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1 Introduction

Comparison inequalities for option prices with convex payoff functions have been ob-

tained in the literature, based on the classical Kolmogorov equation under the propa-

gation of convexity hypothesis for Markovian semigroups. See for instance [EKJS98]
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in the case of continuous diffusion processes, and [BJ00], [BR06], [ET07], in the case

of jump-diffusion processes. In [BP08], lower and upper bounds on option prices have

been obtained in one-dimensional jump-diffusion markets with point process compo-

nents under different conditions.

Note however that the propagation of convexity property is not always satisfied,

even in the (Markovian) jump-diffusion case, see e.g. Theorem 4.4 in [ET07]. Using

different arguments based on forward-backward stochastic calculus, related convex

ordering results have been obtained for exponential jump-diffusion processes in [BP08].

The case of random vectors admitting a predictable representation in terms of a

Brownian motion and a non-necessarily independent jump component has also been

treated in [ABP08] using forward-backward stochastic calculus, extending the one-

dimensional framework of [KMP06], see also [BLP13] for the case of Itô integrals and

[MP13] for additive functionals.

In [BP20b], bounds on differences in expectation have been obtained in order to

estimate the distance between the distribution L (XT ) of the terminal value XT of a

stochastic integral process (Xt)t∈[0,T ] on a finite time horizon [0, T ] and a target dis-

tribution L (YT ) given by the terminal value YT of a jump-diffusion process (Yt)t∈[0,T ]

solution of a stochastic differential equation (SDE). The main idea consists in ex-

panding the difference h(F )− h(G) for suitable functions h : R→ R by use of the Itô

formula and, after taking expectations, to bound the remaining terms via an adequate

control of the characteristics of the related jump-diffusion processes, see e.g. [BP20a]

and references therein.

In this paper we apply a different approach based on forward-backward stochas-

tic calculus, see Theorems 3.1 and 3.3 below, from which we derive bounds on the

Wasserstein distance between stochastic integrals with jumps. In contrast to [BP20b],

this approach also allows us to provide distance bounds between the distribution of a

pure point process stochastic integral and a Brownian stochastic integral, see Corol-

lary 5.3. Note that convergence in the Wasserstein distance implies convergence in

distribution.

Note that another fruitful approach to obtain Wasserstein bounds is the Stein

method, for a short presentation see [ABD+20] and the references therein. However
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this method applies for some fixed target distribution and relies on the so-called Stein

equation depending on this target distribution, for instance see [NP12] for the normal

distribution. In contrast, our approach applies to stochastic integrals with jumps

whose distributions possibly escape the scope of the Stein method. As an example,

consider (Bt)t∈[0,T ] a standard Brownian motion, (Zt)t∈[0,T ] a pure-jump martingale,

and (σt)t∈[0,T ] an adapted process with respect to the filtration generated by (Bt)t∈[0,T ].

In Corollary 5.1, given (f(t))t∈[0,T ] a deterministic function we consider the Wasserstein

distance dW(F,G) between the sum

F =

∫ T

0

σtdBt + ZT

and the mixture

G =

∫ T

0

f(t)dBt +NT

of a centered Gaussian N
(

0,
∫ T

0
|f(t)|2dt

)
random variable and the terminal value

of a (compensated) compound Poisson process (Nt)t∈[0,T ] with deterministic intensity

µ(t, dx)dt. From Corollary 4.1 we show that dW(F,G) can be bounded as

dW(F G) ≤



√
(4 + E[|F |] + E[|G|])

(
E
[∫ T

0

dTV

(
ν̃t, µ̃(t, ·)

)
dt

])1/2

,

3
√

9

2
(4 + E[|F |] + E[|G|])2/3

(
E
[∫ T

0

dW

(
ν̃t, µ̃(t, ·)

)
dt

])1/3

,

C

(
E
[∫ T

0

dFM

(
ν̃t, µ̃(t, ·)

)
dt

])1/3

,

(1.1a)

(1.1b)

(1.1c)

for some finite constant C > 0. In these bounds, dTV and dFM denote the total

variation and Fortet-Mourier distances, and we let

ν̃t(dx) := |σt|2δ0(dx) + |x|2νt(dx), µ̃(t, dx) := |f(t)|2δ0(dx) + |x|2µ(t, dx),

t ∈ [0, T ], where νt(dx)dt and µ(t, dx)dt denote the compensators of the pure-jump

martingales (Zt)t∈[0,T ] and (Nt)t∈[0,T ], see Section 2 for detailed definitions. Due to the

inequality dFM(·, ·) ≤ dW(·, ·) the bound (1.1c) is better than (1.1b), however it holds

when E
[∫ T

0
dFM

(
ν̃t, µ̃(t, ·)

)
dt
]

is small enough, while (1.1b) has an explicit constant.
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Such estimates are then specialized to stochastic integrals of the form

F :=

∫ T

0

σtdBt + ZT =

∫ T

0

σtdBt +

∫ T

0

Jt
(
dYt − λtdt

)
,

where (Yt)t∈[0,T ] is a point process with jumps of size 1 and compensator (λt)t∈[0,T ],

and NT in G is a centered Poissonian random variable with parameter µT , µ > 0. In

Corollary 5.2 we show that dW(F,G) in (1.1a)-(1.1c) can be controlled via

E
[∫ T

0

dFM

(
ν̃t, µ̃(t, ·)

)
dt

]
≤ E

[∫ T

0

∣∣|σt|2 − |f(t)|2
∣∣dt]+ E

[∫ T

0

|Jt|2|Jt − 1|λtdt
]

+E
[∫ T

0

∣∣|Jt|2 − 1
∣∣λtdt]+ E

[∫ T

0

|λt − µ|dt
]
.

When F is the stochastic integral with jumps

F =

∫ T

0

Jt(dYt − λdt)

where (Yt)t∈[0,T ] is a Poisson point process with intensity λ > 0, with σt = 0 and

NT = 0 in G, it follows that the distance dW(F,G) in (1.1a)-(1.1c) of F to a centered

Gaussian random variable G ∼ N
(

0,
∫ T

0
|f(t)|2dt

)
is controlled via the bound

E
[∫ T

0

dFM

(
ν̃t, µ̃(t, ·)

)
dt

]
≤ E

[∫ T

0

∣∣|f(t)|2 − λ|Jt|2
∣∣dt]+ λE

[∫ T

0

|Jt|3dt
]
,

see Corollary 5.3. Similarly, when Jt = 0 in F and NT = 0 in G, the distance dW(F,G)

in (1.1a)-(1.1c) between the distribution of the Brownian stochastic integral

F =

∫ T

0

σtdBt

and the centered Gaussian random variable G ∼ N
(

0,
∫ T

0
|f(t)|2dt

)
can be controlled

via the bound

E
[∫ T

0

dFM

(
ν̃t, µ̃(t, ·)

)
dt

]
≤ E

[∫ T

0

∣∣|σt|2 − |f(t)|2
∣∣dt] , (1.2)

see Corollary 5.4. Observe that in this particular case, other bounds can be directly

obtained by bounding the Wasserstein by the L2 distance and using the Itô isometry,

as

dW

(
F,G

)
≤

(
IE
[∣∣G− F ∣∣2])1/2
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=

(
IE

[(∫ T

0

(σt − f(t))dBt

)2
])1/2

=

(
IE

[∫ T

0

∣∣σt − f(t)
∣∣2dt])1/2

. (1.3)

However, the bound (1.3) is of a different nature, and it cannot be compared to (1.2)

in general. In addition, this simple argument does not apply when mixing continuous

and jump stochastic integrals.

