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Outline of lecture

Linear vs. non-linear finite-dimensional problems

Bayes theorem (a “complete” solution to the
iInverse problem)

Posterior inference for non-linear problems
Complex geological priors

Modeling and petrophysical errors (intractable
likelihoods)

Bayesian model selection

Mathematical treatment will be simplified
and follow common usage in geophysics



Interesting problems are non-
linear: connectivity matters

Drainage processes
(Ferrari et al., 2015)
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Location, timing and rate of chemical

reactions (Dentz et al., 2011)



z—distance (m)

m
m;
m-=
My,
m,,
20w AT
G
10 e ;
s,
i ,:,L:q o
0 = _l:' wre A
0 10

Models, data, and forward
problems in finite dimensions

| | | | | |
~ o o B w N

x—distance (m)

]
-
1 € 08
()]
= =
<
c
= § 06
=3 ©
2 T 04
< 0.
(8]
5
O 02
0

(b)

dl

RMSE = 0.039 kg m™

1 2 3 4 5 6 7 8 9 10

Time (days)

Analytical or numerical (e.g.,
finite element, finite difference)
of physics for a given Earth
model, initial, and boundary
conditions
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Forward and inverse problems

The data are what we
can measure in the
field or in the lab!

The model is

what we want! forward problem

DATA

Géophysibal, pumping
or tracer tests, etc.

~

MODEL

Porosity, permeability,
etc.

inverse problem

Adapted from Binley and Kemna (2005)



Linear and non-linear finite-
dimensional forward problems

Gmpl‘Op — dsnn Linear case

The simulated data d™ [N x 1] can be calculated for a
model mP™P [M x 1] using the design matrix G [N x
M]. The design matrix describes the underlying
physics and geometry of the experiment (e.g., using
the finite-element method).

g(mpmp) — dSHIl Non-linear case




EX. the electrical response Is
not proportional to electrical
conductivity at a given location

Modéle a un terrain homogénel

Modele a deux terrains, p2 > pl

Exemple géologique:
Molasse burdigalienne (OMM), banc de grés homogéne (p = 120 Q.m).

profondeur (m)

profondeur (m)

0 distance (m)

A

N

ol

Exemple géologique:
Molasse d'eau douce (USM): passage d'un banc
gréso-marneux (pl = 30 Q.m ) & un banc gréseux
désaturé (p2 = 200 Q.m).
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La répartition du courant €lectrique se fait de maniére homogene dans le sous-sol ent

les €lectrodes A et B.
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Figure B: champ électrique:
Figure B: champ électrique

Le courant se concentre dans le premier terrain de faible résistivité p1 = 30ohmm

profondeur (m)

profondeur (m)

Modeéle de sillon ré

sistant

Exemple géologique:
Terrain 1: moraine (pl = 60 Q.m)
Terrain 2: molasse chattienne (p2 = 30 Q.m)
Terrain 3: graviers désaturés (p3 = 400 Q.m)
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Normal (Gaussian) distribution

* The most used probability density function is the
normal (Gaussian) distribution

1 (x - X, )2 ) For one datum

p(x) \/70 exp( (0)2 , Oor model

variable!
o Is the standard deviation;
X, Is the mean value

* Probability density functions integrate to one.
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More general
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e.g., Tarantola, 2005
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Generalized Gaussian
Symmetric exponential
Gaussian function

Boxcar function




Joint probability density
function (weight and height)

Let po(W,H) be the joint probability density function;
For independent variables, we have that: p(W,H)
=p(W) p(H);

This is unlikely for height and weight;

It would imply that knowing something about height
(e.g., a person is 2.50 m tall) does not carry any
information about the persons supposed weight.



Weight, W (kg)

Joint probability density
function

Uncorrelated variables
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Data errors, modeling errors and geological

properties are correlated!



Conditional and marginalised
pdfs
* Let o(W| H) be the conditional pdf of W given
H.
p(W.H)=p(H)p(W|H)

* The marginalised pdf of H is when all influence
of W has been integrated away:

p(H)= f,O(H,W)dW Shown as a figure a few slides back.



Bayes theorem

* From the rule of conditional probabilities, we
have that

p(W.H)=p(W)p(H|W)=p(H)p(W|H)

e From this we can write:
p(W)p(H W)
WIH) =

Tarantola and Valette (1982) describe a more general
inversion framework that does not assume conditional

probabilities (nor a distinction between m and d). Here,
we follow a Bayesian formalism.



The complete solution to the
iInverse problem

i) Pp(g\nllg)f()?ﬁ;)dm

PO (m‘d) Posterior probability density function

,O(m) Prior probability density function
o(d|m)=L(m|d) Likelihood function

Evid
fL(m‘d)p(m)dm (rxlarZ?rf:I probability)



Often in practice
p(m|d) e p(m)L(m|d)

This proportionality is valid (i.e., the
evidence is a constant) when the model
parameterization is fixed during the
inversion.

