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Abstract

The convergence in variation of the laws of multiple Wiener–Itô integrals with respect to their kernel has been studied by

Davydov and Martynova in [1987. Limit behavior of multiple stochastic integral. Statistics and Control of Random

Process (Preila, 1987), Nauka, Moscow, pp. 55–57 (in Russian)]. Here, we generalize this convergence for the joint laws of

multiple Wiener–Itô integrals. In this case, the argument relies on superstructure method which consists in studying related

functionals along admissible directions for a Gaussian process.
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1. Introduction

We are interested in this paper in the behavior for convergence in variation of the joint laws of multiple
Wiener–Itô integrals. The original motivation for such a study comes from the study of the regularity of the
law of d-multiple Wiener–Itô integrals Idðf Þ given by Davydov (1991): if fc0, then the law of Idðf Þ is
absolutely continuous with respect to the Lebesgue measure l. Note that this result of absolute continuity was
first proved by Shigekawa (1980) (see also Kusuoka (1983) for another proof). The proof of Davydov is based
on the stratification method. This method has also been used by Davydov and Martynova (1987) to derive the
continuity (for the topology of total variation on the space of signed measures) of the laws of integrals Idðf Þ

with respect to the kernel f 2 L2ðTdÞ. That is:

Theorem A. Let f 2 L2ðTdÞ be symmetric and not zero, then there is C:¼Cðd; f Þ such that for any sequence of

symmetric functions f n 2 L2ðTdÞ converging to f:

kLðIdðf ÞÞ �LðIdðf nÞÞkpCkf � f nk
1=d

L2ðTd Þ
. (1)
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Here, and in the sequel, LðX Þ is the law of a random variable or of a random vector X, kmk is the total
variation of a signed measure m, and �!

var
stands for the convergence in total variation.

Note that when the limit law has a density, the convergence in variation (1) is equivalent to the convergence
in L1ðRÞ of the densities of these laws.

Theorem A is the starting point for the study in this note. Here, we deal with the multi-dimensional
counterpart of Theorem A, that is the continuity for total variation norm of joint laws of multiple Wiener–Itô
integrals with respect to their kernels. The difficulties lie in the fact that the stratification method used in
Davydov and Martynova (1987) for Theorem A relies on one-dimensional estimates that are no more
available in the multi-dimensional setting. Instead, we shall use another argument, based on the superstructure
method, which is less sensitive to dimension. It consists in studying the restrictions of related functionals along
admissible directions for an underlying Gaussian process. For a complete account on this method, we refer to
Davydov et al. (1998). However, the drawback of this approach is the loss of the control (1) of the convergence
in variation in this joint law case. It would be interesting to generalize to the multi-dimensional setting the
tools used in Davydov and Martynova (1987) in order to recover the control (1). But the main point in
Davydov and Martynova (1987) for the control of the variation (1) is the Lemma p. 56 about the distance
in variation of the images of a normal law by one-dimensional polynomials. The generalization of this point in
our context is a problem we do not succeed to overcome at this time.

Another way to extend Theorem A would be to consider other types of stochastic integrals. Since Gaussian
law is a particular case of stable law, the first natural generalization to think about is multiple stable integrals.
This has been done for one-dimensional law in Breton (2004). Therein, the argument relies on Breton (2002)
instead of Davydov (1991), Breton (2002) states the absolute continuity of the law of multiple stable integrals.

Another easy extension of Theorem A deals with Wiener functionals. Indeed using the chaotic expansion of
square integrable Wiener functionals in multiple Wiener–Itô integrals, we can transfer in some cases the
convergence in variation from the integrals to the functionals. This is briefly discussed at the end of this
introduction.

Since multiple Wiener–Itô integral is the basic object in this paper, we start with a short account of the facts
we will need about it. Next, we describe in Section 2 the setting and define the notations we shall need to state
the generalization of Theorem A. Section 3 is devoted to the proof of Theorem 4.