We proceed as follows. In Section 2 we recall some background results on mar-

tingale and jump-diffusion characteristics. In Section 3 we derive bounds for the

sums of forward and backward martingales, which are applied in Section 4 to Wasser-

stein bounds for forward-backward stochastic integrals with jumps. Applications to

standard stochastic integrals are considered in Section 5, and technical lemmas are

gathered in the appendix.

2 Notation

Jump-diffusion processes

Consider a probability space (Ω,F ,P) equipped with an increasing filtration (Ft)t∈[0,T ],

and an (Ft)-martingale (Mt)t∈[0,T ] having right-continuous paths with left limits. We

denote by (M c
t )t∈[0,T ] the continuous part of (Mt)t∈[0,T ], and by

µ(dt, dy) :=
∑
s>0

1{∆Ms 6=0}δ(s,∆Ms)(dt, dy),

its jump measure, where ∆Mt := Mt −Mt− denotes jump size and δ(s,x) is the Dirac

measure at (s, x) ∈ [0, T ]× R. The pair(
ν(dt, dy), 〈M c,M c〉

)
,

where ν(dt, dy) and (〈M c,M c〉t)t∈[0,T ] denote respectively the (Ft)t∈[0,T ]-dual pre-

dictable projection of µ(dt, dy) and the predictable quadratic variation of (Mt)t∈[0,T ],

is called the local characteristics of (Mt)t∈[0,T ], see [JM76].
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Forward and backward Itô integrals

Let (Ft)t∈[0,T ], resp. (F∗t )t∈[0,T ] be a forward, resp. backward, filtration, and consider

(Mt)t∈[0,T ] an (F∗t )t∈[0,T ]-adapted, (Ft)t∈[0,T ]-forward martingale (2.1)

with right-continuous paths and left limits, and(
M∗

t

)
t∈[0,T ]

an (Ft)t∈[0,T ]-adapted, (F∗t )t∈[0,T ]-backward martingale (2.2)

with left-continuous paths and right limits. Given (Xt)t∈[0,T ], resp. (X∗t )t∈[0,T ], a

forward (resp. backward) adapted process, the forward and backward Itô differentials

d and d∗ are respectively defined by the limits in probability∫ t

0

F (Xt) dMt = P- lim
n→+∞

kn∑
i=1

f
(
Xtni−1

)(
Mtni
−Mtni−1

)
(2.3)

and ∫ t

0

F (X∗t ) d∗M∗
t = P- lim

n→+∞

kn−1∑
i=0

f
(
X∗tni+1

)(
M∗

tni
−M∗

tni+1

)
(2.4)

for all refining sequences {0 = tn0 ≤ tn1 ≤ · · · ≤ tnkn = t}, n ≥ 1, of partitions of [0, t]

tending to the identity. The following forward-backward Itô formula has been proved

in [KMP06, Theorem 8.1].

Proposition 2.1 Consider (Mt)t∈[0,T ] an (Ft)t∈[0,T ]-forward martingale and (M∗
t )t∈[0,T ]

an (F∗t )t∈[0,T ]-backward martingale satisfying (2.1)–(2.2), whose characteristics have

the form

ν(dt, dx) = νt(dx)dt, ν∗(dt, dx) = ν∗t (dx)dt, (2.5)

with the predictable quadratic variations

d〈M c,M c〉t = |σt|2dt and d〈M∗c,M∗c〉t =
∣∣σ∗t ∣∣2dt, (2.6)

where (σt)t∈[0,T ],
(
σ∗t
)
t∈[0,T ]

, are predictable with respect to (Ft)t∈[0,T ] and (F∗t )t∈[0,T ],

respectively. Then, for all f ∈ C2(R2,R) we have

f(Mt,M
∗
t )− f(M0,M

∗
0 )

=

∫ t

0+

∂f

∂x1

(Mu− ,M
∗
u)dMu +

1

2

∫ t

0

∂2f

∂x2
1

(Mu,M
∗
u)d〈M c,M c〉u
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+
∑

0<u≤t

(
f(Mu,M

∗
u)− f(Mu− ,M

∗
u)−∆Mu

∂f

∂x1

(Mu− ,M
∗
u)

)

−
∫ t−

0

∂f

∂x2

(Mu,M
∗
u+)d∗M∗

u −
1

2

∫ t

0

∂2f

∂x2
2

(Mu,M
∗
u)d〈M∗c,M∗c〉u

−
∑

0≤u<t

(
f(Mu,M

∗
u)− f(Mu,M

∗
u+)−∆M∗

u

∂f

∂x2

(
Mu,M

∗
u+

))
.

Note that in the above statements, (M c
t )t∈[0,T ] and (M∗c

t )t∈[0,T ] respectively denote the

continuous parts of (Mt)t∈[0,T ] and (M∗
t )t∈[0,T ].

Distances between distributions

Given a set H of functions h : R → R, we define the distance dH between two

probability measures µ, ν on (R,B(R)) by

dH(µ, ν) := sup
h∈H

∣∣∣∣∫ +∞

−∞
h dµ−

∫ +∞

−∞
h dν

∣∣∣∣ ,
and we write dH(X, Y ) = dH(µ, ν) when µ and ν are the probability distributions of

the random variables X, Y .

The Fortet-Mourier distance dFM corresponds to the choice H = FM, where FM
is the class of functions h such that ‖h‖BL = ‖h‖L + ‖h‖∞ ≤ 1, where ‖ · ‖L
denotes the Lipschitz semi-norm and ‖ · ‖∞ is the supremum norm.

The total variation distance dTV is obtained when H is the set of indicator functions

1A, A ∈ B(R).

The Wasserstein distance dW corresponds to H = Lip(1), where Lip(1) is the class

of functions h such that ‖h‖L ≤ 1.

The smooth Wasserstein distance dWr , r ≥ 0, is obtained when H := Hr is the set

of continuous functions which are r-times continuously differentiable and such

that ‖h(k)‖∞ ≤ 1, for all 0 ≤ k ≤ r, where h(0) = h, and where h(k), k ≥ 1, is

the k-th derivative of h.

