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Abstract. In this paper, we establish the convergence in total-variation norm of the law of the supremum of an empirical process
constructed from a sequence of i.i.d. random variables to the law of the supremum of a (generalized) Brownian bridge.
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INTRODUCTION

Let (ξi)i∈N∗ be a sequence of independent identically distributed random variables with rather smooth distribution
function F . We consider the empirical process given by

ζF
n (t) = 1√

n

n∑
i=1

[
1(−∞,t](ξi) − F(t)

]
. (0.1)

It is well known that, for uniformly distributed random variables ξi , 1 � i � n, the empirical process ζU
n weakly

converges, as n → +∞, to a standard Brownian bridge W ◦
U on [0,1]. In fact, the same result holds for a sequence

of i.i.d. random variables (ξi)i with smooth distribution function F . In this case, the limit process is a general-
ized Brownian bridge W ◦

F , i.e., a continuous Gaussian process with independent increments with the covariance
function

F(t) ∧ F(s) − F(t)F (s).
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More precisely, denoting by �⇒ the weak convergence, we have (see [1], Theorem 14.3):

L(ζF
n ) �⇒L(W 0

F ), n → +∞, (0.2)

where the convergence in (0.2) holds in D(R) (the space of cadlag functions equipped with a Skorokhod-type
topology), and L(X) denotes the distribution of X.

In this paper, we study the behavior of the suprema of empirical processes and their asymptotic distributions.
Clearly, (0.2) immediately implies the weak convergence

L
(

sup
t∈R

ζF
n (t)

)
�⇒ L

(
sup
t∈R

W 0
F (t)

)
, n → +∞.

Our aim is to strengthen this convergence to the convergence in variation. In the sequel, we denote the latter by
var−→; ‖µ‖ denotes the (total) variation of a signed measure µ, while µA is the restriction of µ to a measurable

set A.
Note that the set Z(R) of all signed measures on R is a Banach space, provided that it is equipped with the

variation norm ‖ · ‖. We also denote by
µ−→ the convergence in measure µ.

Since the distribution of the supremum of a Brownian bridge is absolutely continuous (see [6]), the conver-
gence in variation of supt∈R ζF

n (t) is equivalent to the convergence in L1(R) of the densities of supt∈R ζF
n (t).

Thus, this implies a local limit theorem for this distribution.
In the setting of the classical invariance principle of Donsker–Prokhorov (i.e., in the case of linear piecewise

processes Xn constructed on the basis of (ξi)i), such a stronger convergence in variation f (Xn)
var−→ f (X∞) is

also proved in [5], Section 20, and in [2], [3] for a large class of functionals f for which the key is the existence
and nondegeneracy of some directional derivatives. For example, the smooth functionals and supremum- or
integral-type functionals belong to this class. However, in the case of empirical processes, the problem is much
more complicated. For instance, in the uniform case, even for the simplest functionals of estimation ft0(x) =
x(t0) (with t0 �= 0,1), the law of estimated empirical process ft0(ζn) is atomic and cannot, in principle, converge
in variation to the Gaussian law of W 0

F (t0).
For this reason, we deal with specific functionals of interest and begin, in this paper, with supremum-type

functionals. The main result is:

THEOREM 1. Let (ξi)i>0 be a sequence of i.i.d. random variables with continuous distribution function F ,
and let ζF

n be the related empirical process given by (0.1). Then, as n → +∞, we have

L
(

sup
t∈R

ζF
n (t)

)
var−→L

(
sup
t∈R

W 0
F (t)

)

and

L
(

sup
t∈R

∣∣ζF
n (t)

∣∣) var−→L
(

sup
t∈R

∣∣W 0
F (t)

∣∣).

As far as we know, these limit theorems are the first results stating a local limit theorem for suprema of
empirical processes.

The proof of the second part of Theorem 1 is similar to that of the first part with easy modifications and will
be omitted.

Since the laws of supt∈R ζF
n (t) and supt∈R W 0

F (t) do not depend on the distribution F , it suffices to prove
Theorem 1 for a Gaussian i.i.d. sequence, for which the calculations are easier. We denote by � the distribution
function of the standard normal law, and by p(t) = 1√

2π
exp(−t2/2) its density.

The sequel is thus devoted to the (long) proof of Theorem 1 for an i.i.d. standard Gaussian sequence (ξi)i>0.
In order to derive such a convergence in variation, we apply the so-called superstructure method relying on the
behavior of the laws of empirical processes near admissible directions for the limit law (of a Brownian bridge).
For a complete description of this method, we refer to [5]. In particular, we fundamentally use the following
result:
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THEOREM A ([5], Theorem 18.4). Let {Pn,n ∈ N} be a sequence of probability measures defined on the Borel
σ -algebra BX of a complete separable metric space (X , d). Suppose that Pn ⇒ P∞. Moreover, suppose that, for
P∞-almost all x, there exist an open ball V centered at x, a number ε > 0, and a family (Gn,c, n ∈ N, c ∈ (0, ε])
of measurable transformations of X such that the following five conditions are fulfilled:

(i) for all c ∈ (0, ε) and δ > 0,

lim
n→+∞Pn

(
z | d(Gn,c z,G∞,c z) � δ

) = 0;

(ii) for every c ∈ (0, ε), the mapping G∞,c is P∞-almost everywhere continuous; moreover, suppose that

ρ(S, c) = sup
z∈S

d
(
z,G∞,cz

) → 0 as c → 0

for all open balls S;

(iii) limc→0 limn→∞‖PnG
−1
n,c − Pn‖ = 0;

(iv) for all δ ∈ (0, ε),

lim
n→+∞

∫
V (x)

∥∥λ[0,δ]ϕ−1
n,z − λ[0,δ]ϕ−1∞,z

∥∥ Pn(dz) = 0,

where ϕn,z(c) = f (Gn,cz) with n ∈ N and c ∈ (0, ε], and λ[0,δ] is the restriction of the Lebesgue measure
to the interval [0, δ];

(v) for all δ ∈ (0, ε), the mapping z �−→ λ[0,δ]ϕ−1∞,z of V into Z(R), the Banach space of signed measures on
R with the total-variation norm, is P∞-almost everywhere continuous.

Then

Pnf
−1 var−→ P∞f −1, n → +∞.

