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What is Bayesian Evidential Learning (BEL)?

e Bayesianism:
e relies on the fundamental notion of prior knowledge
e an inductive-deductive form of reasoning about science

e Evidential: evidence is provided from both field observations and modeling

e Learning: it relies on machine learning from Monte Carlo



Formulating the decision question and statement of prediction variables

Statement of model complexity and prior uncertainty

Posterior falsification & sensitivity, decision making




Formulating the decision question:
groundwater management in Denmark
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Formulating the decision question and statement of prediction variables

What problem do | want to address
and

what would it take to solve it?



Decision objectives: “narratives”

minimize drawdown extraction: preferably, the new location should be able to bear the burden
of the 20% extraction due to re-allocation and anything more is an additional plus. A large
drawdown is a risk, and hence needs to be minimized.

maximize streamflow reduction potential: depends on the flow in the stream given the existing
abstraction, and the flow on the stream if we move 20% of the groundwater abstraction from
the existing wells to the new well at any of the four locations.

maximize increased groundwater outflow of water to wetlands: due to re-allocation, the aim is
to restore the water table, thereby increasing the outflow of groundwater to the wetlands
proximate to the existing well field.

minimize risk of contamination of drinking water: the abstracted groundwater from the new well
originates from within a so-called well catchment zone. This catchment zone intersects land-use,

n

such as “nature”, “city”, “farmland” and industry



Prediction variables

minimize drawdown extraction: preferably, the new location should be able to bear the burden
of the 20% extraction due to re-allocation and anything more is an additional plus. A large
drawdown is a risk, and hence needs to be minimized. WDD

maximize streamflow reduction potential: depends on the flow in the stream given the existing
abstraction, and the flow on the stream if we move 20% of the groundwater abstraction from
the existing wells to the new well at any of the four locations. SFRP

maximize increased groundwater outflow of water to wetlands: due to re-allocation, the aim is
to restore the water table, thereby increasing the outflow of groundwater to the wetlands
proximate to the existing well field. WLR

minimize risk of contamination of drinking water: the abstracted groundwater from the new well
originates from within a so-called well catchment zone. This catchment zone intersects land-use,
such as “nature”, “city”, “farmland” and industry. INDUS & FARM



Objectives vs Alternatives

alternatives
LocA LocB LocC LocD
Farming pollution . 2 2 ?
Farm (units)
o Industry pollution ) 2 2 ?
_g Indus (units)
o Streamflow restoration
Q ? ? ? ?
‘S | SFRP (units)
)
Wetland restoration ) 9 2 ?
WLR (units)
Drawdown ) . . .
WDD (units)




How do | conceptualize “Earth” in all its aspects
and

what does the community already know about it?



e Define model complexity and prior model uncertainty

m f (m)

e Need to define this for each field of science involved jointly

e Sedimentology, structural geology, rock physics, geomechanics,
hydrogeophysics, multi-phase flow, reactive transport, engineering etc...

e This is just an initial hypothesis, no need for accuracy, yet: likely
iterate between prior uncertainty stage and falsification stage



Matzen: largest oil field in Europe

\i\ﬂ WA oy .
e, e Geology & Geophysics
Variable Description Information Prior Distribution
Algorithm Geostatistic Algorithm Logs. Expert U[MPS, MPSC]|
MPSSearchZ Z range in K layers for scanning hard data Expert UJ1, 4]
TT Rotaion Rotation angle: training image vs hard data Expert U[1, 229] FIOW & Tra nsport
Porosity - — — - - . — —
Variable Description Information Prior Distribution
pnbg  MUE 0il Viscosity (cP) Lab U[13, 20|
Porosityx FWL Free V\./'at.er Level (m) Logs, Lab, Expert U[1098, 1106]
Porosity’ GOC Gas Oil Contart (m) Taae Fvpert U[1078, 1080]
Nulliporaf RPERM,; Base RelPen ° Analogy  U[5, 9]
RELsor Change of be AI I f t t Analogy U[-0.06, -0.02]
| Porosit_.y RELypw Change of be SO u rc e S o u n Ce r a I n y Analogy U[0.05, 0_15|
g MPSProbabil  ppy . .o Change of be Analogy  U[-0.15, -0.05]
RELyw Change of be d b s d d Analogy U[-1.0, -0.2]
KX
X rene  ameon NEEA TO D@ consiaere Analogy  U[02, 1.0
KX SGR Residual Gas sert U[0.05, 0.1}
KX TZ Scaling of tr: ° o pert U1, 2.3]
KX SWRI Minimum we J O | nt Iy sert U0.5, 0.65]
Ei' SWR2 Minimum we sert U[0.4. 0.6]
KZM: SWR3 Minimum water saturation of SALINUM 3 Lab, kxpert U[0.35, 0.5]
KZM SWR4 Minimum water saturation of SATNUM 4 Lab, Expert U[0.25, 0.4
SWR5 Minimum water saturation of SATNUM 5 Lab, Expert U[0.1, 0.25]
RELPERM') Relative Permeability = f(RPERM,, RELsor, RELgrw, RELgro. RELnw, SWR;)