The normalizing constant underlies
Bayesian model selection (see later)



Choosing a prior p(m)

» For positive physical constants, assuming a
uniform prior of the logarithm of the property is
the least “informative” (Jeffrey priors);

* The assumed distribution is the same regardless

of if the property (e.g., electrical conductivity) or
its reciprocal property (e.g., electrical resistivity) is

used.

 |tis very common to rely on two-point statistics in
the form of multi-Gaussian prior models.



Prior model and likelihood function

(Gaussian assumptions)

1 1 T
,O(m) - (2E)M/2 det(CM )1/2 eXp(—E(m— mprior) Cy (m_ mprior))

a) b) C) d)

95

|
O
S

b
v 5
RS S - %"
oo
)}

L %
~]
O

o0
S
GPR wavespeed (m/us)

‘ d
o)) ~
) >

’ - “*r ¢ : m:_f:' . 1 k. % 4 o
Ol W £ W G o e ¢ '{
0123456 0123456 0123456 012345°F€6
Distance (m) Distance (m) Distance (m) Distance (m)
1 1 T
L(m|d)= N/2 72 ©XP _E(g(m)_d) Cy (g(m)—d)
(27) " det(C,)



Pdfs for a joint Gaussian (normal)
distribution: prior or likelihood

p(x)=((2)" derc) exp(—%(x—xO)T C—I(X—XO))
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The uncorrelated case: very common assumption
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Posterior for a Gaussian/normal
likelihood and prior (linear case)

In the linear Gaussian case, the posterior is fully
described by a mean and a posterlor covariance
model. The analytical solution is:

d—Gcm M=(G'ClG+Cy) (G'CHd+Com,,)

C\ =(G"CG+Cy)

Tarantola (2005)



Rejection sampling: propose from
prior, accept proportional to likelihood

A.Draw m”*" from p(m)
B. Accept m” " with probability L(m‘d) /S, ; return to A.

This 1s the only exact sampler of p(m‘d) and 1t can deal

with complex topologies. The supremum 1s the
highest expected likelithood possible.

If supremum 1s chosen too low, then results are biased.
If chosen too high, then algorithm is inefficient.



@ Independent sampling from posterior distribution

@ Bayesian-style hierarchical conditioning to data

@ Conditional independence between different data types

Prior conditioning
data

Prior models

Data type 1

no

A

Data type 2

no

no

Y

Fully condi-
tioned models




Integration of flow rates, tracers,
borehole data, and geophysics with
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The curse of dimensionality

* Rejection sampling does not work well
(acceptance rate is very low) in high
parameter dimensions because the
(hyper)volume of the prior space that contains
significant likelihood becomes very small;

* For example, if 20% of the first dimension is
significant (rejection sampling works), it would
be less so in 100 dimensions, as the chance
of hitting a high-likelihood area 0.2199=10-70,



Metropolis-Hastings algorithm (Hastings, 1970)

* A.If at m,,, propose a move to my, according to a proposal distribution g(m,, =

i) Metropolis algorithm: if
* B. Calculate symmetric proposals
o min| 1 £ [4) 2 (M ) (M = )| (L (0 |d) ()
L(mCurr d)p(mcm)q(mcm —> mpmp) ’ L(mcm d)p(mcm)

* C. Move to my,,, with probability 4, else remain at m,,; go to A.

The resulting chain will asymptotically sample from a stationary distribution that 1s

proportional to p(m|d) :

Model proposals (states) with higher posterior probability
are always accepted, but those with lower probability might
also be accepted. After burn-in and convergence, the
sampled states describe the posterior distribution.



Log-likelihoods

* The Metropolis ratio is not easy to calculate due to
the limited numerical accuracy (e.g., smallest

double-precision number is on the order of 10-323):

L (umP ‘d) p (mPfOP ) )
L(m,,|d)p(m,,)

h=min|1

* We are only interested in obtaining the ratio. Can
be obtained as (numerical trick)

L(m,,,|d)p(m,,,)
L(m,,|d)p(m,,)

= exp(log(L(mpmp ‘d)) + log(p(mprop)) = log(L(mcurr ‘d)) = log(p(mcurr)))

Extension to Metropolis-Hastings is straightforward.



Acceptance rate (AR)

* One should monitor the acceptance rate (the
proportion of actual updates in the MCMC
chain).

* The proposal distribution is often chosen to
get an AR of 25% (10-40% is typically good).

* As long as the AR is above 0 or below 1, the
chain will converge at some point, but
perhaps after too many steps to be possible/
convenient (say 1070 steps).



