Cargèse Summer School June 25th to July 6th, 2018

Photo: André Künzelmann, UFZ

Groundwater (GW) -Surface Water (SW) Interactions and Hyporheic Zone Processes

J.H. Fleckenstein

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Outline

- Main types of GW-SW interactions
- Why care about GW-SW interactions?
- Some methods to quantify GW-SW exchange fluxes
- Simulation of flow and transport in the hyporheic zone (HZ)
- Effects of sediment heterogeneity on HZ flow and transport
- Take home messages

Main types of river-GW interactions

Flow direction Unsaturated zone Water table Shallow aquifer

GAINING STREAM

LOSING STREAM

BANK STORAGE

DISCONNECTED STREAM

from USGS Circular 1139

The GW-SW interface and the hyporheic zone

USGS Cicular 1139, p. 17: "Streambeds and banks are unique environments because they are where ground water that drains much of the subsurface of landscapes interacts with surface water that drains much of the surface of landscapes."

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

The GW-SW interface – hyporheic zone

A: Primary regional controls → catchment topography, regional geology
B: Secondary local controls → streambed and aquifer heterogeneity

C: Dynamic controls \rightarrow variability in boundary conditions

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

GW-SW interactions \rightarrow catchment-scale solute dynamics

Two main controls via:

A) runoff generation processes and catchment-scale mixing

- Connectivity between runoff generating and solute source zones
- Mobilization & transport dynamics (temporal evolution, thresholds) \rightarrow e.g. dilution versus accretion regimes, river network effects

B) Attenuation processes in the transition zone between GW & SW

- Riparian buffering \rightarrow attenuation of groundwater borne solutes
- Hyporheic exchange & bank storage \rightarrow instream attenuation ٠ \rightarrow uptake & transformation in hyporheic sediments

denitrification of surface water borne NO₃ in a riffle

GAINING STREAM

denitrification of groundwater borne NO₃

Point methods: direct (seepage meter), indirect (Darcy- or T-based)

Darcy-based:

- mini-piezometer s \rightarrow vertical head gradients
- plus K-values (e.g from slug test) → Darcy flux

Seepage meter measurements of GW-exchange with a lake

Neumann, Beer, Blodau, Peiffer, Fleckenstein, (2013) Hydrological Processes, 47:3240-3253

DTS-based localization of GW-exchange hotspots in a lake

Temperture-based methods – vertical profiles

Effects of non-ideal conditions – non-vertical flow

vertical flow ($\alpha = 0^{\circ}$)

diagonal flow (α = 30°)

Schornberg, Schmidt, Kalbus, Fleckenstein (2010) Advances in Water Resources, 33:1309–1319

Effects of non-ideal conditions – geologic heterogeneity

Schornberg, Schmidt, Kalbus, Fleckenstein (2010) Advances in Water Resources, 33:1309–1319

Effects of non-ideal conditions – geologic heterogeneity

Schornberg, Schmidt, Kalbus, Fleckenstein (2010) Advances in Water Resources, 33:1309–1319

Heat-pulse methods → small-scale patterns of HZ flows

Lewandowski, Angermann, Nützmann & Fleckenstein (2011) Hydrological Processes, 25:3244–3255

Radon (Rn²²²) as a natural tracer \rightarrow net groundwater gains

GW-SW interactions in groundwater models – large scale

coarse numerical grids

simplified GW-SW-interface (e.g. MODFLOW)

Rusthon, J.of Hydrology., 334, 2007

Problem: coarse spatial resolution, small-scale patterns can not be resolved

Integrated surface-subsurface simulation – finer scale

Submerged features (e.g. riffles) → dynamic pressures

submerged features dynamic pressure dominates HZ flow

The hyporheic zone as a biogeochemical reactor/barrier ?

