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Food, Water, Energy & Materials
Where will this come from?

Resource vs Environment
Risk vs Return



What is Bayesian Evidential Learning (BEL)?

 Bayesianism: 
 relies on the fundamental notion of prior knowledge 

 an inductive-deductive form of reasoning about science

 Evidential: evidence is provided from both field observations and modeling

 Learning: it relies on machine learning from Monte Carlo



Six stages of decision making, UQ with BEL

Formulating the decision question and statement of prediction variables

Statement of model complexity and prior uncertainty

Monte Carlo & falsification of prior uncertainty using data

Sensitivity analysis on both data and prediction variables

Design of uncertainty reduction on prediction variables based on data

Posterior falsification & sensitivity, decision making4



Re-allocate 
well field to 
A,B,C or D?
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Formulating the decision question: 
groundwater management in Denmark



Formulating the decision question and statement of prediction variables

What problem do I want to address

and 

what would it take to solve it?



Decision objectives: “narratives”

minimize drawdown extraction: preferably, the new location should be able to bear the burden 
of the 20% extraction due to re-allocation and anything more is an additional plus. A large 
drawdown is a risk, and hence needs to be minimized. 

maximize streamflow reduction potential: depends on the flow in the stream given the existing 
abstraction, and the flow on the stream if we move 20% of the groundwater abstraction from 
the existing wells to the new well at any of the four locations. 

maximize increased groundwater outflow of water to wetlands: due to re-allocation, the aim is 
to restore the water table, thereby increasing the outflow of groundwater to the wetlands 
proximate to the existing well field. 

minimize risk of contamination of drinking water: the abstracted groundwater from the new well 
originates from within a so-called well catchment zone. This catchment zone intersects land-use, 
such as “nature”, “city”, “farmland” and industry



Prediction variables

minimize drawdown extraction: preferably, the new location should be able to bear the burden 
of the 20% extraction due to re-allocation and anything more is an additional plus. A large 
drawdown is a risk, and hence needs to be minimized. WDD

maximize streamflow reduction potential: depends on the flow in the stream given the existing 
abstraction, and the flow on the stream if we move 20% of the groundwater abstraction from 
the existing wells to the new well at any of the four locations. SFRP

maximize increased groundwater outflow of water to wetlands: due to re-allocation, the aim is 
to restore the water table, thereby increasing the outflow of groundwater to the wetlands 
proximate to the existing well field. WLR

minimize risk of contamination of drinking water: the abstracted groundwater from the new well 
originates from within a so-called well catchment zone. This catchment zone intersects land-use, 
such as “nature”, “city”, “farmland” and industry. INDUS & FARM
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Objectives vs Alternatives

Loc A Loc B Loc C Loc D

Farming pollution 
Farm (units)

? ? ? ?

Industry pollution
Indus (units)

? ? ? ?

Streamflow restoration 
SFRP (units)

? ? ? ?

Wetland restoration 
WLR (units)

? ? ? ?

Drawdown
WDD (units)

? ? ? ?

alternatives
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Statement of model complexity and prior uncertainty

How do I conceptualize “Earth” in all its aspects

and 

what does the community already know about it?



Statement of model complexity and prior uncertainty

 Define model complexity and prior model uncertainty

 Need to define this for each field of science involved jointly
 Sedimentology,  structural geology, rock physics, geomechanics, 
hydrogeophysics, multi-phase flow, reactive transport, engineering etc…

 This is just an initial hypothesis, no need for accuracy, yet: likely 
iterate between prior uncertainty stage and falsification stage

𝐦 𝑓(𝐦)



Statement of model complexity and prior uncertainty

Geology & Geophysics

Flow & Transport

All sources of uncertainty 
need to be considered 

jointly

Matzen: largest oil field in Europe



Statement of model parameterization and prior uncertainty

Parameter Name Parameter code
Amount

of parameters
Type of uncertainty Established from Fields of science

Lithological Model ma N/A Scenario
Geophysics

wells

geophysics, 
glaciology, 

geostatistics

Regional and local
permeability

Kh 22 Log-normal pdfs
Head data
Well data

hydrogeology

pressure boundary 
conditions

ch 5 Uniform Experience
hydrology

engineering

River flows and 
conductance

riv 8

Conductance:
log-normal

Experience
from previous

studies
River science

DEM: uniform

Drain conductance drn 8

Conductance:
log-normal

Experience
from previous

studies
hydrology

DEM: uniform

Aquifer Recharge rch 1 Trapezoidal
Base-flow 
estimates

hydrology, 
meteorology, 

climate science



Monte Carlo & falsification of prior uncertainty using data

𝐝 𝐝 ℓ , ℓ = 1,… 𝐿

𝐡 𝐡 ℓ , ℓ = 1,… 𝐿

𝐝𝑜𝑏𝑠

𝑓(𝐦)
𝑔𝑑(. )