It is easy to observe that dFM(·, ·) ≤ dW(·, ·) and the topologies induced by dW and dTV

are stronger than the topology of convergence in distribution which is metrized by dFM.
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Moreover, for the smooth Wasserstein distance dWr with, r > 1, an approximation

argument shows that

dWr(X, Y ) = sup
h∈C∞c (R)∩Hr

|E[h(X)]− E[h(Y )]|, (2.7)

where C∞c (R) is the space of compactly supported, infinitely differentiable functions

on R, see Lemma A.3 in [AH19]. Note that dWr−1(X, Y ) ≤ 3
√

2
√
dWr(X, Y ) and

that the smooth Wasserstein distance dWr is a weaker distance than the Wasserstein

distance dW since

dWr(X, Y ) ≤ dW1(X, Y ) ≤ dW(X, Y ),

see (2.16) in [AH19] to which we refer for further details in this direction, see also

[Dud02].

Moreover, recall that for a signed measure µ on (R,B(R)) with Jordan decomposition

µ = µ+ + µ− in terms of (positive) measures µ+, µ−, we note |µ|TV = µ+ + µ− its

total variation measure and ‖µ‖TV = |µ|TV(R) its total variation. With this notation,

we have dTV(µ, ν) = ‖µ− ν‖TV. We also let Cnb (R), 1 ≤ n ≤ ∞, denote the space of

functions in Cn(R) with bounded derivatives of orders 1 to n.

3 Wasserstein bounds for forward and backward inte-

grals

We begin with distance estimates for forward and backward martingales, which will be

applied to stochastic integrals with jumps in Section 5. In the next Theorems 3.1 and

3.3 we derive general bounds on the Wasserstein distance between values of the sum

Mt + M∗
t of a forward and a backward martingale at different times. Our argument

allows us to provide three bounds in terms of either the total variation, Wasserstein or

Fortet-Mourier distances. Since the bounds (3.12), (3.13) and (3.14) are not directly

comparable, we state each of them explicitly. In the sequel, we let f(x) ∼x→0 g(x) if

limx→0 f(x)/g(x) = 1. First, we have the following bounds for the smooth Wasserstein

distances:

Theorem 3.1 Consider (Mt)t∈[0,T ] an (Ft)t∈[0,T ]-forward martingale and (M∗
t )t∈[0,T ] an

(F∗t )t∈[0,T ]-backward martingale satisfying (2.1)–(2.2). Assume also that the local char-
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acteristics of (Mt)t∈[0,T ] and (M∗
t )t∈[0,T ] have the form (2.5)–(2.6), and let

ν̃t(dx) := |σt|2δ0(dx) + |x|2νt(dx), ν̃∗t (dx) := |σ∗t |2δ0(dx) + |x|2ν∗t (dx). (3.1)

Then, the following bounds hold true for the smooth Wasserstein distances for s ≤ t:

dW2(Ms +M∗
s ,Mt +M∗

t ) ≤ 1

2
E
[∫ t

s

dTV

(
ν̃u, ν̃

∗
u

)
du

]
, (3.2)

dW3(Ms +M∗
s ,Mt +M∗

t ) ≤ 1

6
E
[∫ t

s

dW

(
ν̃u, ν̃

∗
u

)
du

]
, (3.3)

dW3(Ms +M∗
s ,Mt +M∗

t ) ≤ 2

3
E
[∫ t

s

dFM

(
ν̃u, ν̃

∗
u

)
du

]
. (3.4)

Remark 3.2 The above bounds are obtained by arguments similar to each other.

Although (3.4) is stronger than (3.3) since dFM(·, ·) ≤ dW(·, ·), we note that (3.3) has

a smaller constant.

Proof. We start by bounding the absolute difference
∣∣E[h(Mt+M

∗
t )]−E[h(Ms+M

∗
s )]|

for h ∈ C2(R). By Itô’s formula for forward-backward martingales (see Proposi-

tion 2.1) applied to f(x1, x2) := h(x1 + x2) we have, for 0 ≤ s ≤ t,

h(Mt +M∗
t ) = h(Ms +M∗

s )

+

∫ t

s+
h′(Mu− +M∗

u)dMu +
1

2

∫ t

s

h′′(Mu +M∗
u) d〈M c,M c〉u

+
∑
s<u≤t

(
h(Mu− +M∗

u + ∆Mu)− h(Mu− +M∗
u)−∆Mu h

′(Mu− +M∗
u)
)

−
∫ t−

s

h′(Mu +M∗
u+)d∗M∗

u −
1

2

∫ t

s

h′′(Mu +M∗
u) d〈M∗c,M∗c〉u

−
∑
s≤u<t

(
h(Mu +M∗

u+ + ∆∗M∗
u)− h(Mu +M∗

u+)−∆∗M∗
u h
′(Mu +M∗

u+)
)
,

where d and d∗ denote the forward and backward Itô differential as defined in (2.3)

and (2.4) and ∆∗M∗
t = M∗

t −M∗
t+ . Taking expectations and taking into account the

vanishing of martingale terms, we find

E
[
h(Mt +M∗

t )
]

= E
[
h(Ms +M∗

s )
]

(3.5)

+
1

2
E
[∫ t

s

h′′(Mu +M∗
u)d
(
〈M c,M c〉u − 〈M∗c,M∗c〉u

)]
+E

[∫ t

s

∫ +∞

−∞

(
h(Mu +M∗

u + x)− h(Mu +M∗
u)− xh′(Mu +M∗

u)
)
νu(dx) du

]
9



−E
[∫ t

s

∫ +∞

−∞

(
h(Mu +M∗

u + x)− h(Mu +M∗
u)− xh′(Mu +M∗

u)
)
ν∗u(dx) du

]
.

For h ∈ C2(R), the Taylor formula

h(y + x) = h(y) + xh′(y) + |x|2
∫ 1

0

(1− τ)h′′(y + τx)dτ

allows us to rewrite (3.5) as

E
[
h(Mt +M∗

t )
]
− E

[
h(Ms +M∗

s )
]

=
1

2
E
[∫ t

s

h′′(Mu +M∗
u)
(
|σu|2 − |σ∗u|2

)
du

]
(3.6)

+E
[∫ 1

0

(1− τ)

∫ t

s

∫ +∞

−∞
h′′(Mu +M∗

u + τx)|x|2
(
νu(dx)− ν∗u(dx)

)
dudτ

]
= E

[∫ 1

0

(1− τ)

∫ t

s

∫ +∞

−∞
h′′(Mu +M∗

u + τx)
(
ν̃u(dx)− ν̃∗u(dx)

)
dudτ

]
(3.7)

where ν̃u(dx) and ν̃∗u(dx) are defined in (3.1). When h ∈ C2
b (R), (3.7) entails∣∣E[h(Mt +M∗

t

)]
− E

[
h
(
Ms +M∗

s

)]∣∣ ≤ ‖h′′‖∞
2

E
[∫ t

s

dTV

(
ν̃u, ν̃

∗
u

)
du

]
. (3.8)

