Young and rough differential inclusions

I. BAILLEUL and A. BRAULT and L. COUTIN

Abstract. We define in this work a notion of Young differential inclusion

dZt € F(Zt)dIt,
for an a-Hélder control x, with o > 1/2, and give an existence result for such a differential
system. As a by-product of our proof, we show that a bounded, compact-valued, ~v-Holder
continuous set-valued map on the interval [0,1] has a selection with finite p-variation,
for p> 1/v. We also give a notion of solution to the rough differential inclusion

dZt € F(Zt)dt + G(zt)dXt,

for an a-Hélder rough path X with o € (%, %], a set-valued map F and a single-valued one
form G. Then, we prove the existence of a solution to the inclusion when F is bounded
and lower semi-continuous with compact values, or upper semi-continuous with compact
and conver values.

1 - Introduction

1. Setting — One of the motivations for considering differential inclusions comes from the
study of differential equations with discontinuous coefficients. In the setting of a possibly
time-dependent widely discontinuous vector field on RY, it makes sense to replace the
dynamical prescription

2t = f(t7 Zt)?
by

2t € F(t, Zt),
where F'(t, z) is here the closed set of cluster points ot F(s,w), as (s, w) converges to (¢, z).
This somehow accounts for the impossiblity to make measurements with absolute precision.
It also makes sense to take for F(¢,z) the convex hull of the former set. A set-valued
application F is a map from [0, 7] x R into the power set of R?. Different natural set-valued
extensions of f may have different regularity properties; in any case, switching from the
differential equation prescription to the differential inclusion formulation somehow allows
to account for the uncertainty in the modelling. A Caratheodory solution of the differential
inclusion

e F(t,z), te[0,T], 20=¢eR? (1.1)
is an absolutely continuous path z started from &, whose derivative z satisfies
ét € F(t, Zt)

at almost all times ¢ € [0,7"]. Existence of solutions of differential inclusions and their

properties were widely studied; see for instance J.P. Aubin and A. Cellina’s book [1] for

an authoritative pedagogical treatment. Equation has at least one solution under

two kinds of assumptions on the set valued map F': either F' is upper semicontinuous with
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compact convex values, or F' is bounded and lower semicontinuous with compact values.
Recall that a set-valued function F' on [0,7T] x R? is said to be upper semicontinuous
if one can associate to every spacetime point (s,w) an open neighbourhood U of (s, w)
and an open neighbourhood V of F(s,w) such that F(U) < V, and F is said to be
lower semicontinuous if for any (s,w), any w’ € F(s,w) and any neighbourhood V (w’)
of w', there exists a neighbourhood U (s, w) of (s,w) such that F(t,z) n V(w') # &, for
all (t,z) € U(s,w). The existence proofs for solutions of the differential inclusion
generally rely on either approximation schemes or a fixed point reformulation.

Differential equations, and their extensions into differential inclusions, are not the only
kind of natural dynamics. Some extensions to stochastics cases where also studied, after
the pioneering works of Aubin-da Prato [2, 3, 4, [5] and Kisielewicz [18, [19} 20]. The works
[2, 13,4, 5] were essentially motivated by studying viability questions in a stochastic setting.
M. Kisielewicz in [I8] define the notion of solution and obtain the existence of stochastic
differential inclusions on the form

t t

F(r, X, )dr —|—J G(r, X,)dW, (1.2)

s

Xt — Xs € J

S
where W is an Rf-valued Brownian motion, F is a lower semicontinuous set-valued ran-
dom map with values in R? and G is a lower semicontinuous set-valued map with values in
L(RY,RY). In [19], M. Kisielewicz also studied the case where equation also contains
an additional compound Poisson measure term; the case of semimartingale drivers was
also investigated. All proofs fundamentally rely on the isometry property of stochastic
integration with respect to Brownian motion or compound Poisson measures. There are
however a number of interesting non-semimartingale random processes of practical rele-
vance, such as Mandelbrot’s fractional Brownian motion [25] or random Fourier series [14].
Its sample paths are a-Holder continuous, for some « € (0,1). One can use T. Lyons’ work
[23] to solve differential equations driven by a fractional Brownian motion, for o > 1/2; it
relies on the notion of Young integral [26]. The case 1/4 < < 1/2 is much more involved
and can be handled using Lyons’ theory of rough pahts [24]. In [22], A. Levakov and M.
Vas’kovskii obtain the existence of solutions to stochastic differential inclusions of the form

t t t
X, — X, € f F(r,XT)dr~l—j G1(r, X, )dW, + f Ga(r, X, )dWFPM

where WF¥BM g a fractional Brownian motion with a-Holder continuous sample paths,
with @ > 1/2, and the set valued map G is a globally Lipschitz function of x that takes
values in the set of nonempty compact convex subsets of R? and satisfies a local 6-Holder
condition as a function of time, with § > 1 — «.