Let us consider a probability space ðO;F;PÞ and a measured space ðT ;T; tÞ satisfying the following
continuity property: for all A 2T such that tðAÞoþ1 and for all �40 there exists B1; . . . ;BN such that

A ¼
[N
j¼1

Bj ; tðBjÞo�; 8j ¼ 1; . . . ;N.

Let A ¼ fA 2TjtðAÞoþ1g and fW ðAÞ;A 2Ag be the Gaussian orthogonal measure with control
measure t, that is, the Gaussian process on ðO;F;PÞ for which:

8A;B 2A; E½W ðAÞ� ¼ 0 and E½W ðAÞW ðBÞ� ¼ tðA \ BÞ.

In the sequel, we consider M ¼ sðW ðAÞ;A 2AÞ and we shall assume that the space L2ðO;M;PÞ is separable.
For d 2 Nnf0g, we introduce Hd the Hilbert space of functions f : Td ! R for which

kf k2Hd
¼

Z
Td

jf ðtÞj2 dtðtÞoþ1.

Let h�; �iHd
be the relative inner product and H0 the space of constants. Let Kd be the subspace of Hd

consisting of functions f which are invariant under permutations of the coordinates, that is, functions f such
that

f ðtÞ ¼ f ðSdðtÞÞ ¼
1

d!

X
s2Pd

f ðsðtÞÞ,

where sðtÞ ¼ ðtsð1Þ; . . . ; tsðdÞÞ and Pd is the permutation group of d elements. Finally, bHd denotes the set of the
so-called simple functions, that is those f 2 Hd for which there exists a finite system of sets Dj 2A,
j ¼ 1; . . . ;N, which are pairwise disjoint and such that f is constant on each Dj1 � � � � � Djd

.
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For such f 2 bHd , we define the multiple integral Idðf Þ by the formula

Idðf Þ ¼
X
ðj1;...;jd Þ

f ðtj1 ; . . . ; tjd
ÞW ðDj1 Þ � � �W ðDjd

Þ,

where tm 2 Dm for each m. It is easy to see that the following properties are fulfilled for f ; g 2 bHd :

1. Idðf Þ ¼ IdðSdðf ÞÞ.
2. E½Idðf ÞId 0 ðgÞ� ¼ 1fd¼d 0ghSd ðf Þ;SdðgÞiHd

.

In particular, we have E½Idðf Þ� ¼ 0 and E½Idðf Þ
2
�pd!kf k2Hd

. Since bHd is dense in Hd , Id extends to Hd and we
shall write

Idðf Þ ¼

Z
Td

f ðt1; . . . ; tdÞdW ðt1Þ . . . dW ðtdÞ

for all f 2 Hd , keeping the previous properties 1 and 2 for Id on Hd .
As an easy generalization of Theorem A, we derive a result of convergence in variation for the laws of

square integrable Wiener functionals F exhibiting in their chaotic expansion

F ¼ E½F � þ
Xþ1
d¼1

Idðf dÞ; f d 2 Kd (2)

some summand independent of the remainder. More precisely, we have:

Proposition 1. Let k 2 Nnf0g and ðF nÞn be a sequence of Wiener functionals whose kth summand Ikðf
n
kÞ in its

chaotic expansion (2) is independent of the other summands Idðf
n
dÞ, dak. If Fn ! F in L2ðO;M;PÞ with f ka0 in

the expansion (2) of F, then

LðF nÞ �!
var

LðF Þ; n!þ1. (3)

The law of F n is the convolution of the law of Ikðf
n
kÞ and of the law of the remainder

P
dak Id ðf

n
dÞ. The same

holds true for the law of F. Since LðIkðf
n
kÞÞ�!

var
LðIkðf kÞÞ when n!þ1 and LðIkðf kÞÞ5lk, Proposition 1 is

an easy consequence of Theorem A of Davydov (1991, Theorem 1) and of the strong convergence of
convolutions given in the following lemma, which is a corollary of a proposition due to Parthasarathy and
Steerneman (1985, Theorem 2.1):

Lemma 2. Let ðX n;Y nÞ; nX1, be a sequence of random vectors in R2 such that for every n, Y n is independent of

X n, X n�!
var

X and Y n converges in law to Y. Then X n þ Y n�!
var

X þ Y , provided the law of X is absolutely

continuous with respect to the Lebesgue measure l.

