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Abstract. In this note, we are interested in the regularity in the sense
of total variation of the joint laws of multiple stable stochastic integrals.
Namely, we show that the convergence

L(Id1 (fn
1 ), . . . , Idp (fn

p ))
var−→ L(Id1 (f1), . . . , Idp (fp)), n → +∞

holds true as long as each kernel fn
i converges when n → +∞ to fi in

the Lorentz-type space Lα(log+)di−1([0, 1]di ) for 1 ≤ i ≤ p. This result
generalizes [4] from the one-dimensional case to the joint law case. It gen-
eralizes also [6] from the Wiener-Itô setting to the stable setting and [5] in
the study of joint law of multiple stable integrals.
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1. INTRODUCTION

In this paper, we deal with the regularity of the joint laws of multiple stable
integrals (MSIs)

(1.1) Id(f) =
∫

[0,1]d
fdMd

with respect to their integrand f . Here and in the sequel, M is an α-stable ran-
dom measure on ([0, 1],B([0, 1])) defined for 0 < α < 2 on a probability space
(Ω,F , P):

M(A) L= Sα

(
λ(A)1/α,

∫
A βdλ

λ(A)
, 0
)

, A ∈ B([0, 1])

where λ is the Lebesgue measure and β : [0, 1] → [−1, 1] is the skewness intensity
of M , see Samorodnitsky-Taqqu in [14, Section 3]. Moreover, for α ≥ 1, the
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measure M is assumed to be symmetric (that is: β = 0).
The MSIs are a generalization of multiple Wiener-Itô integrals (MWI). A

broad litterature is devoted to the study of MWIs and it is natural to investigate
which properties of MWIs remain true in the stable case.

The MSI in (1.1) is defined for kernel f in a Lorentz-type space:

f ∈ Lα(log+)d−1([0, 1]d) :=
{

f : [0, 1]d → R
∣∣∣ ∫

[0,1]d
|f |α(1+log+ |f |)d−1dλd

}
where log+ x := log(x ∨ 1). The main feature of MSI is given by the Represen-
tation theorem which gives an insight into the discrete structure of MSI. It shows
that Id(f) can be represented in law by a multiple LePage-type series

(1.2) Sd(f) = Cd/α
α

∑
i1,...,id>0

γi1 · · · γidΓ
−1/α
i1

· · ·Γ−1/α
id

f (Vi1 , . . . , Vid),

where Cα = (
∫∞
0 x−α sinx dx)−1 is a normalization factor, (Γi)i>0 is the se-

quence of arrival times of a standard Poisson process and (Vi, γi)i>0 are indepen-
dent and identically distributed random vectors with Vi uniformly distributed on
[0, 1] and γi = ±1 with conditional laws

P(γi = −1 | Vi) =
1− β(Vi)

2
, P(γi = +1 | Vi) =

1 + β(Vi)
2

.

Moreover, the sequence (Γi)i>0 and (Vi, γi)i>0 are independent.
The Representation theorem shows that MSIs are also related to random mul-

tilinear forms (see [10]). For a complete account on the construction of MSI, we
refer to [3] and references therein. The laws of MSIs have been studied by severals
authors. We briefly review some results on the law of MSIs.

In [13], the tails of Id(f) is expressed in terms of f .
In [11], the regularity of the sample path of a process defined by an integral

like in (1.1) is related to the smoothness of the kernel.
In [12], the independence of MSIs is studied in terms of the kernels, general-

izing the MWI case of [15].
In [5], the existence of the densities for the joint laws of MSIs is studied,

generalizing the MWI case of [8].
In this article, we go further in the study of the joint laws of MSIs than in [5]

and we study their regularity in the sense of total variation norm. More precisely,
given d1, . . . , dp the dimensions of p MSIs, we study the convergence in variation
of the joint laws

(1.3)
(
Id1(f

n
1 ), . . . , Idp(f

n
p )
)

for integrands
(1.4)

fn
1 → f1 in Lα(log+)d1−1([0, 1]d1), . . . , fn

p → fp in Lα(log+)dp−1([0, 1]dp).
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This is a generalization of [4] which deals with one-dimensional law of MSIs
(p = 1 in our setting). This is also a generalization of [6] where the convergence
in variation of joint laws is investigated for MWIs (α = 2 in our setting). In this
paper, we deal with arbitrary p ∈ N∗ and arbitrary α ∈ (0, 2).

Moreover, since the densities of the joint laws of MSIs exist (under rather broad
conditions, see [5]), the convergence in variation of the law states also the conver-
gence of the densities in L1(Rd).

The paper is organized as follows. In Section 2, we start giving some notations
yet used in [5]; they will be used all along this note. Next, we state the conver-
gence result in Theorem 2.1. The sequel is devoted to the proof of Theorem 2.1.
The problem is first reduced in Sections 3 and 4. In Section 5, we use the method
of superstructure to reduce to the study of finite-dimensional functionals. Finally,
in Section 6, the convergence in variation of these functionals is shown using the
results of convergence in variation for smooth image-measures in [1] (see Propo-
sition 2.1).

Note that the one-dimensional argument used in [4] (which states the one-
dimensional counterpart of Theorem 2.1) can not be generalized in a multidimen-
sional setting (at least easily). Actually, the proof of Theorem 2.1 relies on argu-
ments yet used in [6] and in [5]. But this is not a simple rewriting of these argu-
ments. Indeed, they have to be merged together: on the one hand, the method of
stratification used in [5] is not sufficient to yield a convergence in variation, instead
we use the method of superstructure, on the other hand, the argument in [6] relies
on Gaussian analysis which has to be replaced by stable considerations. Moreover,
new difficulties appear in the implementation of these merged arguments.

In the sequel a.s. stands for almost surely, a.e. for almost everywhere, i.i.d.
for independent and identically distributed, := means a definition, C is a finite and
positive generic constant, µA is the restriction to a measurable set A of a measure
µ, ‖ν‖ is the total variation of a signed measure ν, var−→ stands for the convergence

of variation, P−→ for the convergence in probability P and finally bold characters
are used for multi-indicial notations.

