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Outline of lecture 

•  Linear vs. non-linear finite-dimensional problems 
•  Bayes theorem (a “complete” solution to the 

inverse problem) 
•  Posterior inference for non-linear problems 
•  Complex geological priors 
•  Modeling and petrophysical errors (intractable 

likelihoods) 
•  Bayesian model selection 

Mathematical treatment will be simplified  
and follow common usage in geophysics 



Interesting problems are non-
linear: connectivity matters 

Figure 3. Experiments (first row) and simulations in the heterogeneous and homogeneous geometry for different times/saturations. t! represents the breakthrough time; the relative dif-
ferences in breakthrough times with respect to the corresponding experiment can be found as Es in Table 2 (Exp 5 experiments; N.I. 5 simulations with no initialization; and
W.I. 5 simulation with initialization).
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that is, the mass action law for the bulk species concentrations
c1(x, t)c2(x, t)=K. In this limit, the reaction (Eq. (25)) is purely
mixing controlled.

Note that the local equilibrium condition does not imply
that r(x, t) is zero. In dimensionless terms the reaction rate is
given by

r̂ x; tð Þ = Da 1− Ω̂
h i

; ð28Þ

where r ̂(x, t) and Ω̂ are the dimensionless reaction rate and
saturation. The equilibrium limit implies that Da→∞. In this
limit, the term [1−Ω] tends to zero, but at the same time Da
goes to infinity. Thus, the limit Da→∞ has to be taken
carefully for r(x, t), see below. The physical explanation for
the finiteness of the reaction rate is that as soon as twowaters
in different equilibria mix, the resulting water does not satisfy
the chemical equilibrium condition and a fast (compared to
the bulk transport scale) reaction will take place that brings
the system back to chemical equilibrium. These mechanisms
are illustrated in Fig. 1.

In the limit of large Da, it can be shown (Sanchez-Vila
et al., 2007) that the reaction rate (27) converges to (De
Simoni et al., 2005)

req x; tð Þ = lim
Da→∞

r x; tð Þ = − dc22 cð Þ
dc2 j

c= c x;tð Þ
∇c x; tð ÞD∇c x; tð Þ½ $

ð29Þ

where the conservative component c(x, t)=c1(x, t)−c2(x, t)
satisfies Eq. (26) for r(x, t)=0.

The term in the square brackets in Eq. (29) expresses the
fact that mixing is driven by concentration gradients and

subsequent dispersive mass transfer. The average over this
mixing factor is also called scalar dissipation in the literature,
see, e.g., the textbook by Pope (2000). Its correct modeling
lies at the heart of any mixing model, see below.

While in homogeneousmedia, mixing is entirely driven by
diffusion and local dispersion, in heterogeneous media this is
different. The medium heterogeneity creates concentration
contrasts, which, through local dispersion, can lead to
increased mixing. Fig. 2 illustrates the distribution of a solute
in a highly heterogeneous porous medium. In order to assess
the mixing potential in such a system, one considers suitable
averages of the mixing factor.

Kitanidis (1994) studied a similar mixing measure in
terms of entropy to characterize mixing. The entropy of a
continuous distribution c(x, t) can be defined by

H tð Þ = −∫ddxc x; tð Þlnc x; tð Þ: ð30Þ

It quantifies the degree of disorder of the transport
system. The exponential of the entropy H(t) is defined as
the dilution index

E tð Þ = exp −H tð Þ½ $: ð31Þ

It has the dimensions of volume and is a measure for the
volume occupied by solute. Thus, it measures the dilution of a

Fig. 1. Illustration of mixing induced precipitation for the simple bi-molecular
reaction (25). Thehyperbola c1=K/c2 describes the subset of possible chemical
compositions at equilibrium. At points 1 and 2 the two waters have different
equilibriumcompositions, c1(i) and c2(i), i=1,2.Algebraicmixing leads to thenew
water composition at point 3, [c1(3)=αc1(1)+(1−α)c1(2); c2(3)=αc2(1)+(1−α)
c2(2)], whereα denotes themixing ratio (for the illustration, we choose α=0.5).
The dashed line, describes the set of possible concentrations due to algebraic
mixing. The arrow describes the reaction path towards the new equilibrium
position at point 4. As a consequence, M precipitates (after De Simoni et al.,
2005).

Fig. 2. Spatial distribution of the conservative component c(x, t) for an initial
line injection at x1=0 after t=2.7τu. Transport is simulated byparticle tracking
for 106 particles in a two-dimensional highly heterogeneous hydraulic con-
ductivity field characterized by a log-conductivity variance of 9 and correlation
length of 10 m (e.g., Le Borgne et al., 2008). The axes are given in the units of
meters. Spreading represents the spatial extent of the plume, while mixing
quantifies the degree of homogeneity inside the plume.
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Models, data, and forward 
problems in finite dimensions 
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g mprop( ) = dsim

Lastly, we would like to stress that our dimensional-
ity reduction approach is fundamentally different
from the KL transform. This latter method describes
multi-Gaussian fields in a reduced basis that repro-
duces the large scale variations only. The proposed
approach, on the contrary, does not favor one length
scale over another, and will lead to reconstructed
fields that consistently honor the selected variogram
independently of the number of ‘‘super parameters’’
or dimensionality reduction variables (e.g., elements
of r) considered. This is demonstrated in the next
section.

2.3. Effects of the Dimensionality Reduction
We first investigate the trade-off between dimensionality reduction and the accuracy of reconstruction, that
is, the degree to which the statistical properties of the reconstructed field match those derived from direct
generation of the original field. To highlight the essential differences between our approach and the KL
expansion, the latter is included in our analysis.

An anisotropic exponential variogram with short integral scales is considered for reconstruction of a 100 3
100 field (that is, 10,000 grid points). This variogram model characterizes the log conductivity of the refer-
ence field used in our inversions (Table 1 and Figure 1a). The grid point mean and variance distributions
and the average experimental variograms calculated from 1000 field realizations are analyzed to assess the
performance of the dimensionality reductions. The number of variables of each dimensionality reduction,
hereafter referred as DR variables, corresponds to the length of the r-vector, r5 r1; r2½ ". For the KL transform,
the dimensionality reduction variables are the coefficients that multiply the base functions [see e.g., Zhang
and Lu, 2004; Li and Cirpka, 2006; Laloy et al., 2013, for details] and we refer to these coefficients as KL
variables.

Figures 2 and 3 depict the corresponding results for 100, 250, and 1000 DR (Figure 2) and KL (Figure 3) vari-
ables. The mean of the reconstructed field (not shown) is not affected by dimensionality reduction, yet the
grid point variances clearly are (Figures 2a–2c and 3a–3c). As the number of DR variables increases and
dimensionality reduction becomes less important, the distribution of the grid point variance gets narrower
and closer to the statistical fluctuations derived from direct simulation of 1000 standard normal fields (Fig-
ures 2a–2c). A similar trend is observed for the KL transform (Figures 3a–3c), though with much more irregu-
lar and overdispersed variance distributions. Indeed, the proposed approach appears to honor the
prescribed variogram independently of the selected number of DR variables (Figures 2d–2f). The spurious

Table 1. Bounds of the Jeffreys (J), Uniform (U), and Standard
Normal (N) Prior Distributions Used in our Case Studya

Parameter Units Prior Prior Range True Value

re kg m23 J 0.01–0.3 0.039
m U 24 to 22 23
v J 0.5–2 1
IM m U 0.2–2 0.67
A degree U 60–120 75
RI U 0.1–0.5 0.25
m J 0.1–5 0.5
r N

aThe last column lists the true values of re and the geostatis-
tical parameters.
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RMSE = 0.039 kg m−3

Figure 1. (a) Reference log conductivity field and (b) simulated transport data used in the inversions. Each black cross in the right-hand
side borehole denotes a sampling location. Each color in the right plot corresponds to a different sampling location (black cross) in the
right-hand side borehole. Lines represent the uncorrupted data and circles signify the noise-contaminated data that are used as measure-
ments for the inversion. The noise level is 0.039 kg m23.
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Analytical or numerical (e.g., 
finite element, finite difference) 
of physics for a given Earth 
model, initial, and boundary 
conditions 



Forward and inverse problems 

Andrew Binley, Andreas Kemna 144

interest, according to the principles outlined in the previous section. The theoretical 

outcome of such a measurement can be mathematically determined (modeled) for given 

electrical properties from the governing physical law, the Poisson equation, subject to 

given boundary conditions (Equations (5.1) and (5.2)). This exercise defines the so-

called “forward problem.” For the purpose of subsurface investigations, however, the 

“inverse problem” needs to be solved, i.e., given a set of measurements (data), the 

distribution of electrical properties (model) is sought that explains the observations to 

an acceptable degree (Figure 5.13). For resistivity surveys, data will be in the form of 

transfer resistances or apparent resistivities, and the model will be parameterized in 

terms of resistivity or conductivity. For IP surveys, data will be in the form of apparent 

chargeability or transfer impedance, and the model will be parameterized in terms of 

intrinsic chargeability or complex resistivity, respectively. 

Unfortunately, there is no unique solution to this problem (this has promoted 

development of stochastic approaches such as those discussed in Chapter 17 of this 

volume). Electrical methods bear a certain degree of inherent non-uniqueness, i.e., there 

typically exists a variety of different models that effectively produce the same response. 