Moreover, a rate of strong convergence for convolutions has been given by Davydov (1997, Theorem 1).
Note pðn1; n2Þ ¼ inff�40jn1ðAÞpn2ðA�Þ þ �; 8A 2 BðRÞg the Prokhorov distance between probability measures
n1 and n2 (here A� stands for the �-neighbourhood of A) and wm1 ðtÞ ¼ supjxjptkm1 � m1T

�1
x kvar the modulus of

smoothness of m1 (where TxðyÞ ¼ xþ y). We have:

Lemma 3. Let m1; m2; n1; n2 be probability measures. Then

km1 � n1 � m2 � n2kvarpkm1 � m2kvar þ pðn1; n2Þ þ wm1ðpðn1; n2ÞÞ. (4)

Using this result, we estimate the rate of convergence in (3): under the hypothesis of Proposition 1,
note

mn ¼LðIkðf
n
kÞÞ; m ¼LðIkðf kÞÞ; nn ¼L

X
dak

Idðf
n
dÞ

 !
; n ¼L

X
dak

Idðf dÞ

 !
.
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First, from (1): kmn � mkvarpCkf n
k � f kk

1=k

L2ðTkÞ
pCkF n � Fk

1=k

L2ðOÞ
. Next using Markov inequality and property 2

of multiple Wiener–Itô integrals:

pðnn; nÞp
X
dak

Id ðf
n
dÞ �

X
dak

Idðf dÞ

�����
�����
2=3

L2ðOÞ

p
X
dak

Id ðf
n
d � f dÞ

�����
�����
2=3

L2ðOÞ

p
X
dak

kf n
d � f dkL2ðTd Þ

 !2=3

pkF n � Fk
2=3

L2ðOÞ
.

Finally, from (4) we deduce the following rate of convergence in (3):

kLðFnÞ �LðF ÞkvarpCkF n � Fk
1=k

L2ðOÞ
þ kF n � Fk

2=3

L2ðOÞ
þ wLðIkðf kÞÞ

ðkF n � Fk
2=3

L2ðOÞ
Þ

pð1þ CÞkF n � Fk
1=k

L2ðOÞ
þ wLðIkðf kÞÞ

ðkF n � Fk
2=3

L2ðOÞ
Þ,

when n is large enough. In order to improve this rate of convergence, we need to estimate wLðIkðf kÞÞ
like in

Davydov (1997, Theorem 2), but this requires further information on the density of Ikðf kÞ.

2. Setting and main result

In this section, let be given d1; . . . ; dp 2 Nnf0g the dimensions of p multiple Wiener–Itô integrals. We are
interested in the multi-dimensional laws of vectors ðId1

ðf 1Þ; . . . ; Idp
ðf pÞÞ where f i 2 Hdi

, 1pipp. Our goal is to
derive the continuity for variation norm of these multi-dimensional laws with respect to the integrands
f 1 2 Hd1

; . . . ; f p 2 Hdp
. We need first to introduce some notations in order to state the condition for this

continuity. We point out that it corresponds in fact to the sufficient condition given in Davydov (1991) for the
regularity of the multi-dimensional limit law ðId1

ðf 1Þ; . . . ; Idp
ðf pÞÞ. In the sequel, bold letters are used for multi-

dimensional quantities. Define:

� for i ¼ 1; . . . ; p, Ni ¼ d1 þ � � � þ di, N ¼ Np;
� ai ¼ ðai

0; . . . ; a
i
pÞ 2 Npþ1 a ðpþ 1Þ-partition of di : di ¼ ja

ij ¼ ai
0 þ � � � þ ai

p;
� a ¼ ða1; . . . ; apÞ 2 ðNpþ1Þ

p;
� Ma ¼ ða

i
jÞ1pi;jpp a p-square matrix such that di ¼

Pp
k¼0 ai

k for 1pipp and bk ¼
Pp

i¼1 ai
k for 0pkpp;

