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Notes prepared for the 2018 Cargese summer school on flow and transport in porous
and fractured materials.

These notes are largely based on chapters 1-4 from Theory of Linear Poroelasticity
by H. Wang, Princeton University Press, 2000. Roeloffs (1996) provides a more brief
and applied presentation.
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1 Constitutive relations for isotropic stress: Biot (1941)

Consider a saturated and isothermal rock. Stresses σ and pore pressure p are the inde-
pendent variables and we would like to know the strain ε and fluid content f of the rock
(fluid mass per unit volume divided by fluid density)

ε = ε(σ, p) (1)

f = f(σ, p) (2)
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We consider first the case of an isotropic stress, for which ε = dV/V where V is volume.
Changes in ε and f due to changes in σ and p are thus given by

dε =

(
∂ε

∂σ

)
p
dσ +

(
∂ε

∂p

)
σ

dp (3)

df =

(
∂f

∂σ

)
p
dσ +

(
∂f

∂p

)
σ

dp (4)

1/K is the compressibility and K is the bulk modulus. Biot (1941)1 defined four pa-
rameters K, R, H and H1 such that

dε =
1

K
dσ +

1

H
dp (5)

df =
1

H1
dσ +

1

R
dp (6)

and thus2

1

K
=

(
∂ε

∂σ

)
p
,

1

H
=

(
∂ε

∂p

)
σ

1

H1
=

(
∂f

∂σ

)
p
,

1

R
=

(
∂f

∂p

)
σ

(7)

Biot (1941) further assumed there is a potential density function

U =
1

2
(σε+ pf) . (8)

Because σ and p are independent variables (hence ∂U/∂σ = ε/2 and ∂U/∂p = f/2),
then ∂2U/∂p∂σ = ∂2U/∂σ∂p and (

∂ε

∂p

)
σ

=

(
∂f

∂σ

)
p

(9)

and hence
H = H1 (10)

1.1 Related poroelastic constants

Other (more commonly used) poroelastic constants can be expressed in terms of K, H
and R. The Skempton’s coefficient B is defined as

B = −
(
∂p

∂σ

)
f

=
R

H
(11)

using equation (6).

1This was an influential paper. As of May 25, 2018 it had been cited 8600 times.
2From (5) we have dε = 1

K
(dσ + K

H
dp) = 1

K
(dσ + αdp) = 1

K
dσ′ where σ′ is defined as the effective

stress dσ′ = dσ + αdp.
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The Biot-Willis coefficient α is defined as

α =
K

H
(12)

The groundwater flow equations to be discussed later combine conservation of mass
and Darcy’s law, and typically have a quantity called the specific storage. The specific
storage at constant stress is

Sσ =

(
∂f

∂p

)
σ

=
1

R
(13)

The specific storage at constant strain Sε =
(
∂f
∂p

)
ε

can be derived by eliminating dσ

from equations (5) and (6)

df =
K

H
dε+

(
1

R
− K

H2

)
dp (14)

and hence

Sε =

(
∂f

∂p

)
ε

= Sσ −
K

H2
(15)

and hence that
df = αdε+ Sεp. (16)

With the definitions of B and α, equations (5) and (6) can be written instead as

dε =
1

K
dσ +

α

K
dp (17)

df =
α

K
dσ +

α

KB
dp (18)

where
Sσ =

α

KB
(19)

Equations (17) and (18) can be rearranged for stress and pressure

dσ =

(
K

1− αB

)
dε−

(
K

1− αB
B

)
df (20)

dp = −
(

K

1− αB
B

)
dε+

(
K

1− αB
B

α

)
df. (21)

We can define Ku = dσ/dε for f = 0, and hence identify Ku as an undrained bulk
modulus (the bulk modulus when there is no fluid gain or loss)

Ku =
K

1− αB
(22)

We can rewrite equations (20) and (21) in terms of Ku

dσ = Kudε−KuBdf (23)
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dp = −KuBdε+
KuB

α
df (24)

This last relation (24) is the basis for using water wells as strain meters. If we
assume the pore pressure through changes in the water height dh = ρwgdp in a well is
an undrained response to a volumetric strain dε

dh =
1

ρwg
dp|f=0 = −KuB

ρwg
dε (25)

The validity of this undrained assumption depends on the rate of loading compared to
the permeability of the formation.

