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Abstract. Given (Mt)t∈R+
and (M∗

t
)t∈R+

respectively a forward and a

backward exponential martingale with jumps and a continuous part, we prove
that E[φ(MtM

∗

t
)] is non-increasing in t when φ is a convex function, pro-

vided the local characteristics of the stochastic logarithms of (Mt)t∈R+
and

of (M∗

t
)t∈R+

satisfy some comparison inequalities. As an application, we de-
duce bounds on option prices in markets with jumps, in which the underlying
processes need not be Markovian. In this setting the classical propagation of
convexity assumption for Markov semigroups [4] is not needed.

1. Introduction

Bounds on option prices with convex payoff functions have been obtained by
several authors. Theorem 6.2 of [4], for example, states that

E[φ(ST ) | S0 = x] ≤ E[φ(S∗
T ) | S∗

0 = x], x > 0, (1.1)

for any convex function φ, provided S and S∗ are price processes of the form

dSt

St

= rtdt + σtdWt

and
dS∗

t

S∗
t

= rtdt + σ∗(t, S∗
t )dWt,

where (Wt)t∈R+
is a standard Brownian motion, under the condition

|σt| ≤ |σ∗(t, St)|, t ∈ R+.

The proof of (1.1) relies on the backward Kolmogorov equation, provided the
Markov semigroup of (S∗

t )t∈R+
propagates convexity. A first extension of this

type of bound to the jump-diffusion case can be found in [1], and more general
results have been later proved in [2] under refined conditions, still under the prop-
agation of convexity hypothesis. Note however that the propagation of convexity
property is not always satisfied, even in the (Markovian) jump-diffusion case, cf.
e.g. Theorem 4.4 in [3].

In this paper we prove a convex comparison inequality of the form

E[φ(MtM
∗
t )] ≤ E[φ(MsM

∗
s )], 0 ≤ s ≤ t, (1.2)
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where Mt, M∗
t are respectively forward and backward exponential martingales

with jumps and continuous parts, satisfying some conditions. More precisely,
(1.2) will hold for convex function φ : R → R, provided the local characteristics
of the stochastic logarithms of (Mt)t∈R+

and of (M∗
t )t∈R+

satisfy the comparison
inequalities assumed in Theorem 3.1 below. Our proof relies on arguments of
[6], with the difference that we consider products instead of sums of forward and
backward martingales. Moreover the results of [6] require a.s. uniform bounds
on the diffusion coefficients which cannot be satisfied for stochastic exponentials.
In some results we assume in addition that φ′ is convex, a condition that can be
realized in applications when φ is e.g. an exponential payoff function.

If further E[M∗
t |F

M
t ] = 1, t ∈ R+, where (FM

t )t∈R+
denotes the filtration

generated by (Mt)t∈R+
, then Jensen’s inequality yields

E [φ(Mt)] = E
[

φ
(

MtE[M∗
t |F

M
t ]

)]

= E
[

φ
(

E[MtM
∗
t |F

M
t ]

)]

≤ E
[

E
[

φ(MtM
∗
t )|FM

t

]]

= E [φ(MtM
∗
t )]

≤ E [φ (MsM
∗
s )] , 0 ≤ s ≤ t,

and in particular

E [φ(Mt)] ≤ E [φ (M0M
∗
0 )] , t ≥ 0. (1.3)

We prove (1.2) using forward-backward stochastic calculus, assuming only the
convexity of φ, and without propagation of convexity, cf. Theorem 3.1.

We note that (1.3) can be read as a bound on option prices, where φ is a convex
payoff function and Mt is the price of an underlying asset. More precisely, cf.
Corollaries 4.2, 5.1 and 6.2, it yields bounds of the form

E[φ(ST ) | S0 = x] ≤ E[φ(S∗
T ) | S∗

0 = x], x > 0, (1.4)

where (St)t∈R+
and (S∗

t )t∈R+
are jump-diffusion price processes of the form

dSt

St−
= rtdt + σtdWt + Jt−(dZt − λtdt),

where (Wt)t∈R+
is a standard Brownian motion, (Zt)t∈R+

is a point process of
(stochastic) intensity λt, and (S∗

t )t∈R+
can be taken as the solution of

dS∗
t

S∗
t−

= rtdt + σ∗
t dŴt + J∗

t−(dN̂t − λ∗
t dt),

where (Ŵt)t∈R+
is a standard Brownian motion and (N̂t)t∈R+

is a Poisson process
of (deterministic) intensity λ∗

t , mutually independent and independent of (Wt)t∈R+

and of (Nt)t∈R+
, provided the three conditions

|σt| ≤ |σ∗
t |, 0 ≤ Jt ≤ J∗

t , Jtλt ≤ J∗
t λ∗

t , t ∈ [0, T ], (1.5)

are satisfied. The choice of the standard Poisson process (N̂t)t∈R+
to drive the

jump part of (S∗
t )t∈R+

is made here to simplify the formulation of the hypotheses
in (1.5). More general point processes can be actually considered, cf. Sections 4,
5 and 6.
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Here, the coefficients rt, σt, Jt, σ∗
t , J∗

t , are (random) FM -adapted processes
and need not be diffusion coefficients. The difference between (1.4) and (1.1) is

that in (1.4) the integrator processes (Ŵt)t∈R+
and (N̂t)t∈R+

are independent of
(σ∗

t )t∈R+
and of (J∗

t )t∈R+
.