Since the empirical processes ζn lie in the Skorokhod space D(R), we are going to apply Theorem A to
X = D0(R), the subspace of D(R) defined below), to the laws Pn of ζn and P∞ of a Brownian bridge W 0

�, and
to the functional f (x) = supt∈R x(t).

We first define suitable transformations (Gn,c)c and a single ε > 0 for P∞-almost every x. Then we show
that the conditions of Theorem A are satisfied.

The rest of the paper is organized as follows. We begin with a precise description of a setting for application
of Theorem A and then check that all the conditions are satisfied. The proof of conditions (i) and (iv) in Sections
1 and 4 are lengthy and complicated.

Notation and setting

We recall some notation for the Skorokhod space. The space of sample paths of the empirical processes (0.1) is
the Skorokhod space D(R). However, since ζn(t) → 0 as t → ±∞, we rather consider the subspace

D0(R) =
{
x ∈ D(R) | lim

t→±∞x(t) = 0
}

as the sample space.
We equip this space with a complete separable topology brought from the usual Skorokhod space D([0,1])

by the bijection � from R to ]0,1[. We refer to [1] for a detailed study of the Skorokhod space D([0,1]). We
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denote by� its inverse and define the following Skorokhod metrics on D0(R):

d0,R(x, y) = d0(x ◦ �,y ◦ �),

dR(x, y) = d(x ◦ �,y ◦ �),
for x, y ∈ D0(R),

where d0 and d are the usual Skorokhod metrics on D([0,1]) given by

d0(x, y) = inf
λ∈�

(
sup

t∈[0,1]
∣∣x(λ(t)) − y(t)

∣∣ + sup
t∈[0,1]

∣∣λ(t) − t
∣∣),

d(x, y) = inf
λ∈�

(
sup

t∈[0,1]
∣∣x(λ(t)) − y(t)

∣∣ + sup
s<t,

s,t∈[0,1]
log

∣∣∣λt − λs

t − s

∣∣∣),

x, y ∈ D([0,1]), � = {λ: [0,1] → [0,1] nondecreasing continuous bijection}. Moreover, by convention, we set

x ◦ �(0) = lim
t→0

x ◦ �(t) = lim
s→−∞x(s) = 0,

x ◦ �(1) = lim
t→1

x ◦ �(t) = lim
s→+∞x(s) = 0.

Since d is a complete metric for D([0,1]), one easily sees that (D0(R), dR) also is a complete separable metric
space. But, since d0 and d define the same convergence on D([0,1]), we will henceforth work with the simpler
metric d0,R.

The first step consists of the definition of the transformations Gn,c and G∞,c. For n ∈ N
∗, we consider

Gn,cζn(t) = 1√
n

n∑
i=1

[
1(−∞,t](ξi + c/

√
n) − �(t)

]
. (0.3)

More precisely, since the support of Pn is measurable, we define Gn,c globally as follows: Gn,cx is given by
(0.3) if x = ζn(ω) ∈ Supp(Pn) and equals 0 if x �∈ Supp(Pn). Note that, in fact, Gn,c act as translations on the
underlying Gausian variables ξi , 1 � i � n.

The asymptotic transformation is chosen to be the mere translation

G∞,cx(t) = x(t) − c�′(t).

Applying the Skorokhod representation theorem (Theorem 6.7 of [1]), we can suppose that we are in a
probability space (�,F,P) where the weak convergence (0.2) turns into the almost sure one: ζn −→ W 0

� a.s.
in D0(R), n → +∞. Moreover, since W 0

� is a continuous process, the convergence also holds for the uniform
metric (see [1], p. 124).

However, note that when we apply the Skorokhod theorem, the nth empirical process now is constructed on
the basis of the nth line of a random array (ξ̃1,1, . . . , ξ̃n,n), instead of the nth first terms of the sequence (ξi)i∈N.
In our study, this is not a cumbersome point, since we work with the triangular arrays of order statistics.

Anyway, when we deal with probabilities involving the vectors (ξ̃1,1, . . . , ξ̃n,n), the probabilities remain the
same if we replace (ξ̃1,1, . . . , ξ̃n,n) by (ξ1, . . . , ξn), since the laws of these vectors coincide. Henceforth, we
forget the tildas in the array (ξ̃1,1, . . . , ξ̃n,n) and denote by (ξn

1 , . . . , ξn
n ) the triangular array of order statistics of

(ξ1, . . . , ξn).

Localization

For a function f : X → R, we denote Argmax (f ) = {t ∈ X, f (t) = maxs∈X f (s)}. If Argmax (f ) consists of a
single point, we denote the latter by argmax (f ).

The study of Argmax of Gn,cx and G∞,cx for x = ζn or x = W 0
� has some importance in the proof of

Theorem 1. In order to ensure the argmax to occur at finite points, we use the following localization procedure
of choosing, in Theorem A, an open ball V (x) and a single ε > 0 for P∞-almost all x.
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For P∞-almost all x, #Argmax (x) = 1 and argmax (x) ∈ R (i.e., the maximum does not occur at ±∞; see
[6]). For such x, we define

ε := ε(x) =
√

2π

4
sup
t∈R

x(t), V (x) = {
y ∈ D0 | d0,R(x, y) < ε

}
.

Then, for ω ∈ �(x) := (W 0
�)−1{V (x)}, we have that W 0

�(ω) ∈ V (x) and d0,R(W 0
�(ω), x) < ε. This ensures

thatG∞,c(W
0
�(ω)) takes positive values, so that its argmax does not occur at ±∞.

Since by the Skorokhod representation theorem ζn → W 0
� in D0(R) almost surely as n → +∞, for n =

n(ω) large enough, we have that ζn(ω) ∈ V (x) for x ∈ �(x) and that G∞,c(ζn(ω)) takes positive values, so
that its argmax does not occur at ±∞.

The following sections are devoted to the study of conditions (i)–(v) of Theorem A.

1. FIRST CONDITION

In our setting, condition (i) of Theorem A can be rewritten in terms of the process ζn:

∀e > 0, lim
n→+∞P

(
d0,R

(
Gn,c(ζn),G∞,c(ζn)

)
> e

) = 0, (1.1)

where d0,R denotes the Skorokhod metric on D0(R). Note that, for t ∈ [0,1],

ζn ◦ �(t) = 1√
n

n∑
i=1

(
1[0,t]

(
�(ξi)

) − t
)
,

Gn,cζn ◦ �(t) = 1√
n

n∑
i=1

(
1[0,t]

(
�(ξi + c/

√
n)

) − t
)
.