2. CONVERGENCE IN VARIATION OF JOINT LAWS

In this study, we shall use the same background as in [5]. We begin by re-
minding of the notations of [5] that will be used all along this article:

• for i = 1, . . . , p, Ni = d1 + · · ·+ di, N = Np,
• ai = (ai

0, . . . , a
i
p) ∈ Np+1 a (p + 1)-partition of di: di = |ai| = ai

0 + · · ·+
ai

p,

• a = (a1, . . . ,ap) ∈ (Np+1)p,
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• Ma =(ai
j)1≤i,j≤p a p-square matrix with di =

∑p
k=0 ai

k for 1 ≤ i ≤ p and
bk =

∑p
i=1 ai

k for 0 ≤ k ≤ p,
• for b = (b1, . . . , bp) ∈ Np:

E(b) =

{
a = (a1, . . . ,ap)

∣∣∣ ai
1 + · · ·+ ai

p = di,

p∑
i=1

ai
k = bk, k = 1, . . . , p

}
,

• σa the permutation of {1, . . . , N} that sends for each i, k

j =
k−1∑
u=1

bu +
i−1∑
s=1

as
k + l, l = 1, . . . , ai

k,

to

σa(j) =
i−1∑
v=1

di +
k−1∑
s=1

ai
s + l,

• Ua : RN −→ RN associated to σa by Ua(t1, . . . , tN ) = (tσa(1), . . . , tσa(N)),
• denoting Πb1,...,bd

the sub-group of ΠN of permutations preserving the fol-
lowing ”b-blocks”: (1, . . . , b1), (b1 +1, . . . , b1 + b2), . . . , (b1 + b2 + · · ·+ bp−1 +
1, . . . , b1 + b2 + · · ·+ bp = N):

Sb1,...,bd
φb(t) =

b1! · · · bd!
N !

∑
σ∈Πb1,...,bd

∑
a∈E(b)

p∏
i=1

di!
ai

0! · · · ai
p!

det Ma φ(Ua(t))

where φ(t) = φ(t1, . . . , tN ) = f1(t1, . . . , tN1) · · · fp(tNp−1+1, . . . , tNp).
Note that the previous function Sb1,...,bd

φb is symmetric in each b-blocks.

The main result of this paper is:
THEOREM 2.1. Let fn

1 , . . . , fn
p be kernels converging respectively to f1, . . . , fp

like in (1.4). Suppose moreover the limit functions f1, . . . , fp satisfy the following
hypothesis:

(H)
{

Sb1,...,bd
φb 6= 0 a.e. on [0, 1]N for some b = (b1, . . . , bp) ∈ (N∗)p

with |b| = N = d1 + · · ·+ dp.

Then L(Id1(f
n
1 ), . . . , Idp(f

n
p )) var−→ L(Id1(f1), . . . , Idp(fp)) when n → +∞.

Roughly speaking, (H) is a non-degeneracy condition dealing with how over-
lapped are the fi’s. The same remark and the same examples as in [5] apply about
condition (H). In particular, we stress on that this condition is optimal in several
examples and coincides with the condition for the same convergence for joint laws
of MWIs, see [6]. For instance,

• for p = 1 and d1 = d, (H) is satisfied with b = d if f 6= 0 a.e.
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• for p > 0 and d1 = · · · = dp = 1, (H) is satisfied with b = (1, 1) if
det{(fi(tj))1≤i,j≤p} 6≡ 0 a.e.

• for p = 2 and d1 = d2 = 2, (H) is satisfied with b = (2, 2) if f1 and f2 are
not proportional a.e.

The global scheme of the proof is the following. First, we explain how to
reduce the problem in Section 3 (see (3.5)). Using the representation of stable
integrals by LePage series, we introduce on the Skorohod space some related func-
tionals to be studied (see (3.2)). Next, approximating and localizing the problem in
Section 4, we use the method of superstructure in Section 5 where the main point
is to study the convergence in variation of measures under finite-dimensional map-
pings (see (5.9)). This is finally done in Section 6 with the following result from
[1] and the study of some related coefficients (see (6.2)).

PROPOSITION 2.1. (Corollary 4 in [1]) Let Fj , F ∈ W p,1
loc (Rn, Rn), where

p ≥ n, and let the mappings Fj converge to F with respect to the Sobolev norm
‖ · ‖p,1 on every ball. Assume that E ⊂ {det DF 6= 0} is a set of finite Lebesgue
measure. Then λ|EF−1

j
var−→ λ|EF−1.

3. REDUCTION OF THE PROBLEM

In this section, we describe the arguments yet used in [3] and in [5] to reduce
the study of the convergence in variation of laws like in (1.3).

Representation and stable stuff. Like in [5], we first reduce the study to
random multiple LePage series. From the Representation Theorem [3, Th. 3.2],
we have like in (1.2) the following equality of joint laws

(3.1)
(
Sd1(f1), . . . , Sdp(fp)

) L=
(
Id1(f1), . . . , Idp(fp)

)
.

Moreover, we have from [3, Sec. 4.1.2 and 4.2.3]:
PROPOSITION 3.1. Let (Id1(f

n
1 ), . . . , Idp(f

n
p )) be a vector of MSIs with ker-

nels fn
1 , . . . , fn

p converging like in (1.4). Then, when n → +∞, we have

(Id1(f
n
1 ), . . . , Idp(f

n
p )) P−→ (Id1(f1), . . . , Idp(fp)).

Thanks to (3.1), we shall actually study the joint law of
(
Sd1(f

n
1 ), . . . , Sdp(f

n
p )
)
.

For x in the Skorohod space D (the space of cadlag functions on [0, 1]), let δx(t)
be the jump of x at t and (ti)i>0 is the list of its jump-times. We consider the
multi-dimensional functional F = (F1, . . . , Fp) with Fi : D −→ R given by:

(3.2) Fi(x) =
∑

t1,...,tdi

δx(t1) · · · δx(tdi
) fi(t1, . . . , tdi

)

whenever the multiple series is convergent, otherwise Fi(x) = 0.
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In the sequel, we shall also consider the stable standard process η given by

ηt = M([0, t]), t ∈ [0, 1].