Denoting by BS(φ, x, t, r∗, σ∗, J∗) the conditional Black-Scholes price

BS(φ, x, t, r, σ∗, J∗) = E[φ(S∗
t )| W, Z, S∗

0 = x],

(1.4) reads

E[φ(St) | S0 = x] ≤ E[BS(φ, x, t, r∗, σ∗, J∗)]

between E[φ(St) | S0 = x] and the averaged Black-Scholes price

E[BS(φ, x, t, r∗, σ∗, J∗)].

In the diffusion case when J∗ = λ∗ = 0 and σ∗
t is deterministic, our result

coincides with those of the above mentioned papers, and in particular with (1.1)
or Theorem 6.2 of [4].

In the jump-diffusion case, still taking σ∗
t , J∗

t , λ∗
t deterministic, we get

E[φ(ST ) | S0 = x] ≤ BS(φ, x, T, r∗, σ∗, J∗),

but our hypothesis differ from those of [2] where convex ordering of the jump
caracteristics is required, see Theorem 2.3 therein, whereas here our conditions
are directly formulated in terms of Jt, λt, J∗

t and λ∗
t . In the general case where

σ∗
t , J∗

t , λ∗
t are random, our results can not be compared since our process (S∗

t )t∈R+

is no longer a diffusion process as in [2].
We proceed as follows. In Section 2 we recall the framework of [6] on forward-

backward stochastic calculus. In Section 3 we prove our convex concentration
inequalities for exponential martingales following the arguments of [6], in which
sums are replaced by products. Applications to point processes and Poisson ran-
dom measures in view of option pricing are given in Sections 4, 5, 6.

2. Forward-backward stochastic calculus

In this section we recall some definitions and results on forward-backward sto-
chastic calculus, see [6] for details. Let (Ω,F , P ) be a probability space equipped
with an increasing filtration (Ft)t∈R+

and a decreasing filtration (F∗
t )t∈R+

. Con-
sider (Xt)t∈R+

an Ft-forward martingale with X0 = 0, and (X∗
t )t∈R+

an F∗
t -

backward martingale with X∗
∞ = 0, such that (Xt)t∈R+

has right-continuous paths
with left limits and (X∗

t )t∈R+
has left-continuous paths with right limits. Denote

respectively by (Xc
t )t∈R+

and (X∗c
t )t∈R+

the continuous parts of (Xt)t∈R+
and of

(X∗
t )t∈R+

, and by

∆Xt = Xt − Xt− , ∆∗X∗
t = X∗

t − X∗
t+ ,

their forward and backward jumps. Denote by

µ(dt, dx) =
∑

s>0

1{∆Xs 6=0}δ(s,∆Xs)(dt, dx),

and

µ∗(dt, dx) =
∑

s>0

1{∆∗X∗

s 6=0}δ(s,∆∗X∗

s )(dt, dx),
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the jump measures of (Xt)t∈R+
and (X∗

t )t∈R+
, by ν(dt, dx) and ν∗(dt, dx) their re-

spective (Ft)t∈R+
and (F∗

t )t∈R+
-dual predictable projections, and by ([X, X ])t∈R+

,
([X∗, X∗])t∈R+

, resp. 〈Xc, Xc〉t, 〈X∗c, X∗c〉t t ∈ R+, their optional, resp. pre-
dictable quadratic variations, which constitute the local characteristics of (Xt)t∈R+

,
cf. [5] in the forward case.

We will use the following Itô type change of variable formula for forward-back-
ward martingales which has been proved in [6], Theorem 8.1:

f(Xt, X
∗
t ) − f(X0, X

∗
0 )

=

∫ t

0+

∂1f(Xu− , X∗
u)dXu +

1

2

∫ t

0

∂2
1f(Xu, X∗

u)d〈Xc, Xc〉u

+
∑

0<u≤t

(f(Xu, X∗
u) − f(Xu− , X∗

u) − ∆Xu∂1f(Xu− , X∗
u))

−

∫ t−

0

∂2f(Xu, X∗
u+)d∗X∗

u −
1

2

∫ t

0

∂2
2f(Xu, X∗

u)d〈X∗c, X∗c〉u

−
∑

0≤u<t

(f(Xu, X∗
u) − f(Xu, X∗

u+) − ∆X∗
u∂2f(Xu, X∗

u+)) ,

for all f ∈ C2(R2, R), where d∗ denotes the backward Itô differential.
Finally, recall the following classical comparison lemma.

Lemma 2.1. Let m1, m2 be two finite non-negative measures on R. The inequality
∫ ∞

−∞

f(x)m1(dx) ≤

∫ ∞

−∞

f(x)m2(dx)

holds for all non-decreasing m1, m2-integrable function f on R if and only if

m1([x,∞)) ≤ m2([x,∞)),

for all x ∈ R.

