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Introduction and contents

• Defining fluid flow of any kind of medium in any kind 
of cirumstances involves:
– Momentum conservation
– Mass conservation

• For permeable media and  slow laminar flow 
momentum conservation is described by Darcy’s Law.

• This Chapter es devoted to:
– Study Darcy’s law and its terms:
– Head
– Viscosity
– Permeability
– The meaning of Darcy’s law
– Its limits of validity
– The mass conservation equation
– Storage coefficient



Our context

During the course we will 
often forget it, but our 
business is water: 
understanding it for 
supplying and protecting it… 



Darcy’s context

Increase in life expectancy at birth 
from 32 to 50 years (solely during the 
XIX century) caused by sanitation 
(Preston, 1978) 
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XIXth century engineers researched potabilization of water for 
drinking and treatment of waste water. Sand filtering was one of 
the key elements: size of grains and filters?  



Henry Philibert Gaspard Darcy (1803–1858)

He did numerous civil works and was a good 
“conventional” civil engineer.

He had no idea of grounwater (his well 
hydraulics concepts are very primitive)

He designed the Dijon municipal water 
system. After retiring, he investigated 
water related issues, performed numerous 
experiments singularly:
• flow through pipes, which led to the 
Darcy-Weisbach equation 
• flow through porous media for the design 
of sand filters. The results of these 
experiments were published as an appendix 
to the Les Fontaines Publiques de la Ville de 
Dijon [Darcy, 1856].



Darcy (1856) experiment



DARCY’s LAW: an EXPERIMENTAL LAW

• Darcy showed that the 
flow through a sand 
column is:
– Proportional to cross 

section A

– Inversely proportional to 
length L

– Proportional to head drop

– Proportional to the square 
of grain size

• Therefore,
– Q = Cd2A∆h/L

• Currently writen as
– q = Q/A = -K grad h

L

∆h = h1 – h2Q

Qh1

h2

Reference
horizontal plane

h1

h2



Generalizing Darcy’s law

• What is exactly h? Is it a potential?

• Does Darcy’s law apply to different fluids?

• Does it apply in open systems (as opposed to a pipe)?

• Which properties of the fluid control it?

• Does the nature of the solid affect it (or only its 
geometry)?

• What are the limitations of Darcy’s law?

• Is it valid for heterogeneous media?

• Does flow need to be steady?

You should know the answer to these questions, but do 
you know the whys?



Is there a potential for flow?

• First, what does “potential” mean?
– Potential is a field (normally, energy per unit mass), from 

which fluxes can be derived (typically fluxes are proportional 
to the gradient of potential). Examples: Electrical potential, 
temperature, chemical potential (concentration), etc. 

• Second, under some conditions, yes, HEAD 
(Bernouilli, 1738)

• It is our state variable. It represents energy of 
fluid per unit weight.

• … water elevation in wells…
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Bernouilli’s equation: energy conservation

Daniel Bernoulli derived his equation from 
the conservation of energy, although the 
concept of energy was not well-developed 
in his time. Using energy concepts, the 
equation can be extended to 
compressible fluids and thermodynamic 
processes. 

Energy in= Energy out   on the volume of 
fluid Q=A·V·t,  which disappears at one 
point and reappears at another imaginary 
pistons move with the speed of the fluid. 
Capital letters are used for quantities at 
one point, small letters for the same 
quantities at the second point.

Energy made of (Q:Volume of water=VAt):
Kinetic: MV2/2/t = QρV2/2
Potential: Mgz/t = Qρgz
Pressure Work/t = F·X/t = (P·A)·V = Q·P

Total energy of the piston:
Q·(P+ ρgz+ ρV2/2)

Divide by Q to get energy per unit volume,
Divide by Qρg to get energy per unit weight

http://www.du.edu/~jcalvert/tech/fluids/bernoul.htm



Bernouilli equation: from momentum conserv.