The sample paths of η live in D; we denote its law by P . From the Represen-
tation Theorem (in a one-dimensional case), we have

ηt =
∫

[0,1]
1[0,t] dM

L= C1/α
α

∑
i>0

γiΓi
−1/α 1[0,t](Vi)

from which the following interpretations come
• Vi, i > 0, are the jump-times of the stable process η;
• C

1/α
α Γ−1/α

i is the modulus of the jump at Vi, decreasingly ordered;
• γi indicates the direction of the jump.

We deduce

Fi(η.(ω)) = Cdi/α
α

∑
k1,...,kdi

>0

(γk1Γ
−1/α
k1

) · · · (γkdi
Γ−1/α

kdi
) fi(Vk1 , . . . , Vkdi

)

= Sdi
(fi)(ω),

so that
F (η) L= (Sd1(f1), . . . , Sdp(fp)).

We define also Fn from (fn
1 , . . . , fn

p ) like F from (f1, . . . , fp) in (3.2). The con-
vergence in variation of the law of (1.3) actually rewrites, in our notations:

(3.3) P (Fn)−1 var−→ PF−1, n → +∞.

In the sequel, we shall use the following result. This is a rewriting of Prop.
3.1 in terms of the functionals related to the corresponding MSIs.

PROPOSITION 3.2. Let fn
1 , . . . , fn

p be converging kernels like in (1.4). Then,

with the previous notations, we have Fn P−→ F when n → +∞.

Approximation. This procedure consists in the following straightforward re-
sult:

PROPOSITION 3.3 (Approximation). In order to prove (3.3), it is enough to
see for all ε > 0, there is some measurable set D(ε) in D with P (D(ε)) > 1 − ε
and

(3.4) PD(ε)(F
n)−1 var−→ PD(ε)F

−1.

P r o o f. We have

‖P (Fn)−1 − PF−1‖
≤ ‖P (Fn)−1 − PD(ε)(F

n)−1‖+ ‖PD(ε)(F
n)−1 − PD(ε)F

−1‖+ ‖PD(ε)F
−1 − PF−1‖

≤ 2P (D(ε)c) + ‖PD(ε)(F
n)−1 − PD(ε)F

−1‖
≤ 2ε + ‖PD(ε)(F

n)−1 − PD(ε)F
−1‖.
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But from (3.4), the last bound is bounded by 3ε for n large enough. This ends the
proof of the argument of approximation. �

Localization. Using the separability of D(ε), we localize the problem by the
following result:

PROPOSITION 3.4 (Localization). In order to prove (3.4), it is enough to ex-
hibit for all x ∈ D(ε) some neighbourhood V (x) of x such that

(3.5) PV (x)(F
n)−1 var−→ PV (x)F

−1, n → +∞.

P r o o f. Since D(ε) is separable, there is a countable family {xi, i ∈ N∗}
such that D(ε) =

⋃+∞
i=1 V (xi). We have limk→+∞ P (

⋃k
i=1 V (xi)) = P (D(ε)) so

that for any fixed ε > 0 and k large enough, we have P (D(ε) \ Ak) < ε where
Ak =

⋃k
i=1 V (xi). Therefore, for such a k, we have:

‖PD(ε)(F
n)−1 − PD(ε)F

−1‖
≤ ‖PD(ε)(F

n)−1 − PAk
(Fn)−1‖+ ‖PAk

(Fn)−1 − PAk
F−1‖

+ ‖PAk
(F )−1 − PD(ε)F

−1‖
≤ 2P (D(ε) \Ak) + ‖PAk

(Fn)−1 − PAk
F−1‖

≤ 2ε +
k∑

i=1

‖PV (xi)(F
n)−1 − PV (xi)F

−1‖

≤ 3ε

where the last bound comes for n large enough from (3.5). Finally, we derive (3.4)
and this proves the localization. �

Using localization, it is enough to prove (3.5). To do so, we shall use the
method of superstructure. For a general description of this method, we refer to [9].
Like in [3, 5] with the method of stratification, these preliminary procedures of
approximation and of localization are necessary in order to implement successfully
the method of superstructure.

4. APPROXIMATION AND LOCALIZATION

In this section, we exhibit the set D(ε) required in the approximation proce-
dure and the neighbourhood V (x) required for P -almost all x ∈ D(ε) in the local-
ization procedure. Actually, the approximation and the localization procedures are
the same as in [5], we thus refer to the Section 3 of [5] for a precise description.
Here, we only sketch the main steps.

Approximation. Let b be given by hypothesis (H) in Theorem 2.1 and t̃ =
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(t̃1, . . . , t̃N ) be some Lebesgue point of Ab = {t ∈ [0, 1]N | Sb1,...,bpφb(t) 6= 0} ∈
B([0, 1]N ). The Lebesgue measure of Ab is positive by hypothesis (H). There is no
restriction in assuming t̃ is chosen with its coordinates all distinct (t̃i 6= t̃j , i 6= j).
Let ε > 0 be fixed, there is a product neighbourhood Vε = U ε

1 × · · · × U ε
N of t̃ in

[0, 1]N satisfying

(4.1) U ε
i ∩ U ε

j = ∅, i 6= j and
λN (Vε ∩Ab)

λN (Vε)
≥ 1− ε.

We consider the following sets:

D̃(ε) = {x ∈ D | for i = 1, 2, . . . , N, x has at least one jump at a time in U ε
i ,

the maximal modulus of these jumps being realized only once},

D(ε) = {x ∈ D̃(ε) | x has an unique maximal jump on each U ε
i at TUε

i
(x)

with Tε(x) := (TUε
1
(x), . . . , TUε

N
(x)) ∈ Ab}.