3. Convex comparison for exponential martingales

In the sequel we will assume further that the angle brackets of (Xt)t∈R+
and

(X∗
t )t∈R+

have the form

d〈Xc, Xc〉t = |σt|
2dt, and d〈X∗c, X∗c〉t = |σ∗

t |
2dt, (3.1)

and jump measures of the form

ν(dt, dx) = νt(dx)dt and ν∗(dt, dx) = ν∗
t (dx)dt, (3.2)

where (σt)t∈R+
, (νt)t∈R+

and (σ∗
t )t∈R+

, (ν∗
t )t∈R+

, are respectively predictable with
respect to (Ft)t∈R+

and to (F∗
t )t∈R+

.

Let now (FX
t )t∈R+

, resp. (FX∗

t )t∈R+
, denote the forward, resp. backward,

filtration generated by (Xt)t∈R+
, resp. by (X∗

t )t∈R+
. Recall that

(Xt)t∈R+
, (X∗

t )t∈R+
are respectively F∗

t -adapted and Ft-adapted. (3.3)
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Let M = E(X) and M∗ = E∗(X∗) respectively denote the forward and backward
stochastic exponentials of X and of X∗, i.e.

Mt = M0 exp

(

Xt −
1

2
[X, X ]t

)

∏

0≤s≤t

(

(1 + ∆Xs−)e−∆X
s−

+ 1
2
|∆X

s−
|2

)

,

in the forward case, cf. [7], and

M∗
t = M∗

∞ exp

(

X∗
t −

1

2

∫ ∞

t

d[X∗, X∗]s

)

∏

t≤s<∞

(

(1 + ∆∗X∗
s+)e−∆∗X∗

s++ 1
2
|∆∗X∗

s+ |2
)

,

t ∈ R+, in the backward case. Equivalently, (Mt)t∈R+
and (M∗

t )t∈R+
are the

respective solutions of

dMt = Mt−dXt and d∗M∗
t = M∗

t+d∗X∗
t ,

with respective initial and final conditions M0 and M∗
∞. Note also that (Mt)t≥0

and (M∗
t )t≥0 do not need to be independent. Let now

ν̄t(dx) := xνt(dx), ν̄∗
t (dx) := xν∗

t (dx), t ∈ R+,

and

ν̃t(dx) := |x|2νt(dx) + |σt|
2δ0(dx), ν̃∗

t (dx) := |x|2ν∗
t (dx) + |σ∗

t |
2δ0(dx),

t ∈ R+.

Theorem 3.1. Let φ : R → R be a convex function. Assume that (3.1), (3.2),
(3.3) hold, and either:

i) |σt| ≤ |σ∗
t |, dPdt-a.e., νt and ν∗

t are supported by R+, M0, M
∗
∞ ≥ 0, a.s., and

ν̄t([x,∞) ≤ ν̄∗
t ([x,∞)) < ∞, x ∈ R, t ∈ R+,

or:

ii) ν̃t([x,∞)) ≤ ν̃∗
t ([x,∞)) < ∞, x ∈ R, t ∈ R+ and φ′ is convex.

Then we have:

E[φ(MtM
∗
t )] ≤ E[φ(MsM

∗
s )], 0 ≤ s ≤ t.

If in addition

iii) E[M∗
t |F

X
t ] = 1, t ∈ R+,

then

E[φ(Mt)] ≤ E[φ(MsM
∗
s )], 0 ≤ s ≤ t. (3.4)
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Proof. By an approximation argument we may assume that φ is C2 and convex.
We apply Itô′s formula for forward-backward martingales to f(x1, x2) = φ(x1x2):

f(MtM
∗
t ) = f(MsM

∗
s )

+

∫ t

s+

MuM∗
uφ′(Mu−M∗

u)dXu +
1

2

∫ t

s

(MuM∗
u)2φ′′(MuM∗

u)d〈Xc, Xc〉u

+
∑

s<u≤t

(φ((1 + ∆Xu)Mu−M∗
u)) − φ(Mu−M∗

u) − M∗
uMu−∆Xuφ′(Mu−M∗

u))

−

∫ t−

s

MuM∗
uφ′(MuM∗

u+)d∗X∗
u −

1

2

∫ t

s

(MuM∗
u)2φ′′(MuM∗

u)d〈X∗c, X∗c〉u

−
∑

s≤u<t

(φ(MuM∗
u+(1 + ∆∗X∗

u)) − φ(MuM∗
u+) − MuM∗

u+∆∗X∗
uφ′(Mu, M∗

u+)) ,

0 ≤ s ≤ t, where d and d∗ denote the forward and backward Itô differential.

i) Under hypothesis (i), taking expectations on both sides of this formula we get

E[φ(MtM
∗
t )] = E[φ(MsM

∗
s )]+

1

2
E

[
∫ t

s

(MuM∗
u)2φ′′(MuM∗

u)d〈Xc, Xc〉u −

∫ t

s

(MuM∗
u)2φ′′(MuM∗

u)d〈X∗c, X∗c〉u

]

+E

[
∫ t

s

∫ ∞

−∞

(

φ(MuM∗
u(1 + x)) − φ(MuM∗

u) − M∗
uMuxφ′(MuM∗

u)
)

νu(dx)du

]

−E

[
∫ t

s

∫ ∞

−∞

(

φ(MuM∗
u(1 + x)) − φ(MuM∗

u) − M∗
uMuxφ′(MuM∗

u)
)

ν∗
u(dx)du

]

= E[φ(MsM
∗
s )] +

1

2
E

[
∫ t

s

(MuM∗
u)2φ′′(MuM∗

u)
(

|σu|
2 − |σ∗

u|
2
)

du

]

+E

[
∫ t

s

MuM∗
u

∫ ∞

−∞

ϕ(MuM∗
ux, MuM∗

u)
(

ν̄u(dx) − ν̄∗
u(dx)

)

du

]

,

where

ϕ(x, y) =
φ(x + y) − φ(y) − xφ′(y)

x
, x ∈ R+, y ∈ R.