When h ∈ C3
b (R), then h′′ ∈ Lip(‖h(3)‖∞), and (3.7) implies∣∣E[h(Mt +M∗

t

)]
− E

[
h
(
Ms +M∗

s

)]∣∣
≤ E

[∫ 1

0

(1− τ)

∫ t

s

∣∣∣∣∫ +∞

−∞
h′′(Mu +M∗

u + τx)
(
ν̃u(dx)− ν̃∗u(dx)

)∣∣∣∣ dudτ] (3.9)

≤ E
[∫ 1

0

(1− τ)

∫ t

s

(τ‖h(3)‖∞ + ‖h′′‖∞)dFM

(
ν̃u, ν̃

∗
u

)
dudτ

]
since the function x 7→ h′′(Mu + M∗

u + τx) is almost surely (τ‖h(3)‖∞)-Lipschitz and

bounded by ‖h′′‖∞. As a consequence, we have∣∣E[h(Mt +M∗
t

)]
−E

[
h
(
Ms +M∗

s

)]∣∣ ≤ (1

6
‖h(3)‖∞+

1

2
‖h′′‖∞

)
E
[∫ t

s

dFM

(
ν̃u, ν̃

∗
u

)
du

]
.

(3.10)

Alternatively, (3.9) also entails the (weaker) bound∣∣E[h(Mt +M∗
t

)]
− E

[
h
(
Ms +M∗

s

)]∣∣ ≤ 1

6
‖h(3)‖∞E

[∫ t

s

dW

(
ν̃u, ν̃

∗
u

)
du

]
. (3.11)

Due to (2.7), the inequalities (3.8), (3.10) and (3.11) immediately give the bounds for

the smooth Wasserstein distances in (3.2), (3.4) and (3.3). �
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The next proposition presents bounds for the Wasserstein distance.

Theorem 3.3 In the same setting as in Theorem 3.1, the following bounds hold true

for the Wasserstein distance:

(1) For s ≤ t close enough (see (3.18)):

dW(Ms +M∗
s ,Mt +M∗

t )

≤

√(
4 + E

[
|Mt +M∗

t |
]

+ E
[
|Ms +M∗

s |
])
E
[∫ t

s

dTV

(
ν̃u, ν̃∗u

)
du

]
. (3.12)

(2) For s ≤ t close enough (see (3.19)):

dW(Ms +M∗
s ,Mt +M∗

t ) (3.13)

≤ 3
3
√

16

(
4 + E

[∣∣Ms +M∗
s

∣∣]+ E
[∣∣Mt +M∗

t

∣∣])2/3
(
E
[∫ t

s

dW

(
ν̃u, ν̃

∗
u

)
du

))1/3

.

(3) For s ≤ t close enough (see (3.20)):

dW(Ms +M∗
s ,Mt +M∗

t ) ≤
b
(
1 +

√
α∗(a, b)

)
α∗(a, b)

∼b→0
3

√
9a2b

4

= O

((
E
[∫ t

s

dFM

(
ν̃u, ν̃

∗
u

)
du

])1/3
)
, (3.14)

where f(t) = O(g(t)) means f(t)/g(t) is bounded as t↘ s, and we set

a :=
1

2

(
4+E

[∣∣Ms+M
∗
s

∣∣]+E
[∣∣Mt+M

∗
t

∣∣]), b := E
[∫ t

s

dFM

(
ν̃u, ν̃

∗
u

)
du

]
. (3.15)

Proof. The argument is similar to the proof of Theorem 3.1, however since the

definition of the (usual) Wasserstein distance dW requires to use h ∈ Lip(1), we

cannot directly apply (3.8), (3.10) or (3.11) which have been obtained for h ∈ C3(R)

in the proof of Theorem 3.1. For this reason, we consider the approximation hα of

h ∈ Lip(1) given by

hα(x) :=

∫ +∞

−∞
h
(
y
√
α + x

√
1− α

)
φ(y) dy, 0 < α < 1, (3.16)

where φ is the density of the standard N (0, 1)-distribution and we apply (3.8), (3.10)

or (3.11) to hα and combine with the approximation Lemma A.1 in order to recover

a bound for h ∈ Lip(1).
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(1) Using (3.8) and (A.1) in Lemma A.1, we have for all α ∈ (0, 1):∣∣E[h(Mt +M∗
t

)]
− E

[
h
(
Ms +M∗

s

)]∣∣
≤

∣∣E[h(Mt +M∗
t

)]
− E

[
hα
(
Mt +M∗

t

)]∣∣+
∣∣E[hα(Mt +M∗

t

)]
− E

[
hα
(
Ms +M∗

s

)]∣∣
+
∣∣E[hα(Ms +M∗

s

)]
− E

[
h
(
Ms +M∗

s

)]∣∣
≤
√
α

2

(
4 + E

[∣∣Mt +M∗
t

∣∣]+ E
[∣∣Ms +M∗

s

∣∣])+
1

2
√
α
E
[∫ t

s

dTV

(
ν̃u, ν̃

∗
u

)
du

]
. (3.17)

Next, minimizing (3.17) in α ∈ (0, 1) with

α∗ :=

E
[∫ t

s

dTV

(
ν̃u, ν̃

∗
u

)
du

]
4 + E[|Ms +M∗

s |] + E[|Mt +M∗
t |]

< 1, (3.18)

for instance when

E
[∫ t

s

dTV

(
ν̃u, ν̃

∗
u

)
du

]
< 4,

and taking the maximum in h ∈ Lip(1), we obtain the bound (3.12).

(2) Similarly, using now (3.11), we have for all α ∈ (0, 1):∣∣E[h(Mt +M∗
t

)]
− E

[
h
(
Ms +M∗

s

)]∣∣
≤
√
α

2

(
4 + E

[∣∣Ms +M∗
s

∣∣]+ E
[∣∣Mt +M∗

t

∣∣])+
1

3α
E
[∫ t

s

dW

(
ν̃u, ν̃

∗
u

)
du

]
.

Optimizing the quantity a
√
α + b/α in α > 0 with

a =
1

2

(
4 + E

[∣∣Ms +M∗
s

∣∣]+ E
[∣∣Mt +M∗

t

∣∣]), b =
1

3
E
[∫ t

s

dW

(
ν̃u, ν̃

∗
u

)
du

]
and

α∗ :=
3

√
4b2

a2
< 1, (3.19)

we obtain

dW(Ms +M∗
s ,Mt +M∗

t )

≤ 3
3
√

16

(
4 + E

[∣∣Ms +M∗
s

∣∣]+ E
[∣∣Mt +M∗

t

∣∣])2/3
(
E
[∫ t

s

dW

(
ν̃u, ν̃

∗
u

)
du

])1/3

when s ≤ t are close enough, for instance when

E
[∫ t

s

dW

(
ν̃u, ν̃

∗
u

)
du

]
< 3.

