Jeudi 18 octobre 2018, Contrôle continu, Partie Analyse

Durée = 50 minutes. Les documents et la calculatrice ne sont pas autorisés

Exercice 1. (5 pts) Énoncer et prouver le théorème de Bolzano-Weirstrass.

Théorème de Bolzano-Weierstrass $Soit\ u = (u_n)_{n \in \mathbb{N}}$ une suite de réels. $Si\ u$ est bornée alors elle admet une suite extraite qui converge.

preuve Soit $u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ bornée. Il existe donc $a, b \in \mathbb{R}$ tels que $a \leq u_n \leq b$ si $n \in \mathbb{N}$. Si $k \in \mathbb{N}$ on pose $v_k = \sup\{u_n : n \in \mathbb{N} \text{ et } n \geq k\}$. Puisque u est à valeurs dans [a, b] l'ensemble $\{u_n : n \in \mathbb{N} \text{ et } n \geq k\}$ est inclus dans cet intervalle et v_k qui est sa borne supérieure aussi : $a \leq v_k \leq b$. De plus $\{u_n : n \in \mathbb{N} \text{ et } n \geq k + 1\}$ est un sous-ensemble de $\{u_n : n \in \mathbb{N} \text{ et } n \geq k\}$ et par conséquent v_{k+1} qui est la borne supérieure du premier ensemble est inférieur ou égal à v_k qui est la borne supérieure du second : $v_{k+1} \leq v_k$.

On a construit une suite de réels, $v = (v_k)_{k \in \mathbb{N}}$, décroissante et bornée et bornée donc convergente. On considère maintenant la suite d'entiers naturels strictement croissante $m = (m_k)_{k \in \mathbb{N}}$ définie par récurrence de la façon suivante :

 $-m_0=0$;

- si $k \in \mathbf{N}$ on note m_{k+1} le plus petit élément de $\{n \in \mathbf{N} : n > m_k \text{ et } |u_n - v_{k+1}| < \frac{1}{k+1}\} \subset \mathbf{N}$. La suite m est bien définie car puisque v_{k+1} est la borne supérieure de $\{u_n : n \in \mathbf{N} \text{ et } n \geq k+1\}$ il existe une infinité d'indices n tels que $|u_n - v_{k+1}| < \frac{1}{k+1}$ et donc il existe aussi une infinité d'indices $n > m_k$ tels que $|u_n - v_{k+1}| < \frac{1}{k+1}$. Elle est strictement croissante car pour $k \in \mathbf{N}$ on a $m_k < m_{k+1}$. Ainsi la suite $(u_{m_k})_{k \in \mathbf{N}}$ est bien une suite extraite de u. De plus, puisque $|u_{m_k} - v_{k+1}| < \frac{1}{k+1}$ la suite de terme général $|u_{m_k} - v_{k+1}|$ converge vers 0. Or la suite v converge vers une limite v. Par conséquent, la suite extraite v0 converge également vers cette limite.

Exercice 2. (5 pts) Montrer, en revenant à la définition de fonction continue, que la fonction f définie sur \mathbf{R}^* par $f(x) = \frac{1}{x}$ est continue en tout $a \in \mathbf{R}^*$.

Soit $a \in \mathbf{R}^*$ et soit $\varepsilon > 0$. On pose $\eta = \min(\frac{\varepsilon a^2}{2}, \frac{|a|}{2})$. Considérons $x \in \mathbf{R}$. Si $|x - a| < \eta$ alors d'une part $|x - a| < \frac{|a|}{2}$ donc $\frac{|a|}{2} < |x|$ et d'autre part $|x - a| < \frac{\varepsilon a^2}{2}$. Par conséquent

$$|f(x) - f(a)| = |\frac{1}{x} - \frac{1}{a}| = \frac{1}{|ax|}|x - a| = \frac{1}{|a| \cdot |x|}|x - a| < \frac{1}{|a| \frac{|a|}{2}} \frac{\varepsilon a^2}{2} = \varepsilon.$$

On vient de prouver que

$$\forall a \in \mathbf{R}^* \ \forall \epsilon > 0 \ \exists \eta > 0 \ \forall x \in \mathbf{R}^* \ |x - a| < \eta \Longrightarrow |f(x) - f(a)| < \varepsilon.$$

Ceci signifie que la fonction f est bien continue en tout point a de \mathbb{R}^* .