By the comparison Lemma 2.1, the conclusion follows from the hypothesis and the
fact that since φ is convex, the function x 7→ ϕ(x, y) is nondecreasing in x ∈ R+

for all y ∈ R, and φ′′(x) ≥ 0 for all x ∈ R.

ii) Under hypothesis (ii), using the identity

φ(y(1 + x)) = φ(y) + xyφ′(y) + |xy|2
∫ 1

0

(1 − τ)φ′′(y(1 + τx))dτ, x, y ∈ R,
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we have:

E[φ(MtM
∗
t )] = E[φ(MsM

∗
s )]

+
1

2
E

[
∫ t

s

(MuM∗
u)2φ′′(MuM∗

u)
(

|σu|
2 − |σ∗

u|
2
)

du

]

+E

[
∫ t

s

(MuM∗
u)2

∫ ∞

−∞

|x|2
∫ 1

0

(1 − τ)φ′′(MuM∗
u(1 + τx))dτνu(dx)du

]

−E

[
∫ t

s

(MuM∗
u)2

∫ ∞

−∞

|x|2
∫ 1

0

(1 − τ)φ′′(MuM∗
u(1 + τx))dτν∗

u(dx)du

]

= E[φ(MsM
∗
s )]

+E

[
∫ 1

0

(1 − τ)

∫ t

s

(MuM∗
u)2

∫ ∞

−∞

φ′′(MuM∗
u(1 + τx))

(

ν̃u(dx) − ν̃∗
u(dx)

)

dudτ

]

,

and the conclusion follows from the hypothesis, the use of Lemma 2.1 and the use
of the fact that φ′′ is non-decreasing when φ′ is convex.

iii) Under the additional hypothesis (iii), the proof of (3.4) follows from the
argument leading to (1.3) in the introduction. �

We close this section with the following remarks, which will be useful in parti-
cular to take into account interest rate processes in financial applications.

Remark 3.2. i) The proofs and statements of Theorem 3.1 extend to semimartin-
gales (Mt)t∈R+

, (M∗
t )t∈R+

solutions of

dMt

Mt−
= rtdt + dXt and

d∗M∗
t

M∗
t+

= rtdt + d∗Xt,

provided (rt)t∈R+
is both Ft and F∗

t -adapted.
ii) If φ is non-decreasing, the same bounds hold also for semimartingales (Mt)t∈R+

,
(M∗

t )t∈R+
represented as

dMt

Mt−
= rtdt + dXt and

d∗M∗
t

M∗
t+

= r∗t dt + d∗Xt,

provided (rt)t∈R+
, (r∗t )t∈R+

, are respectively Ft and F∗
t -adapted with rt ≤ r∗t ,

dPdt-a.e.

Note also that all upper bounds presented in this paper can be stated as lower
bounds provided the order of the inequalities on the process characteristics is
reversed in the assumptions.

4. Bounded jumps

Here we assume that ν∗
t (dx) has the form

ν∗
t (dx) = λ∗

t δk(dx)dt, (4.1)

where (λ∗
t )t∈R+

is a positive F∗
t -predictable process, i.e. (X∗

t )t∈R+
has jumps of

fixed size k ∈ R. In this setting we have

M∗
t = 1 +

∫ ∞

t

σ∗
sM∗

s d∗W ∗
s + k

∫ ∞

t

Ms+(d∗Z∗
s − λ∗

sds),
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or equivalently

M∗
t = exp

(

∫ ∞

t

σ∗
sd∗W ∗

s −
1

2

∫ ∞

t

|σ∗
s |

2ds − k

∫ ∞

t

λ∗
sds

)

∏

t≤s<T

(1 + k∆∗Z∗
s ),

t ∈ R+, where (W ∗
t )t∈R+

is a backward Brownian motion and (Z∗
t )t∈R+

is a back-
ward point process with intensity (λ∗

t )t∈R+
.

Corollary 4.1. Assume that (3.1), (3.2), (3.3) and (4.1) hold, and that one of
the following conditions is satisfied:
i) 0 ≤ ∆Xt ≤ k, dPdt-a.e. and

|σt| ≤ |σ∗
t |,

∫ k

0

xνt(dx) ≤ kλ∗
t , dPdt − a.e.

ii) ∆Xt ≤ k, dPdt-a.e. and

|σt| ≤ |σ∗
t |,

∫ k

−∞

|x|2νt(dx) ≤ k2λ∗
t , dPdt − a.e.

iii) ∆Xt ≤ 0 ≤ k, dPdt-a.e. and

|σt|
2 +

∫ 0

−∞

|x|2νt(dx) ≤ |σ∗
t |

2 + k2λ∗
t , dPdt − a.e.

iv) 0 ≤ ∆Xt ≤ k, dPdt-a.e.
∫ k

0 |x|2νt(dx) ≤ k2λ∗
t and

|σt|
2 +

∫ k

0

|x|2νt(dx) ≤ |σ∗
t |

2 + k2λ∗
t , dPdt − a.e.

v) ∆Xt ≤ k ≤ 0, dPdt-a.e. |σt| ≤ |σ∗
t |, dPdt-a.e., and

|σt|
2 +

∫ k

−∞

|x|2νt(dx) ≤ |σ∗
t |

2 + k2λ∗
t , dPdt − a.e.