� for b ¼ ðb1; . . . ; bpÞ 2 Np (and b0 ¼ 0):

EðbÞ ¼ a ¼ ða1; . . . ; apÞjai
1 þ � � � þ ai

p ¼ di;
Xp

i¼1

ai
k ¼ bk; k ¼ 1; . . . ; p

( )
,

in particular, for a 2 EðbÞ, note that we have ai
0 ¼ 0 for all 1pipp;

� for a 2 EðbÞ, let sa 2 PN the permutation of f1; . . . ;Ng that sends

j ¼
Xk�1
u¼1

bu þ
Xi�1
s¼1

as
k þ l; l ¼ 1; . . . ; ai

k,

to

saðjÞ ¼
Xi�1
v¼1

dv þ
Xk�1
s¼1

ai
s þ l; (5)

� for a 2 EðbÞ, let Ua : R
N�!RN be associated with sa by Uaðt1; . . . ; tNÞ ¼ ðtsað1Þ; . . . ; tsaðNÞÞ;

� fðtÞ ¼ f 1ðt1; . . . ; tN1
Þ � � � f pðtNp�1þ1; . . . ; tNp

Þ, where t ¼ ðt1; . . . ; tN Þ;

� fbðtÞ ¼
P

a2EðbÞ

Qp
i¼1

di !
ai
0
!���ai

p!
detMafðUaðtÞÞ; where t ¼ ðt1; . . . ; tN Þ;
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� for b ¼ ðb1; . . . ; bpÞ 2 Np denoting Pb the sub-group of PN of permutations preserving the following so-
called ‘‘b-blocks’’: ð1; . . . ; b1Þ, ðb1 þ 1; . . . ; b1 þ b2Þ; . . . ; ðb1 þ b2 þ � � � bp�1 þ 1; . . . ; b1 þ b2 þ � � � þ bp ¼ NÞ:

SbfðtÞ ¼
b1! � � � bp!

N!

X
s2Pb1 ;...;bp

fðtsð1Þ; . . . ; tsðNÞÞ.

We can then state our generalization of Theorem A:

Theorem 4. Let ðf n
1; . . . ; f

n
pÞn2N be a sequence of elements of Hd1

� � � � �Hdp
converging to ðf 1; . . . ; f pÞ. If at

least for one multi-index b ¼ ðb1; . . . ; bpÞ such that
Pp

i¼1 bi ¼
Pp

i¼1 di, we have Sbfba0, then the following

convergence holds true when n!þ1

LðId1
ðf n

1Þ; . . . ; Idp
ðf n

pÞÞ�!
var

LðId1
ðf 1Þ; . . . ; Idp

ðf pÞÞ. (6)

Remark 5.

� The algebraic condition ‘‘Sbfba0 for some b’’ is mainly required to ensure the non-degeneracy of the limit
law LðId1

ðf 1Þ; . . . ; Idp
ðf pÞÞ. This is due to Theorem 5 in Davydov (1991). It is difficult to interpret this

condition; but, roughly speaking, it deals in a sense with how overlapped are the f i’s.
� However, this algebraic condition is also required in order to apply the forthcoming Proposition 6 in the

proof we propose. We can thus not replace this condition by the weaker one LðId1
ðf 1Þ; . . . ; Idp

ðf pÞÞ5lp.
� In fact, the convergence in (6) can fail to hold if the limit law is degenerated. Indeed it is thus possible to

choose ðf n
1; . . . ; f

n
pÞ converging to ðf 1; . . . ; f pÞ with the function Sbf

n
b relative to ðf

n
1; . . . ; f

n
pÞ being not 0 while

Sbfb ¼ 0.
In this case, if (6) holds, the sequence of the laws ðLðId1

ðf n
1Þ; . . . ; Idp

ðf n
pÞÞÞn is in particular a Cauchy

sequence in the Banach space of signed measures equipped with the norm of variation. But since Sbf
n
ba0,

the laws LðId1
ðf n

1Þ; . . . ; Idp
ðf n

pÞÞ have densities and the sequence of the densities is also a Cauchy sequence in
L1ðRpÞ and thus must converge to a limit density. But this is in contradiction with the convergence in
variation of LðId1

ðf n
1Þ; . . . ; Idp

ðf n
pÞÞ to a degenerated law, without density.