12



(3) Similarly, using (3.10) and still (A.1) in Lemma A.1, we have

∣∣E[h(Mt +M∗
t

)]
− E

[
h
(
Ms +M∗

s

)]∣∣
≤
√
α

2

(
4 + E

[∣∣Ms +M∗
s

∣∣]+ E[
∣∣Mt +M∗

t

∣∣])+
( 1

3α
+

1

2
√
α

)
E
[∫ t

s

dFM

(
ν̃u, ν̃

∗
u

)
du

]
.

Next, with Lemma A.2, we optimize the above quantity of the form a
√
α+b/(2

√
α)+

b/(3α) in α > 0, with a, b given in (3.15), under appropriate conditions on dFM

(
ν̃u, ν̃

∗
u

)
,

so that b is small enough to ensure that α∗(a, b) in (A.2) satisfies

α∗(a, b) < 1. (3.20)

The bound (3.10) is then optimized into

dW(Ms +M∗
s ,Mt +M∗

t ) ≤ b
1 +

√
α∗(a, b)

α∗(a, b)
∼b→0

3

√
9a2b

4

= O

((
E
[∫ t

s

dFM

(
ν̃u, ν̃

∗
u

)
du

])1/3
)
. (3.21)

�

The above bounds (3.2)–(3.4) and (3.12)–(3.14) rely on the distance dH
(
ν̃t, ν̃

∗
t

)
for

H ∈ {TV,FM,W} which satisfies

dH
(
ν̃t, ν̃

∗
t

)
= sup

h∈H

∣∣∣∣∫ +∞

−∞
h(x)ν̃t(dx)−

∫ +∞

−∞
h(x)ν̃∗t (dx)

∣∣∣∣
= sup

h∈H

∣∣∣∣(|σt|2 − |σ∗t |2)h(0) +

∫ +∞

−∞
y2h(y)νt(dy)−

∫ +∞

−∞
y2h(y)ν∗t (dy)

∣∣∣∣
from the definition (3.1). When H = TV, this gives

dTV

(
ν̃t, ν̃

∗
t

)
= ||σt|2 − |σ∗t |2|+

∫ +∞

−∞
|y|2|νt − ν∗t |TV(dy),

where |νt − ν∗t |TV(dy) denotes the total variation measure obtained from the Jordan

decomposition of νu − ν∗u, see Section 2, while when H = W we have

dW

(
ν̃t, ν̃

∗
t

)
≤ sup

h∈H

(∣∣|σt|2 − ∣∣σ∗t ∣∣2∣∣|h(0)|+
∣∣∣∣∫ +∞

−∞
y2h(y)νt(dy)−

∫ +∞

−∞
y2h(y)ν∗t (dy)

∣∣∣∣) .

13



4 Wasserstein bounds for stochastic integrals with jumps

We now consider random variables F given by the sum

F =

∫ T

0

σtdBt + ZT (4.1)

of a Wiener integral and the value at time T of a pure-jump martingale (Zt)t∈[0,T ] with

compensator νt(dx)dt, where (Bt)t∈[0,T ] is a standard Brownian motion and (σt)t∈[0,T ]

is adapted with respect to the filtration generated by (Bt)t∈[0,T ]. In this section, the

random variable G is given by the backward counterpart of (4.1), i.e. as the sum

G =

∫ T

0

σ∗t d
∗B∗t + Z∗0 (4.2)

of a backward Wiener integral and the value at time 0 of a backward pure-jump martin-

gale (Z∗t )t∈[0,T ] with compensator ν∗t (dx)dt, where (B∗t )t∈[0,T ] is a backward Brownian

motion and (σ∗t )t∈[0,T ] is adapted with respect to the (backward) filtration generated

by (B∗t )t∈[0,T ].

In order to bound the smooth Wasserstein distances dWr(F,G) and the Wasserstein

distance dW(F,G), we will apply the results of Section 3 to suitable forward and

backward martingales recovering respectively F and G as their initial and final values.

Corollary 4.1 Let F and G be given by (4.1) and (4.2). Then, with νt and ν∗t given

in (3.1), the following bounds hold true:

dW2(F,G) ≤ 1

2
E
[∫ T

0

dTV

(
ν̃t, ν̃

∗
t

)
dt

]
, (4.3)

dW3(F,G) ≤ 1

6
E
[∫ T

0

dW

(
ν̃t, ν̃

∗
t

)
dt

]
, (4.4)

dW3(F,G) ≤ 2

3
E
[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
. (4.5)

The same comments as in Remark 3.2 apply to the bounds (4.4) and (4.5).

Proof. We assume without loss of generality that F and G are independent,

and apply Theorem 3.1. To that purpose, denoting by (µ(dt, dy))(t,y)∈[0,T ]×R and(
µ∗(dt, dy)

)
(t,y)∈[0,T ]×R the jump measures of Z in (4.1) and of Z∗ in (4.2), we have

Zt =

∫ t

0

∫ +∞

−∞
y(µ(ds, dy)− νs(dy)ds) and Z∗t =

∫ T

t

∫ +∞

−∞
y(µ∗(ds, dy)− ν∗s (dy)ds).
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Due to the independence of F and G, we have that (Bt)t∈[0,T ] and
(
µ(dt, dx)

)
t∈[0,T ]

are independent from (B∗t )t∈[0,T ] and
(
µ∗(dt, dx)

)
t∈[0,T ]

. Next, letting

Mt =

∫ t

0

σsdBs +

∫ t

0

∫ +∞

−∞
y
(
µ(ds, dy)− νs(dy)ds

)
,

and

M∗
t =

∫ T

t

σ∗sd
∗B∗s +

∫ T

t

∫ +∞

−∞
y(µ∗(ds, dy)− ν∗s (dx)ds),

we note that F = MT and G = M∗
0 . Let also (FMt )t∈[0,T ] be the (forward) filtration

generated by (Bt)t∈[0,T ] and
(
µ(dt, dx)

)
t∈[0,T ]

, given by

FMt = σ
(
Bs, µ([0, s]× A) : 0 ≤ s ≤ t, A ∈ Bb(R)

)
,

and let (FM∗t )t∈[0,T ] be the (backward) filtration generated by (B∗t )t∈[0,T ] and
(
µ∗(dt, dx)

)
t∈[0,T ]

,

given by

FM∗t = σ(B∗T −B∗s , µ∗([s, T ]× A) : t ≤ s ≤ T,A ∈ Bb(R)), t ∈ [0, T ].

Note that (Mt)t∈[0,T ] is a forward martingale with respect to (FMt ) while (M∗
t )t∈[0,T ]

is a backward martingale with respect (FM∗t ). In order to apply Theorem 3.1, we

consider the following forward and backward filtrations:

Ft = FMt ∨ FM
∗

0 , F∗t = FMT ∨ FM
∗

t , t ∈ [0, T ].