From equation (24) we obtain

df = αdε+
α

KuB
dp (26)

which leads to a physical interpretation of α

α =
df

dε
|dp=0, (27)

that is, α is the ratio of the increment in fluid content to volumetric strain at constant
pressure. From (26) we can also obtain an expression for the constrained specific storage
coefficient

Sε =
df

dp
|ε=0 =

α

KuB
(28)

and
Sσ
Sε

=
Ku

K
=

1

1− αB
(29)

From equation (23) we obtain

dε =
dσ

Ku
+Bdf (30)

The volumetric strain ε is composed of two components: an elastic component under
undrained conditions, and a second component from the transfer of fluid. Equation (30)
provides a physical interpretation of Skempton’s coefficient

B =
dε

df
|dσ=0 (31)

2 Constitutive relationship for anisotropic stress

Our variables are now pore pressure p, stress σij , strain εij and increment in fluid content
df . The mean stress σmean = 1

3(σxx + σyy + σzz) = 1
3(σ1 + σ2 + σ3) and the volumetric

strain is ε = ε11 + ε22 + ε33.
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In principal coordinates the constitutive relations are

dε1 =
1

E
dσ1 −

ν

E
dσ2 −

ν

E
dσ3 +

dp

3H
(32)

dε2 = − ν
E
dσ1 +

1

E
dσ2 −

ν

E
dσ3 +

dp

3H
(33)

dε3 = − ν
E
dσ1 −

ν

E
dσ2 +

1

E
dσ3 +

dp

3H
(34)

df =
1

H
dσ +

1

R
dp with σ =

1

3
(σ1 + σ2 + σ3) (35)

The elastic constants E (Young’s modulus) and ν (Poisson ratio) are defined for drained
conditions (dp = 0).

In general coordinates, there are shear strains and stress and seven equations since
the stress and strain tensors are symmetric

dεxx =
1

E
dσxx −

ν

E
dσyy −

ν

E
dσ3 +

dp

3H
(36)

dεyy = − ν
E
dσxx +

1

E
dσyy −

ν

E
dσzz +

dp

3H
(37)

dεzz = − ν
E
dσxx −

ν

E
dσyy +

1

E
dσzz +

dp

3H
(38)

dεxy =
1

2G
dσxy (39)

dεyz =
1

2G
dσyz (40)

dεxz =
1

2G
dσxz (41)

df =
1

H
dσ +

1

R
dp (42)

where G is the shear modulus which can be related to E and ν via G = E/2(1 + ν).
The first 6 of these equations can be written in standard index notation

εij =
1

2G

(
σij −

ν

1 + ν
σkkδij

)
+

p

3H
δij (43)

and the d has been dropped so that the variable now indicates a change in that variable.
Using α = K/H and then K = 2(1+ν)

3(1−2ν)G

εij =
1

2G

(
σij −

ν

1 + ν
σkkδij +

1− 2ν

1 + ν
αpδij

)
(44)

As before, defining the effective stress σ′ij = σij + αpδij then

εij =
1

2G

(
σ′ij −

ν

1 + ν
σ′kkδij

)
(45)
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Equation (43) can we rearranged into equivalent but useful forms

σij = 2G

(
εij +

ν

1− 2ν
εkkδij

)
− αpδij (46)

εij =
1

2G

(
σij −

νu
1 + νu

σkkδij +
2GB

3
fδij

)
(47)

where νu is the undrained Poisson ratio which can be derived from νu = εjj/εii|f=0,σjj=0 for j 6=i
using equation (42) and B = −p/σ = −3p/σkk

Ku =
2G(1 + νu)

3(1− 2νu)
. (48)

3 Poroelastic constants

There are a number of poroelastic constants that depend on different constraints on the
Representative Elementary Volume (REV).

3.1 Compressibility

Consider an experiment in which a rock is subjected to a confining pressure pc and an
independently controlled pore pressure p. We define a differential pressure

pd = pc − p (49)

and we will use pd and p and the independent variables. Then

dV

V
= − 1

K
dpd −

1

K ′
s

dp (50)

dVp
V

= − 1

Kp
dpd −

1

Kφ
dp (51)

where V is the sample volume, Vp is the pore volume, K is the drained bulk modulus. The
other constants require more explanation and are called the unjacketed bulk modulus
(K

′
s), drained pore modulus (Kp) and unjacketed pore modulus (Kφ).
In an unjacketed experiment, pc = p and hence pd = 0. Thus

1

K ′
s

= − 1

V

(
δV

δp

)
pd=0

and
1

Kφ
= − 1

Vp

(
δVp
δp

)
pd=0

(52)

In a drained experiment, p = 0 and thus pc = pd and

1

K
= − 1

V

(
δV

δpc

)
p=0

and
1

Kp
= − 1

Vp

(
δVp
δpc

)
p=0

(53)