We have

d0,R

(
Gn,c(ζn),G∞,c(ζn)

) = d0
(
Gn,c(ζn) ◦ �,G∞,c(ζn) ◦ �

)
= inf

λ∈�

{∥∥∥∥ 1√
n

n∑
i=1

(
1[0,λt]

(
�(ξi + c/

√
n)

) − λt − 1[0,t]
(
�(ξi)

) + t
)

(1.2)

+ c�′(�(t)
)∥∥∥∥∞

+ ‖λt − t‖∞

}
.

We estimate infλ∈� by the appropriate λn that cancels the indicator terms in (1.3). Precisely, let λn be the
piecewise linear function in � given by

λn�(ξn
i ) = �

(
ξn
i + c√

n

)
, i = 1, . . . , n, and λn(0) = 0, λn(1) = 1,

so that

1[0,λnt]
(

�
(
ξn
i + c√

n

))
= 1[0,t]

(
�(ξn

i )
)

for 1 � i � n.

Moreover, ‖λnt − t‖∞ is obviously reached at some t = �(ξn
i ) and can be estimated by

‖λnt − t‖∞ = sup
1�i�n

∣∣λn�(ξn
i ) − �(ξn

i )
∣∣
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= sup
1�i�n

∣∣�(ξn
i + c/

√
n) − �(ξn

i )
∣∣

� c/
√

n,

since � obviously is 1-Lipschitz. Thus, almost surely

‖λnt − t‖∞ −→ 0, n → +∞. (1.3)

Using (1.1), (1.3), and (1.3), it now suffices to show that, for all e > 0,

lim
n→+∞ P

(√
n

∥∥∥λnt − t − c√
n
�′(�(t)

)∥∥∥∞ > e
)

= 0.

First, note that

(�′ ◦ �)(t) = e−�(t)2/2

√
2π

−→ 0 as t → 0 or t → 1.

Fix [α,1 − α] ⊂]0,1[ such that, for t ∈]0,1[\[3α,1 − 3α],
(�′ ◦ �)(t) < e/(2c). (1.4)

Denoting, for simplicity,

An(t) = λnt − t − c√
n
�′(�(t)

)
,

we have

P

(√
n sup

t∈[0,1]
∣∣An(t)

∣∣ > ε

)
� P

(√
n sup

t∈[0,α]
∣∣An(t)

∣∣ > ε

)
(1.5)

+ P

(√
n sup

t∈[α,1−α]
∣∣An(t)

∣∣ > ε

)
+ P

(√
n sup

t∈[1−α,1]
∣∣An(t)

∣∣ > ε

)

and we begin to study three terms on the right-hand side of the inequality. We need the following:

LEMMA 1. We have

P- lim
n→+∞

sup
1�i�n

∣∣�(ξn
i+1) − �(ξn

i )
∣∣ = 0.

Proof. The statement follows from the inequality

sup
1�i�n

∣∣�(ξn
i+1) − �(ξn

i )
∣∣ � 1

n
+ 2 sup

1�i�n

∣∣∣∣�(ξn
i ) − i

n

∣∣∣∣
and from the Glivenko–Cantelli theorem applied to the uniform order statistics �(ξn

i ), 1 � i � n.

First, we deal with the first summand on the right-hand side of (1.6). For t ∈ [0, α] and n large enough,
we have

√
n sup

t∈[0,α]

∣∣∣∣λnt − t − c√
n
�′(�(t)

)∣∣∣∣
� sup

t∈[0,α]
√

n|λnt − t | + c sup
t∈[0,α]

∣∣�′(�(t)
)∣∣
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� sup
{i | �(ξn

i ) or �(ξn
i−1)∈[0,α]}

√
n
∣∣λn�(ξn

i ) − �(ξn
i )

∣∣ + ε/2 (1.6)

< sup
{i | �(ξn

i )∈[0,2α]}
√

n

∣∣∣∣�
(

ξn
i + c√

n

)
− �(ξn

i )

∣∣∣∣ + ε/2 (1.7)

where, by Lemma 1, for n large enough, the supremum in (1.6) is bounded by that in (1.7). Now note that,
for n > (c/α)2 and for indices i such that �(ξn

i ) < 2α, we have

�(t) � �

(
ξn
i + c√

n

)
� �(ξn

i ) + c√
n

� 2α + α = 3α, t ∈ [
ξn
i , ξn

i + c/
√

n
]
.

Therefore, by the choice of α in (1.4), we have that �′ ◦�(�(t)) � ε/(2c) and we can estimate the first term
on the right-hand side of (1.7) by

√
n

∣∣∣∣�
(

ξn
i + c√

n

)
− �(ξn

i )

∣∣∣∣ = √
n

∣∣∣∣∣∣∣
ξn
i +c/

√
n∫

ξn
i

�′(t)dt

∣∣∣∣∣∣∣

= √
n

∣∣∣∣∣∣∣
ξn
i +c/

√
n∫

ξn
i

�′ ◦ �
(
�(t)

)
dt

∣∣∣∣∣∣∣
(1.8)

�
√

n

∣∣∣∣∣∣∣
ξn
i +c/

√
n∫

ξn
i

ε

2c
dt

∣∣∣∣∣∣∣
� ε/2.

For n large enough, (1.7) and (1.9) imply that

√
n sup

t∈[0,α]

∣∣∣∣λnt − t − c√
n
�′(�(t)

)∣∣∣∣ < e.

Thus, the probability

P

{√
n sup

t∈[0,α]

∣∣∣∣λnt − t − c√
n
�′(�(t)

)∣∣∣∣ > e

}

is zero for n large enough as the probability of an empty set.
The same is true for the third summand relative to the probability of the supremum over {t ∈ [1 − α,1]}.

It remains to deal with the second term relative to the supremum over {t ∈ [α,1 − α]}. Roughly speaking,
note that, for t = �(ξn

i ),

λnt − t − c√
n
�′(�(t)

) = �(ξn
i + c/

√
n) − �(ξn

i ) − c√
n
�′(ξn

i ) �
( c√

n

)2
�′′(ξn

i ).

