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Key critical zone processes

1. Delivery of water/energy 
to the subsurface

2. Transformation of rock 
into soil

3. Links between vegetation 
and hydrology

4. Controls on terrestrial 
carbon

5. Changes in CZ services 
with disturbance

[Chorover et al., 2007, Elements]

[Sullivan et al., 2017, New Opportunities for 
Critical Zone Science]



Geophysical observations provide 
a “macroscope” into subsurface

N

[St. Clair et al., 2015, Science] [Befus et al., 2011, VZJ]

Thicker regolith on N-
facing slopes

Little difference in regolith 
thickness with slope aspect

• Minimally: a better way to interpolate
• Better: a way to explore CZ controls, processes



A lot has happened since 2015



What CZ scientists would like

Macroscopic distributions of:

• Porosity

• Bulk density

• Chemical/mineralogical composition

• Mineral surface area

• Root distributions

• Subsurface “connectivity”

• …
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1) Delivery of 
water into the 

subsurface*
• Controls a variety of 

ecosystem services

• Moisture is generally an 
easy geophysical target
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*more from Sander Huisman soon



Moving 
beyond simple 

conservative 
tracers

[Wehrer et al., 2016, WRR]



Importance of the right rock 
physics relations

[Altdorff et al., 2017, EES]

ECa from EMI

Porosity

Water content



[Thayer et al., 2018, WRR]

Seismic

ER

Interpretation

• MR: mobile regolith
• WB: weathered bedrock
• B: bedrock

What are 
controls on 

water 
movement 
through a 
hillslope?



Water tracks in the Arctic



Mapping flowpaths in 
permafrost

[Voytek et al., 2016, Geophysics]



Issues to think about

• Testing conceptual models of hydrologic, 
geochemical processes

• Imaging seasonally changing flow paths

• Developing rock physics relations between 
geophysics and other key properties



2) Transformation of rock into soil

• Weathering of rock at the 
bedrock-saprolite interface is 
key to critical zone processes

• Weathered material: prone to 
landslides, impacting 
landscape evolution; provides 
the medium for plant growth 

• A good geophysical target
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[Hayes et al., in prep]

How does weathering vary 
over a landscape?

valley ridge density~300 m

broken up
intact



Seismic anisotropy 
& fracturing

South-facingNorth-facing

• South-facing regolith:
• more pronounced 

anisotropy
• velocities from 

~1000-2000 m/s

• Soil layer is isotropic; 
~500 m/s on N- and S-
facing hillslopes

• North-facing regolith:

• less pronounced 
anisotropy

• velocities from ~800-
1500 m/s

[Pommer et al., in prep]



North-facing South-facing

Fracture orientation is similar on both aspects

No. boreholes 2 5

Total fractures 42 138

Mean strike/dip of 
significant clusters

282o/52oN 054o/40oS 283o/51oN

[Pommer et al., in prep]



Fault?
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S- facing slopes are more deeply weathered, is this 
because of foliation alignment with topography?

Importance of foliation

[Pommer et al., in prep]



[Hayes et al., in review, Science Advances]

A B C

Mass loss can’t describe 
porosity; strain can

Estimate porosity from seismic 
refraction velocities; transform 
to strain

Chemical vs. physical weathering



Issues to think about

• How to parse physical and chemical 
weathering?

• What are the controls of regional stress, 
freeze-thaw processes, physical and 
chemical heterogeneity on the measured 
weathering signal?

• Trees!



3) Links between vegetation 
and hydrology

• Geophysics has 
primarily been used 
to explore changing 
moisture content

• What are sensitivities 
to biogeochemical 
changes?



[Pawlik & Kasprzak, 2018, Geomorphology]

Regolith under trees
• Tree roots add complexity
• Large contrast in resistivity under 

living trees disappears when they die

under tree under stump pit-and-mound



[Jayawickreme et al., 2008, GRL]

Early work on rooting depths
Time-lapse ER for soil moisture 
dynamics reveals rooting depth 

differences of forest and grassland. 

Volumetric moisture

 May

 August
50m

10m

Data enabled improved root 
parameterization in global climate 
and landscape hydrology models.



Imaging hydraulic redistribution

[Robinson et al., 2012, JoH]

trees

soil borings



Can the subsurface be linked to 
in-tree water use?

[Mares et al., 2016, JoH] 



Can we predict connections 
through time?

Measured Modeled

[Voytek et al., in revision, HP]



Issues to think about

• What is the geophysical signature of root 
behavior, associated fungi?  

• How species dependent are results?

• How do we scale plant-plot measurements 
up to watersheds?  Can we image the 
“wood wide web”?

• How do we make reasonable models of 
large-scale hydrology that incorporate 
plant physiology in meaningful ways?



4) Controls on terrestrial carbon

[www.e-education.psu.edu]

• Assessment of 
stocks needed to 
quantify carbon 
cycling, role in a 
changing climate

• Can image gases, 
structural 
constraints on 
carbon stores, 
transport



[Parsekian et al., 2011,  JGR]

Distribution of free-phase 
gas in peatland



[McClellan et al., 2017, JGR-B]

Prediction of C 
stocks in 
wetlands



Burning of 
peats—C + 

disturbance



• Marked lateral changes in EM wave velocity likely related to 
heterogeneities of burned peat with depth

• Can we infer changes in peat thickness if constrained?
[Comas et al., in prep]



Issues to think about

• What observing networks are needed to 
make quantitative estimates of carbon 
cycle status, dynamics, and evolution?

• What information, if any, can geophysics 
provide on carbon fate, form or reactivity?



Opportunities in CZ geophysics
• Many open questions about how to use these 

data quantitatively (or even qualitatively)

• Methods can be used to:

• Test conceptual models of hydrologic processes

• Image large-scale geometry of geologic units, 
permafrost, catchment-scale geomorphic events

• Needs:

• Thinking/collaboration across disciplinary boundaries

• Developing rock physics relations between geophysics 
and physical, chemical, biological properties of 
interest

• Moving to larger scales, time lapse imaging

• …
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