Bayesian Evidential Learning A scientific protocol for uncertainty quantification

Jef Caers

Geological Sciences Stanford University, California, USA

Food, Water, Energy & Materials Where will this come from?

Resource vs Environment Risk vs Return

EOS Earth & Space Science News Quantifying Uncertainty About Earth's Resources

A new book explores how uncertainty quantification can enable optimal decisions in the exploration, appraisal, and development of subsurface resources.

Quantifying Uncertainty in Subsurface Systems

Céline Scheidt, Lewis Li, and Jef Caers Editors

WILEY

CAGU

What is Bayesian Evidential Learning (BEL)?

• Bayesianism:

- relies on the fundamental notion of prior knowledge
- an inductive-deductive form of reasoning about science
- Evidential: evidence is provided from both field observations and modeling
- Learning: it relies on machine learning from Monte Carlo

Six stages of decision making, UQ with BEL

Formulating the decision question and statement of prediction variables

Statement of model complexity and prior uncertainty

Monte Carlo & falsification of prior uncertainty using data

Sensitivity analysis on both data and prediction variables

Design of uncertainty reduction on prediction variables based on data

Posterior falsification & sensitivity, decision making

Formulating the decision question: groundwater management in Denmark

Re-allocate well field to A,B,C or D?

Formulating the decision question and statement of prediction variables

What problem do I want to address

and

what would it take to solve it?

Decision objectives: "narratives"

minimize drawdown extraction: preferably, the new location should be able to bear the burden of the 20% extraction due to re-allocation and anything more is an additional plus. A large drawdown is a risk, and hence needs to be minimized.

maximize streamflow reduction potential: depends on the flow in the stream given the existing abstraction, and the flow on the stream if we move 20% of the groundwater abstraction from the existing wells to the new well at any of the four locations.

maximize increased groundwater outflow of water to wetlands: due to re-allocation, the aim is to restore the water table, thereby increasing the outflow of groundwater to the wetlands proximate to the existing well field.

minimize risk of contamination of drinking water: the abstracted groundwater from the new well originates from within a so-called well catchment zone. This catchment zone intersects land-use, such as "nature", "city", "farmland" and industry

Prediction variables

minimize drawdown extraction: preferably, the new location should be able to bear the burden of the 20% extraction due to re-allocation and anything more is an additional plus. A large drawdown is a risk, and hence needs to be minimized. WDD

maximize streamflow reduction potential: depends on the flow in the stream given the existing abstraction, and the flow on the stream if we move 20% of the groundwater abstraction from the existing wells to the new well at any of the four locations. **SFRP**

maximize increased groundwater outflow of water to wetlands: due to re-allocation, the aim is to restore the water table, thereby increasing the outflow of groundwater to the wetlands proximate to the existing well field. WLR

minimize risk of contamination of drinking water: the abstracted groundwater from the new well originates from within a so-called well catchment zone. This catchment zone intersects land-use, such as "nature", "city", "farmland" and industry. **INDUS & FARM**

Objectives vs Alternatives

alternatives

	Loc A	Loc B	Loc C	Loc D
Farming pollution Farm (units)	?	?	?	?
Industry pollution Indus (units)	?	?	?	?
Streamflow restoration SFRP (units)	?	?	?	?
Wetland restoration WLR (units)	?	?	?	?
Drawdown WDD (units)	?	?	?	?

Objectives

Statement of model complexity and prior uncertainty

How do I conceptualize "Earth" in all its aspects

and

what does the community already know about it?

Statement of model complexity and prior uncertainty

- Define model complexity and prior model uncertainty $f(\mathbf{m})$
- Need to define this for each field of science involved jointly
 Sedimentology, structural geology, rock physics, geomechanics, hydrogeophysics, multi-phase flow, reactive transport, engineering etc...

• This is just an **initial hypothesis**, no need for accuracy, yet: likely iterate between prior uncertainty stage and falsification stage