We recall from [5] the following result for the standard stable process η:
LEMMA 4.1. The random vector Tε(η) = (TUε

1
(η), . . . , TUε

N
(η)) is uniformly

distributed on Vε. Moreover, for i 6= j, TUε
i
(η) and TUε

j
(η) are independent.

With (4.1), Lemma 4.1 gives:

P (D(ε)) = PD̃(ε)T
−1
ε (Ab) =

λN (Vε ∩Ab)
λN (Vε)

≥ 1− ε.

The set D(ε) is the set required in the procedure of approximation of D.

Localization. For the sake of completeness of notations, we recall the local-
ization procedure of [5]. Let x ∈ D(ε) be fixed and denote for i = 1, . . . , N :

• ti = TUε
i
(x) the time of the largest jump of x in U ε

i ;

• t′i the time of the second largest jump of x in U ε
i , |δx(t′i)| < |δx(ti)|;

• ε0 =
1
2

min
i=1,...,N

|δx(ti)|.

Note that by Lemma 4.1, the jump-time ti can be seen as a random variable
on (D(ε), PD(ε)/P (D(ε))) whose law is uniform on U ε

i .
By finiteness of the number of jumps of x larger than ε0/2, we select δ1 > 0

such that ti is the unique time of ∆′
i := (ti−δ1, ti +δ1) ⊂ U ε

i where a jump larger
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than ε0/2 in modulus occurs. Let the following technical conditions be fulfilled:

• ε0/2 < ε1 < ε2 < · · · < εp < ε0 ;(4.2)

• δ2 <
1
4

min
{

ε0, 2δ1, inf
i=1,...,N

{|δx(ti)| − |δx(t′i)|}, 2ε1 − ε0

}
;(4.3)

• β = δ1 − δ2 (δ2 ≤ β ≤ δ1);
• ∆i := (ti − β, ti + β) ⊂ ∆′

i ⊂ U ε
i .

In the sequel, we consider local field l = (lx)x∈D. That is, for m ∈ N∗, ε > 0,
reals τi, and intervals ∆i = (ai, bi), we define

lx(t) =
∑

s|δx(s)>ε

(
m∑

i=1

τi1∆i(s)1[s,∞[(t)

)+

−
∑

s|δx(s)<−ε

(
m∑

i=1

τi1∆i(s)1[s,∞[(t)

)−

see [9, p. 163] for a precise definition of local fields. Roughly speaking, local
fields (lx)x are admissible directions for stable processes. Moreover, we note

(4.4) ωx(t) =
{

τi if t ∈ (ai, bi), |δx(t)| > ε, δx(t) τi > 0,
0 else,

so that the jumps of x and x + c lx are linked by δx+c lx(t) = δx(t) + c ωx(t).
Next, we associate the following sets to l:
• A(l)+ the set of x ∈ D such that for all i with τi > 0, x does not have

jumps of length exactly ε on (ai, bi), δx(ai) < ε, δx(bi) < ε, and x has at least one
jump larger than ε on (ai, bi),

• A(l)− the set of x ∈ D such that for all i with τi < 0, x does not have
jumps of length exactly −ε on (ai, bi), δx(ai) > −ε, δx(bi) > −ε, and x has at
least one jump lower than −ε on (ai, bi),

•

(4.5) A(l) = A(l)+ ∩A(l)−.

The set A(l) is suitable to study the local field l. In particular, it is shown in
[5, Sec. A1, A2] that A(l) is open in D and that the local field l is continuous on
A(l).

In order to apply the method of superstructure in a multi-dimensional setting,
we consider p local fields li, 1 ≤ i ≤ p, and their open set A(li), given like in
(4.5). We select the p local fields with the following parameters: for i = 1, . . . , p,

• εi given by (4.2),
• mi = bi, given by hypothesis (H),
• ∆i

j = ∆b1+···+bi−1+j for j = 1, . . . , bi,

• τ i
j with the same sign as δx(ti) and with constant modulus τ > 0.
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In the sequel, we note ` = (l1, . . . , lp). We have x ∈ Ã(`) :=
⋂p

i=1 A(li), open
set. We shall apply the localization procedure with the following neighbourhood
V (x):

(4.6) V (x) = B(x, δ2) ∩ Ã(`) ∩ D(ε)

where δ2 is given in (4.3).

Finally, with D(ε) and V (x) given above, Proposition 3.3 and Proposition 3.4
applies and the proof of Theorem 2.1 reduces to (3.5). The convergence in (3.5) is
tackled with the method of superstructure in the next sections.

5. SUPERSTRUCTURE IN D(ε)

In order to prove (3.5), we use the method of superstructure in the neighbour-
hood V (x) of x defined in (4.6). For a general account on this method we refer to
[9, Sec. 5]. Here, we only sketch the method.

This method applies to study the convergence PF−1
n

var−→ PF−1 when Fn and
F are some functionals on some (Y, P ). When we have a family of transformations
(Gc)c∈(R+)p , satisfying

(5.1) PG−1
c

var−→ P, c → 0,

we define the following auxiliary measures and functionals on the product space
Yε = [0, ε]p × Y , ε > 0:

Qε =
1
εp

λ[0,ε]p ⊗ P,

Fε(c, y) = F (Gc(y)),

(note that Fε depends on ε only through its domain of definition Yε).

Since QεF
−1
ε =

1
εp

∫
[0,ε]p

PG−1
c F−1dc, for the total variation, we derive:

∥∥QεF
−1
ε − PF−1

∥∥ ≤ 1
εp

∫
[0,ε]p

‖P − PG−1
c ‖ dc

and from (5.1) together with the dominated convergence

(5.2) lim
ε→0

∥∥QεF
−1
ε − PF−1

∥∥ = 0.