From momentum conservation: 
(Eulerian equations) 

Assuming:
velocity must derive from a 

potential (v=gradφ)

external forces are conservative
(they derive from a potential)

density is constant, or a function
of the pressure alone. That, 
density differences caused by
temperature or concentration
variations are neglected)

Bernoulli's Equation follows on
integration
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Bernouilli derived simpler momentum conserv. 

• The second form of Bernoulli's Equation arises from the fact 
that in steady flow the particles of fluid move along fixed 
streamlines, as on rails, and are accelerated and decelerated by 
the forces acting tangent to the sreamlines.

• Under the same assumptions for the external forces and the 
density, but without demanding irrotational flow, we have for an 
equation of motion dv/dt = v(dv/ds) = -dz/ds - (1/ρ)dp/ds, where 
s is distance along the streamline.

• This integrates immediately to v2/2 + z + p/ρ = c. In this case, 
the constant c is for the streamline considered alone; nothing 
can be said about other streamlines. 

• This form of Bernoulli's Equation is more generally applicable, 
but less powerful than the preceding one. It is the form most 
often applicable to typical engineering problems. 

• The derivation is easy and straightforward, clearly showing the 
hypotheses, and also that the motion is assumed frictionless.



• The concept of potential only addresses the energy 
of the fluid. It does not say anything about how the 
fluid flows. For this, we need to either 
– Consider dissipated energy, or

– Balance the forces affecting the fluid (momentum 
conservation)

• In either case, we need to evaluate the forces 
opposing fluid flow



On the resistance of a fluid to flow

Slide a solid at a constant velocity, 

what is the resitance? Is it proportional to velocity? 
Does it depend on the weight of the object?

On a fluid layer, 
shear  stress, τx,
is usually 
proportional to 
velocity v (for a 
given fluid 
thickness)

On a dry surface, 
shear  stress, τx,
is usually 
proportional to 
normal stress σz

On a dry surface Fz
F

x
σz

τxv

On a fluid layer Fz
F

x
σz τxv

τx=Fx/A σz=Fz/A



Viscosity: A sticky subject

• We can say that viscosity is the resistance a material has to change in 
form. This property can be thought of as an internal friction.

• Viscosity is defined as the degree to which a fluid resists flow under an 
applied force, measured by the tangential friction force per unit area 
divided by the velocity gradient under conditions of streamline flow; 
coefficient of viscosity. 

Dynamic (absolute) Viscosity is the 
tangential force per unit area 
(shear stress) required to move 
one horizontal plane with respect 
to the other at unit velocity when 
maintained a unit distance apart 
by the fluid.

Newtons Law of Friction. Units are N s/m2, Pa s or kg/m s where 

1 Pa s = 1 N s/m2 = 1 kg/m s

Often expressed in the CGS system as 

g/cm.s, dyne.s/cm2 or poise (p) where 

1 poise = dyne s/cm2 = g/cm s = 1/10 Pa s 

= 100 centipoise (cP)

Viscosity of water at 20.2 ºC = 1 cP



More on viscosity: Newton’s law

Isaac Newton postulated that, for 
straight, parallel and uniform flow, the 
shear stress, τ, between layers is 
proportional to the velocity gradient, 
∂u/∂y, in the direction perpendicular to 
the layers, in other words, the relative 
motion of the layers.

.
Here, the constant µ is known as the 
coefficient of viscosity, viscosity, or 
dynamic viscosity. Many fluids, such as 
water and most gases, satisfy Newton's 
criterion and are known as Newtonian 
fluids. Non-Newtonian fluids exhibit a 
more complicated relationship between 
shear stress and velocity gradient than 
simple linearity.

Viscosity is the principal means 
by which energy is dissipated in 
fluid motion, typically as heat. 