Equation (5) can be rewritten as

dε =
dV

V
= − 1

K
dpc +

1

H
dp = − 1

K
dpd −

(
1

K
− 1

H

)
dp (54)
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Using (48), the unjacketed bulk modulus can also be written

1

K ′
s

=
1

K
(1− α) (55)

The drained pore modulus Kp can be related to other poroelastic constants. From
the definition of f and the definition of porosity φ = Vp/V , and φ = Vf/V for the fully
saturated limit

df =
dVp − dVf

V
= φ

(
dVp
Vp
− dVf

Vf

)
= φ

(
dVp
Vp
− dp

Kf

)
. (56)

Since the compressibility of the fluid

1

Kf
= − 1

Vf

dVf
dp

(57)

From (6) we have

df =
1

H
dσ +

1

R
dp = − 1

H
dpc +

1

R
dp (58)

Solving (54) for dVp/Vp using (56) we have

dVp
Vp

= − 1

φH
dpc +

(
1

φR
− 1

Kf

)
dp = − α

φK
dpc +

(
α

φBK
− 1

Kf

)
dp (59)

and thus
1

Kp
= − 1

Vp

dVp
dpc
|p=0 =

α

φK
(60)

If we replace pc in (59) by pd + p we have

dVp
Vp

= − α

φK
dpd +

(
α

φBK
− α

φK
− 1

Kf

)
dp (61)

and thus
1

Kφ
= − 1

Vp

dVp
dp
|pp=0 =

α

φK

(
1− 1

B

)
+

1

Kf
(62)

The importance of these relationships is that the poroelastic constants K
′
s, Kp and

Kφ can all be written in terms of measureable constants K, Kf , α, B and φ.

3.2 Storage capacity

There are several measures of storage capacity of a rock depending on the constraints
on the REV.

The undrained specific storage Sσ is

Sσ =
∂f

∂p
|σ =

1

R
=

α

KB
(63)
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We can provide a micromechanical interpretation by using (53) and (60) in (61)

Sσ =

(
1

K
− 1

K ′
s

)
+ φ

(
1

Kf
− 1

Kφ

)
(64)

The hydrogeological 3D definition of specific storage S′ is defined as the volume of
water released from the rock per unit volume per unit decline in hydraulic head while
holding the mean stress constant. Hence S′ and Sσ can be related

S′ = ρfgSσ (65)

The constrained specific storage Sε is defined as

Sε =
∂f

∂p
|ε = Sσ −

K

H2
= Sσ −

α2

K
=

α2

Ku −K
(66)

Sε can also be expressed in terms of G, ν and νu (see Detournay and Cheng, 1993)

Sε =
α2(1− 2νu)(1− 2ν)

2G(νu − ν)
(67)

The uniaxial specific storage is defined

Ss = ρfg

(
∂f

∂p

)
σzz=0,εxx=εyy=0

(68)

where z is the vertical direction, and x and y are two horizontal directions. This is the
usual hydrogeological definition of specific storage, i.e., the volume of water released per
unit volume per unit decline in head while maintaining zero lateral strain and constant
vertical stress.

The constraints εxx = εyy = 0 can be used in equations (36) and (37) to obtain σxx
and σyy which can be summed to obtain

σkk = −4ηp with η =
1− 2ν

2(1− ν)
α. (69)

and the change in the mean stress is a scalar multiple of the change in pore pressure (in
this limit).

Substituting (69) into (18) with σkk = 3σ with S = SS/ρfg the storage coefficient is

S = Sσ

(
1− 4ηB

3

)
(70)

It can then be shown that
Sσ ≥ S ≥ Sε (71)

The different storage coefficients illustrates the importance of boundary conditions on
the REV for poroelastic behavior.

The unjacketed specific storage

Sγ =

(
∂f

∂p

)
pd=0

= φ

(
1

Kf
− 1

Kφ

)
(72)
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3.3 Poroelastic expansion coefficient

One of the Biot (1941) parameters, the poroelastic expansion coefficient, is

1

H
=

(
∂ε

∂p

)
σ

=
α

K
=

1

K
− 1

K ′
s

(73)

The poroelastic expansion coefficient is thus the difference between the bulk compress-
ibility and the unjacketed compressibility.

If there is no horizontal strain εxx = εyy = 0 the vertical stress

σzz|εxx=εyy=0 =
2G(1− ν)

1− 2ν
εzz − αp = Kvεzz − αp (74)

where Kv is the vertical compressibility. Rearranging for the strain

εzz =
1

Kv
σzz|εxx=εyy=0 +

α

Kv
p (75)

Thus for zero vertical stress, the volumetric strain is proportional to the pore pressure
change, and the constant of proportionality

cm = α/Kv (76)

is known as the Geertsma uniaxial exapansion coefficient (and can be shown to also
equal η/G).