Burn-in

Proposal N(X,1)

* |t takes time before the chain - .

Is independent of the starting - Jh o o |

point and starts to sample . PPMWJ LWM %“MUW ‘W
proportionally to the posterior. - f l

* This is called the burn-in time ™
and the preceding steps !

should be removed.

. Often approximated as the B —-

time when the sampled The shaded area indicates
posterior probabilities start to  the burn-in time. It can be

fluctuate around a constant a few samples or many
value (hundreds of) thousands

of samples.




Laloy et al. (2015)

RMSE (kg m™)

Assessing MCMC
convergence

A common measure to assess convergence is the
potential scale reduction factor by Gelman and
Rubin (1992).

* |t compares the average within-chain variance with

the across-chain variance of the (within chain)
means for the second half of the chain.

1 1 1
100,000 200,000 300,000
Total number of forward model evaluations

-
400,000

Convergence when R<1.2
for all parameters;
Example to the left
suggests that burn-in is
only 5% of the time needed
to have a proper sampling
of the posterior.



Reaching the posterior vs.
exploring the posterior

The first stage in MCMC corresponds to locating
the posterior (burn-in period) and the next step
corresponds to sampling the posterior distribution;

Sometimes, one might only aim at finding the
global minimum (not the full posterior) or a set of
realizations that explain the data without a formal
assessment of uncertainty;

Global optimization methods are then suitable.

If convergence is not achieved, then one is left
with a few samples from the posterior with no
ability to make a full probabilistic assessment!



Auto-correlation

* Neighboring samples/states in an MCMC chain are
highly correlated. That is, the number of
independent draws from the posterior are much
fewer than the number of samples;

 The auto-correlation function describes how the
correlation decrease as a function of the lag -
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Better exploration with parallel
tempering

« Tempering raises the
posterior distribution or

only the likelihood with the
inverse of a temperature T; -y
« Several chains are o
developed in parallel using
different temperatures; Laloy et al. (2016)
* \Within-chain and between

chain proposals are used
to exchange information.

0.75

w ——SGR
g 08 ——PT-SGR |

/T | MM/\WW\WW‘
p ( m ‘ d , T ) m p ( m) L ( m ‘ d ) %500 1000 1500 2000 25;%0 3000 3500 4000 4500 5000




Constraint 1 on MCMC:
Ergodicity

 Two conditions are needed for an MCMC chain
to converge asymptotically: Ergodicity and
detailed balance.

« Ergodicity: the chain is irreducible (it can get
from any state to any other state after a
number of steps), aperiodic (the chain does not
repeat itself), it is positive recurrent (it will
return to a given state after a finite number of
steps).



Constraint 2 on MCMC:
Detailed balance

» Detalled balance states that the transition
kernel to move from one state to another
(essentially a combination of a model proposal
step and an acceptance step) ensures that:

T(m*‘m)p(m‘d)=T(m‘m*)p(m*‘d)
 Example, if o(m*|d)is twice as likely as

p(m|d) then detailed balance states that
T(m*m)/T(m|m*) must be 2.



N O W =

Choosing a prior p(m)

The prior doesn’t need to be defined mathematically;
it may be represented by geostatistical simulations.




The extended Metropolis algorithm (Mosegaard and Tarantola, 1995)

If at m,,,,, conditional resimulation of a portion of the model according

to the prior by using a geostatistical algorithmresimulation;

d))

d)

Calculate
L (m

L(m

prop

curr

h = min(l,

Move to my,,, with probability /4, else remain at m,,; go to A.

#3

General approach, but
can be inefficient
because of (i) low
acceptance rate and (ii)
costly geostatistical
resimulation.

Hansen et al. (2012) Comput. Geosci.



ome prior states for different prior
models (different lines)

10 10 10 10
15 15 15 15
20 20 20 20
25 25 - 25 2% -
30 ‘ 30 30 30

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Hansen et al. (2012) Comput. Geosci.



Some posterior states for different prior

Crosshole
GPR data
are used In
these
examples.

models (different

Hansen et al. (2012) Comput. Geosci

lines)

The spatial
statistics of the
posterior are
largely determined
by the prior;

Any uncertainty
quantification (UQ)
IS highly dependent
on the prior;

Insufficient
research on
“geological” priors.



Application to the MADE site
using graph cuts

* Model proposals with graph cuts (Zahner et al.,
2016) bring down the model proposal time to <1%
than classical multiple-point statistics resimulation
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Multi-Gaussian

Outcrop
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- Ongoing PhD work

by Carlotta Brunetti



Low-dimensional representation
of priors using deep learning

* |If complex priors can be captured by uncorrelated
(e.g., standard normal, bounded uniform)
coefficients, then any state-of the-art MCMC

method can be used.