Next, we express QεF
−1
ε as a mixture of finite-dimensional measures: we intro-

duce ϕy(c) = F (Gc(y)) for c ∈ [0, ε]p and we have:

(5.3) QεF
−1
ε =

1
εp

∫
Y

λ[0,ε]pϕ
−1
y dP.
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In the sequel, we shall note ϕy = (ϕ1
y, . . . , ϕ

p
y). In our setting, in order to study

the laws of
(
Id1(f

n
1 ), . . . , Idp(f

n
p )
)
n

for fn
i → f , n → +∞, in the space

Lα(log+)di−1([0, 1]di), 1 ≤ i ≤ p, we apply this method to Y = Ã(`) equipped
with the restricted probability law Px := PV (x) of the process η and to the func-
tionals F and Fn given in (3.3). We use the family of transformations (Gc)c∈(R+)p

defined from the local fields li, i = 1, . . . , p, by

(5.4) Gc :
{

Ã(`) −→ Ã(`)
y 7−→ y + 〈c, ly〉

where 〈c, ly〉 := c1 l1y + · · ·+ cp lpy for c = (c1, . . . , cp). Moreover, with a similar
notation, note that with ωi defined from li like in (4.4), we have for c ∈ (R+)p,

(5.5) δGc(y)(t) = δy(t) + 〈c, ωy〉.

REMARK 5.1. The open set Ã(`) is invariant under Gc1,...,cp . Roughly speak-
ing, this is because each term liy, 1 ≤ i ≤ p, emphasizes the membership of A(li)
and does not alter conditions to belong to A(lj) for j 6= i. A more detailled justi-
fication is given in [3].

The condition (5.1) in our setting is satisfied for the family of transformations
(5.4). Indeed, in Lemma 4.1 of [3], it is shown that (Gc)c defined an admissible
semigroup in the sense of [9, p. 14]. Moreover, the conditional measures of P on
the orbits of the semigroup (Gc)c have densities. Since (Gc)c acts as a translation,
we derive (5.1) when c → 0 (see (21.8) in [9] for a more detailled proof). The
convergence in (5.1) is enough for our study but we have actually more:

LEMMA 5.1. The convergence P xG−1
c

var−→ P x is uniform with respect to x
in Ã(`).

P r o o f. In this proof only, we use the setting described in Section 4 of [9].
First, we define an equivalence relation R on Ã(`) by x1Rx2 if and only if there
are c1, c2 ∈ (R+)p such that Gc1x1 = Gc2x2. Let Γ be the partition given by
R and π : Ã(`) → Ã(`)/Γ be the canonical projection. The equivalence classes
π−1(γ), γ ∈ Ã(`)/Γ, are called orbits of the semigroup (Gc)c. In Proposition
4.2 of [9], each orbit π−1(γ) is shown to be isomorphic (via a mapping Jγ) to a
measurable set Cγ ⊂ Rp. Next, we define a Lebesgue measure λγ on π−1(γ) by

λγ(B) = λp(Jγ(B ∩ π−1(γ))), B ∈ B(Ã(`))

where λp is the Lebesgue measure on Rp. Moreover, the mapping Jγ intertwines
the action of the semigroup (Gc)c on the orbit π−1(γ) with the action of the semi-
group of translation (τc)c on Cγ :

JγGc = τcJγ .
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Thus, we have

‖P xG−1
c − P x‖ =

∥∥∥∥∥
∫

Ã(`)/Γ
P x

γ G−1
c dPΓ(γ)−

∫
Ã(`)/Γ

P x
γ dPΓ(γ)

∥∥∥∥∥
≤

∫
Ã(`)/Γ

‖P x
γ G−1

c − P x
γ ‖ dPΓ(γ)

≤
∫

Ã(`)/Γ
‖P x

γ J−1
γ τ−1

c Jγ − P x
γ J−1

γ Jγ‖ dPΓ(γ)

≤
∫

Ã(`)/Γ
‖P x

γ J−1
γ τ−1

c − P x
γ J−1

γ ‖ dPΓ(γ).(5.6)

In Theorem 4.1 of [9], it is shown that the conditional measures (Pγ) of P on the
orbits of the semigroup (Gc)c have densities. Thus PγJ−1

γ has also a density in
Cγ ⊂ Rp. But the translation operator is uniformly continuous in L1(Rp) (that is
limh→0 ϕ(·+ h) = ϕ(·) in L1(Rp) uniformly with respect to ϕ).

Therefore, lim
c→0

‖P x
γ J−1

γ τ−1
c − P x

γ J−1
γ ‖ = 0 holds uniformly with respect to

both γ and x. Integrating with respect to γ ∈ Ã(`)/Γ, we derive that the right-hand
side of (5.6) goes to 0 when c → 0 uniformly with respect to x. Finally (5.1) holds
uniformly with respect to x in Ã(`). �

Applying the method of superstructure in this setting, we define as previously
multi-dimensional auxiliary functionals Fn

ε on Yε and we derive as in (5.2):

(5.7) ‖Qε(Fn
ε )−1 − P x(Fn)−1‖ ≤ 1

εp

∫
[0,ε]p

‖P x − P xG−1
c ‖ dc → 0, ε → 0

uniformly with respect to n ∈ N. We have

‖P xF−1 − P x(Fn)−1‖

≤ ‖P xF−1 −QεF
−1
ε ‖+ ‖QεF

−1
ε −Qε(Fn

ε )−1‖+ ‖Qε(Fn
ε )−1 − P x(Fn)−1‖.

(5.8)

We deduce from (5.2) and (5.7) that the first and third terms in (5.8) can be chosen
arbitrary small for ε > 0 small enough and uniformly with respect n. Note that
even if we will not use this, from Lemma 5.1, it holds also unifomly with respect
to x. Consequently, it remains to deal when ε > 0 is fixed with the term in the
middle of the right-hand side of (5.8) when n → +∞. Moreover from (5.3) and
its counterpart for index n, we can write:

‖QεF
−1
ε −Qε(Fn

ε )−1‖ ≤ 1
εp

∫
V (x)

‖λ[0,ε]pϕ
−1
y − λ[0,ε]pϕ

−1
n,y‖ dP
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with ϕn,y(c) = (ϕ1
n,y(c), . . . , ϕ

p
n,y(c)) = Fn(Gc(y)). Note that the domain of

integration above is V (x) (and not Ã(`)) because the method of superstructure is
applied on Ã(`) with Px = PV (x). It is enough now to show for P -almost all
y ∈ V (x),

(5.9) λ[0,ε]pϕ
−1
n,y

var−→ λ[0,ε]pϕ
−1
y , n → +∞.

