Université de Rennes I Fonctions Holomorphes (HOLO) - 2ème contrôle continu

Licence de Mathématiques 13 mars 2003

Durée: 30mn - Les documents et calculatrices sont interdits.

Ecrire votre nom et répondre uniquement sur cette feuille aux questions suivantes.

Nom de l'étudiant(e):

On pose $D = \{|z| < 1\}$. Si $z \in \mathbb{C}$, on note $\Re(z)$ ou x sa partie réelle et $\Im(z)$ ou y sa partie imaginaire.

- 1. Soit $A(z) = \sum_{n>0} a_n z^n$ une série entière de rayon de convergence r>0. On pose $B(z) = \sum_{n>0} \overline{a_n} z^n$.
- 1.a. Montrer que si $z \in]-r,r[$ alors $B(z)=\overline{A(z)}.$
- 1.b. Montrer que s'il existe $z_k \in]0, r[, k \in \mathbb{N} \text{ tels que } \lim z_k = 0 \text{ et } A(z_k) \in \mathbb{R} \text{ pour tout } k \text{ alors } A = B, \text{ les coefficients } a_n, n \in \mathbb{N} \text{ sont tous réels et } A([0, r[)]) \subset \mathbb{R}.$
- 2.a. Trouver $f: \{\mathcal{I}m(z) > 0\} \to \{\mathcal{R}e(z) > 0, \mathcal{I}m(z) > 0\}$ analytique et bijective.
- 2.b. Montrer que h = (z i)/(z + i) réalise une bijection analytique entre $\{\mathcal{I}m(z) > 0\}$ et D.
- 3.a. Soit f analytique. Exprimer (sans démontrer) $\frac{\partial f}{\partial z}$, $\frac{\partial f}{\overline{z}}$, Δf et $\Delta \mathcal{R}e(f)$ en fonction de f' et 0.
- 3.b. En déduire que $|z|^2 = x^2 + y^2$ n'est pas la partie réelle d'une fonction analytique.
- 4. Soit $f: D \to D$ une fonction analytique telle que f(0) = 0 et $\lambda \in]0,1[$.
- 4.a. Montrer qu'il existe $g: D \to \mathbf{C}$ analytique telle que si $z \in D$, f(z) = zg(z).
- 4.b. Montrer que si $\lambda \leq |z'| < 1$ alors $|g(z')| \leq 1/\lambda$.
- 4.c. Déduire de 4.b. et du principe du maximum que si $|z| < \lambda$ alors $|q(z)| < 1/\lambda$.
- 4.d. Déduire de 4.a. et 4.c. que si $z \in D$ alors $|g(z)| \le 1$ et $|f(z)| \le |z|$.
- 4.e. Montrer que s'il existe $z_0 \in D$ tel que $|g(z_0)| = 1$ alors g est constante et $f = \alpha z$ avec $|\alpha| = 1$.