Université de Rennes I

Licence de Mathématiques

Fonctions Holomorphes (HOLO) - contrôle continu - 27 mars 2003

Durée: 30mn - Les documents et calculatrices sont interdits.

Ecrire votre nom et répondre uniquement sur cette feuille aux questions suivantes.

Nom de l'étudiant(e):

On pose $D = \{|z| < 1\}$. Si $z \in \mathbb{C}$, on note $\Re(z)$ ou x sa partie réelle et $\Im(z)$ ou y sa partie imaginaire.

- 1. Montrer que $P \in \mathbf{C}[z]$ polynôme complexe vérifie $P(\mathbf{R}) \subset \mathbf{R}$ si et seulement si $P \in \mathbf{R}[z]$.
- 2. Soit h définie par $h(z) = \frac{z-a}{1-\overline{a}z}$ (où |a| < 1). Montrer l'inclusion $h(D) \subset D$.
- 3. Montrer qu'il n'existe pas de détermination du logarithme sur $\mathbb{C} \setminus \{0\}$.
- 4. Existe-t-il $h: D \to \mathbf{C}$ analytique telle que $h(D) = \overline{D}$?
- 5.a. Compléter $(a, b: D \to \mathbf{R}, C^1)$: " $\omega = adx + bdy$ est localement exacte si et seulement si $\frac{\partial a}{\partial y} \frac{\partial b}{\partial x}$"
- 5.b. Quelles sont les relations entre $\frac{\partial}{\partial x} \mathcal{R}e(h)$, $\frac{\partial}{\partial y} \mathcal{R}e(h)$, $\frac{\partial}{\partial x} \mathcal{I}m(h)$ et $\frac{\partial}{\partial y} \mathcal{I}m(h)$ si h est holomorphe. 5.c. Soit $f: D \to \mathbf{R}$, C^{∞} . Montrer que $\Delta f \equiv 0$ si et seulement si $\omega = \frac{\partial f}{\partial x} dy \frac{\partial f}{\partial y} dx$ est localement exacte.
- 6.a. Montrer qu'il existe $A = \sum_{n \geq 0} a_n z^n$ de rayon minoré par 1 tel que si $z \in D$ alors $A(z) = \frac{\exp(1/(1+z))}{1+z}$.
- 6.b. En déduire qu'il existe h holomorphe sur $\Omega = \{|z-1| < 1\}$, nulle en 1, telle que $h'(z) = -\frac{\exp(1/z)}{z}$.
- 6.c. Montrer que g définie sur Ω par $g(z)=h(z)\exp(-1/z)$ vérifie $z^2g'+z=g$.