Compléments maths PASS 3 (CMP3)

Complexes. Techniques de calcul en analyse (dont primitives)

Contrôle continu 2 - 45 minutes

Traiter au choix trois exercices.

Les réponses sont justifiées.

1/ On rappelle que exp: $\mathbf{R} \to \mathbf{R}^{+*}$ est dérivable et vérifie $\exp(0) = 1$ et $\exp' = exp$.

Si $n \in \mathbb{N}$ on considère la fonction dérivable f_n définie par $f_n(x) = \exp(x) - \sum_{k=0}^n \frac{1}{k!} x^k$ si $x \in \mathbb{R}$.

1/ Montrer que si $n \in \mathbb{N}$ alors $f'_{n+1} = f_n$.

2/ Montrer que si $n \in \mathbb{N}$ et $x \ge 0$ alors $f_n(x) \ge 0$.

2/ 1/ Donner la définition de ce qu'est une fonction $f: I \to \mathbf{R}$ continue en $a \in I$.

2/ En utilisant cette définition et l'inégalité $|\sin(x)| \le |x|$ si $x \in \mathbb{R}$, montrer que sin est continue en 0.

3/ 1/ Donner la définition d'une fonction $f: I \to \mathbf{R}$ dérivable de nombre dérivé f'(a) en $a \in I$.

2/ En revenant à cette définition démontrer que la fonction f définie par $f(x) = x^2$ si $x \in \mathbf{R}$ est dérivable de nombre dérivé f'(a) = 2a si $a \in \mathbf{R}$.

4/ Dans chaque cas suivant dire en justifiant si la fonction f est continue.

Cas 1. La fonction f est définie sur \mathbf{R} par f(x) = x si $x \in \mathbf{R}^*$ et f(0) = 1.

Cas 2. La fonction f est définie sur [-1,1] par f(x)=x si $x\in]-1,1[$ et f(-1)=f(1)=0.

Cas 3. La fonction f est définie sur \mathbf{R} par f(x) = x si x > 0 et f(x) = 0 si $x \le 0$.

5/ On rappelle que $\ln : \mathbb{R}^{+*} \to \mathbb{R}$ est dérivable et vérifie $\ln(1) = 0$ et $\ln' = \frac{1}{x}$. On rappelle aussi que $(g \circ h)' = (g' \circ h) \times h'$ si g et h sont dérivables.

Soit a > 0.

1/ En utilisant ces rappels calculer la dérivée de $f: \mathbf{R}^{+*} \to \mathbf{R}$ définie par $f(x) = \ln(ax)$.

2/ En déduire que la fonction qui à x > 0 associe $f(x) - \ln(x)$ est constante.

3/ Montrer que si x > 0 alors ln(ax) = ln(a) + ln(x).

6/ Calculer $\int_{1}^{x} \ln(t) dt$ si x > 0.

Compléments maths PASS 4 (CMP4)

Géométrie et dénombrement

Contrôle continu 2 - 45 minutes

1/ Soient trois points non alignés du plan affine P, Q, R. Soit M le milieu de [PQ]. Montrer que si RM = PM alors

$$(\widehat{\overrightarrow{RP},\overrightarrow{RQ}}) = \frac{\pi}{2}.$$

- 2/ Une urne contient 3 cubes rouges, 5 tétraèdres rouges, 5 cubes blancs, 4 tétraèdres blancs. On donnera les réponses aux deux questions de l'exercice en utilisant des coefficients binomiaux, sans chercher à calculer leurs valeurs.
 - a. De combien de façons peut-on tirer 4 objets de cette urne en obtenant exactement deux objets blancs?
 - b. De combien de façons peut-on tirer 4 objets de cette urne en obtenant au moins un cube et exactement deux objets blancs ?
- 3/ Soient trois vecteurs u, v, w tels que u et v ne soient pas colinéaires et tels que $w \neq 0$ soit orthogonal à u et v. Montrer que tout vecteur de l'espace s'écrit de manière unique comme combinaison linéaire de u, v, w.