In addition, because of practical limitations, data are neither complete nor perfectly 

accurate, but mostly insufficient and inconsistent. Therefore, in principle, an infinite 

number of models fit the data within a given level of uncertainty. However, by 

systematically restricting the model search in the inversion process, for instance by 

claiming predefined model characteristics, a “unique” solution with practical relevance 

can be obtained. This is usually accomplished by formulating the inverse problem as a 

regularized optimization problem, which involves minimization of an objective 

function comprising both data misfit (measured vs. modeled) and a penalty term 

accounting for deviations from the desired model attributes. 

MODEL

electrical properties

(conductivity, polarizability)

DATA

electrical measurements

(transfer resistance, apparent

phase/chargeability)

forward problem

inverse problem

MODEL

electrical properties

(conductivity, polarizability)

DATA

electrical measurements

(transfer resistance, apparent

phase/chargeability)

forward problem

inverse problem

Figure 5.13.  Definition of electrical forward and inverse problem

Starting with the formulation of the electrical forward problem, the following 

discussion focuses on the principles of appropriate inversion strategies. Moreover, 

different approaches for appraisal of the final inversion result are addressed; these are 

essential tools for a critical interpretation in real applications. We include details of the 

approaches here, since this material is not covered in existing exploration geophysical  

Adapted from Binley and Kemna (2005) 

Porosity, permeability, 
etc. 

Geophysical, pumping 
or tracer tests, etc. 

The model is  
what we want! 

The data are what we 
can measure in the 
field or in the lab! 



Linear and non-linear finite-
dimensional forward problems 

Gmprop = dsim 
The simulated data dsim [N × 1] can be calculated for a 
model mprop [M × 1] using the design matrix G [N × 
M]. The design matrix describes the underlying 
physics and geometry of the experiment (e.g., using 
the finite-element method).  

Linear case 

g(mprop) = dsim Non-linear case 



Ex. the electrical response is 
not proportional to electrical 

conductivity at a given location 



Normal (Gaussian) distribution 

•  The most used probability density function is the 
normal (Gaussian) distribution 

•  Probability density functions integrate to one. 

ρ x( ) = 1
2πσ

exp −
1
2
x − x0( )2

σ( )2
"

#
$
$

%

&
'
',

σ is the standard deviation; 
x0 is the mean value  

For one datum 
or model 
variable! 



ρp x( ) = p1−1/p

2σ pΓ 1/ p( )
exp −

1
p
x − x0

p

σ p( )
p

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,

ρ1 x( ) = 1
2σ1

exp −
x − x0

σ1

⎛

⎝
⎜

⎞

⎠
⎟,

ρ2 x( ) = 1
2πσ 2

exp −
1
2
x − x0( )2

σ 2( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟,

ρ∞ x( ) =
1/ 2σ∞( )     for x0 -x∞ ≤ x ≤ xo +σ∞

0,                        otherwise

⎧
⎨
⎪

⎩⎪

Generalized Gaussian  

Symmetric exponential 

Gaussian function  

Boxcar function 

e.g., Tarantola, 2005  

More general 



Joint probability density 
function (weight and height) 

•  Let ρ(W,H) be the joint probability density function; 
•  For independent variables, we have that: ρ(W,H) 

=ρ(W) ρ(H); 
•  This is unlikely for height and weight; 
•  It would imply that knowing something about height 

(e.g., a person is 2.50 m tall) does not carry any 
information about the persons supposed weight. 



Uncorrelated variables Correlated variables 

Joint probability density 
function 

D
at

a 
er

ro
rs

, m
od

el
in

g 
er

ro
rs

 a
nd

 g
eo

lo
gi

ca
l 

pr
op

er
tie

s 
ar

e 
co

rr
el

at
ed

! 



Conditional and marginalised 
pdfs 

•  Let ρ(W | H) be the conditional pdf of W given 
H: 

 

•  The marginalised pdf of H is when all influence 
of W has been integrated away: 

ρ W,H( ) = ρ H( )ρ W H( )

ρ H( ) = ρ H,W( )dW∫ Shown as a figure a few slides back. 



Bayes theorem 

•  From the rule of conditional probabilities, we 
have that 

 

•  From this we can write: 

 

ρ W,H( ) = ρ W( )ρ H W( ) = ρ H( )ρ W H( )

ρ W H( ) =
ρ W( )ρ H W( )

ρ H( )

Tarantola and Valette (1982) describe a more general 
inversion framework that does not assume conditional 
probabilities (nor a distinction between m and d). Here, 
we follow a Bayesian formalism. 



The complete solution to the 
inverse problem 

ρ m d( ) =
ρ m( )ρ d m( )
ρ d m( )ρ m( )dm∫

ρ m d( )
ρ m( )

ρ d m( ) = L m d( )

Posterior probability density function 

Prior probability density function 

Likelihood function 

L m d( )ρ m( )dm∫ Evidence  
(marginal probability) 



Often in practice 

ρ m d( )∝ρ m( )L m d( )

This proportionality is valid (i.e., the 
evidence is a constant) when the model 
parameterization is fixed during the 
inversion. 
 
The normalizing constant underlies 
Bayesian model selection (see later) 



Choosing a prior ρ(m) 

•  For positive physical constants, assuming a 
uniform prior of the logarithm of the property is 
the least “informative” (Jeffrey priors); 

•  The assumed distribution is the same regardless 
of if the property (e.g., electrical conductivity) or 
its reciprocal property (e.g., electrical resistivity) is 
used.  

•  It is very common to rely on two-point statistics in 
the form of multi-Gaussian prior models. 



Prior model and likelihood function 
(Gaussian assumptions) 

ρ m( ) = 1 
2π( )M /2 det CM( )1/2 exp −

1
2
m−mprior( )

T
CM

−1 m−mprior( )
"

#
$

%

&
'

L m d( ) = 1 
2π( )N /2 det CD( )1/2 exp −

1
2
g m( )−d( )

T
CM

−1 g m( )−d( )
⎛

⎝
⎜

⎞

⎠
⎟



Pdfs for a joint Gaussian (normal) 
distribution: prior or likelihood 

ρ x( ) = 2π( )N detC( )
−1/2
exp −

1
2
x− x0( )T C−1 x− x0( )

⎛

⎝
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The uncorrelated case: very common assumption 

ρ x( ) = 1
σ1

⎛

⎝
⎜

⎞

⎠
⎟

N /2

exp −
x− x0
σ1 1

1⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

For the exponential  
( l1) case  



d =Gm m = GTCD
−1G+CM

−1( )
−1
GTCD

−1d+CM
−1mprior( )

CM = G
TCD

−1G+CM
−1( )

−1
.

Posterior for a Gaussian/normal 
likelihood and prior (linear case) 

In the linear Gaussian case, the posterior is fully 
described by a mean and a posterior covariance 
model. The analytical solution is: 

Tarantola (2005) 



A. Draw mprop from ρ m( )   

B. Accept mprop with probability L m d( ) / SL ; return to A.  

This is the only exact sampler of ρ m d( )  and it can deal  
with complex topologies. The supremum is the  
highest expected likelihood possible.  
 
If supremum is chosen too low, then results are biased. 
If chosen too high, then algorithm is inefficient. 

Rejection sampling: propose from 
prior, accept proportional to likelihood 



Conditioning of 3-D DFNs

Stochastic inversion procedure

Independent sampling from posterior distribution

Bayesian-style hierarchical conditioning to data

Conditional independence between di↵erent data types

Prior models
Prior conditioning

data

Accept ?Data type 1

Accept ?Data type 2

Accept ?Data type 3

Fully condi-
tioned models

no

no

no

yes

yes

yes

March 28, 2013 28 / 50



Integration of flow rates, tracers, 
borehole data, and geophysics with 

rejection sampling 

Dorn et al. (2013) AWR  



The curse of dimensionality 
•  Rejection sampling does not work well 

(acceptance rate is very low) in high 
parameter dimensions because the 
(hyper)volume of the prior space that contains 
significant likelihood becomes very small; 

•  For example, if 20% of the first dimension is 
significant (rejection sampling works), it would 
be less so in 100 dimensions, as the chance 
of hitting a high-likelihood area 0.2100=10-70. 



Metropolis-Hastings algorithm (Hastings, 1970) 

• A. If at mcurr, propose a move to mprop according to a proposal distribution q(mcurr è 

mprop) 

• B. Calculate  

h =min 1,
L mprop d( )ρ mprop( )q mprop →mcurr( )
L mcurr d( )ρ mcurr( )q mcurr →mprop( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟=min 1,

L mprop d( )ρ mprop( )
L mcurr d( )ρ mcurr( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

• C. Move to mprop with probability h, else remain at mcurr; go to A. 

The resulting chain will asymptotically sample from a stationary distribution that is 
proportional to ρ m d( ) .  

Model proposals (states) with higher posterior probability 
are always accepted, but those with lower probability might 
also be accepted. After burn-in and convergence, the 
sampled states describe the posterior distribution. 

Metropolis algorithm: if 
symmetric proposals 



Log-likelihoods 
•  The Metropolis ratio is not easy to calculate due to 

the limited numerical accuracy (e.g., smallest 
double-precision number is on the order of 10-323): 

•  We are only interested in obtaining the ratio. Can 
be obtained as (numerical trick)  

 

h =min 1,
L mprop d( )ρ mprop( )
L mcurr d( )ρ mcurr( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

L mprop d( )ρ mprop( )
L mcurr d( )ρ mcurr( )

= exp log L mprop d( )( )+ log ρ mprop( )( )− log L mcurr d( )( )− log ρ mcurr( )( )( )

Extension to Metropolis-Hastings is straightforward. 



