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Abstract

The convergence in variation of the laws of multiple Wiener—It6 integrals with respect to their kernel has been studied by
Davydov and Martynova in [1987. Limit behavior of multiple stochastic integral. Statistics and Control of Random
Process (Preila, 1987), Nauka, Moscow, pp. 55-57 (in Russian)]. Here, we generalize this convergence for the joint laws of
multiple Wiener—Ito integrals. In this case, the argument relies on superstructure method which consists in studying related
functionals along admissible directions for a Gaussian process.
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1. Introduction

We are interested in this paper in the behavior for convergence in variation of the joint laws of multiple
Wiener—It6 integrals. The original motivation for such a study comes from the study of the regularity of the
law of d-multiple Wiener—Ito integrals I,(f) given by Davydov (1991): if f#0, then the law of I,(f) is
absolutely continuous with respect to the Lebesgue measure A. Note that this result of absolute continuity was
first proved by Shigekawa (1980) (see also Kusuoka (1983) for another proof). The proof of Davydov is based
on the stratification method. This method has also been used by Davydov and Martynova (1987) to derive the
continuity (for the topology of total variation on the space of signed measures) of the laws of integrals 7,(f)
with respect to the kernel f € L>(T?). That is:

Theorem A. Let f € L*(T?) be symmetric and not zero, then there is C:=C(d, f) such that for any sequence of
symmetric functions f, € L*(T?) converging to f:

12T = LU DS CV = 4l oty (1)
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Here, and in the sequel, Z(X) is the law of a random variable or of a random vector X, ||| is the total
variation of a signed measure u, and % stands for the convergence in total variation.

Note that when the limit law has a density, the convergence in variation (1) is equivalent to the convergence
in L'(R) of the densities of these laws.

Theorem A is the starting point for the study in this note. Here, we deal with the multi-dimensional
counterpart of Theorem A, that is the continuity for total variation norm of joint laws of multiple Wiener—Itd
integrals with respect to their kernels. The difficulties lie in the fact that the stratification method used in
Davydov and Martynova (1987) for Theorem A relies on one-dimensional estimates that are no more
available in the multi-dimensional setting. Instead, we shall use another argument, based on the superstructure
method, which is less sensitive to dimension. It consists in studying the restrictions of related functionals along
admissible directions for an underlying Gaussian process. For a complete account on this method, we refer to
Davydov et al. (1998). However, the drawback of this approach is the loss of the control (1) of the convergence
in variation in this joint law case. It would be interesting to generalize to the multi-dimensional setting the
tools used in Davydov and Martynova (1987) in order to recover the control (1). But the main point in
Davydov and Martynova (1987) for the control of the variation (1) is the Lemma p. 56 about the distance
in variation of the images of a normal law by one-dimensional polynomials. The generalization of this point in
our context is a problem we do not succeed to overcome at this time.

Another way to extend Theorem A would be to consider other types of stochastic integrals. Since Gaussian
law is a particular case of stable law, the first natural generalization to think about is multiple stable integrals.
This has been done for one-dimensional law in Breton (2004). Therein, the argument relies on Breton (2002)
instead of Davydov (1991), Breton (2002) states the absolute continuity of the law of multiple stable integrals.

Another easy extension of Theorem A deals with Wiener functionals. Indeed using the chaotic expansion of
square integrable Wiener functionals in multiple Wiener—It6 integrals, we can transfer in some cases the
convergence in variation from the integrals to the functionals. This is briefly discussed at the end of this
introduction.

Since multiple Wiener—It6 integral is the basic object in this paper, we start with a short account of the facts
we will need about it. Next, we describe in Section 2 the setting and define the notations we shall need to state
the generalization of Theorem A. Section 3 is devoted to the proof of Theorem 4.

Let us consider a probability space (2,7 ,P) and a measured space (7,7 ,7) satisfying the following
continuity property: for all 4 € .7 such that 1(4)< + oo and for all >0 there exists By, ..., By such that

A= UB, (By)<e, Yj=1,...,N.
j=1

Let o ={4 € Jt1(4A)< + o0} and {W(A),A € o/} be the Gaussian orthogonal measure with control
measure 7, that is, the Gaussian process on (€2, %, [P) for which:
VA,Be o/, E[W(A)]=0 and E[W(A)W(B)]=1(4NB).