Let us do this more precisely. First, the extremum of λnt − t over [�(ξn
i ),�(ξn

i+1)] is achieved at �(ξn
i ) or

at �(ξn
i+1). Using the previous notation An(t), we rewrite

An(t) = λnt − t − c√
n
�′(ξn

i ) + c√
n
�′(ξn

i ) − c√
n
�′(�(t)

)
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and first take the supremum over [�(ξn
i ),�(ξn

i+1)]:

√
n
∥∥An(t)

∥∥∞,i
�

√
n

∥∥∥∥λnt − t − c√
n
�′(ξn

i )

∥∥∥∥∞,i

+ c
∥∥�′(ξn

i ) − �′(�(t))
∥∥∞,i

(1.9)

where we denote

‖·‖∞,i = ‖·‖∞,[�(ξn
i ),�(ξn

i+1)] = sup
x∈[�(ξn

i ),�(ξn
i+1)]

{·}.

Then we take the supremum over the indices i such that �(ξn
i ) ∈ [α,1 − α]. We need the following:

LEMMA 2. For every finite interval [a, b], we have

P- lim
n→+∞

sup
1�i�n

ξn
i

,ξn
i+1∈[a,b]

∣∣ξn
i+1 − ξn

i

∣∣ = 0.

Proof. Indeed, we have

sup
1�i�n

ξn
i

,ξn
i+1∈[a,b]

∣∣ξn
i+1 − ξn

i

∣∣ = sup
1�i�n

ξn
i

,ξn
i+1∈[a,b]

∣∣�−1(�(ξn
i+1)

) − �−1(�(ξn
i )

)∣∣
(1.10)

� w�−1,[�(a),�(b)]
(

sup
1�i�n

∣∣�(ξn
i+1) − �(ξn

i )
∣∣),

where r �→ wf,�(r) denotes the modulus of uniform continuity of a function f on an interval �. Since �−1

is continuous on [�(a),�(b)], (2) follows from (1.11) and Lemma 1.

The second term in (1.9) can now be handled as follows:

sup
1�i�n

i | �(ξn
i

)∈[ α
2 ,1− α

2 ]

∥∥�′(ξn
i ) − �′(�(t))

∥∥∞,i
= sup

1�i�n

i | �(ξn
i

)∈[ α
2 ,1− α

2 ]

sup
s∈[ξn

i ,ξn
i+1]

∣∣�′(ξn
i ) − �′(s)

∣∣

� w�′,R

(
sup

1�i�n

i | �(ξn
i

)∈[ α
2 ,1− α

2 ]

∣∣ξn
i+1 − ξn

i

∣∣),

where the latter tends to 0 by (2), since �′ is uniformly continuous.
Next, we deal with the first term on the right-hand side of (1.9). The supremum is achieved

– either at �(ξn
i ) and is equal to

√
n

∣∣∣∣λn�(ξn
i ) − �(ξn

i ) − c√
n
�′(ξn

i )

∣∣∣∣ = √
n

∣∣∣∣∣
ξn
i +c/

√
n∫

ξn
i

(
�′(t) − �′(ξn

i )
)

dt

∣∣∣∣∣;

since �′ is uniformly continuous, the latter term is arbitrarily small for large values of n uniformly
with respect to 1 � i � n;

– either at �(ξn
i+1) and is equal to

√
n

∣∣∣∣λn�(ξn
i+1) − �(ξn

i+1) − c√
n
�′(ξn

i )

∣∣∣∣
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= √
n

∣∣∣∣�
(

ξn
i+1 + c√

n

)
− �(ξn

i+1) − c√
n
�′(ξn

i )

∣∣∣∣

= √
n

∣∣∣∣∣
ξn
i+1+c/

√
n∫

ξn
i+1

(
�′(t) − �′(ξn

i )
)

dt

∣∣∣∣∣

�
√

n

ξn
i+1+c/

√
n∫

ξn
i+1

w�′,R

(∣∣ξn
i+1 − ξn

i

∣∣ + c√
n

)
dt

= c w�′,R

(∣∣ξn
i+1 − ξn

i

∣∣ + c√
n

)
.

Since �′ is uniformly continuous, by Lemma 2 the latter expression tends to 0 as n → +∞, uniformly
with respect to the indices 1 � i � n for which �(ξn

i ) ∈ [α
2 ,1 − α

2 ].
Finally, (1.9) tends to zero uniformly with respect to all i for which �(ξn

i ) ∈ [α/2,1 − α/2]. Therefore,
we have

lim
n→+∞P

(√
n sup

t∈[α,1−α]

∣∣∣∣λnt − t − c√
n
�′(�(t)

)∣∣∣∣ � e

)
= 0.

Gathering all the intermediate results from (1.6), we get that condition (i) of Theorem A is satisfied.

2. ITEM (ii)

In our setting, this point is straightforward. The function G∞,c is the translation z �→ z − c�′ and, thus, is
continuous. Moreover, since �′ is bounded, we have

d0,R(G∞,cx, x) = d(G∞,cx ◦ �,x ◦ �) � ‖G∞,cx ◦ � − x ◦ �‖∞ = c‖�′ ◦ �‖∞ → 0

as c → 0, uniformly in x ∈ D0(R).

3. ITEM (iii)

The purpose of this section is to prove that

lim
c→0

limn→+∞
∥∥PnG

−1
n,c − Pn

∥∥ = 0.

But from expressions (0.1) and (0.3) we have

Pn =L
(
�n(ξ1, . . . , ξn)

)
, PnG

−1
n,c =L

(
�n(ξ1 + c/

√
n, . . . , ξn + c/

√
n)

)
,

where �n: R
n −→ D(R) is defined by

�n(x1, . . . , xn)(t) = 1√
n

n∑
i=1

(
1]−∞,t](xi) − �(t)

)
.

We then derive

‖PnG
−1
n,c − Pn‖ �

∥∥L(ξ1 + c/
√

n, . . . , ξn + c/
√

n) −L(ξ1, . . . , ξn)
∥∥
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�
∫
Rn

∣∣∣∣∣
n∏

i=1

p
(
xi − c√

n

)
−

n∏
i=1

p(xi)

∣∣∣∣∣ dx1 · · · dxn

� c

where the last majorization follows from the following lemma (Lemma 20.1 of [5]) applied to the function
l(t) = t :

LEMMA 3. For l in the Cameron–Martin space H1, define

lin = √
n

(
l
( i

n

)
− l

( i − 1

n

))
, 1 � i � n.