Acceptance rate (AR) 
•  One should monitor the acceptance rate (the 

proportion of actual updates in the MCMC 
chain). 

•  The proposal distribution is often chosen to 
get an AR of 25% (10-40% is typically good). 

•  As long as the AR is above 0 or below 1, the 
chain will converge at some point, but 
perhaps after too many steps to be possible/
convenient (say 1010 steps). 



Burn-in 
•  It takes time before the chain 

is independent of the starting 
point and starts to sample 
proportionally to the posterior.  

•  This is called the burn-in time 
and the preceding steps 
should be removed.  

•  Often approximated as the 
time when the sampled 
posterior probabilities start to 
fluctuate around a constant 
value.  

The shaded area indicates 
the burn-in time. It can be 
a few samples or many 
(hundreds of) thousands 
of samples. 



Assessing MCMC 
convergence 

•  A common measure to assess convergence is the 
potential scale reduction factor by Gelman and 
Rubin (1992).  

•  It compares the average within-chain variance with 
the across-chain variance of the (within chain) 
means for the second half of the chain. 

Convergence when     <1.2 
for all parameters; 
Example to the left 
suggests that burn-in is 
only 5% of the time needed 
to have a proper sampling 
of the posterior. 
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Reaching the posterior vs. 
exploring the posterior 

•  The first stage in MCMC corresponds to locating 
the posterior (burn-in period) and the next step 
corresponds to sampling the posterior distribution; 

•  Sometimes, one might only aim at finding the 
global minimum (not the full posterior) or a set of 
realizations that explain the data without a formal 
assessment of uncertainty; 

•  Global optimization methods are then suitable. 
•  If convergence is not achieved, then one is left 

with a few samples from the posterior with no 
ability to make a full probabilistic assessment! 



Auto-correlation 
•  Neighboring samples/states in an MCMC chain are 

highly correlated. That is, the number of 
independent draws from the posterior are much 
fewer than the number of samples; 

•  The auto-correlation function describes how the 
correlation decrease as a function of the lag τ: 

R τ( ) =
E Xt −µ( ) Xt+τ −µ( )"# $%

σ 2



Better exploration with parallel 
tempering 

•  Tempering raises the 
posterior distribution or 
only the likelihood with the 
inverse of a temperature T;  

•  Several chains are 
developed in parallel using 
different temperatures; 

•  Within-chain and between 
chain proposals are used 
to exchange information. 

Laloy et al. (2016) 

p m d,T( )∝ p m( )L m d( )
1/T

E. Laloy et al. / Advances in Water Resources 90 (2016) 57–69 61 
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Fig. 2. Trace plot of the mean sampled RMSE values across 4 repetitions for the tested conditioning strategies. Solid and dashed colored lines denote resimulating a set of 
points (S1) and a box-shaped area (S2), respectively. Each color represents a given size of the (randomly located) model fraction that is resimulated. The dashed black line 
signifies the true RMSE. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

25

50

75

− 
Lo

g 
Li

ke
lih

oo
d

 

 
SGR trials SGR Mean PT−SGR

0 1250 2500 3750 5000

25

75

125

175

225

− 
Lo

g 
Li

ke
lih

oo
d

MCMC iteration

a

b

Fig. 3. (a) Trace plot of the sampled negative log-likelihood values by the unit temperature chain evolved by PT-SGR (blue line) and the 16 independent SGR trials (red 
lines) for case study 1. The green line denotes the mean trajectory of the 16 SGR trials. (b) Trace plot of the sampled negative log-likelihood values by the 16 PT-SGR chains 
with each temperature coded with a different color. The temperature increases as the color varies from dark blue (temperature index of 1) to dark red (temperature index 
of 6). In both subfigures, the horizontal dashed black line denotes the true negative log-likelihood of 24.5, corresponding to a RMSE of 0.01 m. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article). 
Averages of the 4 trials are presented. Clearly, resimulating a box- 
shaped area (S2) shows a superior performance with respect to 
data fitting. As expected, the AR decreases with φ for both S1 and 
S2. Large resimulated fractions induce low AR values, below 1 or 
2% ( φS1 = 0 . 995 to φS1 = 0 . 5 and φS2 = 0 . 5 and φS2 = 0 . 25 ). Such 
small AR values characterize a prohibitively slow evolution of the 
MCMC chain. 

Based on the above findings, we decided to use the resimu- 
lation strategy S2 in all of the following tests. Since the optimal 
value of φ is likely to depend on the problem at hand, in the re- 
mainder of this paper and unless stated otherwise φS2 is tuned 
online to try to reach an AR value of 20% during the first 10% of 
the MCMC iterations. The motivation for this target value is based 
on the fact that an AR of about 23% is considered optimal for Gaus- 

sian proposal and target distributions whereas an AR in the range 
10%–50% is generally recommended [32,33] . 
3.4. Parallel tempering settings 

For the case studies considered in this paper, limited testing 
with the different swapping strategies described in Section 2.3 
showed no overwhelming advantage of any specific strategy. Nev- 
ertheless, randomly proposing to swap model states after every 
regular within-chain MCMC update appeared to be the most robust 
and efficient approach. We therefore do so for all of our numeri- 
cal experiments. With respect to the αs values of the individual 
tempered chains, we use a common loglinear temperature ladder 
[2,34] with maximum level such that αs is (almost) always com- 
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Fig. 11. Mean autocorrelation function (ACF) of the 7575 conductivity grid values 
derived from PT-SGR (blue line) or SGR (red line) for lags 0–50 0 0 and case study 1. 
The lag-k autocorrelation is defined as the correlation between draws k lags apart. 
Listed statistics are computed for the last 15,0 0 0 iterations of the unit temperature 
chain of PT-SGR or the 24 independent SGR chains, using a thinning factor of 50 
thereby leading to a set of 300 sampled models for each chain. For SGR, the average 
of the 24 chains is presented. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article). 
The value of 0.01 turned out to be required to (almost) systemati- 
cally honor the point measurement data (see Section 3.7 ). 

Finally, it would be interesting to investigate the performance of 
parallel tempering when used in conjunction with the patch-based 
geostatistical resimulation algorithm by Zahner et al. [42] which 
uses graph cuts. This method has been shown to be 40 times faster 
than DS for generating a 2D model, with a resulting posterior dis- 
tribution that is (at least) of similar quality as that obtained by 
using DS. 
5. Conclusion 

This study is concerned with the application of sequential geo- 
statistical resampling (SGR) to high-dimensional categorical field 
inference problems that present realistically complex likelihood 
functions. We highlight the limitations of the classical SGR ap- 
proach and propose a parallel tempering implementation that, for 
a similar multi-core computing budget, provides much improved 
results with respect to both convergence towards the appropri- 
ate data misfit and sampling diversity. Two synthetic case studies 
are considered: a steady-state flow and a transport inverse prob- 
lem, involving from 7501 to 10,0 0 0 unknowns. For the transport 
problem, the corresponding likelihood function is made bimodal 
with two well separated modes. In both case studies, every SGR 
MCMC chain gets trapped in a local optima while parallel temper- 
ing within sequential geostatistical resampling (PT-SGR) does not. 
The advantage of PT-SGR becomes more apparent for the bimodal 
inverse transport problem, for which PT-SGR is found to converge 
towards the reference data misfit much faster that SGR and to in- 
dicate the existence of two posterior modes. In contrast, for the 
same computational resources SGR appears to be barely able to 
appropriately fit the data and does almost not produce any sin- 
gle solution that looks visually similar to one of the two reference 
modes. Although PT-SGR outperforms SGR, our results also demon- 
strate that using a reasonably small number of temperatures (and 
thus parallel cores) in the range 16–24 may not allow sampling of 
the posterior distribution by PT-SGR within an affordable comput a- 
tional time. As an alternative to significantly increasing the num- 

Algorithm 1 Parallel tempering sequential geostatistical resam- 
pling. 

1: procedure PT-SGR( T , m,n, p SW , meth SW , P ) ◃ T is 
the temperature ladder of size n (with n even), m is the num- 
ber of MCMC iterations, p SW is the probability of performing 
a swap update with temperature selection procedure meth SW , 
and P encapsulates the SGR algorithmic settings (e.g., φ, ...). 

2: for i = 1 , · · · , m do ◃ Loop over MCMC iterations 
3: for j = 1 , · · · , n do in parallel ◃ Loop over temperature 

ladder 
4: p (θ, T j | d )

i ← SGR MCMC (T j , P ) ◃ classical MCMC move 
with SGR. The j = 1 , · · · , n updates are done in parallel. 

5: end for 
6: if p SW > U ( 0 , 1 ) then ◃ Perform 

a swap update with probability p SW , with U ( 0 , 1 ) indicating an 
uniform random draw between 0 and 1. 

7: r = SelectPairs (n , meth SW , i ) ◃ Select pairs of 
temperatures 

8: for j = 1 , · · · , n/ 2 do 
9: v = r (2 × ( j − 1) + 1) w = r (2 × j) ◃ 

Propose swapping of selected pairs of chains, one possible ex- 
change swap per temperature 

10: α( v , w ) ← 1 ∧ [ 
L (θw | d )
L (θv | d )

] ( 1 /T v −1 /T w ) 
11: if α < U ( 0 , 1 ) then ◃ Swap chain temperatures 
12: T v ← T w , T w ← T v 
13: end if 
14: end for 
15: end if 
16: end for 
17: end procedure 
Algorithm 2 Selection of temperature indices at swapping time. 