In the sequel, we consider .# = a(W(A), A € <7/) and we shall assume that the space L*(Q, .#,P) is separable.
For d € N\{0}, we introduce H, the Hilbert space of functions f : T¢ — R for which

Vi, = [ VOF 0 < +oc.

Let (-,-)y, be the relative inner product and H, the space of constants. Let K; be the subspace of Hy
consisting of functions f which are invariant under permutations of the coordinates, that is, functions f such
that

S =f(Sa0) = Zf(a(r))
GGHd
where () = (t4(1), - - - » ts(ay) and Il is the permutation group of d elements. Finally, H 4 denotes the set of the
so-called simple functions, that is those f € H,; for which there exists a finite system of sets 4; € .7,
Jj=1,..., N, which are pairwise disjoint and such that f'is constant on each 4; x --- x 4; .



1906 J.-C. Breton | Statistics & Probability Letters 76 (2006) 1904-1913

For such f € H,, we define the multiple integral 7,(f) by the formula
L) =Y [y WAy W(A)),
Giseedia)
where t,, € 4,, for each m. It is easy to see that the following properties are fulfilled for f, g € H d-

L La(f) = La(Sa(f))-
2. E[La(N (9] = Vig=ay (Sa(f), Sa(9) m,

In particular, we have E[/,(f)] = 0 and E[Id(f)z]gd!llfuzd. Since Fld is dense in H,, I; extends to H; and we
shall write

1 = [ ftetdW ). W)

for all f € H,, keeping the previous properties 1 and 2 for /; on H,.
As an easy generalization of Theorem A, we derive a result of convergence in variation for the laws of
square integrable Wiener functionals F exhibiting in their chaotic expansion

+00
F=EF1+) 1. fo€Ka @
d=1

some summand independent of the remainder. More precisely, we have:

Proposition 1. Let k € N\{0} and (F,), be a sequence of Wiener functionals whose kth summand I(f}) in its
chaotic expansion (2) is independent of the other summands 1,(f)), d#k.If F,, — F in LX(Q, .4, P) with f #0 in
the expansion (2) of F, then

var

P(F) -5 P(F), n— +oo. 3)

The law of F,, is the convolution of the law of Ik(fk) and of the law of the remainder ), 14(f}). The same
holds true for the law of F. Since Z(1,(f7})) = LUk(fr)) when n — +oo and L(Ii(f)) < Ak, Proposition 1 is
an easy consequence of Theorem A of Davydov (1991, Theorem 1) and of the strong convergence of
convolutions given in the following lemma, which is a corollary of a proposition due to Parthasarathy and
Steerneman (1985, Theorem 2.1):

Lemma 2 Let (X, Y),n=1, be a sequence of random vectors Uaa R? such that for every n, Y, is independent of
X, Xn X and Y, converges in law to Y. Then X, + Y, — X + Y, provided the law of X is absolutely
continuous with respect to the Lebesgue measure A.

Moreover, a rate of strong convergence for convolutions has been given by Davydov (1997, Theorem 1).
Note nt(vy, vz) = inf{e>0]v;(4)<v,(A4°) + ¢,VA € A(R)} the Prokhorov distance between probability measures
vi and vy (here 4° stands for the e-neighbourhood of 4) and wy, (¢) = sup <, llpy — 1 T '|lyar the modulus of
smoothness of y; (where Ty(y) = x + y). We have:

Lemma 3. Let uy, iy, vi,v2 be probability measures. Then
”,u] VL — Uy * v2||valr< ”:ul - ,u2||var + TC(V], VZ) + Wul(ﬂ(VIaVZ))- (4)

Using this result, we estimate the rate of convergence in (3): under the hypothesis of Proposition 1,
note

o= LAR),  w=LA ), =2 (Z Id(fz)>, v= (Z u(ﬂ»)

d+k d+#k
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First, from (1): |lp, — tllvar < CIf. —fklllL/zl(ch) <C||F, - F||1L/2]((Q). Next using Markov inequality and property 2
of multiple Wiener—It6 integrals:

2/3 2/3
TC(VH, V)< Z Id(fg’) - Z [d(fa,') < Zld(fg _fa')
d+#k d#k LX(Q) d+#k 12(Q)
2/3
< n 2/3
S| Do WG =Sl | <IFa=Flisg,
d#k

Finally, from (4) we deduce the following rate of convergence in (3):

1/k 2/3
| L(F ) = LE)llvar SCIE, = Fll gy + 1En = Fll sty + weartagon(1Fn = Flitotg)

2/3
<+ O, = Fll gy + W (1Fn = FliTig):
when 7 is large enough. In order to improve this rate of convergence, we need to estimate wo(z,(,) like in
Davydov (1997, Theorem 2), but this requires further information on the density of Ix(f}).

2. Setting and main result

In this section, let be given dj,...,d, € N\{0} the dimensions of p multiple Wiener—It6 integrals. We are
interested in the multi-dimensional laws of vectors (Z4,(f"), . .., 1a,(f,)) where f; € Hy,, 1 <i<p. Our goal is to
derive the continuity for variation norm of these multi-dimensional laws with respect to the integrands
S1€Ha,,....f, € Hy,. We need first to introduce some notations in order to state the condition for this
continuity. We point out that it corresponds in fact to the sufficient condition given in Davydov (1991) for the

regularity of the multi-dimensional limit law (Z4,(f}), ..., 14,(f,)). In the sequel, bold letters are used for multi-
dimensional quantities. Define:

e fori=1,....,p, Ni=d+ - +d;, N=N;

oaiz(af),.. a)eNp“a(p—i—l)partltlonofd di=a| =ay+---+a,;

e a=(al, al’) e (NPHyP:

o M, (a)1<lJ\p a p-square matrix such that d; = Y ¥_ a} for 1<i<p and by = Y_, d for 0<k<p;
e for b= (bi,...,b,) € N (and by = 0):

p
E(b): {a:(al,...,a”)lai +~"+a;:di,2a2:bk,k= 1,...,p},

i=1
in particular, for a € E(b), note that we have &} = 0 for all 1<i<p;
e for a € E(b), let g, € I1y the permutation of {1,..., N} that sends

k—1 i—1
J=Y b+ ay+l I=1,....4,
u=1 K

s=1

to
i1 =1
oa() =Y di+ Y d+1; (5)
v=1 s=1
e for a € E(b), let U, : RY —R" be associated with a5 by Ua(t1,...,15) = (tsy(1)s - - - > Loy¥));

e ¢(t) —fl(zl,.. tNl)-‘-f,,(thﬁl,...,th), where t = (7q,...,ty);
e ()= > H a,, l!det M,p(U,(t)), where t = (t4,...,ty);

acE(b) i=
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e for b= (by,...,b,) € N” denoting IT}, the sub-group of ITy of permutations preserving the following so-
called ““b-blocks’: (1 b1) bir+1,....,b1+b2),....(b1 +b2+---by_1+1,....by +by+---+ b, =N):
Sup(ty = 2§ ¢(la(1), e l):
aeﬂb]

We can then state our generalization of Theorem A:

Theorem 4. Let (f7,.. f Jnen be a sequence of elements of Hy, x --- x Hy, converging to (f,....f,). If at

least for one multi-index b = (b1,...,by) such that Z, 1 bi= Z, 1a’,, we have Sy, #0, then the followmg
convergence holds true when n — +o00

LA4T D 0, () = LUAa ([ s 14, (). ()
Remark 5.

e The algebraic condition “Sp¢y, #0 for some b’ is mainly required to ensure the non-degeneracy of the limit
law L(14,(f 1), ..,14,(f,))- This is due to Theorem 5 in Davydov (1991). It is difficult to interpret this
condition; but, roughly speaking, it deals in a sense with how overlapped are the f;’s.

o However, this algebraic condition is also required in order to apply the forthcoming Proposition 6 in the
proof we propose. We can thus not replace this condition by the weaker one L (14,(f),. .. ,Idp(fp))<i”.

e In fact, the convergence in (6) can fail to hold if the limit law is degenerated. Indeed it is thus possible to
choose (f7,....,f},) converging to (f},...,f,) with the function Sy¢y, relative to (f7,...,f7) being not 0 while
Sppy = 0.