This is done in Section 6 using Proposition 2.1.

6. STUDY OF THE CONDITIONAL FUNCTIONALS

After some algebraic calculations, we re-express the functionals ϕn,y and ϕy

as ordered polynomials. The conditional functional ϕy : Rp −→ Rp is given by

ϕy(c) = (ϕ1,y(c), . . . , ϕp,y(c))
= F (y + c1 l1y + · · ·+ cp lpy), c = (c1, . . . , cp).

Moreover, we have

ϕi,y(c) = ϕi(y + 〈c, ly〉)

=
∑

s1,...,sdi

 di∏
j=1

(
δy(sj) + 〈c, ωy(sj)〉

) fi(s1, . . . , sdi
)

where (si)i is the list ot the jump-times of y ∈ D. We obtain a polynomial in
c1, . . . , cp; we can develop it like in [5, Sec. 4.2] and finally, we have:

(6.1) ϕi,y(c) =
∑

ai=(ai
0,...,ai

p)

|ai|=di

B(ai, y) cai

with, in order to simplify notations,

• cai
= 1ai

0c
ai
1

1 . . . c
ai

p
p for ai = (ai

0, a
i
1, . . . , a

i
p);

• B(ai, y) =
(6.2)∑

{Ik} partition of
{1,...,di}, card Ik=ai

k

∑
s1,...,sdi

( ∏
j∈I0

δy(sj)
)( ∏

j∈I1

w1
y(sj)

)
· · ·
( ∏

j∈Ip

wp
y(sj)

)
fi(s1, . . . , sdi

)

where (sj)j is the list of jump-time of y.
Using the polynomial expression of ϕi

y, the following key point is shown in
[5, Sec. 4.2–4.3]. It shall be used later to apply Proposition 2.1 to the measure
images λ[0,ε]pϕ

−1
n,y.
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LEMMA 6.1. Under hypothesis (H), for P -almost all y ∈ V (x), the Jacobian

Jy(c) := det
(

∂ϕi
y

∂cj
(c)
)

1≤i,j≤p
is non-zero for almost all c ∈ (R+)p.

Since all functionals ϕn,y can be developped in the same way, we introduce
also the coefficients B(ai, y, n) defined like in (6.2) with fn

i in place of fi, and we
study the convergence of B(ai, y, n) to B(ai, y) when n → +∞.

In order to simplify the study of B(ai, y, n), we begin with the preliminary
simpler case of coefficients B(ai, x, n) relative to x ∈ D(ε).

6.0.1. *. Study of the coefficients B(ai, x, n).
LEMMA 6.2. In D(ε), we have B(ai, x, n) P−→ B(ai, x) when n → +∞.

P r o o f. Note that
∏
j∈I1

w1
x(tj) 6= 0 if for all j ∈ I1, tj ∈ ∆1

k for some

1 ≤ k ≤ b1. Then w1
x(tj) = ±τ with the same sign as that of the jump δx(tj).

Thus
∏

j∈I1
w1

x(tj) = ±τai
1 for A

ai
1

b1
= b1!/(b1 − ai

1)! choices of tj , j ∈ I1. The

same holds true for all inner products
∏

j∈Ik
wk

x(tj) = ±τai
k for A

ai
k

bk
choices of

tj , j ∈ Ik, for 1 ≤ k ≤ p. Finally, we have:( ∏
j∈I1

w1
x(tj)

)
· · ·
( ∏

j∈Ip

wp
x(tj)

)
= ±τai

1+···+ai
p

for A(ai) := A
ai
1

b1
× · · · × A

ai
p

bp
choices of index j, else the product is zero. Using

the symmetry of the kernels fi and the nullity of fi on the diagonals, we can thus
rewrite

B(ai, x)

=
∑

{Ik} partition of
{1,...,di}, card Ik=ai

k

∑
A(ai) choices of

t
ai
0+1

,...,tdi

±τai
1+···+ai

p

∑
t1,...,t

ai
0

( ∏
j∈I0

δx(tj)
)

fi(t1, . . . , tdi
).

(6.3)

Observe that the outer sums in (6.3)∑
{Ik} partition of

{1,...,di}, card Ik=ai
k

and
∑

A(ai) choices of
t
ai
0+1

,...,tdi

are both finite. Moreover, the same computations hold true for the coefficients
B(ai, x, n) with fn

i in place of fi.
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In order to study the convergence of B(ai, x, n) (with respect to n), we first
deal with the convergence of the inner sum

∑
t1,...,t

ai
0

( ∏
j∈I0

δx(tj)
)

fn
i (t1, . . . , tdi

)

when n → +∞ and where tai
0+1, . . . , tdi

in fn
i appear here as parameters.

When ai
0 6= 0, this sum can be seen as a MSI like in (3.2). First, since for

all 1 ≤ i ≤ p, fn
i → fi in Lα(log+)di−1([0, 1]di), taking some subsequence

(n′) ⊂ (n), the convergence

fn′
i (·, tai

0+1, . . . , tdi
) −→ f(·, tai

0+1, . . . , tdi
), n′ → +∞

holds in Lα(log+)di−1([0, 1]a
i
0) and thus also in Lα(log+)ai

0−1([0, 1]a
i
0) for almost

all tai
0+1, . . . , tdi

. Therefore, from Proposition 3.1, when ai
0 6= 0, we have

Iai
0
(fn′

i (·, tai
0+1, . . . , tdi

)) P−→ Iai
0
(f(·, tai

0+1, . . . , tdi
)), n′ → +∞.