2. Young differential inclusions — Motivated by control problems, the first aim of this
article is to define and prove the existence of solutions of Young differential inclusions

¢
2t :§—|—f Uy ATy, (1.3)
0

Vt € F(Zt>

where z is an Rf-valued a-Hoélder continuous control, with a > 1 /2, and F is a v -Holder
continuous set valued map with compact values, for a regularity exponent ~ € (é -1, 1).
We do not require that F' takes values in convex sets. The notion of a solution to a Young
differential inclusion involves a number of elementary results on Young integrals that are
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recalled in Appendix [A]

Notations. We gather here a number of notations that are used throughout the work.

e For any integer m, point a € R™ and positive real number R, we denote by B(a, R)
the closed ball of center a and radius R in R™.

e For a € (0,1] and U, V Banach space, we denote by C*(U, V') the space of a-Holder
continuous functions from U to V. We write |z|, for the a-Holder semi-norm of a
path z € C*(U, V). We set x5, := a4 — x4, for s,t e U.

e Given a set S, we denote by 2% the power set of S, 2% for 25\{} and K(S) the
compact sets of 25. We denote by L(R’,R%) the space of linear maps from R! to R?.
Recall that endowing the space 2L(RRY) with the Hausdorff pseudo-metric turns
the space K(L(R%,R?)) into a complete metric space. For F': R? — K(L(R,,R?)) a
v-Hélder set-valued map, we denote again by |F|, the y-Holder semi-norm of F.

o If f is a single-valued map of p-variation, we denote by | f|
semi-norm of f — more on this notation in Appendix [A]

p—var the p-variation

Definition — Let = be an element of C*([0,T],R!), with o € (%, 1], and F : R4 > 2L(RERY)
be a set-valued map. A solution to the Young differential inclusion

dz € F(z)dxy, 29 =€eRY (1.4)
is a pair of paths (z,v), defined on the time interval [0,T1],

o with v a L(R',R?)-valued path of finite p-variation such that o + % >1,

e and for all0 <t < T,

t

vt € F(z) and Zt=£+vad$S.
0

The integral Sé vs dxs makes sense as a Young integral under the assumption o + % >1
— see Appendix [A]

Theorem — Let a positive time horizon T be given and x € C*([0,T],RY) with a € (%, 1].
Let F : RY — /C(L(Re, Rd)) be a bounded set-valued map with nonempty compact values
and y-Hélder, for a regularity exponent v € (é — 1, 1). Then, for any initial condition
¢ e R, the Young differential inclusion

dZt € F(Zt)d,fﬂt,
has a solution path started from &, defined over the time interval [0, T].

For a single-valued map, this is a consequence of Young’s original result [26], 23]. Unlike
the setting of ordinary differential equations, no uniqueness is to be expected in the present
setting. Our regularity condition on the set-valued map F' is the same as in the ordinary
differential setting. However, there may be no Holder, or even continuous, selection of F' —
see Proposition 8.2 in [9], so existence results for Young differential inclusions do not follow
from existence results for Young differential equations. We refer the reader to Chapters 1
and 2 of [1] for the basics on differential inclusions. Note that since continuous paths with
finite p-variation can be reparamatrized into 1/p-Ho6lder paths, the result of Theorem
holds for continuous paths x with finite p-variation 1 < p < 2.
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3. A selection result — As a by-product of our proof, we show in Section [3|that a bounded,
nonempty compact-valued, v-Holder continuous set-valued map on the interval [0, 1] has
a selection with finite p-variation, for p > 1/7.

Theorem — Pick v e (0,1], and let I : [0,1] — K(R?), be a bounded, y-Hélder nonempty
compact set-valued map. Then, for any p > 1/v and any £ € F(0), there exists a map
f:[0,1] — R, of finite p-variation, such that f(t) € F(t), for all0 <t < 1, with f(0) = &,
and which furthermore satisfies the estimate

[ Flp—var < 15

This statement partly answers an open question in Chistyakov and Galkin’s work [9] —
see Remark 8.1 therein.