𝑔ℎ(. )

𝐦 𝐦 ℓ , ℓ = 1,…𝐿

Monte Carlo

𝑔𝑑 . : data forward model

𝑔ℎ . : prediction forward model

𝐝𝑜𝑏𝑠: actual measurements

𝐝: 𝐝𝐚𝐭𝐚 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬

𝐡: 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬

14 In complex, non-linear systems, Monte Carlo is required for UQ



Monte Carlo: a lot of information is generated

𝐝 ℓ , ℓ = 1,…𝐿 𝐝𝑜𝑏𝑠
Oil rate

(field or old/new well)

Water rate

𝐡 ℓ , ℓ = 1,…𝐿
𝐦 ℓ , ℓ = 1,… 𝐿



Monte Carlo: dimension reduction

𝐱 = ෍

𝑘=1

𝐾

𝛼𝑘𝛗𝑘
𝐱 = 𝐝, 𝐡,𝐦,…
𝐾 = min 𝐿, 𝑁
𝛗𝑘
𝑇𝛗𝑘′ = 0

variance

fixed 
shapes

𝐱(ℓ)

= 𝛼1
(ℓ)

+ 𝛼2
(ℓ)

+𝛼3
(ℓ)

…+ 𝛼𝐾
(ℓ)

𝛗1 𝛗2 𝛗3 𝛗𝐾

𝛼1

𝛼2

There are 𝐿 dots



Monte Carlo: reactive transport model example

Immobilized uranium

CRUNCHFLOW

Parameter Name (code) Parameter Type Parameter Distribution

Geological

Mean permeability (Meanlogk) Continuous Logk~U(-11,-10) m2

Variance of permeability(VarioVar) Continuous Logk~U(0.26,0.69) m2

Variogram type of permeability(VarioType) Discrete Discrete [1 2 3]

Variogram correlation length(VarioCorrL) Continuous U(3.3, 6.6) m

Variogram azimuth(VarioAzimuth) Continuous U(50,90)o

Mean porosity(MeanPoro) Continuous U(0.12,0.17)

Porosity correlation with permeability(PoroCorr) Continuous U(0.5,0.8)

Method to simulate porosity(MethodSimPoro) Categorical Discrete [1 2 3 4]

Spatial Uncertainty(SpatialLogk) Spatial 500 realizations

Geochemical

Mean Fe(III) mineral content(MeanFerric) Continuous U(2.5,10) μmol/g

Method to simulate Fe(III) mineral 

content(MethodSimFerric)
Categorical Discrete [1 2 3 4]

Fe(III) correlation coefficient with 

permeability(FerricCorr)
Continuous U(-0.8, -0.5)

Mineral surface area(SurfaceArea) Continuous U(0.1,2) *base value

Reaction rate(FerricRate,FerrousRate, UraniumRate, 

SRBRate)
Continuous

U(0,2) off base reaction rate

(varies for different reactions)

Initial concentrations of different species

(ICSulfate,ICFerrous, ICUranium)
Spatial

500 conditioned 

spatial realizations



Monte Carlo: reactive transport model example

Original image
Reconstruction using

10 a’s
Reconstruction using

100 a’s
Reconstruction using

300 a’s



Monte Carlo & falsification of prior uncertainty using data
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𝛼1

𝛼2
𝐝𝑜𝑏𝑠

𝐝 𝑙 , 𝑙 = 1,… 𝐿



Monte Carlo & falsification of prior uncertainty using data

 What does falsification not mean: the prior is “correct”, “validated”, 
“verified”, “calibrated”, “inverted”, “updated”….