Statement of model parameterization and prior uncertainty

of parameters

Lithological Model

Regional and local
permeability

pressure boundary
conditions

River flows and
conductance

Drain conductance

Aquifer Recharge

ma
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ch

riv

drn

rch

N/A
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Scenario

Log-normal pdfs

Uniform

Conductance:
log-normal

DEM: uniform

Conductance:
log-normal

DEM: uniform

Trapezoidal

Geophysics
wells

Head data
Well data

Experience

Experience
from previous
studies

Experience
from previous
studies

Base-flow
estimates

geophysics,
glaciology,
geostatistics

hydrogeology

hydrology
engineering

River science

hydrology

hydrology,
meteorology,
climate science



dobs

d ) d9 ¢=1,..L gq(.): data forward model

gq() gn(.): prediction forward model

f(m) Monte Carlo

m m® =1 L d,ps: actual measurements

d: data variables

h <(—) h({)),f =1,..L h: prediction variables

gn(.)

14 In complex, non-linear systems, Monte Carlo is required for UQ
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Para CLE d C 00€ d cLE pDE Para eter D ) O
Mean permeability (Meanlogk) Continuous Logk~U(-11,-10) m?
Variance of permeability(VarioVar) Continuous Logk~U(0.26,0.69) m?
Variogram type of permeability(VarioType) Discrete Discrete [1 2 3]
Variogram correlation length(VarioCorrL) Continuous U(3.3,6.6) m
Geological Variogram azimuth(VarioAzimuth) Continuous U(50,90)°
Mean porosity(MeanPoro) Continuous U(0.12,0.17)
Porosity correlation with permeability(PoroCorr) Continuous U(0.5,0.8)
Method to simulate porosity(MethodSimPoro) Categorical Discrete [1 2 3 4]
Spatial Uncertainty(SpatialLogk) Spatial 500 realizations
Mean Fe(III) mineral content(MeanFerric) Continuous U(2.5,10) umol/g
Metgsstt;:zﬁzii?dgfgge)rﬁgeral Categorical Discrete [1 2 3 4]
Fe(III) correlz.at.ion coef.ficient with Continuous U(-038,-0.5)
Geochemical permeability(FerricCorr)
Mineral surface area(SurfaceArea) Continuous U(0.1,2) *base value
Reaction rate(FerricRate FerrousRate, UraniumRate, Continuous U(Q,Z) off b.ase reaction Ijate
SRBRate) (varies for different reactions)
Initial concentrations of different species Sl 500 conditioned

(ICSulfate,ICFerrous, ICUranium)

spatial realizations

CRUNCHFLOW
Run453

20 40 20 40

Run274 Run479

Immobilized uranium
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Mixed principal component analysis
, _on both Head Data and Stream Flow data
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e What does falsification not mean: the prior is “correct”, “validated”,
“verified”, “calibrated”, “inverted”, “updated”....

e Falsification makes a hypothesis stronger if not falsified

e What should happen when prior uncertainty is falsified?

* You need to increase model complexity
* You need to increase model uncertainty
e or both....and you don’t know which of the three

20



Sensitivity analysis on both data and prediction variables

e Sensitivity for prediction variables: learn what in the model variables impacts
most each prediction variable, allows focus on important model parameters

e Sensitivity for data variables: learn what model variables can be reduced in
uncertainty with the observations

e Joint analysis of both sensitivity analyses: learn what method should be used for
uncertainty reduction on predictions

Monte Carlo-based or Global Sensitivity Analysis
no local sensitivity analysis



Sensitivity analysis on both data and prediction variables

Head & streamflow data Industrial pollution prediction
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Design of uncertainty reduction on prediction variables based on data

Many uncertainty sources

m Boundary conditions

_ _ Resistivity [Q . . .
s L s s s v Geological interpretations

SkyTEM data uncertainty
Spatial distribution lithologies
Streamflow models

Rock physics models

Reactive transport models
Biogeochemical models

Geological concept ;. quenay
[ Miocene sand

Inversion modeling?

