Compléments maths PASS 3 (CMP3)

Complexes. Techniques de calcul en analyse (dont primitives)

Contrôle continu blanc 1 - 45 minutes

Les réponses sont justifiées.

1/ Mon nom de code est X et je vérifie les propriétés suivantes :

$$X \subset \mathbf{R}, X \cap [0,2] = \{1\}, (\forall x \in X \ \forall k \in \mathbf{Z} \ x + 2k \in X).$$

Qui suis-je?

Montrons que X est l'ensemble des entiers relatif impairs, c'est à dire que X est égal à $\{1+2k|k \in \mathbb{Z}\}$. On raisonne par double inclusion.

Soit n un entier relatif impair. Il existe $k \in \mathbb{Z}$ tel que n = 1 + 2k. Or on sait que $1 \in X$ puisque $X \cap [0,2] = \{1\}$. Par conséquent n = 1 + 2k qui est de la forme n = x + 2k avec $x = 1 \in X$ et $k \in \mathbb{Z}$ est aussi dans X. On vient de montrer que tout entier relatif impair et dans X. Ainsi $\{1 + 2k | k \in \mathbb{Z}\} \subset X$.

Réciproquement, soit $x \in X$. On note k la partie entière de $\frac{1}{2}x$. On a $k \in \mathbb{Z}$ et $k \leq \frac{1}{2}x < k+1$ et donc $2k \leq x < 2k+2$. Puisque $x \in X$ et que $-k \in \mathbb{Z}$ le nombre y = x-2k appartient à X. Or, puisque $2k \leq x < 2k+2$, on a $0 \leq y = x-2k < 2$. Par conséquent $y \in X \cap [0,2[\subset X \cap [0,2[$ et donc y = 1. Ceci implique que x = 1+2k avec $k \in \mathbb{Z}$ et donc $x \in X$ est un entier relatif impair. Ainsi $X \subset \{1+2k|k \in \mathbb{Z}\}$.

On vient de prouver par double inclusion que X est l'ensemble des entiers relatifs impairs.

2/ Trouver les réels x tels que $|4x^2 - 5| > 4$.

Soit *x* un réel. Il vérifie $|4x^2 - 5| > 4$ si et seulement si

$$4x^2 - 5 > 4$$
 ou $-(4x^2 - 5) > 4$

c'est à dire si et seulement si

$$4x^2 > 9$$
 ou $1 > 4x^2$.

Or $4x^2 > 9$ si et seulement si $x > \frac{3}{2}$ ou $x < -\frac{3}{2}$ et $1 > 4x^2$ si et seulement si $-\frac{1}{2} < x < \frac{1}{2}$, c'est à dire $4x^2 > 9$ si et seulement si $x \in (-\infty, -\frac{3}{2}[\cup]\frac{3}{2}, +\infty)$ et $1 > 4x^2$ si et seulement si $x \in]-\frac{1}{2}, \frac{1}{2}[$.

Par conséquent $|4x^2-5|>4$ si et seulement si $x\in(-\infty,-\frac{3}{2}[\cup]-\frac{1}{2},\frac{1}{2}[\cup]\frac{3}{2},+\infty)$

3/ Soit $y \in \mathbf{R}$. Rechercher et exprimer en fonction de y quand ils existent les éventuels réels x vérifiant

$$y = \frac{x+2}{x-3}.$$

Soit $y \in \mathbf{R}$ fixé. Soit $x \in \mathbf{R}$ tel que $y = \frac{x+2}{x-3}$. Puisque dans cette fraction le dénominateur est x-3, nécessairement $x-3 \neq 0$ et donc $x \neq 3$. L'égalité $y = \frac{x+2}{x-3}$ entraı̂ne, par multiplication par x-3,

l'égalité y(x-3) = x+2 qui devient, en passant à gauche les termes avec x et à droite les termes sans x, x(y-1) = 3y+2.

Premier cas : y = 1. L'égalité x(y-1) = 3y + 2 devient 0 = 5 qui n'est vérifiée pour aucun réel x. L'équation $1 = \frac{x+2}{x-3}$ n'a donc pas de solution.

Deuxième cas : $y \ne 1$. Dans ce cas $y - 1 \ne 0$ et en divisant par y - 1 les deux termes de l'égalité x(y - 1) = 3y + 2 on obtient $x = \frac{3y + 2}{y - 1}$.

On vient de montrer que si $y \ne 1$ et si x est solution de l'équation $y = \frac{x+2}{x-3}$ alors $x = \frac{3y+2}{y-1}$. Assurons-nous maintenant qu'un tel x est bien solution de cette équation.

Déjà $x \ne 3$. En effet l'égalité $3 = \frac{3y+2}{y-1}$ entraı̂ne 3y-3 = 3y+2 c'est à dire 0 = 5 qui n'est vérifiée pour aucun y. Puisque $x = \frac{3y+2}{y-1}$ est différent de 3 on peut calculer $\frac{x+2}{x-3}$ lorsque $y \ne 1$ et $x = \frac{3y+2}{y-1}$ et on obtient

$$\frac{x+2}{x-3} = \frac{\frac{3y+2}{y-1} + 2}{\frac{3y+2}{y-1} - 3}$$

$$= \frac{\frac{3y+2+2(y-1)}{y-1}}{\frac{3y+2-3(y-1)}{y-1}}$$

$$= \frac{\frac{5y}{y-1}}{\frac{5}{y-1}}$$

$$= y.$$

Ça signifie que si $y \ne 1$ alors $x = \frac{3y+2}{y-1}$ est solution de $y = \frac{x+2}{x-3}$.

Ainsi on vient de montrer que si y = 1 alors l'équation $y = \frac{x+2}{x-3}$ ne possède pas de solution et que si $y \neq 1$ alors l'équation $y = \frac{x+2}{x-3}$ admet une unique solution, $x = \frac{3y+2}{y-1}$.