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Key critical zone processes

Atmosphere

1. Delivery of water/energy
to the subsurface

2. Transformation of rock
into soil

3. Links between vegetation
and hydrology

. Controls on terrestrial
carbon

5. Changesin CZ services
with disturbance

[Sullivan et al., 2017, New Opportunities for
Critical Zone Science]

[Chorover et al., 2007, Elements]



Geophysical observations provide
a “macroscope” into subsurface

* Minimally: a better way to interpolate
* Better: a way to explore CZ controls, processes
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A lot has happened since 2015
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Abstract Details of Earth’s shallow subsurface—a key component of the critical zone (CZ)—are largely
obscured because making direct observations with sufficient density to capture natural characteristic
spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to
processes that support ecosystems, society, and the environment. Geophysical methods provide a means for
remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we
present a review highlighting the application of geophysical methods to CZ science research questions.
In particular, we consider the application of geophysical methods to map the geometry of structural features
such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones.
Combined with knowledge of structure, we discuss how geophysical observations are used to understand
CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater
resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere



What CZ scientists would like

Macroscopic distributions of:
 Porosity
e Bulk density
e Chemical/mineralogical composition
e Mineral surface area
e Root distributions
e Subsurface “connectivity”



Key critical zone processes

Atmosphere

1. Delivery of water/energy
to the subsurface

2. Transformation of rock
into soil

3. Links between vegetation
and hydrology

. Controls on terrestrial
carbon

5. Changesin CZ services
with disturbance

[Sullivan et al., 2017, New Opportunities for
Critical Zone Science]

[Chorover et al., 2007, Elements]
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1) Delivery of
water into the
subsurface*

e Controls a variety of
ecosystem services
e Moisture is generally an
easy geophysical target
| A electrical resistivity
I A dielectric permittivity
| A seismic velocity

*more from Sander Huisman soon
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Importance of the right rock
physics relations

Water content ECa from EMI
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What are Seismic
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* MR: mobile regolith
 WB: weathered bedrock
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[Thayer et al., 2018, WRR]
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Water tracks in the Arctic




Mapping flowpaths in
ermafrost
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[Voytek et al., 2016, Geophysics]



Issues to think about

e Testing conceptual models of hydrologic,
geochemical processes

* I[maging seasona
e Developing rock

ly changing flow paths

ohysics relations between

geophysics and other key properties



2) Transformation of rock into soil

e Weathering of rock at the
bedrock-saprolite interface is
key to critical zone processes

soil

e Weathered material: prone to
landslides, impacting
landscape evolution; provides
the medium for plant growth

e A good geophysical target




How does weathering vary

over a landscape?
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SEISm|C anISOtrOpy * Soil layer is isotropic;

~500 m/s on N- and S-

& fra CtUrmg facing hillslopes

North-faci South-faci : :

orth-facing OUt=Tating e North-facing regolith:

* less pronounced

anisotropy

e velocities from ~8oo0-
1500 M/s

* South-facing regolith:
* more pronounced
anisotropy
* velocities from
~1000-2000 M/s

[Pommer et al., in prep]



Fracture orientation is similar on both aspects

North-facing South-facing
No. boreholes 2 5
Total fractures /) 138
Mean strike/dip of  282°/52°N 054°/40°S  283°/51°N

significant clusters
[Pommer et al., in prep]




Importance of foliation

S- facing slopes are more deeply weathered, is this
because of foliation alignment with topography?
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[Pommer et al., in prep]



Chemical VS. phy5|cal weatherlng
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Issues to think about

e How to parse physical and chemical
weathering?
e What are the controls of regional stress,

freeze-thaw processes, physical and
chemical heterogeneity on the measured

weathering signal?
* Trees!



3) Links between vegetation
and hydrology

e Geophysics has
primarily been used
to explore changing
moisture content

e What are sensitivities
to biogeochemical
changes?



Regolith under trees

* Treeroots add complexity
* Large contrast in resistivity under
living trees disappears when they die

under tree under stump pit-and-mound
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[Pawlik & Kasprzak, 2018, Geomorphology]



Early work on rooting depths *

Time-lapse ER for soil moisture
dynamics reveals rooting depth )
differences of forest and grassland.
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Imaging hydraulic redistribution

| July 2, 2009 ~6am | | July 6,2009 ~6am | | July 10, 2009 ~6am |

0.6m depth ——>

trees

soil borings

0

1.4m depth —>

-10 -5 0 - -10
2.0m depth —>

0 -10
x (m) X (m) X (m)

238 33 3.8 43 438
[Robinson et al., 2012, JoH] Log10 Resistivity (a-m)



Can the subsurface be linked to
In-tree water use?
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mositure content

matric pressure

Can we predict connections
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Issues to think about

What is the geophysical signature of root
behavior, associated fungi?

How species dependent are results?

How do we scale plant-plot measurements
up to watersheds? Can we image the
"wood wide web"?

How do we make reasonable models of
arge-scale hydrology that incorporate
olant physiology in meaningful ways?




t,) Controls on terrestrial carbon

e Assessment of
stocks needed to
quantify carbon
cycling, rolein a
changing climate

 Canimage gases,
structural
constraints on
carbon stores,
transport

[www.e-education.psu.edu]



Distribution of free-phase
gas in peatland

gas content
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. JOURNAL OF GEOPHYSICAL RESEARCH w
Prediction of C | Biogeosciences
AN AGU JOURNAL

tocks i
STOCKS IN T

wetlands

Table 1
Carbon Volume and Stock Estimates

Depression  Surface area (mz) Carbon volume (m3) Carbon stock (g €)

Full grid

1 2,106 3,165 (1.47 £ 0.04) x 10°
2 15776 9,996 (4.64 £ 0.06) x 108

[McClellan et al., 2017, JGR-B]
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* Marked lateral changes in EM wave velocity likely related to

heterogeneities of burned peat with depth

* Can we infer changes in peat thickness if constrained?
[Comas et al., in prep]



Issues to think about

e What observing networks are needed to
make quantitative estimates of carbon
cycle status, dynamics, and evolution?

e What information, if any, can geophysics
provide on carbon fate, form or reactivity?



Opportunities in CZ geophysics
e Many open questions about how to use these
data quantitatively (or even qualitatively)

e Methods can be used to:
e Test conceptual models of hydrologic processes

e Image large-scale geometry of geologic units,
permafrost, catchment-scale geomorphic events

e Needs:

e Thinking/collaboration across disciplinary boundaries

e Developing rock physics relations between geophysics
and physical, chemical, biological properties of
Interest

e Moving to larger scales, time lapse imaging
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