Molecular origins

The viscosity of a system is determined by how molecules 
constituting the system interact. There are no simple but 
correct expressions for the viscosity of a fluid. The simplest 
exact expressions are the Green-Kubo relations for the linear 
shear viscosity or the Transient Time Correlation Function 
expressions derived by Evans and Morriss in 1985. Although 
these expressions are each exact in order to calculate the 
viscosity of a dense fluid, using these relations requires the 
use of molecular dynamics computer simulation.



Viscosity of gases

Viscosity in gases arises principally from the molecular diffusion that 
transports momentum between layers of flow. The kinetic theory of 
gases allows accurate prediction of the behaviour of gaseous viscosity, 
in particular that, within the regime where the theory is applicable:
Viscosity is independent of pressure; and Viscosity increases as 
temperature increases. 

Gases (at 0 °C):
viscosity (Pa·s)

hydrogen 8.4 × 10-6

air 17.4 × 10-6

xenon 21.2 × 10-6



Viscosity of Liquids

In liquids, the additional forces 
between molecules become 
important. This leads to an 
additional contribution to the 
shear stress though the exact 
mechanics of this are still 
controversial. Thus, in liquids:

•Viscosity is independent of 
pressure (except at very high 
pressure); and 

•Viscosity tends to fall as 
temperature increases (for 
example, water viscosity goes 
from 1.79 cP to to 0.28 cP in the 
temperature range from 0°C to 
100°C)

Liquids (at 20 °)
viscosity (Pa·s)

ethyl alcohol 0.248 × 10-3

acetone 0.326 × 10-3

methanol 0.597 × 10-3

propyl alcohol 2.256 × 10-3

benzene 0.64 × 10-3

water 1.0030 × 10-3

nitrobenzene 2.0 × 10-3

mercury 17.0 × 10-3

sulfuric acid 30 × 10-3

olive oil 81 × 10-3

castor oil 0.985

glycerol 1.485

molten polymers 103

pitch 107

glass 10

www.answers.com/topic/viscosity



Temperature dependence of water viscosity

temp din visc

0 1.787

5 1.519

10 1.307

20 1.002

30 0.798

40 0.653

50 0.547

60 0.467

70 0.404

80 0.355

90 0.315

100 0.282



• When measuring a Non-
Newtonian fluid, such as an ink 
or coating, The change in 
velocity is non-linear. While the 
force is doubled in each case 
the ratio of increase  in speed 
is not the same for the two 
speeds 

Viscosity: Newtonian and non-newtonian fluids

• Imagine two surfaces with a 
fluid between them. A force is 
applied to the top surface and 
thus it moves at a certain 
velocity. The ratio of the Shear 
Stress / Shear Rate will be the 
viscosity. 

• Note that as the force is 
doubled then the velocity 
doubles. This is indicative of a 
Newtonian fluid, such as motor 
oil.

www.viscosity.com/html/viscosity.htm



Poiseuille was interested in the forces that 
affected the blood flow in small blood 
vessels. He performed meticulous tests on 
the resistance of flow of liquids through 
capillary tubes. Using compressed air, 
Poiseuille (1838-46) forced water (instead 
of blood due to the lack of anti-coagulants) 
through capillary tubes. Poiseuille’s
measurement of the amount of fluid flowing 
showed there was a relationship between 
the applied pressure and the diameter of 
the tubes. He discovered that the rate of 
flow through a tube increases linearly with 
pressure applied and the fourth power of 
the tube diameter. The constant of 
proportionality, found by Hagen (?) is π/8.   
In honor of his early work the equation for 
flow of liquids through a tube is called 
Poiseuille's Law (or Hagen-Poiseuille's Law).

http://xtronics.com/reference/viscosity.htm

Ironically, blood is not a 
newtonian fluid. The 
viscosity of blood declines 
in capillaries as the cells 
line up single file 