Exercice 3. (5 pts) Soit K > 0. Une fonction f de \mathbf{R} dans \mathbf{R} est dite K-lipschitzienne si

$$\forall (x,y) \in \mathbf{R}^2 |f(x) - f(y)| \le K|x - y|.$$

1) Montrer, en revenant à la définition de fonction uniformément continue, que si f est K-lipschitzienne alors elle est uniformément continue sur \mathbf{R} .

Soit $\varepsilon > 0$. On pose $\eta = \frac{\varepsilon}{K}$.

Considérons $x, y \in \mathbf{R}$. Si $|x - y| < \eta$ alors, puisque f est K-lipschitzienne, il vient

$$|f(x) - f(a)| \le K|x - y| < K\frac{\varepsilon}{K} = \epsilon.$$

On vient de prouver que

$$\forall \epsilon > 0 \ \exists \eta > 0 \ \forall x \in \mathbf{R} \ \forall y \in \mathbf{R} \ |x - y| < \eta \Longrightarrow |f(x) - f(y)| < \varepsilon.$$

Ceci signifie que la fonction f est bien uniformément continue sur \mathbf{R} .

2) Montrer, en revenant à la définition de fonction K-lipschitzienne, qu'il existe K > 0 tel que la fonction qui a $x \in \mathbf{R}$ associe $\frac{1}{1+|x|}$ est K-lipschitzienne.

Considérons $x, y \in \mathbf{R}$. On a

$$|f(x) - f(y)| = \left| \frac{1}{1 + |x|} - \frac{1}{1 + |y|} \right|$$

$$= \frac{1}{1 + |x| + |y| + |xy|} ||y| - |x||$$

$$\leq |x - y|$$

car $1 \le 1 + |x| + |y| + |xy|$ et $||y| - |x|| \le |x - y|$. On vient de prouver que

$$\forall (x,y) \in \mathbf{R}^2 |f(x) - f(y)| \le |x - y|.$$

Ceci signifie que la fonction f est bien 1-lipschitzienne.

Exercice 4. (5 pts) On considère les suites $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ définies par récurrence de la façon suivante. On pose $u_0 = 1$, $v_0 = 1$ et si $n \in \mathbb{N}$ on pose $u_{n+1} = 2^{-(n+1)}u_n$ et $v_{n+1} = v_n + u_{n+1}$. On rappelle que si $n \in \mathbb{N}$ alors $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. On rappelle aussi qu'un nombre réel est rationnel si et seulement si son écriture en base 2 est périodique.

1) Soit $n \in \mathbb{N}$. Montrer que $u_n = 2^{\frac{-n(n+1)}{2}}$.

On raisonne par récurrence.

Au rang 0 la propriété annoncée est bien vérifiée puisque $u_0 = 1 = 2^0 = 2^{\frac{-0(0+1)}{2}}$. Vérifions l'hérédité de la propriété annoncée. Soit donc $n \in \mathbb{N}$. On suppose $u_n = 2^{\frac{-n(n+1)}{2}}$. On a alors

$$u_{n+1} = 2^{-(n+1)}u_n$$

$$= 2^{-(n+1)}2^{\frac{-n(n+1)}{2}}$$

$$= 2^{-(n+1)+\frac{-n(n+1)}{2}}$$

$$= 2^{\frac{-(n+1)((n+2)}{2}}$$

Ceci établit l'hérédité de la propriéte annoncée et conclut la preuve : pour tout n entier naturel, $u_n = 2^{\frac{-n(n+1)}{2}}$.

2) Montrer que v est une suite positive, croissante convergente et de limite l majorée par 2.

La suite v est strictement croissante puisque si $n \in \mathbb{N}$ la différence $v_{n+1} - v_n$ vaut u_{n+1} c'est à dire $2^{\frac{-(n+1)((n+2)}{2}}$ qui est strictement positif. De plus, comme le premier terme v_0 de cette suite est 1 et est donc strictement positif, la suite v est strictement croissante et strictement positive.