� Note that since the limit law is not degenerated, the convergence in (6) rewrites also as the convergence of
the densities of the joint laws in L1ðRpÞ. This is thus also a local limit result.

In order to apply Theorem 4 to the multiple Wiener–Itô integrals of functions f 1; . . . ; f p, we have to check
its intricate hypothesis ‘‘Sbfba0 for some b’’. This condition is of the same nature as that in Breton (2005) (in
a stable context) and we refer to Breton (2005) for a long illustration in several cases. Here, we only briefly
describe some particular setting where it is satisfied.

(1) Case p ¼ 1, d1 ¼ 1 with b ¼ 1: We have EðbÞ ¼ f1g and s1 ¼ id. The condition is satisfied if fa0 a.e.
recovering a well-known result for Gaussian law.

(2) Case p ¼ 1, d1 ¼ d41 with b ¼ d: We have EðbÞ ¼ fdg and sd ¼ id. The condition of Theorem 4 is
satisfied if fa0 a.e. recovering here the convergence part of the one-dimensional result of Davydov and
Martynova (Theorem A).

(3) Case p41, d1 ¼ � � � ¼ dp ¼ 1 with b ¼ ð1; . . . ; 1Þ: The condition is satisfied if

detff iðtjÞgc0 a.e.

Note that if this sufficient condition does not hold, the limit law ðId1
ðf 1Þ; . . . ; Idp

ðf pÞÞ may be degenerated
(take for instance p ¼ 3, d1 ¼ d2 ¼ d3 ¼ 1 and f 3 ¼ f 1 þ f 2).

(4) Case p ¼ 2, d1 ¼ d2 ¼ 2 with b ¼ ð2; 2Þ (taken from Davydov, 1991): The condition of Theorem 4 is
satisfied if there are no reals c1; c2 such that

c1f 1 ¼ c2f 2 a.e.

If this is not the case, the limit law is once more degenerated.
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(5) Case p ¼ 2, d1 ¼ 1, d2 ¼ d with b ¼ ð1; dÞ: The condition of Theorem 4 holds in this case if

f 1ðt1Þf 2ðt2; t3; . . . ; tdþ1Þc
1

d

Xdþ1
i¼2

f 1ðtiÞ f 2ðt2; . . . ; tdþ1Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
with t1 in

ith position

a.e.

Moreover, note that at least for examples (1)–(4), when the conditions do not hold, the limit law is
degenerated and the convergence in variation in (6) fails to hold in general. In fact these simple examples
suggest the sufficient condition ‘‘Sbfba0 for some b’’ is close to the necessary condition ‘‘the limit law is not
degenerated’’ for the convergence (6).

Other examples of explicit sufficient conditions for Theorem 4 can be derived, the technical nature of the
computations is related to the dimension of the joint laws. This is left to the brave-hearted reader.

3. Proof of Theorem 4

3.1. Setting

We will make an extensive use of the framework exposed in Davydov (1991) with the setting yet described in
the Introduction. Like in Proposition 1 in Davydov (1991), we see multiple integrals as functionals on sample
path. To this way, let X ¼ RA and BðXÞ ¼ BA (where B is the real Borel s-algebra). We denote W the
mapping from O into X which maps o 2 O to the corresponding path of the process W. Let P:¼PW�1 be the
distribution of W on ðX;BðXÞÞ. Proposition 1 in Davydov (1991) states that for any f 2 Hd there exists a
measurable mapping F : X! R such that for P-almost all o:

Idðf ðoÞÞ ¼ F ðWðoÞÞ (7)

