Compléments d'analyse

Deuxième contrôle (1 heure et 30 minutes)

Partie I

1. Donner une équation différentielle dont les solutions sont les fonctions de la forme

$$x \in \mathbf{R} \mapsto a\cos(3x) + b\sin(3x) + x\sin(3x) + x^2$$

où $(a,b) \in \mathbb{R}^2$ puis la résoudre avec la méthode utilisée lorsqu'on ne connaît pas les solutions.

2. Donner une équation différentielle dont les solutions sont les fonctions de la forme

$$x \in \mathbf{R} \mapsto a \exp(2x) + bx \exp(2x) + x^2$$

où $(a,b) \in \mathbb{R}^2$ puis la résoudre avec la méthode utilisée lorsqu'on ne connaît pas les solutions.

Partie II

Dans cette partie on montre élémentairement, sans faire référence à l'exponentielle, qu'il existe une unique fonction $F: \mathbf{R} \to \mathbf{R}$, dérivable et qui vérifie F(0) = 1 ainsi que F' = F.

Si $n \in \mathbb{N}$ on note P_n la fonction polynomiale définie sur \mathbb{R} par

$$P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}.$$

1.a. Soit $x \in]0, \frac{1}{4}[$. Montrer que $(P_n(x))_{n \in \mathbb{N}}$ est croissante et vérifie

$$1 \le P_n(x) \le 2 - \frac{1}{2^n}$$

puis en déduire que $(P_n(x))_{n \in \mathbb{N}}$ est une suite convergente.

b. Montrer que la fonction f qui à $x \in]0, \frac{1}{4}[$ associe la limite de $(P_n(x))_{n \in \mathbb{N}}$ vérifie $f(]0, \frac{1}{4}[) \subset [1,2]$.

2. Soit $x, y \in]0, \frac{1}{4}[$ tels que $x \neq y$.

a. Soit $k \in \mathbb{N}$ tel que $k \ge 2$. Montrer que

$$\frac{y^k - x^k}{y - x} - kx^{k-1} = (y - x) \sum_{i=2}^k \frac{k!}{i!(k-i)!} (y - x)^{i-2} x^{k-i}$$

et en déduire que

$$\left| \frac{y^k - x^k}{y - x} - kx^{k-1} \right| \le 16|y - x| \sum_{i=2}^k \frac{k!}{i!(k-i)!} \frac{1}{4^i} \frac{1}{4^{k-i}} \le 16|y - x| \frac{1}{2^k}.$$

b. Montrer que si $n \in \mathbb{N}^*$ alors

$$\left| \frac{P_n(y) - P_n(x)}{y - x} - P_{n-1}(x) \right| \le 16|y - x| \sum_{k=2}^n \frac{1}{2^k} \le 8|y - x|.$$

c. En déduire que

$$\left| \frac{f(y) - f(x)}{y - x} - f(x) \right| \le 8|y - x|$$

et conclure que f est dérivable en x et que f'(x) = f(x).

3. Soit $\lambda \in]0, +\infty]$. Montrer que si $g:]-\lambda, \lambda[\to]0, +\infty[$ et $h:]-\lambda, \lambda[\to \mathbf{R}$ dérivables, vérifient g'=g, h'=h et g(0)=h(0) alors g=h.

4. Soit $x \in \mathbf{R}$. On pose

$$F(x) = \left(\frac{f(\frac{x}{n} + \frac{1}{8})}{f(\frac{1}{8})}\right)^n$$

avec $n \in \mathbb{N}^*$ tel que $\frac{x}{n} \in]-\frac{1}{8}, \frac{1}{8}[$. Montrer que la fonction F est définie sans ambiguïté pour tout $x \in \mathbb{R}$, qu'elle est dérivable et que c'est la seule qui vérifie F(0) = 1 et F' = F.