1: procedure R = SelectPairs( n, meth SW ,i ) 
2: if meth SW = “ random ′′ then ◃ Select temperatures randomly 
3: r = permute (n ) ◃ Create a random permutation of the 

temperature indices 
4: else If meth SW = “ adjacent ′′ ◃ Consider all adjacent pairs 
5: if mod(i ) = 1 then ◃ MCMC iteration number is odd 
6: r = [ 1 , · · · , n ] 
7: else ◃ MCMC iteration number is even 
8: r = [ 2 , · · · , n − 1 , 1 , n ] 
9: end if 

10: end if 
11: end procedure 
ber of temperatures and thus computational needs, coupling PT- 
SGR with Wang–Landau sampling and (2) reframing SGR within 
an ensemble-based multiscale optimization framework are two 
potentially useful approaches that will be investigated in future 
work. More generally, PT could also prove useful when used in 
conjunction with dimensionality reduction approaches. 
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Constraint 1 on MCMC: 
Ergodicity 

•  Two conditions are needed for an MCMC chain 
to converge asymptotically: Ergodicity and 
detailed balance. 

•  Ergodicity: the chain is irreducible (it can get 
from any state to any other state after a 
number of steps), aperiodic (the chain does not 
repeat itself), it is positive recurrent (it will 
return to a given state after a finite number of 
steps). 



Constraint 2 on MCMC:  
Detailed balance 

•  Detailed balance states that the transition 
kernel to move from one state to another 
(essentially a combination of a model proposal 
step and an acceptance step) ensures that: 

•  Example, if             is twice as likely as 
               then detailed balance states that            

      must be 2.    
  

T m* m( )ρ m d( ) = T m m*( )ρ m* d( )
ρ m* d( )

ρ m d( )
T m* m( ) /T m m*( )



Choosing a prior ρ(m) 

Bayer et al. (2011) Comunian et al. (2011) 

•  The prior doesn’t need to be defined mathematically; 
it may be represented by geostatistical simulations. 



The extended Metropolis algorithm (Mosegaard and Tarantola, 1995) 

• If at mcurr, conditional resimulation of a portion of the model according  

to the prior by using a geostatistical algorithmresimulation; 

• Calculate  

h =min 1,
L mprop d( )
L mcurr d( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   

• Move to mprop with probability h, else remain at mcurr; go to A. 
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General approach, but 
can be inefficient 
because of (i) low 
acceptance rate and (ii) 
costly geostatistical 
resimulation. 
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Fig. 7 4 realizations of the prior model of type a) rnugget

M , b) rsgsim

M , c) rdssim

M , and d) rT I

M prior models.
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Some prior states for different prior 
models (different lines) 
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Fig. 10 Current model at iteration number 20000, 25000, 30000 and 35000 using the a) rnugget

M , b) rsgsim

M , c) rdssim

M , and d) rT I

M prior models.
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Some posterior states for different prior 
models (different lines) 

Crosshole 
GPR data 
are used in 
these 
examples. 

The spatial 
statistics of the 
posterior are 
largely determined 
by the prior; 
 
Any uncertainty 
quantification (UQ)  
is highly dependent 
on the prior; 
 
Insufficient 
research on 
“geological” priors. 



Application to the MADE site 
using graph cuts 

•  Model proposals with graph cuts (Zahner et al., 
2016) bring down the model proposal time to <1% 
than classical multiple-point statistics resimulation 

Image synthesis with graph cuts 1181

Figure 1. Schematic representation of our model proposal mechanism based on graph cuts. (a) A patch of a current model realization mcur is (b) replaced
with a patch of a random section mti of the training image (TI) to form a model proposal mprop in an MCMC chain. Panels 1–3 illustrate how the size and
form of the replaced patch is determined: (1) The difference image δ represents the absolute differences between mti and mcur (high differences are indicated
in grey and zero differences are indicated by white). It is framed by a line of nodes with the minimum value of δ (white), followed by another frame of very
high difference (dark grey). (2) Within δ, two terminals s and t are defined as randomly chosen areas of high difference of approximately the same size. (3)
The piece to be replaced mpatch is given by the cut of minimum cost Cmin (indicated by a dashed red line) separating s and t. The capacity c of any cut is given
as the sum of the differences of the nodes it is separating. The total cost Cmin is the sum of these capacities along the cut.

(DS) MPS algorithm as its main building block (Mariethoz et al.
2010a,b). To create a model perturbation, DS scans the training im-
age until it finds a similar neighbourhood. The value of the point to
be simulated is then given by the value at the corresponding point
in the training image. At each step in the MCMC chain, the ISR
technique keeps a fixed percentage ϕ of the M parameter values in
mcur as conditioning points to simulate a new realization mprop with
DS. In other words, a fraction ϕ of the parameter values in mprop

remains the same as mcur, while the remaining fraction (1 − ϕ) is
resimulated using DS.

2.3 A new model proposal mechanism based on graph cuts

Texture synthesis techniques are used in graphic design to create
new images such as texturized landscapes for animation movies
or video games, based on samples called examplars or training
images (e.g. Efros & Freeman 2001; Lasram & Lefebvre 2012). The
newly generated images should feature similar textural properties
as a training image and they need to be non-repetitive. A popular
technique in graphic design to create new images is to form a sort
of collage by assembling irregular pieces of the training image
(Kwatra et al. 2003). The shapes of the pieces are adjusted to create
transitions that are as seamless as possible, thereby limiting the
creation of discontinuities in the simulated image. In this work, we
propose to create model perturbations by replacing single patches
in mcur with patches from the training image.

Fig. 1(a) displays a training image (this image is in practice
much larger) and an initial model mcur. A random section of the
training image, mti, is chosen that has the same dimension as mcur.
A model proposal mprop is then synthesized from mcur and mti. The
red dashed line in Fig. 1(b) indicates the optimized cut that defines
a patch mpatch of mti. This mpatch is pasted in mcur to create mprop.

Panels 1–3 in the lower part of Fig. 1 show how such a cut is
found:

(1) The difference image δ = |mcur − mti| quantifies the discrep-
ancy between mcur and mti. It is formed by taking the absolute differ-
ence of the pixel values (i.e. the values of the geophysical property
under consideration) in mcur and mti.

(2) Two disconnected regions of high difference, s (blue) and t
(green), of similar size, are randomly selected.

(3) The size and shape of the patch mpatch taken from mti is given
by the trajectory (red dashed line) of a minimum cut (Boykov &
Kolmogorov 2004) that separates s and t.

The next sections describe these steps in details.

2.4 Principle of min-cut/max-flow algorithms

A digital image can be described as a graph or network G = [δ, e]
that consists of pixels or nodes δ ∈ δ with fixed relative positions
that are represented as connectors (edges e ∈ e) between nodes (the
cut indicated by a red dashed line in Fig. 1 is a cut along edges).
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Figure 2. Design of the MADE-5 experiment: cross sections showing the screened intervals in the injection and extraction
wells together with the investigated level in the two MLSs (a); details of the multilevel monitoring wells (b, modified from
Einarson and Cherry 2002); plane view showing the spacing between the wells (c).

In each MLS, seven intake ports were created by drilling
1 cm diameter holes through the exterior wall of the tub-
ing for groundwater sample collection at selected depths.
The shallowest monitored depth (Level 1 in Figure 2a) is
associated with channel 1, and the other ports are drilled
in the remaining channels of the tubing with a uniform
spacing of 1.2 m. The central channel (Level 7) was left
open to the bottom of the multilevel sampling well. Well
screens were constructed by wrapping stainless-steel fab-
ric mesh around the tubing over the sampling ports. The
channels below the intake ports were plugged by injecting
a polyethylene sealant and polyethylene plugs were also
injected into each of the outer six channels at the very bot-
tom of the well to effectively seal the various channels.
Layers of filter sand and bentonite pellets were used to fill
the annular space between the MLS tubing and the bore-
hole walls. The thickness of the sand packs surrounding
each intake port was 0.46 m. More details on the charac-
teristics of this type of multilevel groundwater monitoring
system and the results of three field trials, including one
at the Canadian Forces Base Borden in Ontario (Canada),
are presented by Einarson and Cherry (2002).

The MADE-5 tracer experiment was conducted under
dipole flow forced-gradient conditions. The experiment
was performed during the summer of 2007 and can be
divided into three successive phases. Initially clean water
was injected for 48 h at a rate of 5.68 L/min. After a
relative steady-state flow field was established, a known
volume of 2078 L of bromide solution was introduced into
the aquifer as a step input for 366 min. The concentration

of the injected bromide solution was about 1000 mg/L.
Clean water was injected again during the third and last
phase until the experiment was concluded after 32 days
from the injection of the bromide solution. During all
phases, groundwater was continuously extracted from the
extraction well and the extraction and injection rates
(5.68 L/min) were kept constant and equal. The extracted
groundwater was reinjected into the aquifer using another
well located more than 100 m away in order to prevent
any interference with the established flow field. Pumping
rates, the total amount of injected and extracted water, and
groundwater levels in the injection and extraction wells
were also continuously monitored by flowmeters, total-
izers, and submersible pressure transducers. Analysis of
the transducers data showed that the average water table
depth decreased 8.1 cm over time due to the absence of
precipitation during the execution of the test. As this value
represents less than 1% of the saturated thickness of the
aquifer, we assumed that the experiment was conducted
under steady-state conditions. Groundwater samples were
collected from the extraction well and from the two MLSs
at different depths by using a peristaltic pump. Because
of the very low extraction rate (20 mL/min) it is safe to
assume that the flow field was practically not perturbed
by the sampling procedures. For the first 3 days after the
injection, a 1 h sampling interval was used for the extrac-
tion well and a 2 h interval was used for the MLSs. Sam-
pling intervals were then progressively increased. Samples
were analyzed using ion chromatography to measure the
bromide concentrations. Groundwater samples were also
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∂t
= ξ(Cm − Cim) (3)

where Cm and θm are the concentration and porosity in
the mobile domain, Cim and θim are the concentration and
porosity in the immobile domain, Dij is the dispersion
tensor in the mobile domain, and ξ is the first-order mass-
transfer rate coefficient which controls the mass-transfer
processes between the mobile and the immobile domain.
The total porosity of the system is given by the sum
of the mobile and immobile porosities. As for the ADM
models, dual-domain simulations were conducted with the
MT3DMS code employing the TVD solution scheme for
the solution of the advective term.