 Wavelets, discrete cosine transforms, etc. do not
offer this, but deep learning may.

See also:
Mosser et al. on arxiv.org

Spatial generative adversarial
neural networks (SGANS) can be
trained on a training image (Tl) to
produce a low-dimensional
representation of uncorrelated

standard normals (Laloy et al.,
2018).



Examples (Laloy et al., 2018)

(a) Fraction of TI (b) Realization #1 (c) Realization #2 (a) Fraction of Tl (b) Reallzatlon #1 c) Realization #2
= P ———— — . — — — . - o = =

——

(d) Realization #3 (e) Realization #4 (f) Realization #5 (d) Reallzatlon #3

(g) Realization #6 (h) Realization #7 (i) Reallzatlon #8

Figure 3. (a) Fraction of size 609 X 609 of the Tl shown in Figure 2a and (b-i) randomly chosen 609 X 609 realizations Figure 6. (a) Fraction of size 289 X 289 of the Tl shown in Figure 2b and (b-i) randomly chosen 289 X 289 realizations
derived by our SGAN. Each realization is generated by sampling 400 random numbers from a uniform distribution, U(—1,1). derived by our SGAN. Each realization is generated by sampling 300 random numbers from a uniform distribution,
U(=1,1).



Lithological tomography (Bosch,
1999)

M. .wure IS lItholOgy (e.g., porosity, permeability)
M..onysics 1S geophysical properties (e.g., electrical conductivity)

Joint posterior probability Advanced geostatistics
density function enters here

IO (mstructure ’ mgeophysics dhydrology ’ dgeophysics ) A IO (mstructure ) X

IO (m geophysics mstructure ) L (mstructure dhydrology ) L (m geophysics d geophysics )

Petrophysics Comparison with Comparison with
hydrological data geophysical data

,O(mstmcmre dhydmlogy,dgeophysics) obtained by marginalization



Crosshole GPR and petrophysical
error (Brunetti and Linde, 2018)
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Challenge 1: Model errors and

Intractable likelihoods
* Why not directly infer:

IO (mstructure dgeophysics) X p (mstructure ) L (mstructure dgeophysics) '

If petrophysical errors are important, then L(m,,,.. [d,.myse)

is much less peaky than L(m,...|dwm..), SO inference
should be much easier. Right?

« Straightforward for linear Gaussian problems, but
likelihood is otherwise intractable.

« Solutions? Linearization around present model
(approximate), pseudo-marginal MCMC
(Beaumont, 2003), approximate Bayesian
computation (Marjoram, 2003). Hopefully, more on
this in the next Summer School.

d




ity

dens

Posterior

Challenge 2: Model errors

* Approaches to handle model errors (petrophysical

errors, simplified physics, discretization, numerical)
exist (Kaipio and Somersalo, 2007; Calvetti et al.,
2014) that work well for idealized situations.

. Y= Simple Machine n(x, 0.65)
No model (Gaussian Informed o] o e
error Process Gaussian -
. - =

treatment  description Process _
8_—61obs. gg_—mobs. %8 — b. Of(‘) 1 T T T T T
S % N § i X (Effort)
i Allowing for model
TR TR e e s ErTOrsinflate;

S " Informed priors needed
Brynjarsdottir and O’Hagan, 2014 to remove bias.



B. =

7

Towards model selection

Comparison of alternative conceptual models is
ideally based on the Bayes factor (ratio of

evidences/marginal likelihoods:

p(alf)  [L(ma.t)p(m |r)dm,  p(HJd) _plal) p(r)
p(aj,)  [L(m,|d.f,)o(m,|H,)im, p(H,ld)  p(dH,) p(H))
Integrals can be solved by Monte Carlo, Nested
sampling (Skilling, 2006), Laplace-Metropolis
(quadratic expansion around MAP), importance
sampling from posterior (Volpi et al., 2017),

thermodynamic integration (Lartillot and Philippe,
2008), stepping-stone sampling (Xie et al., 2011).

Excellent introduction is given by Schoniger et al. (2014), WRR
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A GPR toy example
(Brunetti et al., 2017)

* True number of layers resolved. See paper for
field-application with multi-Gaussian priors. Carlotta
IS currently addressing model selection using the
tracer test at MADE with complex geologlcal priors.
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Summary

Posterior distributions are only meaningful if
priors and likelihoods are well chosen (Garbage
In, Garbage Out);

Geological realism is needed for meaningful
uncertainty quantification (deep-learning: low-
dimensional representations; efficient MCMC);

Unaccounted model errors (discretization,
numerical, petrophysical) give overly optimistic
uncertainty estimates and estimates are biased,;

Bayesian model selection can help to answer
guestions about the most appropriate process
description and conceptual model.



Reader’s Digest

More heavy
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