Then we have:

E[φ(Mt)] ≤ E[φ(MsM
∗
s )], 0 ≤ s ≤ t, (4.2)

for all convex functions φ : R → R, with moreover φ′ convex in cases ii)–v).

Proof. The condition 0 ≤ ∆Xt ≤ k, resp. ∆Xt ≤ k, is equivalent to νt([0, k]c) =
0, resp. νt((k,∞)) = 0. Using the expressions

ν̄∗
t ([x, +∞[) = kλ∗

t 1]−∞,k](x),

ν̃∗
t ([x, +∞[) = k2λ∗

t 1]−∞,k](x) + |σ∗
t |

2δ0([x, +∞[),

and the comparison Lemma 2.1 we show that the hypothesis of Theorem 3.1-(i),
resp. (ii), are satisfied in case (i), resp. in cases (ii)–(v). �

Note that in Corollary 4.1 and in the following corollaries, conditions (iii)-(iv)
make a combined use of the continuous and jump characteristics of the processes.
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Assume now that FX is generated by a standard Brownian motion (Wt)t∈R+
and

a point process (Jt)t∈R+
with intensity (λt)t∈R+

. Let (St)t∈R+
be a price process

defined by
dSt

St−
= rtdt + σtdWt + Jt−(dZt − λtdt), (4.3)

where (rt)t∈R+
, (σt)t∈R+

, (Jt)t∈R+
are square-integrable FX

t -adapted processes.

Consider (Ŵ )t∈R+
a (forward) standard Brownian motion and (N̂t)t∈R+

a (for-

ward, right-continuous) Poisson process of (deterministic) intensity (λ̂t)t∈R+
, both

independent of FX , and let (S∗
t )t∈R+

be defined by

dS∗
t

S∗
t−

= rtdt + σ∗
t dŴt + k(dN̂t − λ̂tdt), (4.4)

where (σ∗
t )t∈R+

is a square-integrable FX
t -adapted process.

Corollary 4.2. Assume that one of the following conditions is satisfied:
i) 0 ≤ ∆Xs ≤ k, dPds-a.e. and

|σs| ≤ |σ∗
s |,

∫ k

0

xνs(dx) ≤ kλ̂s, dPds − a.e.

ii) ∆Xs ≤ k, dPds-a.e. and

|σs| ≤ |σ∗
s |,

∫ k

−∞

|x|2νs(dx) ≤ k2λ̂s, dPds − a.e.

iii) ∆Xs ≤ 0 ≤ k, dPds-a.e. and

|σs|
2 +

∫ 0

−∞

|x|2νs(dx) ≤ |σ∗
s |

2 + k2λ̂s, dPds − a.e.

iv) 0 ≤ ∆Xs ≤ k, dPds-a.e.,
∫ k

0 |x|2νs(dx) ≤ k2λ̂s, dPds-a.e. and

|σs|
2 +

∫ k

0

|x|2νs(dx) ≤ |σ∗
s |

2 + k2λ̂s, dPds − a.e.

v) ∆Xs ≤ k ≤ 0, dPds-a.e., |σs| ≤ |σ∗
s |, dPds-a.e. and

|σs|
2 +

∫ k

−∞

|x|2νs(dx) ≤ |σ∗
s |

2 + k2λ̂s, dPds − a.e.

Then we have

E[φ(St) | S0 = x] ≤ E[φ(S∗
t ) | S∗

0 = x], x > 0, t ∈ R+, (4.5)

with moreover φ′ convex in cases (ii)–(v).

Proof. We apply Corollary 4.1 to the processes (1[0,t](s)σs)s∈R+
, (1[0,t](s)σ

∗
s )s∈R+

,

(1[0,t](s)νs)s∈R+
, (1[0,t](s)λs)s∈R+

, (λ∗
s)s∈R+

:= (1[0,t](s)λ̂s)s∈R+
, with M∗

t = 1,
and use the identity in law

M∗
0 = S∗

t ,

which holds because the forward and backward stochastic integral coincide when
the integrator process is independent of the integrand. �
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5. Point process diffusions

Consider now (Wt)t∈R+
, (Zt)t∈R+

a standard Brownian motion and a point
process generating the filtration

FX
t = σ(Ws, Zs : 0 ≤ s ≤ t), t ∈ R+.