(first, it is clear for simple functions f and (7) is then easily generalized for any f 2 Hd). In the sequel, we
denote the value of F at x 2 X by F ðxÞ ¼

R
f ddx. Note that, the index d in ‘‘ddx’’ is related to the space Hd in

which f lives.
It is well known also that the admissible shifts of the Gaussian measure P are given by functions nh :A! R

for h 2 H1 defined by

nhðAÞ ¼

Z
A

hdt; A 2A,

see Proposition 2 in Davydov (1991). Moreover,

dbPh

dP
ðxÞ ¼ exp

Z
hd1x�

1

2

Z
h2 dt

� �
,

where bPh stands for the distribution of the translated process W þ nh.

3.2. Superstructure

We shall prove the convergence in variation in (6) applying the superstructure method in a multi-
dimensional setting to functionals related to the kernels f n

1; . . . ; f
n
p; f 1; . . . ; f p. We refer to Davydov et al. (1998,

Section 5) for the description of this method in a one-dimensional setting.
First, let F1; . . . ;Fp be defined from f 1; . . . ; f p like in (7) and F n

1; . . . ;F
n
p similarly defined from f n

1; . . . ; f
n
p. We

consider in the sequel F ¼ ðF1; . . . ;FpÞ and Fn ¼ ðF
n
1; . . . ;F

n
pÞ. The joint laws in (6) can be seen from (7) as the

following image-measures:

LðId1
ðf 1Þ; . . . ; Idp

ðf pÞÞ ¼ PF�1,

LðId1
ðf n

1Þ; . . . ; Idp
ðf n

pÞÞ ¼ PF�1n .
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The superstructure method is suitable to study such image-measures PF�1 for some functionals F defined
on X. It consists to introduce a product space ½0; ��p �X and to twist the product space by a family of
transformations fGcgc adapted to P. The keystone is then to see PF�1 as a mixture of (finite dimensional)
conditional measures along the orbit of fGcgc. It remains then to study the image-measures with finite-
dimensional tools.

More precisely, let for i ¼ 1; . . . ; p, hi 2 H1 and let ni ¼ nhi
be p fixed admissible shifts. Consider the

following family of transformations of the space X:

GcðxÞ ¼ xþ c1n1 þ � � � þ cpnp; c ¼ ðc1; . . . ; cpÞ.

This family of transformations is adapted to P in the following sense:

PG�1c �!
var

P; c! 0. (8)

Indeed, observe that PG�1c ¼
bPc, where bPc stands for the law of the shift process W þ c1n1 þ � � � þ cpnp ¼

W þ nc1h1þ���þcphp
. Moreover, the density of bPc with respect to P is given by

dbPc

dP
ðxÞ ¼ exp

Z Xp

i¼1

cihi d1x�
1

2

Z Xp

i¼1

cihi

 !2

dt

8<:
9=;

¼ exp
Xp

i¼1

ci

Z
hi d1x�

Xp

i;j¼1

cicj

2

Z
hihj dt

( )
.

Then, when c! 0, we have ðdbPc=dPÞðxÞ ! 1 for any x 2 X. Next, Scheffé’s lemma yields (8).
We define the following auxiliary measures and functionals on the product space X� ¼ ½0; ��

p �X, �40:

Q� ¼
1

�p
l½0;��p � P,

F �ðc;xÞ ¼ F ðGcðxÞÞ,

Fn;�ðc; xÞ ¼ FnðGcðxÞÞ.

Note that F � and Fn;� depend on � only through their domain X�. Since Q�F
�1
n;� ¼

R
½0;��p PG�1c F�1n dc, we have

the following estimate for the total variation:

kQ�F
�1
n;� � PF�1n kp

1

�p

Z
½0;��p
kP� PG�1c kdc.