Due to the independence of FMT and FM∗0 , the process (Mt)t∈[0,T ] is a forward (Ft)-
martingale satisfying (2.1) since Mt is FMT -measurable for all t ∈ [0, T ]. Similarly,

(M∗
t )t∈[0,T ] is a backward (F∗t )-martingale satisfying (2.2) since M∗

t is FM∗T -measurable

for all t ∈ [0, T ].

Since the local characteristics of (Mt)t∈[0,T ] are |σt|2 and ν
(M)
t = νt and those of

(M∗
t )t∈[0,T ] are |σ∗t |2 and ν

(M∗)
t = ν∗t , Theorem 3.1 applies to (Mt)t∈[0,T ] and (M∗

t )t∈[0,T ],

and since MT = F , M∗
0 = G, and M0 = M∗

T = 0, the bound (3.2) yields

dW2(F,G) ≤ 1

2
E
[∫ t

s

dTV

(
ν̃u, ν̃

∗
u

)
du

]
,

which is (4.3). Similarly, (3.3) yields (4.4), and (3.4) yields (4.5). �
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Following the same strategy, we derive similarly from Theorem 3.3 the following

bounds for the Wasserstein distance of F and G in (4.1) and (4.2). Observe that

for s = 0 and t = T , the closeness requirements about s and t in Theorem 3.3, see

(3.18)-(3.20), are also satisfied under the assumptions in (1)-(3) below, under suitable

conditions on the martingale characteristics σt, σ
∗
t , νt, ν

∗
t , t ∈ [0, T ].

Corollary 4.2 Let F and G be given by (4.1) and (4.2). Then, with νt and ν∗t given

in (3.1), the following bounds hold true:

(1) Under the condition

E
[∫ T

0

dTV

(
ν̃t, ν̃

∗
t

)
dt

]
< 4 + E[|F |] + E[|G|],

we have

dW(F,G) ≤

√
(4 + E[|F |] + E[|G|])E

[∫ T

0

dTV

(
ν̃t, ν̃∗t

)
dt

]
.

(2) Under the condition

E
[∫ T

0

dW

(
ν̃t, ν̃

∗
t

)
dt

]
<

3

4
(4 + E[|F |] + E[|G|]),

we have

dW(F,G) ≤
3
√

9

2
(4 + E[|F |] + E[|G|])2/3

(
E
[∫ T

0

dW

(
ν̃t, ν̃

∗
t

)
dt

])1/3

. (4.6)

(3) Letting

a :=
1

2
(4 + E[|F |] + E[|G|]) and b := E

[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
,

and assuming that α∗(a, b) in (A.2) satisfies α∗(a, b) < 1, e.g. for b small enough,

we have

dW(F,G) ≤ b
1 +

√
α∗(a, b)

(α∗(a, b))3/2
∼ 3

√
9a2b

4
, b→ 0. (4.7)
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5 Application to stochastic integrals

In this section, the results of the previous sections are specialized to the comparison

of random variables F and G respectively given as the sum of standard Brownian Itô

integral and a pure jump-martingale, and as the sum of a standard Wiener integral

and a compound Poisson process. In the following result, the random variable G is

expressed using a standard forward stochastic integral.

Corollary 5.1 Consider

F =

∫ T

0

σtdBt + ZT ,

as in (4.1), and let

G :=

∫ T

0

f(t)dBt +NT (5.1)

where (f(t))t∈[0,T ] is a deterministic function and NT is a (compensated) compound

Poisson process with compensator µ(t, dx)dt, satisfying the condition∫ T

0

∫ ∞
−∞

min(1, x2)µ(t, dx)dt <∞.

Then the bounds of Corollary 4.1 and Corollary 4.2 apply respectively to the smooth

Wasserstein distance dWr(F,G), r = 2, 3, and to the Wasserstein distance dW(F,G)

by taking

ν̃t(dx) := |σt|2δ0(dx) + |x|2νt(dx) and µ̃(t, dx) := |f(t)|2δ0(dx) + |x|2µ(t, dx). (5.2)

Proof. Since for a deterministic integrand (f(t))t∈[0,T ] the forward and backward

stochastic integrals coincide (see e.g. [Nua06], Relations (3.13)-(3.14) page 176), we

have ∫ T

0

f(t)dBt =

∫ T

0

f(t)d∗B∗t , (5.3)

where B∗t = BT −Bt, t ∈ [0, T ], defines a backward Brownian motion. Next, we let

NT :=

∫ T

0

∫ +∞

−∞
y(N(dt, dy)− µ(t, dy)dt)

where N(dt, dy) is a Poisson random measure with compensator µ(t, dx)dt, and set

FN∗t := σ
(
N(A× [s, T ]) : A ∈ B(R), t ≤ s ≤ T

)
, t ∈ [0, T ],
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for the backward filtration generated by N(dt, dy). Observe that

Z∗t :=

∫ T

t

∫ +∞

−∞
y
(
N(ds, dy)− µ(s, dy)ds

)
, t ∈ [0, T ],

defines an (FN∗t )-backward martingale. Indeed, we have

E
[
NT

∣∣ FN∗t

]
= E

[∫ T

0

∫ +∞

−∞
y
(
N(ds, dy)− µ(s, dy)ds

) ∣∣∣FN∗t

]
= E

[∫ t

0

∫ +∞

−∞
y
(
N(ds, dy)− µ(s, dy)ds

) ∣∣∣FN∗t

]
(5.4)

+

∫ T

t

∫ +∞

−∞
y
(
N(ds, dy)− µ(s, dy)ds

)
= E

[∫ t

0

∫ +∞

−∞
y
(
N(ds, dy)− µ(s, dy)ds

)]
+ Z∗t (5.5)

= Z∗t ,

where we used the facts that
∫ T
t

∫ +∞
−∞ y

(
N(ds, dy)− µ(s, dy)ds

)
is FN∗t -measurable in

(5.4), and that
∫ t

0

∫ +∞
−∞ y

(
N(ds, dy)− µ(s, dy)ds

)
is measurable with respect to

σ
(
N([0, s]× A) : A ∈ B(R), 0 ≤ s ≤ t

)
,

which is independent of FN∗t , in (5.5). Using (5.3) and NT = Z∗0 , the random variables

G writes

G =

∫ T

0

f(t)d∗B∗t + Z∗0 ,

and both Corollaries 4.1 and 4.2 apply with ν∗t (·) := µ(t, ·), t ∈ [0, T ]. �

Next, we specify examples of pure-jump martingale components (Zt)t∈[0,T ] and (Nt)t∈[0,T ]

appearing in the definitions of F and G in (4.1) and (5.1), and we derive explicit

bounds in case those components are given by a jump process, a compound Poisson

process, or a Poisson stochastic integral in the framework of Corollary 5.1.