Poiseuille



Hagen was a civil engineer who was 
interested in hydraulics. His 1839 
measurements of water flow through small 
diameter tubes showed that the flow rate 
was propotional to the radius raised to the 
power of 4.12. But, a true engineer, he 
suggested in view of possible measurement 
errors that a value of 4.0 be assumed. It 
must be acknowledged that he was an 
expert statistician, having demonstrated 
why measurement errors should follow a 
Gaussian distribution. 
At his time, he was better known for his
works in coastal engineering

https://en.wikipedia.org/wiki/Gotthilf_Hagen#/

media/File:Gotthilf_Hagen.jpg

Gotthilf Hagen



Flow through capillary tubes

• Derive Hagen-Poisellieu equation



Darcy’s law expresses momentum conservation

Shear stress 
exerted on the 
fluid by the 
solid (on the 
average, 
proportional to 
mean flux

P1

P2

Pressure forces (P1-P2)A = LACq Viscous forces

L

(P1-P2)/LC = q    … or … q=(k/µ)·(P1-P2)/L

Darcy’s law expresses mechanical 
equilibrium. Head drop equals the 
force that the fluid exerts on 
the solid (minus buoyancy).

Think this way for 
multi-phase flow 
and especially for 
hydro-mechanical 
coupling



Momentum conservation for variable density

(gρLA) + (P1-P2)A = LACq Viscous forces

[(gρ) + (P1-P2)/L]C = q   

… or … 

q=(k/µ)( grad P + ρg)

Or, with proper signs (positive 
upwards, and gravity downwards)

q=- (k/µ)( grad P - ρg)

If constant density, 

q = -K·grad h

With h=z+P/ρg

Perform the same analysis for a vertical column.

One must add the weight of water 

Best form of Darcy’s Law!!!



Further details about the forces involved

(P1-P2)A +    gρLA   =    LACµq

Viscous forces: Shear that the solid 
exerts on the fluid (on the average, 
they are proportional to fluid flux)

Pressure forces 

P1

P2

L

The gravity term includes not only the 
fluid weight but also the pressure 
(normal) that the solid exerts on the 
fluid (Arquimedes). For practical 
purposes, it is as if all the medium was 
filled with fluid



Energy dissipation

• Derive expression for energy dissipation



Tensorial nature of Darcy’s law

For complex media, K depends on flow direction:

Ki, Li

Q= ΣQi= ΣKiLi(h1-h2)/L

Kh=…

Ki, Li

Kv=…

h= ∇q K



Is there a lower limit for Darcy’s law validity?

There is no experimental validated 
evidence for a lower limit of 
Darcy’s law, but would not be 
surprising (I’d expect a threshold 
gradient for adsorbed water)

i= head gradient

velocity

v prop to i v prop

to i0.5

Laminar regime

1 2

3



Phenomena

/ Flux

Heat 
conduction

Electrical 
current

Mollecular 
diffusion

Elasticity

/stress

State 
variable/ 
potential

Temperature

T

Electrical 
potential, V

Concentratio
n (chemical 
potential), c

displacement 
u (vector!)

Law Fourier Ohm Fick Hooke

Constant Thermal cond. Electrical 
conductivity

Mollecular 
diffusion 
coeff.

Elasticity 
modulus

Conservatio
n principle

Energy Electrical 
charge

Solute mass Momentum

Capacity  
term

Thermal 
capacity

Elect capac.

(not really!)

Porosity Mass Inertia

(not really)

Equation
( ) 0C V∇ ∇ =

2

2
( )

u
E u

t
ρ ∂ = ∇ ∇

∂
( )

T
T

t
λ∂ = ∇ ∇

∂
( )

c
D c

t
∂ = ∇ ∇
∂

The basic processes



Transmissivity

• Aquifers are essentially 2D

• Hydrogeologists can hardly measure hydraulic 
conductivity. We perform pump tests!

• Pump tests measure the resistance to “horizontal” 
water flow over the whole aquifer thickness.

• qb = -Tgradh

• If the aquifer is vertically homogeneous
– T=K(zt-zb)=Kb

• If the aquifer is vertically homogeneous and 
unconfined
– T=K(h-zb)



Is Transmissivity ever Kb?