We will assume that (Wt)t∈R+
is also an FX

t -Brownian motion and that (Zt)t∈R+

has compensator (λt)t∈R+
with respect to (FX

t )t∈R+
, which does not in general

require the independence of (Wt)t∈R+
from (Zt)t∈R+

.
Consider also (W ∗

t )t∈R+
a backward standard Brownian motion, (Z∗

t )t∈R+
a

backward point process with intensity (λ∗
t )t∈R+

, all independent of (FX
t )t∈R+

, and
let (Xt)t∈R+

and (X∗
t )t∈R+

be defined as

Xt =

∫ t

0

σsdWs +

∫ t

0

Js−(dZs − λsds), t ∈ R+,

and

X∗
t =

∫ ∞

t

σ∗
sd∗W ∗

s +

∫ ∞

t

J∗
s+(d∗Z∗

s − λ∗
sds), t ∈ R+,

where σt is a square-integrable FX
t -predictable process and (Jt)t∈R+

is an FX
t -

predictable process which is either square-integrable or positive and integrable,
and the processes (σ∗

t )t∈R+
, (J∗

t )t∈R+
, are taken (forward) FX

t -predictable under
the same integrability conditions. The characteristic measures of X and X∗ are
given by

νt(dx) = λtδJt
(dx)dt and ν∗

t (dx) = λ∗
t δJ∗

t
(dx)dt

and we have

Mt = M0 +

∫ t

0

σsMsdWs +

∫ t

0

Js−Ms−(dZs − λsds), t ∈ R+,

and

M∗
t = 1 +

∫ ∞

t

σ∗
sM∗

s d∗W ∗
s +

∫ ∞

t

J∗
s+M∗

s+(d∗Z∗
s − λ∗

sds), t ∈ R+, (5.1)

i.e.

Mt = M0 exp
(

∫ t

0

σsdWs −
1

2

∫ t

0

σ2
sds −

∫ t

0

λsds
)

∏

0<s≤t

(1 + Js−∆Zs), t ∈ R+,

and

M∗
t = exp

(

∫ ∞

t

σ∗
sd∗W ∗

s −
1

2

∫ ∞

t

|σ∗
s |

2ds −

∫ ∞

t

J∗
s λ∗

sds
)

∏

t≤s<∞

(1 + J∗
s+∆∗Z∗

s ),

t ∈ R+. Applying Theorem 3.1 with

Ft = FX
t ∨ σ(W ∗

s , Z∗
s : s ∈ R+), t ∈ R+,

and

F∗
t = FX

∞ ∨ σ(W ∗
s , Z∗

s : s ≥ t), t ∈ R+,

and noting that E[M∗
t |F

X
t ] = 1 (as follows from the independence of (W ∗

t )t∈R+

and of (Z∗
t )t∈R+

with FX ), t ∈ R+, we derive the following corollary:
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Corollary 5.1. Assume that (3.1), (3.2), (3.3) hold. Then we have:

E[φ(Mt)] ≤ E[φ(MsM
∗
s )], 0 ≤ s ≤ t,

for all convex functions φ : R → R, provided one of the following conditions is
satisfied:
i) 0 ≤ Jt ≤ J∗

t , λtdPdt-a.e. and

|σt| ≤ |σ∗
t |, λtJt ≤ λ∗

t J
∗
t , dPdt − a.e.,

ii) Jt ≤ J∗
t , λtdPdt-a.e. and

|σt| ≤ |σ∗
t |, λt|Jt|

2 ≤ λ∗
t |J

∗
t |

2, dPdt − a.e.,

iii) Jt ≤ 0 ≤ J∗
t , λtdPdt-a.e., and

|σt|
2 + λt|Jt|

2 ≤ |σ∗
t |

2 + λ∗
t |J

∗
t |

2, dPdt − a.e.,

iv) 0 ≤ Jt ≤ J∗
t , λtdPdt-a.e.,

λt|Jt|
2 ≤ λ∗

t |J
∗
t |

2, and |σt|
2 + λt|Jt|

2 ≤ |σ∗
t |

2 + λ∗
t |J

∗
t |

2, dPdt − a.e.,

v) Jt ≤ J∗
t ≤ 0, λtdPdt-a.e.,

|σt| ≤ |σ∗
t | and |σt|

2 + λt|Jt|
2 ≤ |σ∗

t |
2 + λ∗

t |J
∗
t |

2, dPdt − a.e.

with moreover φ′ convex in cases ii)–v).

Proof. Similarly to the proof of Corollary 4.1, we use the comparison Lemma 2.1
and show that the hypothesis of Theorem 3.1-(i), resp. (ii), are satisfied in case
(i), resp. in cases (ii)–(v), with

ν̄t([x, +∞[) = λtJt1]−∞,Jt](x),

ν̄∗
t ([x, +∞[) = λ∗

t J
∗
t 1]−∞,J∗

t ](x),

ν̃t([x, +∞[) = λt|Jt|
21]−∞,Jt](x) + |σt|

2δ0([x, +∞[),

ν̃∗
t ([x, +∞[) = λ∗

t |J
∗
t |

21]−∞,J∗

t ](x) + |σ∗
t |

2δ0([x, +∞[).

�

In the following corollary, (λ̂t)t∈R+
is a positive deterministic function and

(St)t∈R+
, (S∗

t )t∈R+
are respectively defined as in (4.3) and (4.4).