Since kP� PG�1c kp2, from dominated convergence and from (8), we derive

lim
�!0
kQ�F

�1
n;� � PF�1n k ¼ 0, (9)

where the limit holds uniformly with respect to n 2 N. The same limit holds true for the functional F:

kQ�F
�1
� � PF�1kp

1

�p

Z
½0;��p
kP� PG�1c kdc�!0; �! 0. (10)

Next, we express Qn;�F
�1
� as a mixture of finite-dimensional measures as follows: note, for

c ¼ ðc1; . . . ; cpÞ 2 ½0; ��
p, jn;xðcÞ ¼ F nðGcðxÞÞ the restriction of Fn over strata fxþ c1n1 þ � � � þ cpnpgc,

we have

Q�F
�1
n;� ¼

1

�p

Z
X

l½0;��pj�1n;x dP. (11)

Introducing similarly jxðcÞ ¼ F ðxþ c1n1 þ � � � þ cpnpÞ, we express also Q�F
�1
� as

Q�F
�1
� ¼

1

�p

Z
X

l½0;��pj�1x dP. (12)
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Now, we have

kPF�1 � PF�1n kpkPF�1 �Q�F
�1
� k þ kQ�F

�1
� �Q�F

�1
n;� k þ kQ�F

�1
n;� � PF�1n k. (13)

From (9) and (10), we deduce that the first and third terms in (13) can be chosen arbitrarily small.
Consequently, it remains to deal with the term in the middle of the right-hand side of the previous inequality
(13) when n!þ1 for some �40 arbitrary fixed. But from (11) and (12), we have

kQ�F
�1
� �Q�F

�1
n;� k ¼

1

�p

Z
X

kl½0;��pj�1x � l½0;��pj�1n;xkdP.

Since kl½0;��pj�1x � l½0;��pj�1n;xkp2�p, it is sufficient, using dominated convergence, to prove for P-almost all x

that

lim
n!þ1

kl½0;��pj�1x � l½0;��pj�1n;xk ¼ 0. (14)

3.3. Convergence in variation of induced measures

In order to prove (14), we use the following result from Alexandrova et al. (1999). It gives conditions on
finite-dimensional functionals for the convergence in variation of their image-measures.

Proposition 6 (Alexandrova et al., 1999, Corollary 4). Let Gn;G 2W
q;1
locðR

p;RpÞ where qXp and let the

mappings Gn converge to G with respect to the Sobolev norm k � kq;1 on every ball. Assume that E � fdetDGa0g
is a set of finite Lebesgue measure. Then when n!þ1,

ljEG�1n �!
var

ljEG�1.

We apply Proposition 6 to the mappings Gn ¼ jn;x and G ¼ jx on ½0; ��p. From Davydov (1991, Proposition
4), the ith component ji

n;x of jn;x has the following polynomial expression:

ji
n;xðcÞ ¼ Fn

i ðxþ c1n1 þ � � � þ cpnpÞ ¼
X
jaj¼di

caBa

Z
f n

i dan, (15)

where a ¼ ða0; a1; . . . ; ap; Þ 2 Npþ1; c ¼ ð1; c1; . . . ; cpÞ 2 R
pþ1 and with

ca ¼
Yp

m¼0

cam
m ; jaj ¼

Xp

m¼0

am; Ba ¼ n!

,Yp

m¼0

ðam!Þ; n ¼ ðx; n1; . . . ; npÞ,

Z
f dan ¼

Z Z
f da1n1 . . . dap

np

� �
da0x.

The same as for (15) holds also for each component ji
x of jx. Thus, in (14) we deal in fact with image-

measures by multi-dimensional polynomial mappings jx ¼ ðj
1
x; . . . ;j

p
xÞ and jn;x ¼ ðj

1
n;x; . . . ;j

p
n;xÞ. In order to

prove the local Sobolev convergence

jn;x�!jx in W
q;1
locðR

p;RpÞ

for some qXp, it is enough to see the convergences of the coefficients of all monomials ca ¼ ca1
1 . . . c

ap
p in (15).

By linearity, we study actually the convergence:Z
f n

i dan ¼
Z Z

f n
i da1n1 . . . dap

np

� �
da0x�!