In this case, if (6) holds, the sequence of the laws (L4, (f),...,1a,(f Z)))n is in particular a Cauchy
sequence in the Banach space of signed measures equipped with the norm of variation. But since Sp¢p #

the laws L(14,(fY), ..., 1a,(f p)) have densities and the sequence of the densities is also a Cauchy sequence in
L'(R”) and thus must converge to a limit density. But this is in contradiction with the convergence in
variation of L(14,(fY), ..., 14,(f p)) to a degenerated law, without density.

e Note that since the limit law is not degenerated, the convergence in (6) rewrites also as the convergence of
the densities of the joint laws in L'(R”). This is thus also a local limit result.

In order to apply Theorem 4 to the multiple Wiener—It6 integrals of functions f',...,f,, we have to check
its intricate hypothesis ““Sy¢, #0 for some b”’. This condition is of the same nature as that in Breton (2005) (in
a stable context) and we refer to Breton (2005) for a long illustration in several cases. Here, we only briefly
describe some particular setting where it is satisfied.

(1) Case p=1, d; =1 with b= 1. We have E(b) = {1} and ¢; = id. The condition is satisfied if f#0 a.e.
recovering a well-known result for Gaussian law.

(2) Case p=1, dy =d>1 with b=d: We have E(b) = {d} and 6; = id. The condition of Theorem 4 is
satisfied if f#0 a.e. recovering here the convergence part of the one-dimensional result of Davydov and
Martynova (Theorem A).

(3) Case p>1,d; =---=d,=1withb=(1,...,1): The condition is satisfied if

det{f ()} £0 a.e.

Note that if this sufficient condition does not hold, the limit law (/4,(f),...,14,(f,)) may be degenerated
(take for instance p =3, dy =dy =ds =1 and fy =1, +f3).

(4) Case p=2, di =dr =2 with b= (2,2) (taken from Davydov, 1991): The condition of Theorem 4 is
satisfied if there are no reals ¢y, ¢ such that

C]f‘] == C2f2 a.c.

If this is not the case, the limit law is once more degenerated.
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(5) Casep=2,d, =1, d, =d withb = (1,d): The condition of Theorem 4 holds in this case if

d+1

1
S1@)f (s t3, . tar ) # EZfl(ti)fz(IZ’ oo layl)  ae.
=2 —

with 7, in
ith position

Moreover, note that at least for examples (1)—-(4), when the conditions do not hold, the limit law is
degenerated and the convergence in variation in (6) fails to hold in general. In fact these simple examples
suggest the sufficient condition ““Sy¢, #0 for some b” is close to the necessary condition “‘the limit law is not
degenerated” for the convergence (6).

Other examples of explicit sufficient conditions for Theorem 4 can be derived, the technical nature of the
computations is related to the dimension of the joint laws. This is left to the brave-hearted reader.

3. Proof of Theorem 4

3.1. Setting

We will make an extensive use of the framework exposed in Davydov (1991) with the setting yet described in
the Introduction. Like in Proposition 1 in Davydov (1991), we see multiple integrals as functionals on sample
path. To this way, let 2 = R¥ and #(Z) = #* (where % is the real Borel o-algebra). We denote %" the
mapping from Q into 2 which maps @ € Q to the corresponding path of the process W. Let P:=P# ! be the
distribution of #" on (%, #(¥)). Proposition 1 in Davydov (1991) states that for any f € H, there exists a
measurable mapping F : 2 — R such that for P-almost all w:

La(f (@) = F(W () ()

(first, it is clear for simple functions f and (7) is then easily generalized for any f € H,;). In the sequel, we
denote the value of Fat x € Z by F(x) = [ fdsx. Note that, the index d in “d4x” is related to the space Hy in
which flives.

It is well known also that the admissible shifts of the Gaussian measure P are given by functions v, : &/ — R
for h € H, defined by

vh(A):/th, A€ o,
4

see Proposition 2 in Davydov (1991). Moreover,

dP, 1/,
dP(x)_exp{/hdlx—z/h dr},

where ﬁh stands for the distribution of the translated process W + vy,.

3.2. Superstructure

We shall prove the convergence in variation in (6) applying the superstructure method in a multi-
dimensional setting to functionals related to the kernels /7, . .. ,f;,fl, .. ,fp. We refer to Davydov et al. (1998,
Section 5) for the description of this method in a one-dimensional setting.

