Compléments maths PASS 3 (CMP3)

Complexes. Techniques de calcul en analyse (dont primitives)

Contrôle continu 1 - 45 minutes

Traiter au choix trois exercices.

Les réponses sont justifiées.

1/ Soit z un nombre complexe de module 1. On note x sa partie réelle et y sa partie imaginaire.

1/ Démontrer l'égalité $x^2 + y^2 = 1$.

2/ En déduire les inégalités $-1 \le x \le 1$ et $-1 \le y \le 1$.

3/ On suppose de plus $x \neq -1$. Montrer que $w = \left(\sqrt{\frac{1+x}{2}}\right) + i\left(\frac{y}{\sqrt{2(1+x)}}\right)$ vérifie $w^2 = z$.

2/ On admet que si $x \in \mathbb{R}^+$ alors $\exp(x) - x - 1 \ge 0$.

- Montrer que si $x \in \mathbb{R}^+$ alors $\exp(2x) \ge 1 + 2x + x^2$.

- Montrer que si x > 0 alors $\frac{\exp(x)}{x} > \frac{1}{4}x$.

3/ Démontrer que la fonction tangente est dérivable et que si $x \in \mathbf{R}$ et $\frac{x}{2\pi}$ n'est pas un entier relatif alors

$$\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x).$$

4/ Calculer le module et l'argument de $u = \sqrt{6} + i\sqrt{2}$ et de v = 1 + i et en déduire le module et l'argument de $w = \frac{v}{u}$.

5/ Effectuer la division euclidienne de $P(X) = X^3 - 2X^2 + X - 2$ par $Q(X) = X^2 + 1$ et en déduire que P(X) = (X - 2)(X - i)(X + i).