Z Z
f ida1n1 . . . dap

np

� �
da0x ¼

Z
f idan; n!þ1. (16)

But
R
ð
R

f n
i da1n1 . . . dap

npÞda0x ¼
R
ð
R

f n
i h�a1

1 . . . h�ap

p ddi�a0tÞda0x and since f n
i ! f i in Hdi

, we derive
easily the convergence of the inner integrals in Hdi�a0 , using Cauchy–Schwarz’s inequality and
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Fubini’s Theorem:Z
f n

i h�a1
1 . . . h�ap

p ddi�a0t�
Z

f ih
�a1
1 . . . h�ap

p ddi�a0t
���� ����2

Ha0

¼

Z Z
ðf n

i � f iÞh
�a1
1 . . . h�ap

p ddi�a0t
� �2

da0t

p
Z Z

ðf n
i � f iÞ

2 ddi�a0t
� �

�

Z
ðh�a1

1 . . . h�ap

p Þ
2 ddi�a0t

� �
da0t

pkh1k
2a1
H1
. . . khpk

2ap

H1

Z Z
ðf n

i � f iÞ
2 ddi�a0tda0t

pkh1k
2a1
H1
. . . khpk

2ap

H1
� kf n

i � f ik
2
Hdi

.

We get in Ha0 :

lim
n!þ1

Z
f n

i h�a1
1 . . . h�ap

p ddi�a0t ¼
Z

f ih
�a1
1 . . . h�ap

p ddi�a0t. (17)

In the sequel, we denote F g the measurable mapping from X to R associated to some g 2 Hd like in (7) from
Proposition 1 of Davydov (1991) in order to stress on the dependence of F g on g. We remind also that for any
x 2 X, F gðxÞ stands for

R
gddx. From the very definition of Fg in the proof of Proposition 1 in Davydov

(1991), we have for any x 2 X, Fgn
ðxÞ ! FgðxÞ whenever gn ! g in Hd . Thus from (17), we derive when

n!þ1:Z Z
f n

i da1n1 . . . dap
np

� �
da0x ¼ FR

f n
i da1

n1...dap np
ðxÞ�!FR

f ida1
n1...dap np

ðxÞ ¼

Z Z
f ida1n1 . . . dap

np

� �
da0x.

As a consequence, (16) holds and the coefficients of ji
n;x in (15) converge to their analogues for ji

x. It is easy
to derive henceforth the convergence of ji

n;x to ji
x in the Sobolev sense on every ball.

It remains now to prove detDjxðcÞa0 a.e on ½0; ��p in order to apply Proposition 6; that is, to compute the
Jacobian of polynomial mapping jx. But Davydov (1991, Section 4) proves this Jacobian is not degenerated
(and so, as a polynomial, it is also not zero a.e.) if at least for one multi-index b ¼ ðb1; . . . ; bpÞ such thatPp

i¼1 bi ¼
Pp

i¼1 di, we have Sbfba0. This condition is the content of the hypothesis of Theorem 4 (and we
repeat: the reason for this condition).

Finally, we can apply Proposition 6 and derive

lim
n!þ1

kl½0;��pj�1n;x � l½0;��pj�1x k ¼ 0.

This allows to conclude, via (13), that

LðId1
ðf n

1Þ; . . . ; Idp
ðf n

pÞÞ�!
var

LðId1
ðf 1Þ; . . . ; Idp

ðf pÞÞ; n!þ1.

This ends the proof of Theorem 4.
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Davydov, Y.A., 1997. On the rate of strong convergence for convolutions. J. Math. Sci. 83 (3), 393–396.

Davydov, Y.A., Martynova, G.V., 1987. Limit behavior of multiple stochastic integral. Statistics and Control of Random Process (Preila,

1987), Nauka, Moscow, pp. 55–57 (in Russian).

Davydov, Y.A., Lifshits, M.A., Smorodina, N.V., 1998. Local properties of distributions of stochastic functionals. American

Mathematical Society, Providence, RI.

Kusuoka, S., 1983. On the absolute continuity of the law of a system of multiple Wiener–Itô integrals. J. Fac. Sci. Univ. Tokyo, Sect. IA,
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