Then we have the estimate

∫
Rn

∣∣∣∣∣
n∏

i=1

p
(
xi − clin

) −
n∏

i=1

p(xi)

∣∣∣∣∣dx1 · · · dxn � c‖l′‖L2([0,1]).

From this, condition (iii) immediately follows.

4. ITEM (iv)

In this section, we study condition (iv) of Theorem A. We have to prove that, for P∞-almost all x and
all δ ∈ (0, ε),

lim
n→+∞

∫
V

∥∥λ[0,δ]ϕ−1
n,z − λ[0,δ]ϕ−1∞,z

∥∥ Pn(dz) = 0 (4.1)

where

ϕn,z(c) = sup
t∈R

(
Gn,cz(t)

)
, n ∈ N ∪ {∞}, c ∈ (0, δ],

and V = V (x) is defined in the localization procedure.
Since Pn ⇒ P∞, we obtain (4.1) if we show that, for P∞-almost all z, the convergence zn → z implies

lim
n→+∞

∥∥λ[0,δ]ϕ−1
n,zn

− λ[0,δ]ϕ−1∞,zn

∥∥ = 0. (4.2)

LEMMA 4. Let hn and h be measurable mappings of X into R. Let Pn, n ∈ N ∪ {+∞}, be probability
measures on X. Suppose that Pn ⇒ P∞ and hn(x) → h(x) for P∞-almost all x. Then

lim
n→+∞

∫
X

hn dPn =
∫
X

h dP∞.

To show the convergence in variation (4.2), we shall use the following result of Davydov [4] for
one-dimensional image measures:

PROPOSITION 1. Let fn: [0,1] → R, n ∈ N ∪ {∞}, be a sequence of absolutely continuous functions such
that

– fn(0) → f∞(0),

– f ′
n → f ′∞ in L1([0,1]),

– f ′∞ �= 0 a.e.
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Then λ[0,1]f −1
n

var−→ λ[0,1]f −1∞ .

Unfortunately, Proposition 1 cannot be directly applied in our setting, since (4.2) is concerned with the asymp-
totic distance in variation of two sequences of measures, whereas Proposition 1 deals with a single converging
sequence. Hence, we introduce an auxiliary image measure λ[0,δ]ϕ−1

∞,W0
�

and split the study of (4.2) into two parts

lim
n→+∞

∥∥∥λ[0,δ]ϕ−1
∞,ζn

− λ[0,δ]ϕ−1
∞,W0

�

∥∥∥ = 0, (4.3)

lim
n→+∞

∥∥∥λ[0,δ]ϕ−1
n,ζn

− λ[0,δ]ϕ−1
∞,W0

�

∥∥∥ = 0, (4.4)

Proposition 1 (or, at least, Proposition 2) is applicable for both. In this section, ‖ · ‖ denotes the variation norm
on �(x), the sub-probability space related to V (x) in the localization procedure.

4.1. Derivatives

In order to apply Proposition 1 (or Proposition 2), the first step consists in calculating the derivatives of the
functions ϕn,ζn , ϕ∞,ζn , and ϕ∞,W0

�
. This is the purpose of this section.

4.1.1. Derivative of ϕn,ζn . First, ζn obviously reaches its maximum at some a.s. unique point ξi . Similarly, for
almost every c, Gn,cζn reaches its maximum once at another point ξj + c/

√
n (with a priori different index j ).

We now calculate the derivative of ϕn,ζn at almost all c for which the uniqueness at Argmax holds. Let i0 be
the index (almost surely well defined) realizing the argmax, that is,

argmaxGn,cζn = ξn
i0

+ c√
n
.

For d near enough to c, Gn,dζn reaches its maximum at ξn
i0

+ d/
√

n with the same index i0. Then we have

ϕ′
n,ζn

(c) = lim
d→c

ϕn,ζn(d) − ϕn,ζn(c)

d − c

= − lim
d→c

√
n
�(ξn

i0
+ d/

√
n) − �(ξn

i0
+ c/

√
n)

d − c (4.5)

= −�′(ξn
i0

+ c/
√

n)

= −�′(argmax (Gn,cζn)
)
.

4.1.2. Derivative of ϕ∞,ζn . In order to calculate the derivative of ϕ∞,ζn , we rewrite

ϕ∞,ζn(c) = sup
t∈R

(
ζn(t) − c�′(t)

) = sup
t∈R

(
1√
n

n∑
i=1

{
1]−∞,t](ξn

i ) − �(t)
} − c�′(t)

)
.

The function G∞,cζn = ζn − c�′ reaches its maximum almost surely once at a finite point. Indeed, since ω ∈
�(x), the supremum must occur at a finite point. Since, for t � √

n/c, G∞,cζn is an increasing function with
zero limit at +∞, the maximum must occur at some t � √

n/c. However, for all t � √
n/c, G∞,cζn is obtained

by adding positive jumps at the points ξi to a decreasing function. Therefore, the local maxima occur at the
points ξi . Next, it is easy to see that, for almost all c, the local maxima do not coincide and that the global
maximum is thus unique. Therefore, argmax (G∞,cζn) is well defined for almost all c.
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For such c0, denote t0 = ξn
i0

= argmax (G∞,c0ζn). Then we have

ϕ∞,ζn(c0) = G∞,c0ζn(t0) = i0√
n

− √
n�(t0) − c0�

′(t0).

LEMMA 5. For any fixed n, let cp → c0 and tp ∈ Argmax (G∞,cpζn). Then tp → t0.

Proof. Since tp belongs to the finite set {ξn
1 , . . . , ξn

n }, from any subsequence (tp′)p′ , we can extract another
subsequence (tp′′)p′′ converging to some t∞. To simplify the notation, we always write tp instead of tp′′ . We first
show that t∞ = t0.

Note that (ζn(tp))p must converge to ζn(t∞): this is obvious if ζn is continuous at t∞ or, by the right-
continuity, if (tp)p decreases to t∞. Since we can always supppose that tp ↗ t∞ or tp ↘ t∞ (by passing, if
necessary, to a subsubsequence), it remains to consider the case where tp increasingly converges to t∞. In this
case, we have

ζn(tp) → ζn(t
−∞) = ζn(t∞) − 1/

√
n as p → +∞

and, for p large enough,

ζn(tp) − cp�′(tp) < ζn(t∞) − cp�′(t∞).

