bulkley fluids (Sochi & Blunt, 
2008), Yield-Stress Fluids (Sochi, 2008), etc…

 Additional problems: retention effects, Inaccessible Pore 
Volume (IPV), mobile/immobile effects

 Perspectives: viscoelastic, multicomponent, coupling with other 
transport problems (transport of species, heat transfer, etc…), ...
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