Storage

• Where does ground water come from?



Permeable media behave elastically for small
deformations

(They behave like a spring)

z

z

   
z

x

E

E

ε σ
ε νσ

′=
′=

Hooke’s law

Lateral expansion is hindered, but, still, net volume change



When pressure increases, the medium
expands, but the volume of water and solids
is reduced

The aquifer heaves

And water
contracts



Storage

• Where does water come from:

• Elastic storage: Ss= Decrease in Volume of stored water per unit 
volume of medium and unit head drop)

� β : Compressibility of water (water expands when head drops)

� α (βs) Compressibility of medium (porosity reduced when head drops)

• Drainage at the phreatic level: SY= Decrease in Volume of stored 
water per unit surface of aquifer and unit head drop)
– Specific yield: SY=φ−θf

• Total storage coefficient:
– S=Sy+Ssb          with b=aquifer thickness

– Usually Ss negligible

sS g( )ρ α φβ= +



Vertical, drained compressibilities

Material β (m²/N)

Plastic clay 2×10–6 – 2.6×10–7

Stiff clay 2.6×10–7 – 1.3×10–7

Medium-hard clay 1.3×10–7 – 6.9×10–8

Loose sand 1×10–7 – 5.2×10–8

Dense sand 2×10–8 – 1.3×10–8

Dense, sandy gravel 1×10–8 – 5.2×10–9

Rock, fissured 6.9×10–10 – 3.3×10–10

Rock, sound <3.3×10–10

Water at 25°C (undrained) 4.6×10–10

( )β φβ φ β
∂

= + + −
∂

1
1p

p w w

V
( )

V p

( )β φβ φ β∆ = + + − ∆ = ∆1p p w w sV V ( ) p ) S h



Vertical, drained compressibilities[2]

Material β (m²/N)

Plastic clay 2×10–6 – 2.6×10–7

Stiff clay 2.6×10–7 – 1.3×10–7

Medium-hard clay 1.3×10–7 – 6.9×10–8

Loose sand 1×10–7 – 5.2×10–8

Dense sand 2×10–8 – 1.3×10–8

Dense, sandy gravel 1×10–8 – 5.2×10–9

Rock, fissured 6.9×10–10 – 3.3×10–10

Rock, sound <3.3×10–10

Water at 25°C (undrained)[3] 4.6×10–10

^ Domenico, P.A. and Mifflin, M.D. (1965). "Water from low permeability sediments and land subsidence". Water 
Resources Research 1 (4): 563–576. OSTI:5917760. 

^ Fine, R.A. and Millero, F.J. (1973). "Compressibility of water as a function of temperature and pressure". Journal 
of Chemical Physics 59 (10). doi:10.1063/1.1679903. 



40

min avg max

Unconsolidated deposits

Clay 0 2 5

Sandy clay (mud) 3 7 12

Silt 3 18 19

Fine sand 10 21 28

Medium sand 15 26 32

Coarse sand 20 27 35

Gravelly sand 20 25 35

Fine gravel 21 25 35

Medium gravel 13 23 26

Coarse gravel 12 22 26

Consolidated deposits

Fine-grained sandstone 21

Medium- grained 

sandstone
27

Limestone 14

Schist 26

Siltstone 12

Tuff 21

Other deposits

Dune sand 38

Loess 18

Peat 44

Till, predominantly silt 6

Till, predominantly sand 16

Till, predominantly gravel 16

Values of specific yield, from Johnson (1967)

Johnson, A.I. 1967. Specific yield — compilation of specific 
yields for various materials. U.S. Geological Survey Water 
Supply Paper 1662-D, 74 p. 

http://en.wikipedia.org/wiki/Specific_storage

W
arning: h

igh
ly site specific



Flow equation:

• Use divergence theorem to write mass balance



Other forms:

2D                                         S: storage coefficient, T transmissivity

With source terms                                           r recharge

Dimensionless form                                           tD=Tt/(SL2)  hD:B.C.’s

tc= SL2 /T 

How is the fluid flow equation

• Conservation principle:  Fluid mass (Fluid, not water!)