This is a contradiction to tp ∈ argmax (G∞,cpζn). Thus, (ζn(tp))p must converge to ζn(t∞). Now, since

G∞,cpζn(tp) = ζn(tp) − cp�′(tp) � ζn(t) − cp�′(t)

for all t , taking the limit as p → ∞ yields, for all t ,

ζn(t∞) − c�′(t∞) � ζn(t) − c�′(t),

that is, t∞ ∈ argmax {G∞,cζn} = {t0}. This justifies the convergence of the whole sequence (tp)p to t0.

Now

ϕ∞,ζn(cp) = G∞,cpζn(tp) � G∞,cpζn(t0)

implies

ϕ∞,ζn(cp) − ϕ∞,ζn(c) � G∞,cpζn(t0) − G∞,cζn(t0) = (c − cp)�′(t0).

Similarly, ϕ∞,ζn(c) � G∞,cζn(tp) implies

ϕ∞,ζn(cp) − ϕ∞,ζn(c) � G∞,cp ζn(tp) − G∞,cζn(tp) = (c − cp)�′(tp).

From both inequalities we get

(c − cp)�′(t0) � ϕ∞,ζn(cp) − ϕ∞,ζn(c) � (c − cp)�′(tp).

Finally, for almost all c, we have

ϕ′∞,ζn
(c) = −�′(t0) = −�′(argmax (G∞,cζn)

)
. (4.6)

4.1.3. Derivative of ϕ∞,W0
�

. In this section, the first step consists in proving that #Argmax {G∞,cW
0
�} = 1 for

almost all c. Calculations similar to those for ϕ∞,ζn allow us to to derive the expression of the derivative given
in (4.7).

For c = 0, G∞,0W
0
� = W 0

� has an almost surely unique argmax (see [6]).
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Since �′ ∈ H 1
0 (the subspace of Cameron–Martin space of functions vanishing at infinity), the function � is

an admissible direction for W 0
�, and we have L(W 0

� − c�′) 	L(W 0
�). Since

1 = P
(
#Argmax

(
W 0

�

) = 1
) = PW0

�

(
x | #Argmax (x) = 1

)
and {x | #Argmax (x) = 1} is measurable in the space C(R) of real continuous functions, we also have that

P
(
#Argmax

(
W 0

� − c�′) = 1
) = PW0

�−c�′
(
x | #Argmax (x) = 1

) = 1

that is, W 0
� − c�′ has a unique argmax ,

Since

(ω, c) 
→ G∞,cW
0
�(ω) = W 0

�(ω) − c�′

is bimeasurable, using the Fubini Theorem, we derive that, almost surely,

#argmax
{
G∞,cW

0
�

} = 1

for almost all c ∈ [0, δ].
To adopt the calculations for ϕ∞,ζn to the function ϕ∞,W0

�
, we need to revise Lemma 5. Let t0 =

argmax (G∞,c0W
0
�).

LEMMA 6. Let cp → c0 and tp ∈ Argmax (G∞,cpW 0
�). Then tp → t0.

Proof. Let I (t0) = [t0 − 1, t0 + 1] be a nighborhood of t0. One easily sees that, for c sufficiently near to c0,

sup
t∈R

(
W 0

�(t) − c�′(t)
) = sup

t∈I (t0)

(
W 0

�(t) − c�′(t)
)
.

For p large enough, we thus have tp ∈ I (t0) and from any subsequence (tp′) we can extract another subsequence
(tp′′) which converges to t∞. We finish the proof as in Lemma 5.

Finally, we finish the calculations as those for ϕ′∞,ζn
and obtain that, for almost all c,

ϕ′
∞,W0

�

(c) = −�′(argmax (G∞,cW
0
�)

)
. (4.7)

4.2. Convergence of image measures in (4.3) and (4.4)

4.2.1. The case of λ[0,δ]ϕ−1
∞,ζn

. In this section, we apply Proposition 1 to derive (4.3). Recall that we work
on a probability space given by the Skorokhod representation theorem on which the weak convergence (0.2) is
strengthened to the P-almost sure

‖ζn − W 0
�‖∞,R −→ 0, n → +∞. (4.8)

Since the functions

ϕ∞,ζn(c) = sup
t∈R

G∞,cζn(t) = sup
t∈R

(
ζn(t) − c�′(t)

)
,

ϕ∞,W0
�
(c) = sup

t∈R

G∞,cW
0
�(t) = sup

t∈R

(
W 0

�(t) − c�′(t)
)
,

obviously are 1-Lipschitzian, they are absolutely continuous, with the derivatives calculated in (4.6) and (4.7).
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We can now apply Proposition 1. Indeed, since, first, ζn → W 0
� uniformly, we have that ϕ∞,ζn(c) −→

ϕ∞,W0
�
(c) for all c. Second, since

ϕ′∞,ζn
(c) = −�′(argmax (G∞,cζn)

)
,

ϕ′
∞,W0

�

(c) = −�′(argmax
(
G∞,cW

0
�

))
,

and the function �′ is continuous and bounded, it suffices to prove that

argmax (G∞,cζn) −→ argmax
(
G∞,cW

0
�

)
, n → +∞.

Now we need the following elementary result:

LEMMA 7. Let fn and f be real functions such that fn → f uniformly and #argmax {f } = 1. Then, for any
sequence (tn)n with tn ∈ argmax {fn}, we have

tn → argmaxf, n → +∞.

Moreover, on the set of functions reaching their maxima only once, argmax is a continuous function.

Since the following argmax’s are unique, applying Lemma 7, we get that

argmax {ζn − c�′} −→ argmax {W 0
� − c�′}, n → +∞

for almost all c. Using the dominated convergence theorem, we easily get the convergence of the derivatives
(4.6) to (4.7) in L1([0, δ]).

Finally,

ϕ′
∞,W0

�

(c) = −�′(argmaxG∞,cW
0
�

) �= 0 a.e.,

since argmaxG∞,cW
0
� is finite and �′ vanishes only at ±∞ for ω ∈ �(x).