 Falsification makes a hypothesis stronger if not falsified

 What should happen when prior uncertainty is falsified?
 You need to increase model complexity

 You need to increase model uncertainty

 or both….and you don’t know which of the three
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Sensitivity analysis on both data and prediction variables

 Sensitivity for prediction variables: learn what in the model variables impacts 
most each prediction variable, allows focus on important model parameters

 Sensitivity for data variables: learn what model variables can be reduced in 
uncertainty with the observations

 Joint analysis of both sensitivity analyses: learn what method should be used for 
uncertainty reduction on predictions

Monte Carlo-based or Global Sensitivity Analysis
no local sensitivity analysis



Sensitivity analysis on both data and prediction variables

Head & streamflow data Industrial pollution prediction

Geological heterogeneity

Geological 
heterogeneity

Boundary conditionsBoundary conditions

Hydraulic conductivity



Design of uncertainty reduction on prediction variables based on data

Geological concept

+ Head and streamflow data

Many uncertainty sources

Boundary conditions
Geological interpretations
SkyTEM data uncertainty
Spatial distribution lithologies
Streamflow models
Rock physics models
Reactive transport models
Biogeochemical models

Inversion modeling?



Design of uncertainty reduction on prediction variables based on data

Strategy

Transform a non-linear non-Gaussian problem to a linear-Gaussian problem

Predict with the linear-Gaussian problem

Back-transform the results into the original problem

No traditional inverse modeling, only statistical calculations from Monte Carlo



Design of uncertainty reduction on prediction variables based on data

𝐱 space

𝛼1 𝛼𝑐

𝐲 space

𝛽𝑐
𝜃

minimize 𝜃

𝐱 = ෍

𝑘=1

𝐾

𝛼𝑘𝛗𝑘 𝐲 = ෍

𝑘=1

𝐾′

𝛽𝑘𝛙𝑘

𝛼2

𝛽1

𝛽2

𝐱, 𝐲 = 𝐝, 𝐡 or 𝐦

𝛂𝑐 = 𝐴𝑇𝛂 𝜷𝑐 = 𝐵𝑇𝜷



Design of uncertainty reduction on prediction variables based on data

𝐝 ℓ , ℓ = 1,…𝐿 𝐝𝑜𝑏𝑠
Oil rate

(field or old/new well)

Water rate

𝐡 ℓ , ℓ = 1,…𝐿

𝛼𝑘
ℓ , 𝛼𝑜𝑏𝑠 𝛽𝑘

ℓ



Design of uncertainty reduction on prediction variables based on data

𝐝 ℓ , ℓ = 1,…𝐿 𝐝𝑜𝑏𝑠 𝐡 ℓ , ℓ = 1,…𝐿

𝛼𝑘
ℓ , 𝛼𝑜𝑏𝑠 𝛽𝑘

ℓ



Design of uncertainty reduction on prediction variables based on data

𝛼𝑐
1

The tracer data of all species in all wells
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1

𝛼𝑐,𝑜𝑏𝑠
1

Back-transformation
Linear-Gauss problem

Immobilized uranium uncertainty

𝐵𝑇𝜷𝑐 = 𝜷

𝐡 = ෍

𝑘=1

𝐾′

𝛽𝑘𝛙𝑘



Design of uncertainty reduction on prediction variables based on data



Decision making; Posterior falsification & sensitivity 

Objectives rank weight Loc A Loc B Loc C Loc D type

Farming pollution 
Farm (units)

5 0.067 0.00 3 48 100 Risk / $ cost

Industry pollution
Indus (units)

2 0.267 84 100 35 0 Risk / $ cost

Streamflow restoration 
SFRP (units)

1 0.333 62 0 22 100 Return / $ benefit

Wetland restoration 
WLR (units)

3 0.200 0 70 71 100 Return / $ benefit

Drawdown
WDD (units) 4 0.133 100 0 87 57 Risk / $ cost

Total: 56.7 40.8 42.6 61.0

Return-benefit score 20.74 14.08 21.66 53.33

Risk-cost score 35.92 26.85 24.16 14.30

Table accounts for objective (swing) weighting, preferences through value functions

RISK AVERSE DECISION MAKER



Reference material



Software

scerf.stanford.edu



Six stages of Decision Making, UQ with BEL

Formulating the decision question and statement of prediction variables

Statement of model parameterization and prior uncertainty

Monte Carlo & falsification of prior uncertainty using data

Sensitivity analysis on both data and prediction variables

Design of uncertainty reduction on prediction variables based on data

posterior falsification & sensitivity, decision making33