"A River's liver", Fischer et al. 2005

- mixing of chemically different waters
- pronounced gradients
- enhanced microbial activity
- increased residence times
- input of OM as electron-donor
- temporally variable redox conditions

from: Mutz, Schmidt & Fleckenstein, Limnologie Aktuell Vol.14, 2015

hyporheic exchange → in parallel → hyporheic exchange length

Model set-up – water flow

- Morphology: Pool-riffles with various amplitudes
- Variation of stream discharge (Q_{surf})
- Variation of ambient groundwater flow

Magnitude of the hyporheic exchange flux (Q_{HZ})

Model set-up – reactive transport

- Morphology: Pool-riffles with various amplitudes
- Variation of stream discharge (Q_{surf})
- Variation of ambient groundwater flow

Reactions & turn over – pool-riffle sequence

A=0.5 m

2D - spatial distribution of consumption rates

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Trauth et al. (2014) JGR-BGS

Denitrification efficiency – pool-riffle sequence

Trauth et al. (2014) JGR-BGS

Instream gravel bar – field site

- In-stream gravel bar at the river Selke, central Germany
- Field data: stream discharge, water level, electrical conductivity

Trauth et al. (2015), WRR

Instream gravel bar – model set-up

• CFD code: Stream discharges ranging from 0.18 to 5.0 m³/s

Instream gravel bar – model set-up

- CFD code: Stream discharges ranging from 0.18 to 5.0 m³/s
- Groundwater model: Range of ambient groundwater heads inducing

neutral, losing, gaining conditions

Instream gravel bar – flow patterns and reactions

Instream gravel bar – reactive efficiency

Efficiency of reactions <u>within</u> the hyporheic flow cell: F =

Solute Consumption
Solute Influx

Denitrification of Stream NO₃

Instream gravel bar – transient stream flow (events)

Trauth and Fleckenstein (2017) WRR, 53:779–798

group: Dr. Shai Arnon

project funded by German Israeli Foundation - GIF

gaining

neutral

losing

V_{stream}= 15 cm/s q_{down}= 50 cm/d

V_{stream}= 15 cm/s

 V_{stream} = 15 cm/s q_{up}= 50 cm/d

Effects of sediment heterogeneity on flow and reactions

- geostatisctical simulation of random, multi-gaussian and indicator fields
- 10000 realizations + evaluation of effects of different correlation lengths & angles
- Sinusoidal streambed pressure (Elliot & Brooks) → simulation of flow & reactive transport

Physical effects of sediment heterogeneity

Reactions → denitrification, homogeneous case PhD Gerrit Laube

reactive fringe with denitrification, like in Trauth et al. 2014

Denitrification [mol/l/d]

-5.773e-05 -5e-5 -4e-5 -3e-5 -2e-5 -1e-5 -1.149e-13

Reactions → denitrification, effects of heterogeneity

non-uniform distribution of denitrification hot spots

PhD Gerrit Laube

Denitrification [mol/l/d]

-5.773e-05 -5e-5 -4e-5 -3e-5 -2e-5 -1e-5 -1.149e-13

Reactions → denitrification, effects of heterogeneity

denitrification in deeper parts of the hyporheic zone

PhD Gerrit Laube

Denitrification [mol/l/d]

-5.773e-05 -5e-5 -4e-5 -3e-5 -2e-5 -1e-5 -1.149e-13

Take home messages

- GW-SW exchange takes place at nested scales
- Exchange fluxes can be quantified using various direct or indirect methods
- Pressure variations at the streambed → primary driver of HZ-flow
- Losing and gaining conditions work against the primary driver, diminishing hyporheic exchange flux, extent, residence times
- Reactive potential controlled by the extent of the reactive areas within the hyporheic flow cells and the associated hyporheic residence times
- Modeling suggests: Up to 8% of the nitrate load in stream water can be consumed along 1 km stream section
- Events temporarily increase removal efficiency for NO₃ by up to 3.6-times
- Streambed heterogeneity increases Q_{hz} & the width of the RTD, but decreases mean hyporheic RT
- Heterogeneity decreases denitrification potential in shallow HZ, but promotes denitrification in deeper HZ

Acknowledgements: Nico Trauth, Gerrit Laube, Christian Schmidt, Michael Vieweg, UFZ Leipzig Christiane Neumann, Christina Schornberg, University of Bayreuth

Field data collection

Thank you for your attention – Fin !

Riffle

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ

Pool