Montrons maintenant que v est majorée par 2 en montrant par récurrence que si $n \in \mathbb{N}$ alors $v_n \leq 2 - 2^{-n} \leq 2$.

La propriété annoncée est vraie au rang $0: v_0 = 1 \le 2 - 2^0 \le 2$. Prouvons l'hérédité. Soit $n \in \mathbb{N}$. On suppose $v_n \le 2 - 2^{-n} \le 2$. Alors

$$|v_{n+1}| = v_n + u_{n+1}$$

 $= v_n + 2^{\frac{-(n+1)((n+2)}{2}}$
 $\leq 2 - 2^{-n} + 2^{-(n+1)} \operatorname{car} \frac{(n+1)((n+2))}{2} \geq (n+1)$
 $< 2 - 2^{-(n+1)} < 2.$

Ceci établit l'hérédité de la propriéte annoncée et conclut la preuve de cette propriété : si $n \in \mathbb{N}$ alors $v_n \leq 2 - 2^{-n} \leq 2$.

Finalement v est une suite positive, croissante et majorée par 2. Elle est donc convergente et sa limite l est majorée par 2.

3) Donner les écritures de v_0 , v_1 , v_2 et v_3 en base 2.

On a $v_0 = 1$, $v_1 = 1 + 2^{-1}$, $v_2 = 1 + 2^{-1} + 2^{-3}$ et $v_3 = 1 + 2^{-1} + 2^{-3} + 2^{-6}$. Par conséquent en base :

- v_0 s'écrit 1,
- v_1 s'écrit 1, 1
- v_2 s'écrit 1,101
- v_3 s'écrit 1, 101001.
- 4) Soit $k \in \mathbb{N}^*$. Soit a_k le k^{e} chiffre après la virgule de l'écriture en base 2 de la limite l de v.
- a) Montrer que s'il existe $n \in \mathbb{N}$ tel que $k = \frac{n(n+1)}{2}$ alors $a_k = 1$.

Puisque la suite v est telle que $v_0 = u_0$ et $v_{n+1} = v_n + u_{n+1}$ c'est la série de terme général u_n : on a donc

$$v_N = \sum_{n=0}^{N} 2^{\frac{-n(n+1)}{2}} \text{ si } N \in \mathbf{N}$$

et la limite l de v vérifie

$$l = \sum_{n=0}^{+\infty} 2^{\frac{-n(n+1)}{2}}.$$

On déduit de cette écriture de l comme somme infinie de puissances de 2 son écriture en base 2. En particulier pour $k \in \mathbb{N}^*$ le k^e chiffre après la virgule de l'écriture en base 2 de la limite l vaut 1 si et seulement si 2^{-k} est un terme de la somme $\sum_{n=0}^{+\infty} 2^{\frac{-n(n+1)}{2}}$. C'est le cas si et seulement s'il existe $n \in \mathbb{N}$ tel que $k = \frac{n(n+1)}{2}$.

b) Montrer que s'il existe $n \in \mathbb{N}$ tel que $\frac{n(n+1)}{2} < k < \frac{(n+1)(n+2)}{2}$ alors $a_k = 0$.

Puisque $l = \sum_{n=0}^{+\infty} 2^{\frac{-n(n+1)}{2}}$ s'il existe $n \in \mathbb{N}$ tel que $\frac{n(n+1)}{2} < k < \frac{(n+1)(n+2)}{2}$ alors 2^{-k} n'est pas un terme de la somme $l = \sum_{n=0}^{+\infty} 2^{\frac{-n(n+1)}{2}}$ et donc $a_k = 0$.

5) Montrer que la limite l de v est un nombre irrationnel.

On vient de montrer en 4) que l'écriture en base 2 de l contient une infinité de 0 et une infinité de 1 et que l'écart entre de 1 successifs est de plus en plus grand. Cette écriture ne peut donc pas être périodique à partir d'un certain rang. Par conséquent l n'est pas rationnel.