Corollary 5.2 Consider (Yt)t∈[0,T ] a point process with jumps of size 1 and compensator

(λt)t∈[0,T ], and let

F =

∫ T

0

σtdBt + ZT =

∫ T

0

σtdBt +

∫ T

0

Jt(dYt − λtdt),
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where (Bt)t∈[0,T ] is a standard Brownian motion, (σt)t∈[0,T ] is a process adapted with

respect to the filtration generated by (Bt)t∈[0,T ], and (Jt)t∈[0,T ] is predictable with respect

to the filtration (FYt )t∈[0,T ] generated by (Yt)t∈[0,T ]. Let also

G =

∫ T

0

f(t)dBt +

NT∑
i=1

Ui − E[U ]

∫ T

0

µ(t)dt,

where (Ui)i≥1 ⊂ L2(Ω) is an i.i.d. sequence distributed as U , (Nt)t∈[0,T ] is a Poisson

process with intensity (µ(t))t∈[0,T ], and (f(t))t∈[0,T ] is a deterministic function. Then

the distance bounds dW3(F,G) in (4.5) of Corollary 4.1 and dW(F,G) in (4.7) of

Corollary 4.2-(3) are controlled by

E
[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
≤ E

[∫ T

0

∣∣|σt|2 − |f(t)|2
∣∣dt]+ E

[∫ T

0

λt|Jt|2|Jt − U |dt
]

+E
[∫ T

0

λt
∣∣|Jt|2 − U2

∣∣dt]+ E
[
U2
]
E
[∫ T

0

∣∣λt − µ(t)
∣∣dt] . (5.6)

Proof. In the present setting we have νt(dx) = λtδJt(dx) and µ(t, dx) = µ(t)PU(dx)

where PU is the probability distribution of U , and the measures in (5.2) are given by

ν̃t(dx) = |σt|2δ0(dx) + λt|Jt|2δJt(dx), ν̃∗t (dx) = |f(t)|2δ0(dx) + µ(t)x2PU(dx).

Since ∫ ∞
−∞

h(x) ν̃t(dx) = |σt|2h(0) + λt|Jt|2h(Jt)

and ∫ ∞
−∞

h(x)ν̃∗t (dx) = |f(t)|2h(0) + E[U2h(U)],

we have

dFM

(
ν̃t, ν̃

∗
t

)
= sup

h∈FM

∣∣(|σt|2 − |f(t)|2
)
h(0) + λt|Jt|2h(Jt)− µ(t)E[U2h(U)]

∣∣ (5.7)

≤ sup
h∈FM

(∣∣|σt|2 − |f(t)|2
∣∣|h(0)|+ λt

∣∣|Jt|2h(Jt)− E
[
U2h(U)

]∣∣+
∣∣λt − µ(t)

∣∣∣∣E[U2h(U)
]∣∣) .

(5.8)

Next, regarding the second term in (5.8), we have

|Jt|2h(Jt)− E[U2h(U)] = E
[
|Jt|2h(Jt)− U2h(U)

∣∣Jt]
with ∣∣|Jt|2h(Jt)− U2h(U)

∣∣ =
∣∣|Jt|2(h(Jt)− h(U)

)
+ (|Jt|2 − U2)h(U)

∣∣
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≤ |Jt|2|Jt − U |+
∣∣|Jt|2 − U2

∣∣,
which yields (5.6) by plugging the above bound in (5.8). �

By rearranging (5.8) as

dFM

(
ν̃t, ν̃

∗
t

)
= sup

h∈FM

∣∣(|σt|2 − |f(t)|2
)
h(0) + λt|Jt|2h(Jt)− µ(t)E[U2h(U)]

∣∣
≤ sup

h∈FM

(∣∣|σt|2 − |f(t)|2
∣∣|h(0)|+ µ(t)

∣∣|Jt|2h(Jt)− E
[
U2h(U)

]∣∣+ |λt − µ(t)||Jt|2|h(Jt)|
)
,

with ∣∣|Jt|2h(Jt)− U2h(U)
∣∣ =

∣∣U2(h(Jt)− h(U)) + (|Jt|2 − U2)h(Jt)
∣∣

≤ |U |2|Jt − U |+
∣∣|Jt|2 − U2

∣∣,
we find that (5.6) can be rewritten as

E
[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
≤ E

[∫ T

0

∣∣|σt|2 − |f(t)|2
∣∣dt]+ E

[∫ T

0

|λt − µ(t)||Jt|2dt
]

+E
[∫ T

0

∣∣|Jt|2 − U2
∣∣µ(t)dt

]
+ E

[
U2

∫ T

0

|Jt − U |µ(t)dt

]
.

As a consequence, the bound (4.7) becomes small when |σt|2, λt and Jt are respectively

close to |f(t)|2, µ(t) and U , uniformly in t ∈ [0, T ].

When G is given by a centered Gauss-Poisson mixture with N a centered Poissonian

random variable parameterized by µT , i.e.

F =

∫ T

0

σtdBt +

∫ T

0

Jt(dNt − λtdt) and G =

∫ T

0

f(t)dBt +NT ,

with Ui = 1, i.e. PU(dx) = δ1(dx), µ(t) := µ ≥ 0 and (f(t))t∈[0,T ] in (5.1) deterministic

with
∫ T

0
f(t)dBt ∼ N

(
0,
∫ T

0
|f(t)|2dt

)
, then (5.6) becomes

E
[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
≤ E

[∫ T

0

∣∣|σt|2 − |f(t)|2
∣∣dt]+ E

[∫ T

0

|Jt|2|Jt − 1|λtdt
]

+E
[∫ T

0

∣∣|Jt|2 − 1
∣∣λtdt]+ E

[∫ T

0

|λt − µ|dt
]
.

The next result deals with the distance of Poisson stochastic integrals with respect to

a Gaussian distribution.
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Corollary 5.3 Consider the Poisson stochastic integral

F =

∫ T

0

Jt(dNt − λdt)

of a (σ(Ns : 0 ≤ s ≤ t))t∈[0,T ]-predictable process (Jt)t∈[0,T ], where (Nt)t∈[0,T ] is a

Poisson point process with intensity (λt)t∈[0,T ], and let G denote the Wiener integral

G =

∫ T

0

f(t)dBt,

where (f(t))t∈[0,T ] is a deterministic function. Then the distance bounds dW3(F,G) in

(4.5) of Corollary 4.1 and dW(F,G) in (4.7) of Corollary 4.2-(3) are controlled by

E
[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
≤ E

[∫ T

0

∣∣|f(t)|2 − λ|Jt|2
∣∣dt]+ λE

[∫ T

0

|Jt|3dt
]
.

Proof. We have νt(dx) = λδJt(dx), σt = 0, t ∈ [0, T ], and NT = 0 and µ(t, dx) = 0.