• Capacity term: Storativity

• Flow equation

• Derive from mass conservation

( )
h

S T h
t

∂ = ∇ ∇
∂

( )
h

S T h r
t

∂ = ∇ ∇ +
∂

( )s

h
S K h

t
∂ = ∇ ∇
∂

( )D
D

D

h
h

t
∂

= ∇ ∇
∂

Second (only to Darcy’s law) most 
important equation in GW hydraulics



Flow equation:

• Write for radial flow

• Write in dimensionless form



The flow equation can be solved using…

• Analytical solutions: we’ll see a few below

• Graphical solutions: flow nets. very handy. Give it a 
try.

• Numerical solutions:
1. Discretize

2. Write discrete equations: Finite differences, Finite 
volumes, Finite Element,… in general mass balance. Be 
careful with boundary conditions.

3. Solve sequentially in time: starting from initial conditions 
(k=0), obtain h at time k=1. From k=1, obtain h at time k=2, 
etc.



Example: Finite volumes (same for FD)

• Discretize

• Mass balance at a generic cell i

Cell 1

···
Cell 2

···
Cell i-1 Cell i Cell i+1

h0

Cell N hN+1

( ) ( )1 11 1
11 1.

k kk k
i ik k i i

i i

h hh hS A
h h T y

t x x

− −− −
−− +

 −−
 − = ∆ −
 ∆ ∆ ∆
 

Storage variation
Flow rate
from i+1 to i

Flow rate
from i to i-1

( ) ( )1 11 1
1 01 2 1

1 1

.

/ 2

k kk k
k k

h hh hS A
h h T y

t x x

− −− −
−

 −−
 − = ∆ −
 ∆ ∆ ∆
 

BC at x=0
Dirichlet

BC at x=L
Neuman ( ) ( )1 1

11.
0

k k

N Nk k

N N

h hS A
h h T y

t x

− −
−−

 −
 − = ∆ −
 ∆ ∆
 



Basic solutions to flow equation: Steady-state

• Parallel flow:
– qb=-Tdh/dx
– Q=-aTdh/dx
– dh=- Qdx/(aT)
– h=h0-Q(x-x0)/(aT)

• Radial flow:
– qb=-2πrTdh/dr
– Q=-2πrTdh/dr
– dh=- (Q/2πT)dr/r
– h=h0- (Q/2πT)ln(r/r0) (Thiem)

• Parallel flow with recharge w:
– qb= -Tdh/dx
– Q= Q0+wa(x-x0) = -aTdh/dx
– dh=- (Q0+wa(x-x0) )dx/(aT)
– h=h0 – [Q(x-x0)+ (wa(x-x0))2/2] /(aT)

x0 x

h0 h

Ln(r0) Ln(r)

h0 h

x0 x

h0 h



Basic solutions to flow equation: Steady-state

• Arbitrary geometry: flow nets



Basic solutions to unconfined flow equation

• Parallel flow (assume T=Kh!):
– qb=-Khdh/dx
– Q=-(aK/2)dh2 /dx
– dh2=- 2Qdx/aK
– h2=h2

0-2Q(x-x0)/aK � h-h0 =-Q(x-x0)/(aK(h+h0)/2)

• Radial flow:
– qb=-2πrKhdh/dr
– Q=-πrKdh2/dr
– dh2=- (Q/πK)dr/r
– h2=h2

0- (Q/πK )ln(r/r0)

• Parallel flow with recharge w:
– qb= -Kdh2/dx
– Q= Q0+wa(x-x0) = -(aK/2)dh2/dx
– dh2=- (Q0+wa(x-x0) )dx/(aK/2)
– h2=h2