Results and Discussion

Observed Transport Behavior
Figure 5 shows the BTCs recorded at the extraction

wells as well as at different depths in the two MLSs.
The shape of the BTC at the extraction well is strongly
asymmetric showing an early-time high peak followed
by extensive tailing during the recovery stage. As the
extraction well is screened over the entire saturated
zone, this BTC is representative of the depth-averaged
transport behavior as solute flux is vertically integrated
over the entire well borehole. The peak concentration was
measured after 21.4 h from the beginning of the injection
and it is equal to 63 mg/L. After 4 days the concentration
dropped to about 1% of that of the injected bromide
solution (1000 mg/L) and then slowly decreased for the
remaining duration of the experiment. The concentration
at the end of the experiment was equal to 0.23 mg/L.
The zeroth-order moment of the BTC revealed that the
mass recovered was only 52% of the total injected mass.
The early arrival time of the peak, the slow decrease of
the concentrations following the peak as shown by the
slope of the tail of the BTC, and the poor mass recovery,
appear to be a reflection of solute transport controlled
by connected preferential paths contained within low-
permeability sediments. The fast peak could be caused
by rapid advective transport of a fraction of solute mass
along PFPs while the rest of the mass remained trapped
in the low-K matrix where diffusion mechanisms were
predominant. Solute mass slowly released from the low-
K matrix also explains the extensive tail and the slow
mass recovery.

The extremely heterogeneous distribution of sedi-
ments with very sharp contrasts in hydraulic conductivity
favoring PFPs is even more evident from the observa-
tion of the BTCs measured at different depths in the
two MLSs. The differences in terms of shape, arrival
times of the concentration peaks and their magnitude
are remarkable especially considering that the vertical
distances between each sampling level is only 1.2 m and
the distance between the injection well and the two MLSs
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Figure 5. Breakthrough curves measured in the extraction
well (a), in MLS-1 (b), and MLS-2 (c) at different depths.

is only 1.5 and 2.25 m. The BTCs observed in MLS-1
clearly showed that a fraction of the injected mass moved
preferentially at the depth of sampling level 3. This is
located at a depth of 7.1 m below ground surface. In
fact, the BTC measured at this level has the highest peak
(169.3 mg/L) with the fastest arrival time. The BTCs mea-
sured at levels 4 and 5 in MLS-1 have a similar shape
as the one at level 3 with extensive tailing at later times.
However, the concentration peaks are much lower in mag-
nitude. The highest concentration at level 4 was measured
after 1.71 days from the beginning of the injection while
the peak time at level 5 was observed after about 3 days.
These characteristics indicate that transport at these two
levels is still influenced by the PFPs responsible for the
high peak observed at level 3. The most likely explana-
tion is that the bromide tracer moving preferentially at
the depth of level 3 diffused into the lower-K sediments
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where Cm and θm are the concentration and porosity in
the mobile domain, Cim and θim are the concentration and
porosity in the immobile domain, Dij is the dispersion
tensor in the mobile domain, and ξ is the first-order mass-
transfer rate coefficient which controls the mass-transfer
processes between the mobile and the immobile domain.
The total porosity of the system is given by the sum
of the mobile and immobile porosities. As for the ADM
models, dual-domain simulations were conducted with the
MT3DMS code employing the TVD solution scheme for
the solution of the advective term.

Results and Discussion

Observed Transport Behavior
Figure 5 shows the BTCs recorded at the extraction

wells as well as at different depths in the two MLSs.
The shape of the BTC at the extraction well is strongly
asymmetric showing an early-time high peak followed
by extensive tailing during the recovery stage. As the
extraction well is screened over the entire saturated
zone, this BTC is representative of the depth-averaged
transport behavior as solute flux is vertically integrated
over the entire well borehole. The peak concentration was
measured after 21.4 h from the beginning of the injection
and it is equal to 63 mg/L. After 4 days the concentration
dropped to about 1% of that of the injected bromide
solution (1000 mg/L) and then slowly decreased for the
remaining duration of the experiment. The concentration
at the end of the experiment was equal to 0.23 mg/L.
The zeroth-order moment of the BTC revealed that the
mass recovered was only 52% of the total injected mass.
The early arrival time of the peak, the slow decrease of
the concentrations following the peak as shown by the
slope of the tail of the BTC, and the poor mass recovery,
appear to be a reflection of solute transport controlled
by connected preferential paths contained within low-
permeability sediments. The fast peak could be caused
by rapid advective transport of a fraction of solute mass
along PFPs while the rest of the mass remained trapped
in the low-K matrix where diffusion mechanisms were
predominant. Solute mass slowly released from the low-
K matrix also explains the extensive tail and the slow
mass recovery.

The extremely heterogeneous distribution of sedi-
ments with very sharp contrasts in hydraulic conductivity
favoring PFPs is even more evident from the observa-
tion of the BTCs measured at different depths in the
two MLSs. The differences in terms of shape, arrival
times of the concentration peaks and their magnitude
are remarkable especially considering that the vertical
distances between each sampling level is only 1.2 m and
the distance between the injection well and the two MLSs
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Figure 5. Breakthrough curves measured in the extraction
well (a), in MLS-1 (b), and MLS-2 (c) at different depths.

is only 1.5 and 2.25 m. The BTCs observed in MLS-1
clearly showed that a fraction of the injected mass moved
preferentially at the depth of sampling level 3. This is
located at a depth of 7.1 m below ground surface. In
fact, the BTC measured at this level has the highest peak
(169.3 mg/L) with the fastest arrival time. The BTCs mea-
sured at levels 4 and 5 in MLS-1 have a similar shape
as the one at level 3 with extensive tailing at later times.
However, the concentration peaks are much lower in mag-
nitude. The highest concentration at level 4 was measured
after 1.71 days from the beginning of the injection while
the peak time at level 5 was observed after about 3 days.
These characteristics indicate that transport at these two
levels is still influenced by the PFPs responsible for the
high peak observed at level 3. The most likely explana-
tion is that the bromide tracer moving preferentially at
the depth of level 3 diffused into the lower-K sediments
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Data from Bianchi et al.  
(2011): MADE-5 experiment 
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Low-dimensional representation 
of priors using deep learning 

•  If complex priors can be captured by uncorrelated 
(e.g., standard normal, bounded uniform) 
coefficients, then any state-of the-art MCMC 
method can be used. 

•  Wavelets, discrete cosine transforms, etc. do not 
offer this, but deep learning may. 

 

parameter that defines padding of the borders of the input images or volumes for size preservation, and
the ‘‘pooling’’ parameter which involves nonlinear down-sampling to reduce the size of a convolutional
layer and thereby prevents overfitting. For further information on CNN layers, we refer the reader to Good-
fellow et al. [2016] and online tutorials. (For instance: http://deeplearning.net/tutorial/ and http://cs231n.
github.io/convolutional-networks/.)

Figure 1 depicts the main SGAN architecture for the generation of 2-D grayscale images. The 3-D case obeys
the same principles but it cannot easily be represented visually. The low-dimensional input or latent space,
Z, has a spatial structure and follows a bounded uniform distribution, Z ! U 21; 1ð Þ. In the 2-D case, Z is a
3-D array of size m3n3q. Each Z i;j;$ð Þ with i51; . . . ;m; j51; . . . ; n controls a specific region of the generated
full scale w 3 h image, X. In addition, these specific regions partially overlap. This is illustrated for the 131
3q white-colored component of Z in Figure 1. The third dimension, q, is not related to a spatial location but
allows for additional flexibility in the data representation encoded by each q-dimensional element
Z i;j;k51$$$qð Þ. For 3-D grayscale image generation, Z ! U 21; 1ð Þ becomes a 4-D array of size m3n3o3q where
the dimensions m, n and o now correspond to specific regions of the generated full scale volume of size
w3h3l. At generation time, the sampled Z array enters the generator, G Zð Þ to produce a (2-D or 3-D) gray-
scale image, X (Figure 1). G Zð Þ is made from a stack of transposed 2-D or 3-D convolutional layers (see
Dumoulin & Visin, 2016, for details on the transpose operation for convolutional layers). At discrimination
time, that is, during training, either the generated image or a true image formed by a fraction of the TI
(interchangeably called X for now) is processed through the discriminator, D Xð Þ, to output a m 3 n (2-D
case) or m3n3o (3-D case) field of probabilities for fake/real images (see also section 2.2).