4. Rough differential inclusions — Stochastic analysis has undergone a real change under
the impulse of T. Lyons’ theory of rough paths [24]. It provides a deep understanding of
stochastic differential equations and desantangles completely in that setting probabilistic
and dynamical matters. As a first step to establishing a full theory of rough differential
inclusions, the second aim of the present work is to deal with rough differential equations
perturbed by set-valued drifts. Fix a finite positive time horizon T'. We refer here the reader
to Appendix [A] for basics on rough paths and rough integrals, in the setting of controlled
paths; it suffices here to say that controlled paths are needed to make sense of the rough
integral that appears in the next definition.

For an integer k£ > 1 and «y € [0, 1], let us denote by C{f "7 the space of bounded maps G

from R? to L(R?, R?) which are k-times differentiable, with bounded derivatives, and have
a y-Holder k-th derivative. We endow C’If 7 with the norm

k
1G]l g = 2, 1D Gl + |G, 1450,
1=0

where DG is the i-th derivative of G. By convention DG := G.

Definition — Let T be a fized positive time horizon. Pick € € R, let Q be a subset of
R x R? containing [0,T] x {€}. Let X be a weak geometric a-Hélder rough path, with

1/3<a<1/2. Let F: Q — 2R be a set-valued map, and G € C’;’W with (2+~)a > 1. An
Re-valued path z started from & is said to be a solution to the rough differential inclusion

dZt € F(t, Zt)dt + G(Zt)dXt, (15)

if z is part of a path (z,2") controlled by X, and there exists an absolutely continuous path
x from [0,T] to R? starting from zero, such that

xye F(t, z)
at Lebesgue almost all times 0 <t < T, and one has

t
ze =&+ x4 + f G(zs)dXs
0

at all times.



1.3.

1.4.

The regularity assumption on G is the optimal classical regularity assumption required
to have a well-posed rough differential equation when F' is null. The technics used to prove
the existence of a solution to equation are different depending on the regularity of
the set-valued drift F'. We first deal with the case where the drift is upper semicontinuous.
We need in that case to assume that F' takes values in the set of conver compact subsets
of R,

Theorem — Let X be a weak geometric a-Holder rough path, with 1/3 < o < 1/2, and let
G be a C’E’V one form, with a(2 +~) > 1. Let F be an upper semicontinuous set-valued
drift. Assume further that F' is locally bounded, and takes it values in the set of nonempty
compact convex subsets of R%. Then there exists a time horizon T* € (0,T) and a solution
z to the rough differential inclusion , defined on the time interval [0, T*].

In contrast to the preceding statement, we do not need to assume that F' has convex
images in the case where it is lower semicontinuous; we assume instead a mild boundedness
assumption on F.

Theorem — Let X be a weak geometric a-Hélder rough path, with 1/3 < o < 1/2, and let
G be a C’;"y one form, with «(2 + ) > 1. Assume that the set-valued drift F is defined
on a closed subset Q of R x R, where it is lower semicontinuous. Assume further that

F takes values in the set IC(R?) of nonempty compact subsets of R, and that there is a
positive constant L such that [0,T] x B({, LT“) c Q, and

|F(t,a)| <L, V(t,a)e[0,T]x B(¢LT*).

Then there exists a time horizon T* € (0,T) and a solution z to the rough differential
inclusion (1.5 stated at &, defined on the time interval [0,T*].

Note that the regularity of G is lower in Theorem [I.4] than in Theorem [I.3] When
G = 0 in Theorem [I.4] and Theorem [I.3] we recover classical conditions for existence of
solutions to differential inclusions — see e.g. the classical reference [I]. In Theorem [1.4
when F' = {0}, we recover optimal condition of regularity on G for existence of solutions
to a rough differential equation [12].

The work has been organised as follows. Section [2]is dedicated to proving Theorem
on Young differential inclusions, following the above strategy. Theorem is proved in
Section [3] and Section [] is dedicated to the proof of Theorem

2 — Young differential inclusions

This section is dedicated to proving Theorem[I.1} Given ¢ > 1 and a dimensional vector
space E, we denote by V,([0,T], E) the space of E-valued paths with finite g-variation on
the time interval [0,7"]. Refer to Appendix