Corollary 5.2. Assume that one of the following conditions is satisfied:
i) 0 ≤ Js ≤ J∗

s , λsdPds-a.e., and

|σs| ≤ |σ∗
s |, λsJs ≤ λ̂sJ

∗
s , dPds − a.e.

ii) Js ≤ J∗
s , λsdPds-a.e., and

|σs| ≤ |σ∗
s |, λs|Js|

2 ≤ λ̂s|J
∗
s |

2, dPds − a.e.

iii) Js ≤ 0 ≤ J∗
s , λsdPds-a.e. and

|σs|
2 + λs|Js|

2 ≤ |σ∗
s |

2 + λ̂s|J
∗
s |

2, dPds − a.e.

iv) 0 ≤ Js ≤ J∗
s , λsdPds-a.e. λs|Js|

2 ≤ λ̂s|J
∗
s |

2, dPds-a.e. and

|σs|
2 + λs|Js|

2 ≤ |σ∗
s |

2 + λ̂s|J
∗
s |

2, dPds − a.e.
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v) Js ≤ J∗
s ≤ 0, λsdPds-a.e. |σs| ≤ |σ∗

s |, dPds-a.e., and

|σs|
2 + λs|Js|

2 ≤ |σ∗
s |

2 + λ̂s|J
∗
s |

2, dPds − a.e.

Then we have

E[φ(St) | S0 = x] ≤ E[φ(S∗
t ) | S∗

0 = x], x > 0, t ∈ R+, (5.2)

for all convex functions φ : R → R, with moreover φ′ convex in cases ii)–v).

Proof. Similarly to the proof of Corollary 4.2, we apply Corollary 5.1 to the
processes (1[0,t](s)σs)s∈R+

, (1[0,t](s)σ
∗
s )s∈R+

, (1[0,t](s)Js)s∈R+
, (1[0,t](s)J

∗
s )s∈R+

,

(1[0,t](s)λs)s∈R+
, with (λ∗

s)s∈R+
:= (1[0,t](s)λ̂s)s∈R+

and M∗
t = 1. �

6. Poisson random measures

We now investigate the consequences of Theorem 3.1 in the setting of Poisson
random measures. Let γ be a diffuse Radon measure on R

d \ {0} with
∫

Rd\{0}

(|x|2 ∧ 1)γ(dx) < ∞,

and consider a random measure ω(dt, dx) of the form

ω(dt, dx) =
∑

i∈N

δ(ti,xi)(dt, dx)

identified to its (locally finite) support {(ti, xi)}i∈N. We assume that ω(dt, dx)
is Poisson distributed with intensity dtγ(dx) on R+ × (Rd \ {0}), and consider a
standard Brownian motion (Wt)t∈R+

, independent of ω(dt, dx), under a probability
P on Ω. Let

FX
t = σ

(

Ws, ω([0, s] × A) : 0 ≤ s ≤ t, A ∈ Bb(R
d \ {0})

)

, t ∈ R+,

where Bb(R
d \ {0}) = {A ∈ B(Rd \ {0}) : γ(A) < ∞}. Here, (Mt)t∈R+

is the
solution of the forward stochastic differential equation

dMt = σtMtdWt +

∫

Rd\{0}

Jt−,xMt−(ω(dt, dx) − γ(dx)), (6.1)

where σt is a square-integrable FX
t -predictable process and (Jt,x)(t,x)∈R+×(Rd\{0})

is an FX
t -predictable process satisfying the hypotheses of Corollary 6.1 below, and

(M∗
t )t∈R+

is defined as in (5.1). On the other hand, (M∗
t )t∈R+

solves the backward
stochastic differential equation

d∗M∗
t = σ∗

t M∗
t d∗W ∗

t + J∗
t+M∗

t+(d∗Z∗
t − λ∗

t dt),

where (W ∗
t )t∈R+

is a backward standard Brownian motion and (Z∗
t )t∈R+

a back-

ward point process with intensity (λ∗
t )t∈R+

, independent of (FX
t )t∈R+

.

Corollary 6.1. Assume that (3.1), (3.2), (3.3) hold, and that one of the following
conditions is satisfied:
i) 0 ≤ Jt,x ≤ J∗

t , dPγ(dx)dt-a.e.,

|σt| ≤ |σ∗
t |, and

∫

Rd\{0}

Jt,yγ(dy) ≤ λ∗
t J

∗
t , dPdt − a.e.,
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ii) Jt,x ≤ J∗
t , dPγ(dx)dt-a.e.,

|σt| ≤ |σ∗
t |, and

∫

Rd\{0}

|Jt,y|
2γ(dy) ≤ λ∗

t |J
∗
t |

2, dPdt − a.e.,

iii) Jt,x ≤ 0 ≤ J∗
t , dPγ(dx)dt-a.e.,

|σt|
2 +

∫

Rd\{0}

|Jt,x|
2γ(dx) ≤ |σ∗

t |
2 + λ∗

t |J
∗
t |

2, dPdt − a.e.,

iv) Jt,x ≤ 0 ≤ J∗
t , dPγ(dx)dt-a.e.,

∫

Rd\{0}

|Jt,x|
2γ(dx) ≤ λ∗

t |J
∗
t |

2, and |σt|
2+

∫

Rd\{0}

|Jt,x|
2γ(dx) ≤ |σ∗

t |
2+λ∗

t |J
∗
t |

2,

dPdt-a.e., v) Jt,x ≤ 0 ≤ J∗
t , dPγ(dx)dt-a.e.,

|σt| ≤ |σ∗
t |, and |σt|

2 +

∫

Rd\{0}

|Jt,x|
2γ(dx) ≤ |σ∗

t |
2 + λ∗

t |J
∗
t |

2, dPdt − a.e.,

with

(Jt,x)(t,x)∈R+×(Rd\{0}) ∈ L1(Ω × R+ × (Rd \ {0}), dP × dt × dγ)

in case (i) and with

(Jt,x)(t,x)∈R+×(Rd\{0}) ∈ L2(Ω × R+ × (Rd \ {0}), dP × dt × dγ)

in cases (ii) − (v).