The computational cost incurred by training a deep generative model largely depends on the size of the
model realization domain. For stationary fields, the pure convolutional nature of the original 2-D SGAN
and our 3-D extension makes it possible to train the network at reduced computational cost using a rela-
tively small realization domain and then use the trained network to generate larger realizations that
match the spatial statistics found in the training data. The actual working values behind the notions of
small and large realization domains mainly depend on the relative size of the relevant patterns in the sta-
tionary TI, together with hardware capabilities. For instance, for the binary channelized TI depicted in Fig-
ure 2a, training using a 353 3 353 realization domain (see section 3.1) allows for generating realizations
of size 3,553 3 3,553 that are of same quality as the 609 3 609 realizations analyzed in section 3.1 (not
shown). For a square (w 3 h) or cubic (w3h3l) generation domain, the relationship between zx5m5n5o
and xx5w5h5l is given by

Figure 1. Illustration of the SGAN structure for the 2-D case. An input m3n3q Z array of uniform variables !U 21; 1ð Þ is
propagated through the generator, G Zð Þ, to produce a grayscale image, X. During learning, the generated X and true X
iteratively enter the discriminator, D Xð Þ. The latter produces a m 3 n array of probabilities, the mean of which is taken as
the probability that the incoming X belongs to the TI. The generator and discriminator are made of stacked transposed
and nontransposed convolutional layers, respectively. The network structure for the 3-D case obeys the same logic but it
cannot easily be represented visually.
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Spatial generative adversarial 
neural networks (SGANs) can be 
trained on a training image (TI) to 
produce a low-dimensional 
representation of uncorrelated 
standard normals (Laloy et al., 
2018). 

See also:  
Mosser et al. on arxiv.org 



Examples (Laloy et al., 2018) 

‘ hjxmð Þ52
Nm
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log 2pð Þ2Nmlog rxð Þ2

1
2

r22
x

XNm

i51

xm;i2G hð Þi
! "2

; (12)

and

‘ hjd; xmð Þ5‘ hjdð Þ1‘ hjxmð Þ; (13)

where rx acts as a weighting factor that balance the two components of ‘ hjd; xmð Þ and G hð Þ is the model
realization created by feeding the SGAN generator, G #ð Þ, with h. Moreover, notice that ‘ hjxmð Þ can also be
viewed as a regularization prior for h; log p hjxmð Þ½ %.

As no analytical solution of p hjdð Þ or p hjd; xmð Þ is available for the type of nonlinear inverse problems con-
sidered herein, we sample from p hjdð Þ or p hjd; xmð Þ by MCMC simulation (see, e.g., Robert & Casella, 2004)
with the DREAM ZSð Þ algorithm (Laloy & Vrugt, 2012; Vrugt et al., 2009). Various studies in hydrology and geo-
physics (among others) have shown that DREAM ZSð Þ can derive posterior distributions with 25–250

(a) Fraction of TI (b) Realization #1 (c) Realization #2

(d) Realization #3 (e) Realization #4 (f) Realization #5

(g) Realization #6 (h) Realization #7 (i) Realization #8

Figure 3. (a) Fraction of size 609 3 609 of the TI shown in Figure 2a and (b–i) randomly chosen 609 3 609 realizations
derived by our SGAN. Each realization is generated by sampling 400 random numbers from a uniform distribution, U 21; 1ð Þ.
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learned SGAN model deemed to work best was achieved at training epoch 25 while networks learned after
epochs 25–30 started to degrade (see supporting information Figure S1). Moreover, the produced continu-
ous model realizations (in 0; 1½ ") were processed through a median filter with kernel size of 3; 3ð Þ before
being thresholded at the 0.5 level. The median filtering operation might seem somewhat ad hoc but its
effect is small. As shown in supporting information Figures S2a and S2c, it only removes a few pixel impuri-
ties. In addition, since the produced realizations are in the 0; 1½ " range, using a threshold level of 0.5 is ‘‘natu-
ral.’’ Training the SGAN for 50 epochs took about 3 h on the used GPU whereas producing a single 609 3
609 realization with the trained network takes 0.2 s on the used CPU.

Figure 3 presents eight randomly chosen realizations, together with a 609 3 609 fraction of the TI. Visually,
the realizations appear consistent with the TI. Figures 4 and 5 show the associated PF and CF metrics. There
is a generally good match between the averages statistics of the TI and those of the realizations (compare
the solid red and blue lines), with a maximum absolute deviation (overall average curves of Figures 4 and 5)
of 0.05. The different realizations are, however, less variable than the TI’s patches and the corresponding

(a) Fraction of TI (b) Realization #1 (c) Realization #2

(d) Realization #3 (e) Realization #4 (f) Realization #5

(g) Realization #6 (h) Realization #7 (i) Realization #8

Figure 6. (a) Fraction of size 289 3 289 of the TI shown in Figure 2b and (b–i) randomly chosen 289 3 289 realizations
derived by our SGAN. Each realization is generated by sampling 300 random numbers from a uniform distribution,
U 21; 1ð Þ.

Water Resources Research 10.1002/2017WR022148
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Lithological tomography (Bosch, 
1999) 

Advanced geostatistics 
enters here 

Petrophysics Comparison with 
hydrological data 

Comparison with 
geophysical data 

Joint posterior probability 
density function 

mstructure is lithology (e.g., porosity, permeability) 
 mgeophysics is geophysical properties (e.g., electrical conductivity) 
 

ρ mstructure,mgeophysics dhydrology,dgeophysics( )∝ρ mstructure( )×

ρ mgeophysics mstructure( )L mstructure dhydrology( )L mgeophysics dgeophysics( )
	1	

ρ mstructure dhydrology,dgeophysics( ) 	1	  obtained by marginalization   



Crosshole GPR and petrophysical 
error (Brunetti and Linde, 2018) 

overly variable mean field (Fig. 4c), rather small standard deviations
(Fig. 4g) and a moderate correlation coefficient (0.75) with a scatter
plot above the 1:1 trend line (Fig. 4k). These results suggest different
outcomes. First, including a known petrophysical prediction un-
certainty in the inversion leads to consistent estimates, but a wider
posterior distribution than if petrophysical prediction uncertainty is
absent. Second, the correlation coefficient with the true model is mainly

determined by the petrophysical prediction uncertainty. Third, the es-
timated petrophysical prediction uncertainty (that does not exist) in
Case 2 accounts for some of the variability due to porosity variations,
which leads to a too smooth mean porosity field. Lastly, ignoring actual
petrophysical prediction uncertainty in the inversion process (Case 3;
the common case) leads to overly variable fields in order to accom-
modate data variability caused by both porosity variations and petro-
physical prediction uncertainty. From these first inversion examples,
we conclude that ignoring petrophysical prediction uncertainty leads to
overly confident parameter inference and that some of the estimated
parameters might be biased.

We now focus our attention on Bayesian model selection. For each
of the four cases, we also use the data to infer porosity fields assuming
(erroneously) a multi-Gaussian conceptual model with isotropy or
vertical anisotropy. We compute the evidence for each of these con-
ceptual models (the case of the true horizontal anisotropy and the in-
correct cases of isotropy and vertical anisotropy) by approximating the
integral in Eq. (3) with the Gaussian mixture importance sampling es-
timator (Section 2.1). For each case, we use a total of 105 importance
samples and repeat the evidence computation 10 times. The mean
evidences and associated ranges are presented in Fig. 5.

We find that the ranking of the different conceptual models is the
same for all cases. As expected, the multi-Gaussian model with hor-
izontal anisotropy (true conceptual model) has the largest evidence
followed by the isotropic model (Fig. 5a). The evidence values are the
largest when no petrophysical prediction uncertainty is present in the
data or in the inversion (Case 1, Fig. 5a). When we include Δp in the
inversion, the evidence estimates (Case 2, Fig. 5a) decrease drastically
with respect to Case 1. For instance, we find a 29 orders of magnitude
decrease of the evidence estimates for the best model (multi-Gaussian
model with horizontal anisotropy). When petrophysical prediction un-
certainty is absent in the data (Cases 1 and 2), we find thus that
Bayesian model selection clearly indicates that the conceptual model
with horizontal anisotropy and no petrophysical prediction uncertainty
is superior (the consistent case). Note that this is the case despite the
fact that we find the highest log-likelihoods for Case 2 (black dotted

Fig. 3. (a) Posterior distributions of the inferred mean of the porosity field. (b) Posterior
distributions of the inferred variance (i.e., sill) of the porosity field. The vertical blue lines
depict the values of the true model. The posterior distributions are derived from MCMC
simulation with the DREAM(ZS) algorithm using 8 chains with 2.5 · 105 iterations. (For
interpretation of the references to color in this figure caption, the reader is referred to the
web version of this article.)

Fig. 4. (a–d) Mean porosity fields of the posterior
distribution derived from MCMC simulation with the
DREAM(ZS) algorithm using 8 chains with 2.5 · 105

iterations for Cases 1–4, respectively. The corre-
sponding posterior standard deviations of the por-
osity estimates for the four different cases are shown
in (e–h), respectively. From (j) to (l), scatter plots of
the “true” porosity values versus the mean posterior
porosity estimates obtained in the four cases. In each
plot, from (j) to (l), the Pearson correlation coeffi-
cients, r, are reported and the red lines depict the
theoretical 1:1 trend line (i.e., Pearson correlation
coefficient equal to 1). (For interpretation of the re-
ferences to color in this figure caption, the reader is
referred to the web version of this article.)