0– [Q(x-x0)+ (wa(x-x0))2/2] /(aTm )

x0 x

h2
0 h2

Ln(r0) Ln(r)

h2
0 h2

x0 x

h2
0 h2

Tm



Basic solutions to flow equation: Transient

• Find final state and use characteristic time to guess 
how long it will take to reach it

• Beautiful example: Jacob equation
– Transient response to constant pumping

– Radial flow, therefore, steady state solution

– h=h0- (Q/2πT)ln(r/r0)

Ln(rw) Ln(r0)

h0

t1 t2

1. r0 will start noticing Q at t1 =0.1tc

2. r0 will reach steady cone at t2 =tc

(en realidad, un poco mas t2=3ó4tc)

3. r0 intersected by radial gradient at well for t=tc/2.25

4. That is t=Sr0
2/(2.25T) �r0

2= 2.25Tt/S

5. h=h0- (Q/4πT)ln(r2/r0
2)=h0+(Q/4πT)ln(2.25Tt/Sr2)



0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.01 0.10 1.00 10.00

t adimensional

s
 a

d
im

e
n

s
io

n
a

l

Theis

Approx. Jacob



Exercise

• Alluvial aquifer 100 m long x 10 km wide

• Heads are prescribed to zero at the boundary 

• T=100 m2/day

• 200 m thick (zb=-200)

• At t=0 starts recharging 100 mm/yr

• What will be the maximum head, how long it will take 
to reach it?



Well hydraulics: Why all this mess?

• Permeability is the most important parameter
controlling just about everything in the underground
(water flow, solute transport, multiphase flow, and 
what not)

• Permeability is the most variable parameter.

• Cannot be measured directly.

• We can only peer through wells (but wait for
geophysics), hence pumping tests



Aquifer

Confining
layer

well

s

Q
Semi-log
s 
vs.log(t)

log(t)

s

Log-log
log(s) 
vs.log(t)

log(t)

lo
g(

s
)

Hydraulic tests are performed by 
1) pumping (or injecting) a flow rate Q, and measuring 

drawdown s.
2) Parameters are obtained by fitting a model to 

measurements, 
3)This can be done graphically using log-log or semi-log 

graphs.
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Under radial flow conditions, drawdowns tend to plot as a straight line when plotted
either versus log(t), which allows defining the response time t0 , or versus log(r),
which allows defining the radius of influence, R. As time grows, so does the cone of
depression, but its shape does not change.
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Under radial flow conditions, drawdowns tend to plot as a straight line when plotted
either versus log(t), which allows defining the response time t0 , or versus log(r),
which allows defining the radius of influence, R. As time grows, so does the cone of
depression, but its shape does not change.
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Diagnostic plots include drawdown and derivative graphs. Both log-log (left) and
semi log (right) graphs are useful. In the pure radial flow case, the derivative tends
to a constant (m/2.3). The 2.3 factor reflects that derivatives are taken with
respect to ln(t), while the slope m is obtained graphically from the semi-log graph,
where the logarithm is decimal.
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Superposition to obtain recovery plots. Theis recovery method consists of plotting
sR versus tP /(t-tP). Agarwal method consists of plotting sP (tP)-sR versus tP (t-tP)/t,
which should yield a graph very similar to that obtained with a constant pumping
rate and makes it a very attractive method.



Large scale transmissivity is controlled by preferential flow paths (long, permeable, well 
connected fractures). The probability of intersecting these fractures is  low., so that 
transmissivity derived from injectivity or short term tests tends to be much smaller. Large 
scale transmissivity  may be derived from the slope of long term tests , which is the same 
regardless of whether the pumping or observation wells  are located in high or low 
permeability areas. Local features are reflected  in the early portion of the drawdown  curve.
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Simulations of Meier et al (1998) to show the effect of heterogeneity on pumping 
tests interpretation. a) transmissivity field; b) local region around the pumping 
well with a few observation points; c) sem-log drawdown plots.  Note that  all 
curves display the same late time slope (i.e., yield the same T), but response times 
(t0) are highly variable Yet, response times (storativity) are highly variable.