Hence (5.2) reads

ν̃t(dx) = λ|Jt|2δJt(dx), ν̃∗t (dx) = |f(t)|2δ0(dx),

and for any h ∈ FM, i.e. h ∈ Lip(1) with ‖h‖∞ ≤ 1, from (5.7) we have

dFM

(
ν̃t, ν̃

∗
t

)
= sup

h∈FM

∣∣λ|Jt|2h(Jt)− |f(t)|2h(0)
∣∣

≤ sup
h∈FM

(
λ|Jt|2

∣∣h(Jt)− h(0)
∣∣+
∣∣λ|Jt|2 − |f(t)|2

∣∣|h(0)|
)

≤ λ|Jt|3 +
∣∣λ|Jt|2 − |f(t)|2

∣∣.
�

In particular, when f(t) = 1, Jt = 1/
√
n and λ = n, we find the Poisson to Gaussian

convergence bound

E
[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
≤ T 1/3

n1/6
,

but we do not recover the standard Berry-Esseen rate of Corollary 3.4 in [PSTU10] due

to the power 1/3 in (4.6), nor the faster rates of e.g. Corollary 5.3 in [Pri18] or [Pri19].

However, those latter results apply only to the case where (Jt)t∈[0,T ] is a deterministic

function, while the bounds of the present paper have a wider range of applications. In

the case of Itô integrals we have the following result which involves only one bounding

term in contrast with related results based on the Malliavin calculus, cf. the bound

(4.2) in [Pri15].
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Corollary 5.4 Consider the Itô integrals

F =

∫ T

0

σtdBt and G =

∫ T

0

f(t)dBt,

where (σt)t∈[0,T ] is adapted with respect to the filtration generated by (Bt)t∈[0,T ] and

(f(t))t∈[0,T ] is a deterministic function. Then the distance bounds dW3(F,G) in (4.5)

of Corollary 4.1 and dW(F,G) in (4.7) of Corollary 4.2-(3) are controlled by

E
[∫ T

0

dFM

(
ν̃t, ν̃

∗
t

)
dt

]
≤ E

[∫ T

0

∣∣|σt|2 − |f(t)|2
∣∣dt] . (5.9)

Proof. We have ZT = NT = 0 in (4.1), (4.2), i.e. νt(dx) = µ(t, dx) = 0 and in this

case, (5.2) reads

ν̃t(dx) = |σt|2δ0(dx), ν̃∗t (dx) = |f(t)|2δ0(dx),

and we have

dFM

(
ν̃t, ν̃

∗
t

)
= sup

h∈FM

∣∣|σt|2h(0)− |f(t)|2h(0)
∣∣ =

∣∣|σt|2 − |f(t)|2
∣∣,

which allows us to conclude. �

The bound (5.9) is of interest only when (σt)t∈[0,T ] is random, since when (σ(t))t∈[0,T ]

is a deterministic function we can use the more natural inequality

dW(F,G) ≤
∣∣∣∣∫ T

0

σ2(t)dt−
∫ T

0

f 2(t)dt

∣∣∣∣ ,
which implies (5.9) and therefore (4.5). In the non-deterministic case we are not able

to recover the above inequality due to the use of a triangle inequality in (3.9). See

also (1.3) for a related inequality.

A Appendix

A.1 Approximation Lemma

The following lemma is a generalization of a by-product of Corollary 3.6 in [NPR10].

Lemma A.1 Let h ∈ Lip(1) and consider the function hα defined in (3.16) for 0 <

α < 1. Then we have hα ∈ C∞b (R), with

‖h(n)
α ‖∞ ≤

(1− α)n/2

α(n−1)/2

√
(n− 1)!, n ≥ 1.
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Moreover, for any integrable random variable X we have

|E[hα(X)]− E[h(X)]| ≤
√
α
(

1 +
E[|X|]

2

)
. (A.1)

Proof. We start by assuming that h is in Cn(R) with ‖h′‖∞ = ‖h‖L ≤ 1 and bounded

derivatives of orders 1 to n. In this case, an iterated integration by parts with respect

to the standard normal density φ yields

h(n)
α (x) = (1− α)n/2

∫ +∞

−∞
h(n)

(
y
√
α + x

√
1− α

)
φ(y) dy

=
(1− α)n/2

α(n−1)/2

∫ +∞

−∞
h′
(
y
√
α + x

√
1− α

)
Hn−1(y)φ(y) dy

≤ (1− α)n/2

α(n−1)/2

(∫ +∞

−∞

(
h′
(
y
√
α + x

√
1− α

))2
φ(y) dy

)1/2(∫ +∞

−∞
(Hn−1(y))2φ(y) dy

)1/2

≤ (1− α)n/2

α(n−1)/2

√
(n− 1)!,

by an application of the Cauchy-Schwarz inequality, where Hn−1 is the Hermite poly-

nomial of order n − 1 ≥ 0. In case the function h is only Lipschitz, we conclude by

approximating h with a sequence of Cn functions. Finally, the bound (A.1) is obtained

as in [NPR10], as follows:

|E[h(X)]− E[hα(X)]| ≤
∣∣∣∣E [∫ +∞

−∞
h
(
y
√
α +X

√
1− α

)
− h
(
X
√

1− α
)
φ(y) dy

]∣∣∣∣
+
∣∣E [h(X√1− α

)
− h(X)

]∣∣
≤
√
α‖h‖L

∫ +∞

−∞
|y|φ(y) dy + ‖h‖L

∣∣1−√1− α
∣∣E[|X|]

≤
√
α‖h‖L

(
2√
2π

+ E[|X|]
)

using the bound
∣∣1−√1− α

∣∣ ≤ √α for α ∈ (0, 1). �

A.2 Cardano type lemma

The following lemma is based on Cardano’s formula for cubic equations.

Lemma A.2 Let a > 0 and b ∈ (0, 24a). The minimum of α 7→ a
√
α + b/(2

√
α) +

b/(3α) is attained at

α∗(a, b) =

(
3

√
b

3a

(
1 +

√
1− b/(24a)

)
+

3

√
b

3a

(
1−

√
1− b/(24a)

))2

∼b→0

( 2b

3a

)2/3

,

(A.2)
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and is equal to

b
1 +

√
α∗(a, b)

α∗(a, b)
= b

3
√

3a/b+ 3

√
1 +

√
1− b/(24a) + 3

√
1−

√
1− b/(24a)

3
√
b/(3a)

(
3

√
1 +

√
1− b/(24a) + 3

√
1−

√
1− b/(24a)

)2

(A.3)

∼b→0
3

√
9a2b

4
,

Proof. Letting β =
√
α > 0, we have

∂

∂β

(
aβ +

b

2β
+

b

3β2

)
=

6aβ3 − 3bβ − 4b

6β3
,

where 6aβ3 − 3bβ − 4b admits a unique zero β∗ ∈ R+ given by the Cardano formula

(when b < 24a) as

β∗ =
3

√
b

3a

(
1 +

√
1− b/(24a)

)
+

3

√
b

3a

(
1−

√
1− b/(24a)

)
,

which yields (A.2). The value (A.3) of the maximum follows easily. �
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