Arguing like in Proposition 3.2, we have when n′ → +∞, for almost all
tai

0+1, . . . , tdi

(6.4)∑
t1,...,t

ai
0

( ∏
j∈I0

δx(tj)
)

fn′
i (t1, . . . , tdi

) P−→
∑

t1,...,t
ai
0

( ∏
j∈I0

δx(tj)
)

fi(t1, . . . , tdi
)

where we recall that P still stands for the law of the stable process η. Since from
Lemma 4.1, the ti’s can be seen as uniform and independent random variables on
the ∆i’s, the following elementary lemma applied with X = t1, . . . , tai

0
and Y =

tai
0+1, . . . , tdi

yields the same convergence in probability than in (6.4) but with a
convergence in probability involving now all the jump-times t1, . . . , tai

0
, tai

0+1, . . . , tdi
.

LEMMA 6.3. Let X and Y be independent random variables and fn, f be
some measurable functions from R2 to R. Suppose that for PY -almost all y,
fn(X, y) P−→ f(X, y) when n → +∞. Then fn(X, Y ) P−→ f(X, Y ) when
n → +∞.

Next since the outer sums in (6.3) are both finite, we derive B(ai, x, n′) P−→
B(ai, x) when n′ → +∞. Thus when ai

0 6= 0, for any subsequence (n′) ⊂ (n),
there is some further subsequence (n′′) ⊂ (n′) such that B(ai, x, n′′) → B(ai, x)
for P -almost all x.

If ai
0 = 0, the inner sum in (6.3) is empty and reduces to fn

i (t1, . . . , tdi
). But

taking eventually a subsequence, for almost all t1, . . . , tdi
, we have fn

i (t1, . . . , tdi
) →

fi(t1, . . . , tdi
). Since the outer sums in (6.3) are still both finite, we derive once

more that for any subsequence (n′) ⊂ (n) there is some further (n′′) ⊂ (n′) with
B(ai, x, n′′) → B(ai, x), n′′ → +∞, for P -almost all x.

In both cases (ai
0 is zero or not), the convergence in probability is proved. �
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6.0.2. *. Study of the coefficients B(ai, y, n).
We deal now with B(ai, y, n) for y ∈ V (x) and to this end, we adapt the

study of the coefficients B(ai, x, n) given in the proof of Lemma 6.2. First, we
have to study the jumps and the jump-times of y ∈ V (x). Note that the (technical)
choice of the parameters of local fields l1, . . . , lp (see around (4.3)) are required
specifically for this study. This preliminary work has yet be done in [5, p. 66–67]
for which we will refer for a more precise justification.

LEMMA 6.4 (Jumps of y ∈ V (x)). Let y ∈ V (x), the neighbourhood of x
defined in (4.6). The list of the jump-times of x is denoted (ti)i and that of y is
(si)i. We have

Tε(y) =
(
ρ−1(t1), . . . , ρ−1(tN )

)
for some increasing continuous bijection ρ of [0, 1] realizing the Skorohod distance
between x and y. Moreover, the jump-times si, i > 0, of y satisfy:

• ωi
y(sk) = 0 if sk 6∈ ∪bi

j=1∆
i
j ;

• ωi
y(sk) 6= 0 if sk ∈ ∪bi

j=1∆
i
j and sk = ρ−1(tij).

P r o o f. From the definition of Skorohod’s topology (see [2]), let ρ ∈ Λ([0, 1]),
the set of increasing continuous bijections of [0, 1], with

sup
t∈[0,1]

|x(ρ(t))− y(t)| < δ2 and sup
t∈[0,1]

|ρ(t)− t| < δ2

where δ2 is given in (4.3). We have

δx(ρ(t))− 2δ2 < δy(t) < δx(ρ(t)) + 2δ2

|δx(ρ(t))| − 2δ2 < |δy(t)| < |δx(ρ(t))|+ 2δ2.

First ρ−1(ti) ∈ ∆i = (ti − β, ti + β) because |ρ(ti)− ti| < δ2 and δ2 < β.
Moreover

|δy(ρ−1(ti))| > |δx(ti)| − 2δ2 ≥ 2ε0 −
1
2
ε0 =

3
2
ε0 > ε0 > εi.

If t ∈ ∆i \ {ρ−1(ti)}, we have also ρ(t) ∈ ∆′
i = (ti − δ1, ti + δ1) because

|ρ(t)− t| < δ2 and β = δ1 − δ2. Whence, since
• |δx(ρ(t))| ≤ ε0/2 because ρ(t) 6= ti and ti is the unique time in ∆′

i when
occurs a jumps of x larger than ε0/2,

• 2δ2 < ε1 − ε0/2 by choice of δ2 in (4.3),
we have

|δy(t)| < |δx(ρ(t))|+ 2δ2 ≤
ε0

2
+ 2δ2 < ε1 ≤ εi.

For t ∈ ∆i,
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• if t = ρ−1(ti) then t ∈ ∆i, |δy(t)| > εi, δy(t) has the same sign as δx(ti),
• if t 6= ρ−1(ti) then |δy(t)| < εi.

Observe moreover that for t ∈ U ε
i , t 6= ρ−1(ti):

(6.5) |δy(t)| ≤ |δx(ρ−1(t))|+ 2δ2 < |δx(t′i)|+ 2δ2

because ρ−1(t) 6= ti implies |δx(ρ−1(t))| < |δx(t′i)| and

(6.6) |δy(ρ−1(ti))| > |δx(ti)| − 2δ2.

From (4.3): δ2 <
1
4

min
i=1,...,N

{|δx(ti)| − |δx(t′i)|}, and from (6.5) and (6.6), we de-

duce: |δy(t)| < |δy(ρ−1(ti))|. Then we have ρ−1(ti) = TUε
i
(y) and(

ρ−1(t1), . . . , ρ−1(tN )
)

= Tε(y).

This argument justifies also the second part of Lemma 6.4. �

LEMMA 6.5. In V (x), we have B(ai, y, n) P−→ B(ai, y) when n → +∞.

P r o o f. We study the coefficients B(ai, y, n) just like we did for B(ai, x, n)
but using moreover the study of the jump-times of y in Lemma 6.4. Here, from
Lemma 6.4,

∏
j∈I1

w1
y(sj) = ±τai

1 for A
ai
1

b1
choices of sj , j ∈ I1, else it is 0.

