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Single Model Space
(Discrete and Continuous Differences)
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One of all possible 
things that you could 
measure and that the 
models can predict.
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We can assess their likely 
value BEFORE we collect 

the measurement.
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Better/Worse Data?
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Better/Worse Data?
Depends on your objective
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DI = f(intergroup difference / intragroup spreads)

Better/Worse Data                       Even Worse Data
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Better/Worse Data

DI = f(intergroup difference / intragroup variance)
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Stakeholder 1
Stakeholder 2
Stakeholder 3
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Stakeholder 1
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Stakeholder 2
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• Multiple plausible models can be built for any system;

• Model likelihoods can be defined based on fit to data;

• The expected value of data for any prediction(s) of 

interest can be assessed before the data are collected;

• Stakeholders must define the prediction(s) of interest, 

which will identify the models of concern;

• Decision support relies on segregating either models of 

concern or other models as high likelihood.
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Stakeholders Must Drive the Process

44

Each stakeholder must define their outcomes of concern.
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It is not a scientist’s job to 
tell a stakeholder what to 

care about.
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Modeling Is Biased
(Modelers are Human)
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Embrace the Bias

48

Modeler 1

Time

M
o

d
e

l S
p

a
ce

It is not a scientist’s job to inject 
false objectivity – but, rather, to 

test hypotheses – especially those 
that matter to stakeholders.
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Stakeholders, with their 
experts (modelers), are best 

able to identify their
outcomes of concern and 
find discriminatory data.  
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An Ensemble of Diverse Biased Models Is Not Biased
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• Each stakeholder’s modelers should be encouraged to form 
plausible models of concern to address their interests.  
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• Each stakeholder’s modelers should be encouraged to form 
plausible models of concern to address their interests.  

• Decisions should be made using a combined model ensemble.
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Models of Concern
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View the Model Ensemble As a Team of Rivals
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Where advisors (models) agree, a clear decision can be made.
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View the Model Ensemble As a Team of Rivals
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Where advisors (models) agree, a clear decision can be made.

Where models disagree, more information (data) is needed.
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• Decision-making is inherently biased;

• Model construction is inherently biased;

• We should embrace bias to form a diverse ensemble of 

biased models to consider all stakeholders’ concerns;

• Discriminatory data should be chosen collectively.
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Percolating
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Harmonicish
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• Use models to train your intuition;
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• Use models to train your intuition;

• Students rock.



Summary of the Three Talks
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• A scientist’s job is to propose different plausible models;

• Then to find discriminatory data;

• This can be guided by stakeholder’s interests;

• This requires trained intuition.