Statement of model complexity and prior uncertainty

MA2 WAS	P 87 -P 112		Matzer	i: largest oil field	d in Europe				
ANT I MAN ANT I AN	10 40 68 0 80 VP 80 10 720 28 108 11 427 10 40 10 101 10 101	7 MAI		- 404.292 - 404.292 - 404.204.004.004 - 404.204.204.204 - 404.204 - 404.		Geology	/ & Geophysi	CS	
MA 424	Variable	е		Description		Information	Prior Distribution		
MA 399 MA 12 MA 46 12 MA/2014284 A FASA 2 1/24/334 38	Algorithm MPSSearce TI Rotaie	m Geosta chZ Z range on Rotatio	tistic Algorithm e in K layers for scam on angle: training ima	ing hard data ge vs hard data	17 21 2001 1001 2000	Logs, Expert Expert Expert	U[MPS, MPSC] U[1, 4] U[1, 229]	Flov	w & Transport
MA 308 NA 305	Forosity -	Variable		1	Description			Information	Prior Distribution
4 523 4 524 538 549 53 549 53 549 53 549 543 520 545 6445 520 547 546 547 547 547 547 547 547 547 547 547 547 547 547 547 547 547 547 547 547	Training Porosityl PorosityA Porosityl NulliporaF Porosity MPSProbabil KX KX KX KX KX KX KX KX KX KX KX KX KX	$\begin{array}{c} \text{MUE}\\ \text{FWL}\\ \text{GOC}\\ RPERM_i\\ REL_{SOR}\\ REL_{KRW}\\ REL_{KRO}\\ REL_{KRO}\\ REL_{NW}\\ REL_{NO}\\ \text{SGR}\\ \text{TZ}\\ \text{SWR1}\\ \text{SWR2}\\ \text{SWR2}\\ \text{SWR3}\\ \text{SWR4}\\ \text{SWR5}\\ RELPERM^{(i)} \end{array}$	Oil Viscosity (cP Free Water Level Gas Oil Contact Base RelPeri Change of be Change of be Change of be Change of be Change of be Residual Gas Scaling of tra Minimum wa Minimum water s Minimum water s Relative Permeab	(m) (m) All sour need t need t saturation of SATNUM saturation of SATNUM saturation of SATNUM saturation of SATNUM	ces of cobe c join	unc cons tly	ertain idered	Lab Logs, Lab, Expert Logs Expert Analogy Analogy Analogy Analogy Analogy Dert pert pert pert bert Lab, Expert Lab, Expert Lab, Expert	$\begin{array}{c} U[13, 20]\\ U[1098, 1106]\\ U[1078, 1080]\\ U[5, 9]\\ U[-0.06, -0.02]\\ U[0.05, 0.15]\\ U[-0.15, -0.05]\\ U[-1.0, -0.2]\\ U[0.2, 1.0]\\ U[0.2, 1.0]\\ U[0.2, 1.0]\\ U[0.25, 0.1]\\ U[1, 2.3]\\ U[0.5, 0.65]\\ U[0.4, 0.6]\\ U[0.35, 0.5]\\ U[0.25, 0.4]\\ U[0.1, 0.25]\\ \end{array}$

Statement of model parameterization and prior uncertainty

Parameter Name	Parameter code	Amount of parameters	Type of uncertainty	Established from	Fields of science
Lithological Model	ma	N/A	Scenario	Geophysics wells	geophysics, glaciology, geostatistics
Regional and local permeability	Kh	22	Log-normal pdfs	Head data Well data	hydrogeology
pressure boundary conditions	ch	5	Uniform	Experience	hydrology engineering
River flows and conductance	riv	8	Conductance: log-normal	Experience from previous	River science
			DEM: uniform	studies	
Drain conductance	drn	8	Conductance: log-normal	Experience from previous	hydrology
			DEM: uniform	studies	
Aquifer Recharge	rch	1	Trapezoidal	Base-flow estimates	hydrology, meteorology, climate science

Monte Carlo & falsification of prior uncertainty using data

In complex, non-linear systems, Monte Carlo is required for UQ

Monte Carlo: a lot of information is generated

Monte Carlo: dimension reduction

Monte Carlo: reactive transport model example

	Parameter Name (code)	Parameter Type	Parameter Distribution
	Mean permeability (Meanlogk)	Continuous	Logk~U(-11,-10) m ²
	Variance of permeability(VarioVar)	Continuous	Logk~U(0.26,0.69) m ²
	Variogram type of permeability(VarioType)	Discrete	Discrete [1 2 3]
	Variogram correlation length(VarioCorrL)	Continuous	U(3.3, 6.6) m
Geological	Variogram azimuth(VarioAzimuth)	Continuous	U(50,90)°
	Mean porosity(MeanPoro)	Continuous	U(0.12,0.17)
	Porosity correlation with permeability(PoroCorr)	Continuous	U(0.5,0.8)
	Method to simulate porosity(MethodSimPoro)	Categorical	Discrete [1 2 3 4]
	Spatial Uncertainty(SpatialLogk)	Spatial	500 realizations
Geochemical	Mean Fe(III) mineral content(MeanFerric)	Continuous	U(2.5,10) µmol/g
	Method to simulate Fe(III) mineral content(MethodSimFerric)	Categorical	Discrete [1 2 3 4]
	Fe(III) correlation coefficient with permeability(FerricCorr)	Continuous	U(-0.8, -0.5)
	Mineral surface area(SurfaceArea)	Continuous	U(0.1,2) *base value
	Reaction rate(FerricRate,FerrousRate, UraniumRate, SRBRate)	Continuous	U(0,2) off base reaction rate (varies for different reactions)
	Initial concentrations of different species (ICSulfate,ICFerrous, ICUranium)	Spatial	500 conditioned spatial realizations