+ Head and streamflow data




Design of uncertainty reduction on prediction variables based on data

Strategy
Transform a non-linear non-Gaussian problem to a linear-Gaussian problem
Predict with the linear-Gaussian problem
Back-transform the results into the original problem

No traditional inverse modeling, only statistical calculations from Monte Carlo



Design of uncertainty reduction on prediction variables based on data

K

K’
X=Z(Xk(|)k X,y =d,horm YZZ,Bklllk
k=1

k=1

X space y space

minimize 6

B:= BTﬁ



Design of uncertainty reduction on prediction variables based on data

h® ¢=1,..L
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Design of uncertainty reduction on prediction variables based on data

d(f),f = 1,L dObS h(f) 'e — 1 --'L

Run4s3 )% Run64

2Tracer concentration measurement at well5 g\cetate concentration measurement at well5
Prior | | Prior
151 e Datg ! 4+ e Datg 'i
| 3t '
= ; =

(¢)
Ck » Cobs

0 5 10 15 20 25 30 0 5 10 15 20 25 30
day day




Design of uncertainty reduction on prediction variables based on data

Linear-Gauss problem

The spatial distribution of uranium oxide

1 20 40 &0 20 40 60 20 40 60

2%

The tracer data of all species in all wells Immobilized uranium uncertainty



Design of uncertainty reduction on prediction variables based on data

LLocation A: SFRP LLocation C: INDU

14 ' n ' ' 12

12 ¢

posterior
posterior

10 ¢

0 0.1 0.2 0.3 0.4

update No update



Decision making; Posterior falsification & sensitivity

RISK AVERSE DECISION MAKER

Objectives rank weight LocA LocB LocC LocD type
Farming pollution 5 0.067 0.00 3 48 100 Risk / § cost
Farm (units)
iggszt&ﬂg;‘ltion 2 0.267 84 100 35 0 Risk / $ cost
g;‘:;r?fgltws )r estoration 1 0.333 62 0 22 100 Return / $ benefit
wiga?fnzf:)toraﬁon 3 0.200 0 70 71 100 Return / $ benefit
Drawdown
7N\ N\
Total: / 56.7\ 40.8 42.6 61.0
Return-benefit score | 20.74 14.08 21.66 53.33
Risk-cost score \35.92 26.85 24.16 14.30

Table accounts for objective (swing) weighting, preferences through value functions



Reference material

Quantifying Uncertainty

in Subsurface Systems

Jef Caers
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Software

scerf.stanford.edu

Stanford Stanford Center for https://github.com/SCRFpublic/QUSS
scrooL oF earTh, enxeray  CAth Resources

& ENVIRONMENTAL SCIENCES .
Forecasting

Home People Events~ Research Resources~ Education Affiliates ContactUs

Quantifying Uncertainty in Subsystem Systems

This repository contains the companion code repository for Quantifying Uncertainty in Subsurface Systems by Céline Scheidt,
Lewis Li, and Jef Caers (John Wiley & Sons).

About This Repository

This repository implements the various UQ strategies discussed in the book. The source code for the algorithms can be found
under the src folder. The codebase was developed in MATLAB

For illustrative purposes, a set of Jupyter tutorials have been prepared. They are as follows:

1. Dimension Reduction: Showcase of various dimension reduction techniques discussed in Chapter 3.

2. DGSA: Implementation of Distance Based Sensitivty Analysis from Chapter 4.

3. Bayesian Evidential Learning. Methodology discussed in Chapter 7, implemented for the Libyan Oil Reservoir case.

4. SIR: The Sequential Importance Resampling methodology from Chapter 7 applied to the same Libyan Qil Reservoir.

These tutorials can be viewed directly in the browser, or download and re-run.



Six stages of Decision Making, UQ with BEL

Formulating the decision question and statement of prediction variables

Statement of model parameterization and prior uncertainty

Sensitivity analysis on both data and prediction variables

Design of uncertainty reduction on prediction variables based on data

posterior falsification & sensitivity, decision making