C. Brunetti, N. Linde

The red lines in Fig. 11a–c depict the inferred mean petrophysical
relationships and the scatter (black dots) around them represents the
inferred mean petrophysical prediction uncertainty. The GPR velocity
range appears to be overestimated whether p∆ is ignored (Fig. 11a) or
accounted for together with a quadratic petrophysical model (Fig. 11c),
while a scattered linear petrophysical relationship (Fig. 11b) provides a

velocity range in agreement with previous studies (Brunetti et al., 2017;
Chen et al., 2001; Hubbard et al., 2001; Linde et al., 2008; Linde and
Vrugt, 2013).

We now turn our attention to the Bayesian model selection results.
We find that Model 2 (scattered linear relationship) has the largest
evidence value (−260.20 in log10 units) and Model 1 (Δp are ignored)
has the lowest one (−361.00) (Fig. 12). The Bayes factor for the “best”
petrophysical model (Model 2) with respect to Model 1 and Model 3 is
10100.80 and 109.38, respectively. These results confirm that the perfect
petrophysical model (Model 1) is erroneous. Furthermore, the results
suggest that the use of a more complex petrophysical relationship is not
necessarily favored. Even if predictions based on the quadratic petro-
physical model (Model 3) fits the data slightly better than the linear
petrophysical model (Model 2) (Fig. 9c), the highest evidence is found
for Model 2. This is a consequence of the trade-off between parsimony
and goodness of fit typical of the Occam’s razor principle on which
Bayesian model selection is based.

5. Discussion

Our coupled Bayesian hydrogeophysical inversion approach with
explicit inference of spatially-correlated petrophysical prediction un-
certainty leads to less bias (e.g., in the inferred variance of the inferred
hydrogeological property field), more realistic uncertainty quantifica-
tion and less over confident model selection compared to the common
choice of ignoring this type of uncertainty. Even if our approach to infer
petrophysical prediction uncertainty doubles the number of parameters
in the inversion problem, we observe dramatic gains in sampling effi-
ciency compared to MC-within-MCMC (e.g., Bosch, 1999, 2016).
Moreover, DREAM(ZS) allows for parallel evaluation of the different
Markov chains and, therefore, enables feasible computational times

Fig. 8. Nine realizations of the petrophysical
prediction uncertainty field drawn randomly
from the posterior distribution obtained from
MCMC simulation with the DREAM(ZS) algo-
rithm using 8 chains with 2.5 · 105 iterations.
The petrophysical prediction uncertainty is
conceptualized by a multi-Gaussian field with
isotropy.

Table 5
Parameters subject to inference at the South Oyster Bacterial Transport Site (first
column), their respective units (second column), range (third column), prior distribution
(fourth column), and number (last column). Dimensionality reduction variables, !DR ,
mean, K , and standard deviation, !σ , of the natural log-hydraulic conductivity field;
dimensionality reduction variables, DR ,p∆ standard deviation, σ ,p∆ integral scale along
the major axis of anisotropy, I ,p∆ anisotropy angle, φ ,p∆ ratio of the integral scales, R ,p∆
and shape parameter of the Matérn variogram, ν ,p∆ of the petrophysical prediction un-
certainty field; standard deviation of the measurement errors on the travel time data, ∼σ ,Y
and polynomial coefficients of the constant, a0, the linear, a1, and quadratic, a2, terms
used to describe linear or a quadratic petrophysical relationships.

Parameter Units Prior range Prior No.

!DR – – Normal 100
K log(m/h) − −[ 2, 1] Uniform 1

!σ log(m/h) [0.4, 0.5] Log-uniform 1
DR p∆ – – Normal 100
σ p∆ m/µs [0, 0.8] Uniform 1
I p∆ m [0.6, 3] Uniform 1
φ p∆ ° [0, 180] Uniform 1

R p∆ – [0.05, 1] Uniform 1
ν p∆ – [0.1, 5] Log-uniform 1∼σ Y ns [0.3, 2] Log-uniform 1
a0 m/µs [40, 100] Uniform 1
a1 log(h/m) · m/µs [0, 80] Uniform 1
a2 log(h2/m2) · m/µs [0, 5] Uniform 1

C. Brunetti, N. Linde

Posterior draws from 
inferred petrophysical 
error field 

not present 
not inferred 

not present 
inferred 

present 
not inferred 

present 
inferred 

Bias and 
overoptimistic errors if 
petrophysical errors 
are ignored; 
Statistics can only be 
partly resolved. 



Challenge 1: Model errors and 
intractable likelihoods 

•  Why not directly infer: 

If petrophysical errors are important, then  
is much less peaky than         , so inference 
should be much easier. Right? 
•  Straightforward for linear Gaussian problems, but 

likelihood is otherwise intractable. 
•  Solutions? Linearization around present model 

(approximate), pseudo-marginal MCMC 
(Beaumont, 2003), approximate Bayesian 
computation (Marjoram, 2003). Hopefully, more on 
this in the next Summer School.  

ρ mstructure dgeophysics( )∝ρ mstructure( )L mstructure dgeophysics( ) .	1	
L mstructure dgeophysics( )

L mgeophysics dgeophysics( )



Challenge 2: Model errors 
•  Approaches to handle model errors (petrophysical 

errors, simplified physics, discretization, numerical) 
exist (Kaipio and Somersalo, 2007; Calvetti et al., 
2014) that work well for idealized situations. 

In this simple example, it is easy to see why we under-estimate θ. The straight line
through the origin that best fits the data in figure 1 will clearly have a slope less than the true
θ = 0.65, which is the gradient at the origin. It is important to recognize that the bias, which
will clearly persist for any number of observations, is due to model discrepancy.

Not only is θ under-estimated but the posterior credible intervals are not even close to
covering the true parameter value. This is in part because we have fixed the observation error
variance σϵ

2 at a small value, so the posterior variance of θ is quite small even with only 11
observations. However, even if we had used a larger error variance, with more data, the
posterior variance will become arbitrarily small and so credible intervals will always fail to
cover the true value for sufficiently large n. Quite simply, with more and more data from the
true process we become more and more sure about the wrong value for θ.

Figures 3(a) and 4(a) show the posterior density of ζ x( )0 , which since we are ignoring
model discrepancy is the same as θx0, at =x 1.50 (interpolation) and =x 60 (extrapolation)
for the three sample sizes. The corresponding true values are

Figure 2. Posterior densities of θ for the three cases: (a) analysis without model-
discrepancy (MD), (b) assuming a Gaussian process (GP) prior on the MD, and (c)
assuming a constrained GP prior on the MD. The true value of θ (0.65) is indicated
with a vertical line.

Figure 3. Posterior densities of the true process at =x 1.50 (interpolation) for the three
cases: (a) analysis without model-discrepancy (MD), (b) assuming a Gaussian process
(GP) prior on the MD, and (c) assuming a constrained GP prior on the MD. The true
value of ζ (1.5) is indicated with a vertical line.
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No model 
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Gaussian 
Process 
description 

Informed 
Gaussian 
Process 

ζ θ= +x
x
x a

( )
1

(6)

where θ = 0.65 and a = 20. To illustrate the effect of sample size we produced three datasets
that have n = 11, 31 and 61, where the smaller datasets are subsets of the larger datasets.
Figure 1 shows the simple machine for the true value of θ, i.e. η x( , 0.65), the true process
ζ x( ), and the dataset with eleven observations.

Our computer model is simple, yet it is a sensible model for the process. The θ parameter
in the simple machine (4) is the same physical parameter as in true process (6). That is, for
small x, the true process is roughly θx and θ is the gradient of the true process at zero. This is
the theoretical efficiency of the machine, and as such it is a physical parameter that is of
intrinsic interest to the machineʼs designers. From now on, we will act as though we do not
know the true process in (6) exactly. We only use the synthetic datasets and the more vague
information about the discrepancy between ζ x( ) and η θx( , ) that ‘losses are not accoun-
ted for’.

3.2. Analysis without accounting for model discrepancy

For the simple machine, if we ignore the model discrepancy term in (3), then we have

η θ ϵ θ ϵ= + = + = …( )z x x i n, , 1, , , (7)i i i i i

where ϵi are i.i.d. σϵN (0, )2 . This is just a linear regression through the origin, and we estimate
θ using the usual method of Bayesian regression. We assume the joint improper prior
distribution θ σ σ∝ϵ ϵ

−p ( , )2 2 and so posterior inference on θ is based on the Studentʼs −tn 1

distribution (see appendix A).
The posterior densities of θ for the three different datasets are shown in figure 2(a). The

posterior means and 90% credible intervals are

11 observations: 0.562 (0.551, 0.573),
31 observations: 0.564 (0.557, 0.571) and
61 observations: 0.565 (0.560, 0.569).

Figure 1. The simple machine for the true value of θ: η =x x( , 0.65) 0.65 , the true
process ζ x( ) and the dataset with 11 observations.

Inverse Problems 30 (2014) 114007 J Brynjarsdóttir and A OʼHagan
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Allowing for model 
errors inflate; 
Informed priors needed  
 to remove bias. 



Towards model selection 
•  Comparison of alternative conceptual models is 

ideally based on the Bayes factor (ratio of 
evidences/marginal likelihoods: 

•  Integrals can be solved by Monte Carlo, Nested 
sampling (Skilling, 2006), Laplace-Metropolis 
(quadratic expansion around MAP), importance 
sampling from posterior (Volpi et al., 2017), 
thermodynamic integration (Lartillot and Philippe, 
2008), stepping-stone sampling (Xie et al., 2011). 