c)

Fast response = High T 
connection (= Small Sapp)

Slow response Low T 
connection (= Large Sapp)



Illustration of well bore storage effects. Well bore storage affects the shape of
the response curves while Qt is comparable to AWsW – During this period, both
drawdown and derivative plots display a straight line with slope equal to 1, in log-log
scale. In semi-log scale, the drawdown curve displays a concave shape, while the
derivative curve displays a maximum.
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Illustration of boundary effects. A linear prescribed head boundary (e.g., a high
transmissivity fault connected to a constant head water body) can be identified by
a zero derivative (drawdown becomes constant). If that fault does not allow flow-
through, the derivative is multiplied by a factor of 2.
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Analytical study of Jacob’s method
(Sánchez-Vila et al, WRR, 1999)

1) Write flow equation for spatially variable.
Y = log T =  <Y> + Y’  (constant S)

2) perturbation expansion for h(x,t)
h= h(0) + h(1) + h(2) + ...

3) Write perturbation equations.
4) Solve them! (Green’s function method).
5) Interpret solution. Approximate late time behavior as

h = m log (t/t0).
6) Use m and t0 to obtain TJac and SJac.



Jacob’s storage coefficient (SJac)
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•Sjac function of Y’
•Depends on T between pumping and 
obs. Wells (measures connectivity!)
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Analytical solution for T

•Tjac(r,φ) is independent of (r,φ) 
Jacob’s T does not depend on the location of the
observation point (regardless of the assumptions
on T!!!, just validity of 2nd order approximation)

If multigaussian Y, then TJac equals TG

If not,  it does not!



Late time growth reflects resistance to 
flow in the area where the cone of 
depression is growing



Flow dimension is reflected in late time 
slope log-derivative plot



Esquema de un modelo de transferencia de masa de porosidad múltiple para 
representar el transporte de solutos y el flujo multifase. La porosidad advectiva
(móvil) se encuentra en medio de una mezcla de bloques de matriz de varios 
tamaños, cada uno de los cuales contiene un rango de distintos tipos de porosidad 
difusiva (tomado de Haggerty y McKenna., 1999).



Large scale transmissivity is controlled by preferential flow paths (long, permeable, well 
connected fractures). The probability of intersecting these fractures is  low., so that 
transmissivity derived from injectivity or short term tests tends to be much smaller. Large 
scale transmissivity  may be derived from the slope of long term tests , which is the same 
regardless of whether the pumping or observation wells  are located in high or low 
permeability areas. Local features are reflected  in the early portion of the drawdown  curve.
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Cause of scale effects

Fracture network

Wells The effective permeability of 
every well depends on whether
or not a conducting fracture is
intersected. Chances of hitting
a subvertical fracture are low. 

Large scale permeability, which
is derived from hydraulic tests, 
is controlled by large fractures

Tested region (homog)

Tested region (heterog)
grows with ��

Challenge:
But then you need to interpret the test!



Flow equation for fractal dimension
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Flujo en Fractura:

Flujo en Cavidad:

Flujo en Matriz:

3 MODELO TRANSITORIO FRACTAL  PARA YACIMIENTOS DE TRIPLE POROSIDAD
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MRMT can be made equivalent to fractional 
derivatives by appropriate choice of α and β
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The truncated power law memory function only requires specifying the 
slope of the memory function in log-log scale, mg, and the interval of time 
[t1, tN] on which this function displays a power-law behavior. A practical 
method to calculate the distribution coefficients bj consists of, first, 
calculate the αj values assuming they are evenly distributed on a 
logarithmic scale while fixing α1 = tN

-1 and αN = t1
-1. Secondly, we obtain a 

recursive relationship for βj values by approximating the memory function 
with expressions of successive increasing orders, i.e.

where tj = αj-1. This leads to
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MRMT can be easily incorporated into
conventional simulators