3.4 Coefficients of undrained pore pressure buildup

Skempton’s coefficient was defined as

B = −
(
∂p

∂σ

)
f=0

(77)

and can also be expressed in term of the various compressibilities. Using Ku = K/(1−
αB) and α = 1−K/K ′

s, we have

B =
1−K/Ku

1−K/K ′
s

(78)

and using (62)

B =
1/K − 1/K

′
s

1/K − 1/K ′
s + φ(1/Kk − 1/Kφ)

(79)

B can also be written in terms of Poisson ratios

B =
3(νu − ν)

α(1 + νu)(1− 2ν)
(80)
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Returning to the limit with no horizontal strains, we can define a loading efficient as

γ = −
(
∂p

∂σzz

)
εxx=εyy=0,f=0

(81)

From the constitutive law (43) with εxx = εyy = 0 and f = 0, we have

σxx|εxx=εyy=0,f=0 = σyy|εxx=εyy=0,f=0 =
νu

1− νu
σzz (82)

Since σ = 1
3(σxx + σyy + σzz) = 1

3
1+νu
1−νuσzz then

γ =
B

3

1 + νu
1− νu

(83)

The tidal efficiency T.E. can be defined as the water level change in a well divided by
the water level change in the ocean. The uniaxial strain condition is often assumed for
aquifers close to a shoreline. γ can be expressed in terms of other poroelastic constants,
e.g.,

T.E. = γ =
α

KvS
(84)

If we assume 1/K
′
s = 1/Kφ = 0, then S = 1

Kv
+ φ 1

Kf
and

T.E. =
Kf

Kf + φKv
(85)

This equation and measurements of water level and then be used to estimate the specific
storage of aquifers near the shoreline if φ and Kf are known.

Another surface source of loading is variation in atmospheric pressure. The baro-
metric efficiency is defined as the ratio between the change in water level dh in a well to
the change in atmospheric pressure dpatm converted to an equivalent head dpatm/ρfg

B.E. = −ρfg
dh

dpatm
(86)

where the negative sign is included to make B.E. positive. The atmospheric pressure
exerts a load both on the surface of the Earth and the water surface in the well. The
former causes water level to rise by an amount γdpatm/ρfg and the latter for the level
to drop by dpatm/ρfg. Thus

B.E. = 1− γ (87)

If we again assume 1/K
′
s = 1/Kφ = 0,

B.E. =
φKv

Kf + φKv
(88)

Independent measures of both T.E. and B.E. yield S and φ.
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4 Governing equations for fluid flow

Coupling between elastic deformation and fluid flow occurs between the equation for
fluid flow (assumed to be Darcy’s law) and conservation of mass. We begin with the
continuity equation for fluid

∂f

∂t
= −∇ · q +Q (89)

where q is the specific discharge vector and Q is the fluid source per unit volume per
unit time.

Substituting Darcy’s law into the conservation of mass question yields

∂f

∂t
=
k

µ
∇2p+Q (90)

where k is permeability (assumed constant in space) and µ the fluid viscosity. With the
assumption of uniaxial strain and constant vertical stress, then f = Sp, which when
used in equation (90) leads to the standard flow equation in hydrogeology

S
∂p

∂t
=
k

µ
∇2p+Q (91)

The assumption of uniaxial strain and constant vertical stress are not satisfied rigorously
in 2D and 3D flows in general because the flow distorts the strain field. A more general
flow equation can be obtained by using equation (26)

f =
α

K

σkk
3

+
α

KB
p

leading to
α

KB

[
B

3

∂σkk
∂t

+
∂p

∂t

]
=
k

µ
∇2p+Q (92)

where the first term on the left, the time derivative of the mean stress, is equivalent
mathematically to a fluid source.

Since Sσ = α/KB (equation 63), then

Sσ

[
B

3

∂σkk
∂t

+
∂p

∂t

]
=
k

µ
∇2p+Q (93)

Using the relations σkk/3 = Kε−αp (equation yy) and Sε = (1−αB)Sσ, equation (93)
can be transformed to

α
∂εkk
∂t

+ Sε
∂p

∂t
=
k

µ
∇2p+Q (94)

in which fluid flow is coupled to the time variation of volumetric strain that acts math-
ematically as a fluid source.