Doing the same for the other products, we have( ∏
j∈I1

w1
x(sj)

)
· · ·
( ∏

j∈Ip

wp
x(sj)

)
= ±τai

1+···+ai
p

for A(ai) := A
ai
1

b1
× · · · × A

ai
p

bp
choices of index j, else the product is zero. Using

the symmetry of the kernels fi and the nullity of fi on the diagonals, we can thus
rewrite

B(ai, y)

=
∑

{Ik} partition of
{1,...,di}, card Ik=ai

k

∑
A(ai) choices of

s
ai
0+1

,...,sdi

±τai
1+···+ai

p

∑
s1,...,s

ai
0

( ∏
j∈I0

δx(sj)
)

fi(s1, . . . , sdi
).

(6.7)

Observe again that the outer sums in (6.7)∑
{Ik} partition of

{1,...,di}, card Ik=ai
k

and
∑

A(ai) choices of
s
ai
0+1

,...,sdi
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are both finite. The same computations hold true for the coefficients B(ai, y, n)
with fn

i in place of fi.
In order to study the convergence of the coefficients B(ai, y, n), we first deal

with the convergence of the inner sum
∑

s1,...,s
ai
0

( ∏
j∈I0

δy(sj)
)

fn
i (s1, . . . , sdi

) when

n → +∞, where sai
0+1, . . . , sdi

in fn
i appear here as parameters.

Like in the proof of Lemma 6.2 for the case with x, when ai
0 6= 0, this sum can

be seen from (3.2) as a MSI and since from fn
i → fi in Lα(log+)di−1([0, 1]di),

eventually taking some subsequence, we derive the convergence

fn
i (·, sai

0+1, . . . , sdi
) −→ f(·, sai

0+1, . . . , sdi
)

in Lα(log+)di−1([0, 1]a
i
0) and thus also in Lα(log+)ai

0−1([0, 1]a
i
0) for almost all

sa1
0+1, . . . , sdi

. Thus, from Proposition 3.1 when ai
0 6= 0, we have

Iai
0
(fn

i (·, tai
0+1, . . . tdi

)) P−→ Iai
0
(f(·, tai

0+1, . . . tdi
)).

Arguing like in Proposition 3.2, we rewrite when n → +∞∑
t1,...,t

ai
0

( ∏
j∈I0

δx(tj)
)

fn
i (t1, . . . , tdi

) P−→
∑

t1,...,t
ai
0

( ∏
j∈I0

δy(tj)
)

fi(t1, . . . , tdi
)

for almost all sa1
0+1, . . . , sdi

. Applying first Lemma 6.3 and using next the finite-

ness of the outer sums in (6.7), we have B(ai, y, n) P−→ B(ai, y) when n → +∞
and thus for any subsequence (n′) ⊂ (n), there is some further subsequence
(n′′) ⊂ (n′) such that B(ai, y, n′′) → B(ai, y) for P -almost all y ∈ V (x) in
the case where ai

0 6= 0.
If ai

0 = 0, like in the case for x in the proof of Lemma 6.4, the inner sum
in (6.7) is empty and reduces to fn

i (s1, . . . , sdi
). But taking eventually a sub-

sequence, for almost all s1, . . . , sdi
, we have fn

i (s1, . . . , sdi
) → fi(s1, . . . , sdi

).
Since the outer sums in (6.3) are still both finite, we derive once more that for any
subsequence (n′) ⊂ (n) there is some further (n′′) ⊂ (n′) with B(ai, y, n′′) →
B(ai, y) for P -almost all y.

We thus have for P -almost all y ∈ V (x) the convergence of the coefficients
B(ai, y, n′′) of ϕi

n′′,y to the coefficient B(ai, y) of ϕi
y and the convergence in prob-

ability follows. �

Finally, we conclude now this section with the proof of (5.9). From the ex-
pression in (6.1) and from Lemma 6.5, we derive for any subsequence (n′) ⊂ (n),
there is some further (n′′) ⊂ (n′) such that for P -almost all y ∈ V (x) we have the
convergence of ϕn′′,y to ϕy in the local Sobolev space W p,1

loc (Rp, Rp). Moreover
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from Lemma 6.1, under (H), for P -almost all y ∈ V (x), we have Jy(c) 6= 0 for
almost all c. We can thus apply Proposition 2.1 (Corollary 4 in [1]) to derive the
convergence (5.9) when n′′ → +∞ that is

λ[0,ε]pϕ
−1
n′′,y

var−→ λ[0,ε]pϕ
−1
y .

7. CONCLUSION

For P -almost all y ∈ V (x), the convergence in (5.9) has been derived for some
subsequence (n′′) taken from any subsequence (n′) ⊂ (n). Finally, returning to the
term in the middle of (5.8), we derive for all ε > 0 and for a further subsequence
(n′′) ⊂ (n′)

lim
n′′→+∞

‖QεF
−1
ε −Qε(Fn′′

ε )−1‖ = 0.

We thus have from (5.8),

limn′′→+∞‖P xF−1 − P x(Fn′′)−1‖ ≤ 3ε.

Since ε > 0 is arbitrary, we have

P x(Fn)−1 var−→ P xF−1, n → +∞.

Finally, gathering together all the steps, we have: First,

P x(Fn)−1 var−→ P xF−1, n → +∞.

Next by localization

PD(ε)(F
n)−1 var−→ PD(ε)F

−1, n → +∞.

And finally by approximation

P (Fn)−1 var−→ PF−1, n → +∞.

We have proved the convergence in variation of L(Sd1(f
n
1 ), . . . , Sdp(f

n
p )) to

L(Sd1(f1), . . . , Sdp(fp)). By the Representation theorem the same holds true for
the law of

(
Id1(f

n
1 ), . . . , Idp(f

n
p )
)

to those of
(
Id1(f1), . . . , Idp(fp)

)
. This ends

the proof of Theorem 2.1.
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