CRUNCHFLOW

Immobilized uranium

Monte Carlo: reactive transport model example

Monte Carlo & falsification of prior uncertainty using data

Monte Carlo & falsification of prior uncertainty using data

- What does falsification **not** mean: the prior is "correct", "validated", "verified", "calibrated", "inverted", "updated"....
- Falsification makes a hypothesis stronger if not falsified

• What should happen when prior uncertainty is falsified?

- You need to increase model complexity
- You need to increase model uncertainty
- or both....and you don't know which of the three

Sensitivity analysis on both data and prediction variables

- Sensitivity for prediction variables: *learn* what in the model variables impacts most each prediction variable, allows focus on important model parameters
- Sensitivity for data variables: <u>learn</u> what model variables can be reduced in uncertainty with the observations
- Joint analysis of both sensitivity analyses: <u>learn</u> what method should be used for uncertainty reduction on predictions

Monte Carlo-based or Global Sensitivity Analysis

no local sensitivity analysis

Sensitivity analysis on both data and prediction variables

Many uncertainty sources

Boundary conditions Geological interpretations SkyTEM data uncertainty Spatial distribution lithologies Streamflow models Rock physics models Reactive transport models Biogeochemical models

Inversion modeling?

+ Head and streamflow data

Strategy

Transform a non-linear non-Gaussian problem to a linear-Gaussian problem

Predict with the linear-Gaussian problem

Back-transform the results into the original problem

No traditional inverse modeling, only statistical calculations from Monte Carlo

Prior

Data

25

30

The tracer data of all species in all wells

Immobilized uranium uncertainty

Decision making; Posterior falsification & sensitivity

RISK AVERSE DECISION MAKER

Objectives	rank	weight	Loc A	Loc B	Loc C	Loc D	type
Farming pollution Farm (units)	5	0.067	0.00	3	48	100	Risk / \$ cost
Industry pollution Indus (units)	2	0.267	84	100	35	0	Risk / \$ cost
Streamflow restoration SFRP (units)	1	0.333	62	0	22	100	Return / \$ benefit
Wetland restoration WLR (units)	3	0.200	0	70	71	100	Return / \$ benefit
Drawdown WDD (units)	4	0.133	100	0	87	57	Risk / \$ cost
		Total:	56.7	40.8	42.6	61.0	
	Return-benefit score		20.74	14.08	21.66	53.33	
	Risk	-cost score	35.92	26.85	24.16	14.30	

Table accounts for objective (swing) weighting, preferences through value functions

Reference material

Céline Scheidt, Lewis Li, and Jef Caers Editors

Created playlists

Virtual Reality

QUSS GS 260

SGEMS tutorial

Geostatistics GS240

WILEY

Software

scerf.stanford.edu

Stanford

SCHOOL OF EARTH, ENERGY & ENVIRONMENTAL SCIENCES

Stanford Center for Earth Resources Forecasting

Home People Events - Research Resources - Education Affiliates Contact Us

https://github.com/SCRFpublic/QUSS

Quantifying Uncertainty in Subsystem Systems

This repository contains the companion code repository for Quantifying Uncertainty in Subsurface Systems by Céline Scheidt, Lewis Li, and Jef Caers (John Wiley & Sons).

About This Repository

This repository implements the various UQ strategies discussed in the book. The source code for the algorithms can be found under the src folder. The codebase was developed in MATLAB

For illustrative purposes, a set of Jupyter tutorials have been prepared. They are as follows:

- 1. Dimension Reduction: Showcase of various dimension reduction techniques discussed in Chapter 3.
- 2. DGSA: Implementation of Distance Based Sensitivty Analysis from Chapter 4.
- 3. Bayesian Evidential Learning. Methodology discussed in Chapter 7, implemented for the Libyan Oil Reservoir case.
- 4. SIR: The Sequential Importance Resampling methodology from Chapter 7 applied to the same Libyan Oil Reservoir.

These tutorials can be viewed directly in the browser, or download and re-run.

Six stages of Decision Making, UQ with BEL

Formulating the decision question and statement of prediction variables

Statement of model parameterization and prior uncertainty

Monte Carlo & falsification of prior uncertainty using data

Sensitivity analysis on both data and prediction variables

Design of uncertainty reduction on prediction variables based on data

posterior falsification & sensitivity, decision making