We can thus apply Proposition 1 and derive (4.3): almost surely on �(x),

λ[0,δ]ϕ−1
∞,ζn

var−→ λ[0,δ]ϕ−1
∞,W0

�

, n → +∞. (4.9)

4.2.2. The case of λ[0,δ]ϕ−1
n,ζn

. Let us now prove (4.4), that is,

lim
n→+∞‖λ[0,δ]ϕ−1

n,ζn
− λ[0,δ]ϕ−1

∞,W0
�

‖ = 0.

We again use the convergence (4.8). The functions ϕn,ζn and ϕ∞,W0
�

are absolutely continuous with derivatives
given by (4.6) and (4.7), respectively. The case of ϕ∞,W0

�
has been derived in Section 4.2.1. Next, note that

ϕn,ζn can be specified on the subsets where argmaxGn,cζn is identified. More precisely,

ϕn,ζn(c) =
n∑

i=1

[
i√
n

− √
n�(ξn

i + c/
√

n)

]
1Ai

(c), (4.10)

where

Ai := {
c ∈ [0, δ] | argmaxGn,cζn = ξn

i + c/
√

n
}
.
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The set Ai is a finite union of open intervals

Ai =
pi⋃

j=1

Ii,j

with the union of their closures equal to [0, δ]:

Ai =
pi⋃

j=1

Ii,j , [0,1] =
pi⋃

j=1

Īi,j .

The restrictions of ϕn,ζn to those intervals are absolutely continuous (see expression (4.10). Since the values of
ϕn,ζn coincide on the common ends of any two adjacent intervals Ii,j , the absolute continuity of ϕn,ζn follows
from the following elementary lemma:

LEMMA 8. Let a1 < · · · < ap, and let f : [a1, ap] → R be such that f |[ai,ai+1] = fi , where every fi is an
absolutely continuous function on [ai, ai+1] with derivative gi and fi(ai+1) = fi+1(ai+1). Then f is absolutely
continuous on [a1, ap] and

f (x) = f (a1) +
x∫

a1

g(t) dt

with derivative

g(x) =
p−1∑
i=1

gi(x)1[ai,ai+1](x).

The last hypothesis of Proposition 1 cannot be verified (at least, easily) for the function ϕn,ζn of (4.4).
Therefore, we use instead the following version of Proposition 1 with the last hypothesis satisfied for ϕn,ζn .
The proof of this proposition can be found in [3], p. 44–45.

PROPOSITION 2. Let, for n ∈ N ∪ {∞},
fn:

(
� × [0, δ],F ×B([0, δ]),P ⊗ λ

) −→ R, �∗ ∈F, �∗ ⊂ �,

be such that

1. ∀ω ∈ �∗, ∃N1(ω), ∀n � N1(ω), fn(ω, ·) is absolutely continuous;

2. fn(ω,0)
P−→ f∞(ω,0) on �∗;

3. fn(ω, δ)
P−→ f∞(ω, δ) on �∗;

4. ∀ω ∈ �∗, ∃N4(ω), ∀n � N4(ω), ∂
∂c

fn(ω, c) > 0 λ-a.e. for c ∈ (0, δ);

5. ∂
∂c

fn(ω, c)
P⊗λ̄−→ ∂

∂c
f∞(ω, c) on �∗.

Then ∥∥λ[0,δ]fn(ω, ·)−1 − λ[0,δ]f∞(ω, ·)−1
∥∥ P−→ 0

on �∗.

We apply this proposition to the functions fn = ϕn,ζn and f∞ = ϕ∞,W0
�

with �∗ = �(x). First note that
their absolute continuity (necessary for condition 1) is already known.
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Next, for c = 0, we have

ϕn,ζn(0) = sup
t∈R

ζn(t) and ϕ∞,W0
�
(0) = sup

t∈R

W 0
�(t).

Since ζn → W 0
� uniformly, we still have ϕn,ζn (0) −→ ϕ∞,W0

�
(0).

For condition 3, we use condition (i) of Theorem A already justified in Section 1:

P- lim
n→+∞d0,R(Gn,cζn,G∞,cζn) = 0 for all c ∈ [0, ε].

Together with the uniform convergence of ζn to W 0
�, we derive

P- lim
n→+∞d0,R

(
Gn,cζn,G∞,cW

0
�

) = 0. (4.11)

We obtain the same convergence for the uniform norm (instead of d0,R) as follows. First, recall that by the
definition of the Skorokhod metric d0,R on R we have

d0,R

(
Gn,cζn,G∞,cW

0
�

) = d0
(
Gn,cζn ◦ �,G∞,cW

0
� ◦ �

)
.

Note that

G∞,cW
0
� ◦ � = W 0

U − c�′ ◦ �,

where W 0
U is a standard Brownian bridge (on [0,1]) and that �′ ◦ � can be extended to a continuous function

on [0,1] vanishing at 0 and 1. Thus, G∞,cW
0
� ◦� is a uniformly continuous function. By the definition of d0,

we can choose λn ∈ �([0,1]) such that∥∥Gn,cζn ◦ � − G∞,cW
0
� ◦ � ◦ λn

∥∥∞,[0,1] + ‖λn − id‖∞,[0,1]
(4.12)

� 2d0
(
Gn,cζn ◦ �,G∞,cW

0
� ◦ �

)
.

From this we derive that, for all t ∈ [0,1],∣∣Gn,cζn ◦ �(t) − G∞,cW
0
� ◦ �(t)

∣∣ �
∣∣Gn,cζn ◦ �(t) − G∞,cW

0
� ◦ �(λnt)

∣∣
+ ∣∣G∞,cW

0
� ◦ �(λnt) − G∞,cW

0
� ◦ �(t)

∣∣
� 2dn + wG∞,cW

0
�◦�,R

(|λnt − t |)
where, for simplicity, we denoted

dn = d0
(
Gn,cζn ◦ �,G∞,cW

0
� ◦ �

)
.

By (4.13) this gives ∥∥Gn,cζn ◦ � − G∞,cW
0
� ◦ �

∥∥∞,[0,1] � 2dn + wG∞,cW
0
�◦�,R(2dn). (4.13)

Since G∞,cW
0
� ◦ � is uniformly continuous, for all e > 0, there exists α > 0 such that

P
{
wG∞,cW

0
�◦�,R(2dn) > e

}
� P{dn > α/2}.