Then we have:

E[φ(Mt)] ≤ E[φ(MsM
∗
s )], 0 ≤ s ≤ t, (6.2)

for all convex functions φ : R → R, with moreover φ′ convex in cases (ii)–(v).

Proof. We directly apply Theorem 3.1 instead of Corollary 5.1, with (Ft)t∈R+
and

(F∗
t )t∈R+

defined again as

Ft = FX
t ∨ σ(W ∗

s , Z∗
s : s ∈ R+), t ∈ R+,

and

F∗
t = FX

∞ ∨ σ(W ∗
s , Z∗

s : s ≥ t), t ∈ R+.

Here, νt(dx) denotes the image measure of γ(dx) by the mapping x 7→ Jt,x, t ≥ 0,
µ(dt, dx) is the image measure of ω(dt, dx) by (s, y) 7→ (s, Js,y), i.e.

µ(dt, dx) =
∑

ω({(s,y)})=1

δ(s,Js,y)(dt, dx),

and ν∗(t, x, dy) = λ∗(t, x)δJ∗(t,x)(dy).
Note that our hypotheses imply νt((J

∗
t ,∞)) = 0. For p = 1, 2, using the

comparison Lemma 2.1, the hypotheses of Theorem 3.1 are satisfied since
∫

Rd\{0}

J
p
t,y1{x≤Jt,y}γ(dy) ≤ λ∗

t

∫ ∞

x

ypδJ∗

t
(dy), x ≥ 0, t ∈ R+,

which follows from

Jt,x ≤ J∗
t , dPγ(dx)dt − a.e.,
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and
∫

Rd\{0}

J
p
t,yγ(dy) ≤ λ∗

t (J
∗
t )p, dPdt − a.e.

For p = 1, resp. p = 2, this proves (6.2) under (i), resp. (ii). Finally, we note that
conditions (iii)–(v) imply

∫

Rd\{0}

|Jt,y|
21{x≤Jt,y}γ(dy) + |σt|

2δ0([x, +∞[)

≤ λ∗
t

∫ ∞

x

ypδJ∗

t
(dy) + |σ∗

t |
2δ0([x, +∞[),

x ∈ R, which allows us to conclude again via Theorem 3.1 and the comparison
Lemma 2.1. Note that here also we have E[M ∗

t |F
X
t ] = 1, t ∈ R+. �

Finally, as in Corollaries 4.2 and 5.2 we get, defining respectively (St)t∈R+
and

(S∗
t )t∈R+

as in (4.3) and (4.4):

Corollary 6.2. Assume that one of the following conditions is satisfied:
i) 0 ≤ Js,x ≤ J∗

s , dPds-a.e.,

|σs| ≤ |σ∗
s |, and

∫

Rd\{0}

Js,yγ(dy) ≤ λ̂sJ
∗
s , dPds − a.e.,

ii) Js,x ≤ J∗
s , dPγ(dx)ds-a.e.,

|σs| ≤ |σ∗
s |, and

∫

Rd\{0}

|Js,y |
2γ(dy) ≤ λ̂s|J

∗
s |

2, dPds − a.e.,

iii) Js,x ≤ 0 ≤ J∗
s , dPγ(dx)ds-a.e., and

|σs|
2 +

∫

Rd\{0}

|Js,x|
2γ(dx) ≤ |σ∗

s |
2 + λ∗

s |J
∗
s |

2, dPds − a.e.,

iv) Js,x ≤ 0 ≤ J∗
s , dPγ(dx)ds-a.e.,

∫

Rd\{0}

|Js,x|
2γ(dx) ≤ λ∗

s |J
∗
s |

2 and |σs|
2+

∫

Rd\{0}

|Js,x|
2γ(dx) ≤ |σ∗

s |
2+λ∗

s |J
∗
s |

2,

dPds-a.e., v) Js,x ≤ 0 ≤ J∗
s , dPγ(dx)ds-a.e.,

|σs| ≤ |σ∗
s | and |σs|

2 +

∫

Rd\{0}

|Js,x|
2γ(dx) ≤ |σ∗

s |
2 + λ∗

s |J
∗
s |

2, dPds − a.e.,

with

(Js,x)(s,x)∈[0,t]×(Rd\{0}) ∈ L1(Ω × [0, t] × (Rd \ {0}), dP × ds × dγ)

in case (i) and with

(Js,x)(s,x)∈[0,t]×(Rd\{0}) ∈ L2(Ω × [0, t] × (Rd \ {0}), dP × ds × dγ)

in cases (ii)-(v).

Then we have

E[φ(St) | S0 = x] ≤ E[φ(S∗
t ) | S∗

0 = x], x > 0, t ∈ R+, (6.3)

with moreover φ′ convex in cases ii)–v).
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