These PDEs are inhomogeneous even when there are no explicit fluid sources Q.
Therefore any further simplification to a homogeneous diffusion equation must be justi-
fied on the grounds that a constant strain or stress is maintained approximately through-
out the region of interest.
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4.1 Uncoupling stress (or strain) from fluid flow

The uncoupling is one-way in that the pore-pressure field does produce stress and strain,
but under certain conditions the changes in stress and strain do not affect fluid flow.
Thus the transient flow equation can be solved independent of stress and strain fields.
The resulting fluid pressure field can then be inserted into the elastostatic equation as
a parametric function of time which is then solved separately. Two circumstances occur
where this is achieved: a highly compressible fluid, an irrotational displacement field in
an unbounded domain. For the latter see Wang (2000).

Highly compressible fluid. Because α/K = 1/K − 1/K
′
s, the Skempton’s coefficient

can be written as
B =

α

α+ φ
(
K
Kf
− K

Kφ

) (95)

For a highly compressible fluid K � Kf . Since both K/Kφ and α are < 1,

B ≈ αKf

φK
� 1 (96)

hence the coupling term B
3 ∂σkk/∂t approaches zero and

Sσ =
α

KB
≈ αφK

KαKf
=

φ

Kf
(97)

and we obtain the uncoupled flow equation

φ

Kf

∂p

∂t
=
k

µ
∇2p+Q (98)

5 Response of wells to solid Earth tides

The water level in an open well will respond to strains in the aquifer it taps. Because
water must flow into the well, there will be a phase lag that depends on permeability.
The amplitude of the response will depend on poroelastic properties of the aquifer and
geometric properties of the well.

The special case of harmonic forcing offers opportunities to probe aquifer properties,
as developed in Hsieh et al. (1989). This forcing could be seismic waves, or solid Earth
tides. The hydraulic head fluctuations are assumed to be

h = h0 exp(iωt) (99)

with water level response
x = x0 exp(iωt) (100)

where h0 and x0 are the complex amplitude of pressure head and water level.
Consider the following geometry; rw is the well radius open to the aquifer with

thickness d, rc the radius of casing, and s is the change in water level. The groundwater
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flow equation for a homogeneous, isotropic, confined aquifer with only vertical strain
and assuming constant vertical stress (see previous sections)

∂2s

∂r2
+

1

r

∂s

∂r
− S

T

∂s

∂t
= 0. (101)

where T = kρgd/µ is the transmissivity and S = dSs is the storativity. The boundary
condition as the well is

2πrwT

(
∂s

∂r

)
r=rw

= −Q0 exp(iωt) at r = rw (102)

and as r →∞, s→ 0.
Because the equation is linear and the forcing is harmonic, the solution must have

the form
s(r, t) = G(r) exp(iωt) (103)

Substituting into the governing equation and boundary conditions

d2G

dr2
+

1

r

dG

dr
− iωS

T
G = 0 (104)

with

2πrwT

(
dG

dr

)
r=rw

= −Q0 exp(iωt) at r = rw (105)

and G→∞, s→ 0.
The solution is given by

sw = −ωr
2
cx0

2T
[(ΨKer(αw) + ΦKei(αw))− i(ΦKer(αw)−ΨKei(αw)] exp(iωt) (106)

where

Φ = − Ker1(αw) + Kei1(αw)√
2αw[Ker21(αw) + Kei21(αw)]

(107)

Ψ = − Ker1(αw)−Kei1(αw)√
2αw[Ker21(αw) + Kei21(αw)]

(108)

αw =

(
ωS

T

)1/2

rw (109)

and Ker and Kei are Kelvin functions of order zero, and Ker1 and Kei1 are Kelvin
functions of order 1.

Finally we can compute the amplitude response

A = |x0/h0| = (E2 + F 2)−1/2 (110)

and phase shift
η = − tan−1(F/E) (111)
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where the functions F and E are

E = 1− ωr2c
2T

[ΨKer(αw) + ΦKei(αw)] (112)

F =
ωr2c
2T

[ΦKer(αw)iΨKei(αw)] (113)

This models allows only for horizontal flow and results in a negative phase shift.
A positive phase shift arises from vertical flow through a layer of fixed thickness.

The solution in this case, e.g., from Xue et al. (2016), has

A = [1− 2 exp(−z/δ) cos(z/δ) + exp(−2z/δ)]1/2 (114)

η = tan−1
[

exp(−z/δ) sin(z/δ)

1− exp(−z/δ) cos(z/δ)

]
(115)

where δ =
√

2T/ω.
Because of the sensitivity of phase and amplitude to permeability and storage prop-

erties, monitoring the response of water to tides provides a means to document the
evolution of these properties. For example, Elkhoury et al. (2006) showed how regional
earthquakes changed permeability and how this permeability recovered over time. The
actual use of these equations requires smoothing, filtering and windowing data.
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