First, let Fy, ..., F, be defined from /7, ... ,f[, like in (7) and F7, .. .,FZ similarly defined from /7, ... ,f;. We
consider in the sequel F = (Fy,...,F,)and F, = (I}, ..., F"). The joint laws in (6) can be seen from (7) as the
following image-measures:

LUA4(f ). Ta(f,) = PF,

LU (1D, 1a, () = PF;".



1910 J.-C. Breton | Statistics & Probability Letters 76 (2006) 1904-1913

The superstructure method is suitable to study such image-measures PF~! for some functionals F defined
on 2. It consists to introduce a product space [0,¢)’ x 2 and to twist the product space by a family of
transformations {G.}. adapted to P. The keystone is then to see PF~' as a mixture of (finite dimensional)
conditional measures along the orbit of {G.}.. It remains then to study the image-measures with finite-
dimensional tools.
More precisely, let for i=1,...,p, h; € H; and let v; = v, be p fixed admissible shifts. Consider the
following family of transformations of the space %"
Gx)=x+cvi+---+cv, c=(c,...,cp).

This family of transformations is adapted to P in the following sense:

PG.' 5P, c—0. (8)

Indeed, observe that PG_ = Pc, where P stands for the law of the shift process W +civi +---+¢pv, =
W 4 Veihy+teph, - Moreover the density of P, with respect to P is given by

= exp /Zc,h dlx——/ (Zc, )

. hid L
= €Xp ZC,‘ i 1X—22 in;at o
i= ij=

Then, when ¢ — 0, we have (dﬁc/dP)(x) — 1 for any x € 2. Next, Scheffé¢’s lemma yields (8).
We define the following auxiliary measures and functionals on the product space Z, = [0,¢)’ x Z, ¢>0:

1.
0, = o oap X P,
Fy(e,x) = F(Ge(x)),

Fpi(e,x) = F(Ge(x)).

Note that F, and F,, depend on ¢ only through their domain %. Since Q,F
the following estimate for the total variation:

&7 n,e

f[OL],J PG;'F;"de, we have

_ _ 1 _
||Q1:Fn’gl—PFnl||<§/ ”P_PGcl”dc
[0.F
Since ||P — PG_1 || <2, from dominated convergence and from (8), we derive
lim | Q,F, L =0, )

where the limit holds uniformly with respect to n € N. The same limit holds true for the functional F:
1
10,F;! —PF—‘||<—/ |P— PG.'||de—>0, &— 0. (10)
' & Joey
Next, we express Q,.F;' as a mixture of finite-dimensional measures as follows: note, for

c=(c1,...,cp) €[0,€), qo’n’x(c) = F,(Gc(x)) the restriction of F, over strata {x-+civi+ -+ cpVple
we have

_ 1 _
Q.F, = p /I Moy Py AP. (11)

Introducing similarly ¢ (c) = F(x+ civi + - - - 4+ ¢,v,), we express also O.F;" as

1
—1 -1
=— | Aoer dP. 12
8,,/1 0.6 P (12)
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Now, we have
- —1 —1 -1 - -1 —1 —1
|PF~" = PF, < PF™ = QF, " + |Q,F," — Q,F,!Il +1Q,F,! — PF,"|. (13)

From (9) and (10), we deduce that the first and third terms in (13) can be chosen arbitrarily small.
Consequently, it remains to deal with the term in the middle of the right-hand side of the previous inequality
(13) when n — +o0 for some &> 0 arbitrary fixed. But from (11) and (12), we have

- iy ] - -
1Q.F; ! = Q.F, ;| =— / g0y 03" = Zoap @l AP.
.

Since ||y @' — Aoy @;,,L” <2¢, it is sufficient, using dominated convergence, to prove for P-almost all x
that

: -1 -1
nl}TOC 40 @y — Aoy @yl = 0. (14)
3.3. Convergence in variation of induced measures

In order to prove (14), we use the following result from Alexandrova et al. (1999). It gives conditions on
finite-dimensional functionals for the convergence in variation of their image-measures.