Bij =
ρ d Hi( )
ρ d H j( )

=
L mi d,Hi( )∫ ρ mi Hi( )dmi

L m j d,H j( )ρ m j H j( )∫ dm j

ρ Hi d( )
ρ H j d( )

=
ρ d Hi( )
ρ d H j( )

ρ Hi( )
ρ H j( )

Excellent introduction is given by Schöniger et al. (2014), WRR  



A GPR toy example  
(Brunetti et al., 2017) 

•  True number of layers resolved. See paper for 
field-application with multi-Gaussian priors. Carlotta 
is currently addressing model selection using the 
tracer test at MADE with complex geological priors. C. Brunetti et al. / Advances in Water Resources 102 (2017) 127–141 133 

Fig. 2. Mean values of the evidence in log 10 space, P( ̃  Y ) (a: left graph), and their 
associated uncertainty (b: right graph) derived from the BFMC, LM, and GMIS es- 
timators for each model complexity, d used herein. Color coding is used to differ- 
entiate among the different methods. The evidence estimates of the LM and GMIS 
estimators are in excellent agreement and their uncertainty is negligibly small. (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 3. Difference in the evidence estimates derived from different pairs of two 
methods as function of model complexity, (a) GMIS and LM, (b) BFMC and LM, and 
(c) BFMC and GMIS. The solid black line in each graph portrays the difference in 
the mean evidence estimates, and the grey shaded region quantifies the range as- 
sociated with the difference in the mean evidence estimates of each method. Note, 
we use log 10 transformed value of the evidence estimates. 
derived from LM and GMIS increases with model complexity. Note 
that the maximum deviation between both methods is on the or- 
der of 0.7 unit in P( ̃  Y ) space, which, with mean estimates on the 
order of one-hundred (see Fig. 2 a), equates to a difference smaller 
than 1%. However, it is important to stress here that there is no 
reason to expect that the two methods provide equivalent results 
since they are based on very different assumptions (details in 
Sections 2.2.2 and 2.2.3 ). Results from Fig. 3 also confirm that the 
evidence values derived from the BFMC method start to deviate 
from the other two methods for model dimensions higher than 
six since the method does not reach convergence for those models 
( Fig. 3 b–c). These differences grow as large as 6–7% in P( ̃  Y ) space 
for the most complex subsurface models with d = 14 and d = 16 
porosity layers. It is worth noting that we are primarily interested 
in an accurate model ranking, while the accuracy of the evidence 

Table 2 
Parameters of the conceptual subsurface models with horizontal and 
vertical porosity layering. The last three columns summarize the range, 
prior distribution, and number, of each parameter, respectively as used 
in our MCMC inversion with the DREAM (ZS) algorithm. The variable n layer 
defines the number of layers that is used in each conceptual model. 

Parameter Units Prior range Prior n ° parameters 
φ – 0 .25-0.5 Uniform n layer ∗
m – 1 .3-1.7 Uniform 1 
εs – 2–6 Uniform 1 
σ˜ Y ns 0 .3–2 Log-uniform 1 
∗ 1 ≤ n layer ≤ 60 

estimates themselves are of secondary importance. In light of this, 
we find that the differences in the evidence estimates obtained 
by the three different estimators do not have an impact on which 
models are ranked first and second in the presented synthetic 
example. 

This illustrative toy example shows that results from the three 
methods successfully agree on which model is most supported 
by the available data. The LM and GMIS methods provide sim- 
ilar values of the evidence, with associated uncertainty that ap- 
pears rather small. The evidence estimates derived from the BFMC 
method, on the contrary, are trustworthy only for the most par- 
simonious subsurface conceptualizations (models) consisting only 
of a few porosity layers. Beyond this complexity, the 10 million 
BFMC samples used herein are insufficient to declare convergence 
and obtain reliable evidence estimates. Of course, we could further 
increase BFMC’s sample size, yet this would increase further its al- 
ready prohibitive computational time. Based on these findings, we 
discard the BFMC method and carry forward to the next case study 
the LM and GMIS estimators that are relatively CPU-efficient. 
4. Field example 
4.1. Field site and available data 

We now focus our attention on the South Oyster Bacterial 
Transport Site in Virginia, USA, and use geophysical data measured 
at this experimental site to determine which model of the sub- 
surface is preferred statistically. The geological characteristics of 
the South Oyster Bacterial Transport Site are described in Hubbard 
et al. (2001) . GPR travel time data were measured at the S14-M13 
borehole transect using a PulseEKKO 100 system with a 100-MHz 
nominal-frequency antenna. A domain of 7.2 × 7.2 m was mea- 
sured with a total of 57 sources and 57 receivers, leading to a data 
set of 3248 observations of first-arrival travel times (one value is 
missing). We assume the measurement errors of the travel time to 
be uncorrelated and normally distributed with constant standard 
deviation, σ˜ Y . A relatively fine spatial discretization consisting of 
square cells with length 0.04 m was used in our forward simula- 
tions with the non-linear 2D travel time solver ( time 2d ) of Podvin 
and Lecomte (1991) to compute the first-arrival travel times for the 
7.2 × 7.2 m domain of interest. The models used in this study dif- 
fer in their conceptual representation of the subsurface, and use 
horizontal and vertical layering of the porosity. The numbers of 
porosity layers (equal thickness) is varied between 1 to 60, thereby 
providing a large array of competing hypotheses. Table 2 lists the 
parameters of both spatial porosity configurations which are sub- 
ject to inference with the DREAM (ZS) algorithm. This includes, the 
porosity, φ, of each individual layer, and the values of m , εs and 
σ˜ Y . We list their symbol, unit, range, type of prior distribution, and 
respective number of unknowns. 

The use of horizontal and vertical layering of the porosity is 
perhaps convenient computationally, but might not describe prop- 
erly the subsurface of an actual field site. Indeed, the subsurface 
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Fig. 1. a) The ”true” subsurface porosity model used in our synthetic crosshole-GPR experiment. The different measurement depths of the transmitter antenna (black crosses) 
and receiver antenna (black circles) are separately indicated. Mean porosity fields of the posterior distribution derived from MCMC simulation with the DREAM (ZS) algorithm 
using four different conceptualizations of the subsurface involving (b) two, (c) four, (d) six, and (e) eight horizontal layers. The corresponding posterior standard deviations 
of the porosity estimates for the four different conceptualizations of the subsurface are shown in (f), (g), (h) and (i), respectively. 
the synthetic GPR experiment that was used to create the ”mea- 
sured” travel time data. Secondly, the BFMC (black), the LM (blue) 
and the GMIS (red) estimators are in excellent agreement and pro- 
vide nearly identical values of the evidence for conceptual models 
with just a few parameters (horizontal layers)( Fig. 2 a). Thirdly, the 
BFMC starts to deviate from the LM and GMIS methods at seven 
model dimensions and substantial differences appear for models 
with more than nine layers ( Fig. 2 a). This behavior is explained by 
the fact that the BFMC estimates did not converge for model di- 
mensions higher than six. The convergence analysis was performed 
by a bootstrap analysis with 10 0 0 bootstrap estimates (results not 
shown herein). In the fourth place, notice in Fig. 2 b that the LM 
and GMIS estimators exhibit a negligible uncertainty compared to 
the range of evidence values considered and that the upper and 
lower bound values of the evidence derived from both methods 
appear rather similar. Evidence estimates derived from the BFMC 
method, on the contrary, exhibit a much larger uncertainty due 
to the fact that the BFMC does not reach convergence for model 
dimensions higher than six. This provides further support for the 
claim that, in our implementation and algorithmic settings, the 
BFMC method is inefficient when applied to models of high dimen- 
sionality since large numbers of samples (implying prohibitively 

large CPU-costs) are needed to properly characterize the likelihood 
surface and obtain reliable results. 

We now investigate in more detail the discrepancies between 
the results of the three estimators, and plot in Fig. 3 the differences 
between the logarithmic values of the marginal likelihoods, P( ̃  Y ) , 
computed by the methods for the competing models used in this 
study. The solid black line depicts the difference in the mean evi- 
dence estimates derived by comparing each pairs of methods, and 
the grey shaded region quantifies the range associated with the 
differences in evidence estimates (i.e., the upper and lower bound- 
aries of the grey shaded region are, respectively, the maximum and 
minimum difference in evidence estimate computed by each pairs 
of methods). Note, we use N = 10 7 in the BFMC method and report 
results for subsurface models with number of horizontal porosity 
layers (equal thickness) that ranges from d = 1 to d = 16 . 

The results in Fig. 3 provide further evidence for our earlier 
conclusions. Indeed, the three methods provide rather similar evi- 
dence values ( Fig. 3 a) for the simpler subsurface models (i.e., up to 
d = 6 different porosity layers). For larger model complexities the 
LM and the GMIS estimators differ a bit from each other - but this 
difference is very small in comparison to their mean estimates. 
It is now evident that the difference in the evidence estimates 



Summary 
•  Posterior distributions are only meaningful if 

priors and likelihoods are well chosen (Garbage 
In, Garbage Out); 

•  Geological realism is needed for meaningful 
uncertainty quantification (deep-learning: low-
dimensional representations; efficient MCMC); 

•  Unaccounted model errors (discretization, 
numerical, petrophysical) give overly optimistic 
uncertainty estimates and estimates are biased; 

•  Bayesian model selection can help to answer 
questions about the most appropriate process 
description and conceptual model. 
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