The convergence of wG∞,cW
0
�◦�,R(2dn) in probability now follows from (4.11). Finally, from (4.11) and (4.13)

we deduce that ∥∥Gn,cζn − G∞,cW
0
�

∥∥∞,R
= ∥∥Gn,cζn ◦ � − G∞,cW

0
� ◦ �

∥∥∞,[0,1]
P−→ 0. (4.14)
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as n → +∞, and condition 3 now easily follows for the functions ϕn,ζn .
The condition 4 follows from the expression (4.6) of ϕ′

n,ζn
. Indeed, (4.6) ensures the a.e. nondegeneracy of

the derivatives for ω ∈ �(x).
Next, to see the convergence of the derivatives, we first establish the convergence

argmax (Gn,cζn) −→ argmax (G∞,cW
0
�), n → +∞.

Since both

G∞,cW
0
�(t) = W 0

�(t) − c�′(t)
and

Gn,cζn(t) = 1√
n

n∑
i=1

[
1]−∞,t](ξi + c/

√
n) − �(t)

]

are bimeasurable as functions of (ω, c), the Fubini theorem, together with (4.14), yields

(λ ⊗ P)
{∥∥Gn,cζn − G∞,cW

0
�

∥∥∞ � e
} −→ 0, n → +∞.

LEMMA 9. Let Xn and X be B-valued random variables, where B is a Polish space. If Xn
P−→ X in B and

f : B −→ R is continuous, then f (Xn)
P−→ f (X).

From Lemmas 7 and 9, we derive that

argmaxGn,cζn
λ⊗P−→ argmaxG∞,cW

0
�

as n → +∞. Since �′ is continuous, we also have

�′(argmax (Gn,cζn)
) λ⊗P−→ �′(argmax (G∞,cW

0
�)

)
, n → +∞,

that is, ϕ′
n,ζn

−→ ϕ′
n,W0

�

in measure λ ⊗ P.

Finally, we can apply Proposition 2 to get a weakened version of (4.4):

∥∥∥λ[0,δ]ϕ−1
n,ζn

− λ[0,δ]ϕ−1
∞,W0

�

∥∥∥ P�(x)−→ 0, n → +∞, (4.15)

where P�(x) is the restriction of P to �(x).

4.3. Conclusion on condition (iv)

Gathering convergences (4.9) and (4.15), we prove condition (iv) of Theorem A. By the dominated conver-
gence, from (4.9) one easily derives that

E
[∥∥λϕ−1

∞,ζn
− λϕ−1

∞,W0
�

∥∥1�(x)

]
→ 0, n → +∞.

Next, since

E
[∥∥λϕ−1

n,ζn
− λϕ−1

∞,W0
�

∥∥1�(x)

]
� e + 2P

{
ω ∈ �(x) | ∥∥λϕ−1

n,ζn
− λϕ−1

∞,W0
�

∥∥ > e
}
,

from (4.15) we derive that

limnE
[∥∥λϕ−1

n,ζn
− λϕ−1

∞,W0
�

∥∥1�(x)

]
� e.
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Then, letting ε → 0, we get

lim
n→+∞E

[∥∥λϕ−1
n,ζn

− λϕ−1
∞,W0

�

∥∥1�(x)

]
= 0.

Finally,

limnE
[∥∥λϕ−1

n,ζn
− λϕ−1

∞,ζn

∥∥1�(x)

]
� limnE

[∥∥λϕ−1
n,ζn

− λϕ−1
∞,ζn

∥∥1�(x)

]
+ limnE

[∥∥λϕ−1
∞,ζn

− λϕ−1
∞,W0

�

∥∥1�(x)

]
= 0.

Condition (iv) of Theorem A is finally fulfilled.

5. CONDITION (v) OF THEOREM A

The purpose of this section is to prove the continuity of the mapping

z ∈ V (x) 
−→ λ[0,δ]ϕ−1∞,z

P∞-almost everywhere. Letting zn → z, we will apply once more Proposition 1 to

ϕ∞,zn(c) = sup
t∈R

(
zn(t) − c�′(t)

)
, ϕ∞,z(c) = sup

t∈R

(
z(t) − c�′(t)

)
.

First of all, in order to calculate, as in Section 4.1.3, the derivatives

ϕ′∞,zn
(c) = −�′(argmax (zn − c�′)

)
, ϕ′∞,z(c) = −�′(argmax (z − c�′)

)
(5.1)

and to be able to apply either Proposition 1 or Proposition 2 for deriving the convergence in variation of
related image measures, we have to choose zn and z such that, for almost all c,

#argmax (zn − c�′) = #argmax (z − c�′) = 1.

Here the condition #Argmax (zn) = 1 cannot be directly verified. However, we can avoid this problem by
replacing condition (v) of Theorem A by the following weaker one:

(v′) the application z ∈ X0 
→ λϕ−1∞,z is continuous for some measurable X0 ⊂ X such that Pn(X0) =
P∞(X0) = 1.

Indeed, a carefull reading of the proof of Theorem A allows one to replace condition (v) in Theorem A
by (v′).

Here we take X0 to be the subset of functions from D(R) that reach their supremum only once. We have
Pn(X0) = P∞(X0) = 1 and we now prove (v′) applying Proposition 1:

– Since zn → z in D(R), the first condition is easily satisfied.

– In order to obtain the convergence of the derivatives (5.1) in L1([0, δ]), it suffices to prove that, for c

such that #argmax {z − c�′} = 1,

argmax {zn − c�′} → argmax (z − c�′), n → +∞.

However, since P∞-almost all z are continuous and since zn converge to z in D, the convergence
zn → z also holds uniformly. Since the argmax of z is unique, the convergence of the argmax’s follows
from Lemma 7.
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– ϕ′∞,z(c) is given by (5.1) and is thus nonzero, since �′ vanishes only at ±∞, whereas argmax (z −
c�′) is necessarily finite for z ∈ V (x).

Finally, Proposition 1 can be applied, yielding

λ[0,δ]ϕ−1∞,zn

var−→ λ[0,δ]ϕ−1∞,z

whenever zn → z in X0. Condition (v’) is thus satisfied.
All five conditons of Theorem A are proved, and this proves Theorem 1.
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