Proposition 6 (Alexandrova et al., 1999, Corollary 4). Let G,,G € Wﬁ;l([R{P ,R?) where q=p and let the
mappings G, converge to G with respect to the Sobolev norm || - ||, on every ball. Assume that E C {det DG #0}
is a set of finite Lebesgue measure. Then when n — 400,

var

A|EG;] —> /1|EG_] .

We apply Proposition 6 to the mappings G, = ¢, , and G = ¢, on [0, ¢f’. From Davydov (1991, Proposition
4), the ith component QDL,X of ¢, has the following polynomial expression:

(P;,x(c) = F:l(x +cvi+---+ vap) = Z caBa /f?dava (15)
la|=d;
where a = (ag, ai, . ..,a,,) € N e =(1,¢,...,¢,) € RP*! and with
P P P
ca = H Cﬁ11”3 |a| = Zama Ba = f’l' H(am!)’ V= (X,V], e 7vp)s
m=0 m=0 m=0

/fdav = /(/fdalvl ...dapvp) dgyx.

The same as for (15) holds also for each component ¢’ of ¢,.. Thus, in (14) we deal in fact with image-
measures by multi-dimensional polynomial mappings ¢, = (¢.,..., ¢?) and Ppx = ((p}l,x, oo @b ). In order to
prove the local Sobolev convergence

: q,1
(Pn,x—)(/)x m Wloc

(R, R”)

for some ¢>p, it is enough to see the convergences of the coefficients of all monomials ¢* = ¢{' ... ¢, in (15).
By linearity, we study actually the convergence:

/f:’dav=/(/f;’dalvl...dapvp> daox—>/(/fidalv1 ...d[,pv[,) dgx = /fl-dav, n— +oo. (16)

But f(ff;’dalvl...dapv,,)daox:f(ff;-’h?”‘...hl?“”ddl._aor)daox and since f7 — f; in Hg, we derive
easily the convergence of the inner integrals in Hg_,, using Cauchy-Schwarz’s inequality and



1912 J.-C. Breton | Statistics & Probability Letters 76 (2006) 1904-1913

Fubini’s Theorem:

n1,Qd) ®a, g A ®a
H/flhl hp Iddi—a(]f_/fihl h[’ pddl.,a(]‘[

2
_ / ( / " - fi)h?“l...hff'rdd,,_,,or) dut
</(ﬂﬁﬁﬁ®wﬂx<ﬁWW~WW%MQmw

IWW‘HM%//W—MHWM%T
S A A S VA P

We get in H,,:

lim / SISyt = / Tl Ry . (17)

2

H ag

n——+00

In the sequel, we denote F, the measurable mapping from 2" to R associated to some g € Hy like in (7) from
Proposition 1 of Davydov (1991) in order to stress on the dependence of F, on g. We remind also that for any
X € Z, Fy(x) stands for [gdsx. From the very definition of F, in the proof of Proposition 1 in Davydov
(1991), we have for any x € 4, F (x) — F4(x) whenever g, — ¢ in Hy. Thus from (17), we derive when
n— +00:

/(/f?d[,]\}] et dapr> da()x = Fff;-ld“lV].--dapr(x)_)Fff,-d‘,l\'1...dc//;vp(x) = /(/.fidalvl et dapvp) daﬂx'

As a consequence, (16) holds and the coefficients of (p,’” in (15) converge to their analogues for ¢’. It is easy
to derive henceforth the convergence of ¢}, to ¢/ in the Sobolev sense on every ball.

It remains now to prove det Do (¢)#0 a.e on [0, ¢}’ in order to apply Proposition 6; that is, to compute the
Jacobian of polynomial mapping ¢,. But Davydov (1991, Section 4) proves this Jacobian is not degenerated
(and so, as a polynomial, it is also not zero a.e.) if at least for one multi-index b = (by,...,b,) such that
SP b =", d;, we have Sy¢y,#0. This condition is the content of the hypothesis of Theorem 4 (and we
repeat: the reason for this condition).

Finally, we can apply Proposition 6 and derive

. -1 -1
nEIPoo ”1[0,1:]/’ Ppx — i[O,z:]/’(Px ” =0.

This allows to conclude, via (13), that

var

LA (s La, () — LU, (f1)s -5 La, (), n— +o0.
This ends the proof of Theorem 4.
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