We fix a € (%, 1] once and for all in this section, and work in the setting of Theorem
The pattern of proof of Theorem goes as follows. Recall from Appendix [A] that
the space of paths with finite p-variation is endowed with the p-variation norm || - |p-var,00,
defined in . Given a positive finite time horizon T', we define the dyadic partitions
7(m) = {tm} of the interval [0,T], with ¢/ := i27™T, 0 < i < 2™ and m > 1. Let 7 be
given in Theorem and p = 1 be such that % + a > 1. We construct in Section an




approximate solution to the problem on a sufficiently small time interval [0, 7], under the
form of a pair (2, v™) such that

e v™ has | - [|p-var,co-norm uniformly bounded in m, and is equioscillating,

e v € F(z]") for all dyadic times, and

t
z?=§+Jv;”dxu7 0<t<T,

0
with ¢ € R?.
It follows then from the first item that the sequence v has a converging subsequence
v™k with limit some v, for the | - ||gvar,co-norm, for any ¢ > p with 2 + @ > 1. The

continuity statement from Corollary implies then that z™* converges in || - |4 c-norm
to the path z := £ + §j vudz,. One gets the fact that v, € F(z), for all 0 < ¢t < T, from
the fact that F' is bounded and takes values in closed sets. Thus (z,v) is a solution in
Co([0,T],R?) x V4([0,T], L(R*,R%)). The existence of a solution to the inclusion defined
up to the initial time horizon is a consequence of the fact that the previous existence time
does not depend on &. We now turn to the details.

2.1 — Construction of the approximate solution

Forte J (™) set

m=0 '
M(t) := min {j;t € ﬂ'(j)}
and define the ancestor s(t) of ¢ as

s(t) := max {s e rM®-1). 5 < t}. (2.1)

For each m > 0, we construct the path 2™ on [0,¢] ], and v™ on [0, ), recursively on
0 <i<2™—1where t]}; = 27T (i + 1). The construction is not inductive on m.
e For m = 0, choose v € F(¢), and set
v,? zvg, Z?=§+08330,t7 Vt e [0,T].
e Pick m > 1.We set
o' i=wl), Vtel[0,T27™),
2 =€+ viwoy, Vte[0,T727™].
This starts the induction over 0 < i < 2™ — 1. If 2™ : [0,¢"] — R? and v™ : [0,¢") — R%,
have been constructed, use the Holder continuity of F' to choose vjm € F(zg‘n) such that
o = | < IF |28 = 20
and set
i 14
2" 1= zpm + vpm Tyme,  VEE [B7 7+ T27]
If £ + 27T = T, set off = vfh.

We have 2™ = £ + Sé vi'dx,, as a consequence of the fact that v is constant along the

v =g, VEe [6 6" +T27T),

intervals of the partition 7(™) of [0, T]. The next section is dedicated to proving a uniform
p-variation bound on a small time interval satisfied uniformly by the paths v™.



2.1.

2.2.

2.2 — Study of the p-variation norm of v in a small time interval
This section is dedicated to proving the following intermediate result.

Proposition — Pick < B < a, and set

1+’y

2 —4
| 2 ( 2Fllsle \TEE [ Fl, \ T
" ::mm{l’@'FlmeHa) 5(1_2&@1) ASer=r - (22)

Pick p > 1/(y58). Then we have, for any S < T,

1 VP (g
vaprvar,[O,S] < (1—2'Yﬁp> S a JHYB. (2,3)

The proof of Proposition proceeds in several steps. We first give a discrete integral
representation of 2z that proves useful.

Lemma — Pick 0 < n < m, and two consecutive points s,t in ™. Then, setting
s¥ =5 +i27"FT, we have

m—n—12k—1

m —
Zgp = S Tst + E ’Uk GFr1 Tghtl o
Sis 21+1 21412 z+1

Proof — For 0 < s <t < T, set

m,(0)
Mgt = Hgt = Vs Tst
and, for k > 1
k k—1 (k=1
i o= Y Y

e We first prove by descending mductlon on n that for 0 < n < m, and two consecutive
points s, ¢ in 7(™, we have

Zgy = u;nt(m " = = lig t(k), Vk = m —n. (2.4)

This identity holds true when n = m as a consequence of the definition of the objects.
Assume that . holds true for n < m, and let s,¢ be two consecutive points in
7("=1) Since s and s+t , and s+t and ¢, are consecutive points in 7(™), we have, from
the definition of p (¥ ) and 1nduction,

Zgp =2 skt + 2kt , = ,ugft’(mfnﬂ).
3 o

For k = (m — n), we have

k—1 , 1
i = T Y = T T = T,

this closes the inductive proof of identity @
e One then sees by induction on k£ that setting as in the statement of the Lemma
sf=s+i27Ft —s) = s+ 27"k,
one has
2k—1

m7(k) _ m
Mszt - Z MS? ,S§+1
=0



and
m,(k+1)
Hait 2 Usfvslzcztrll xsgztrllvsfﬂ. (2'5)
Summing equation (2.5) for k& from 0 to m — n, and using identity (2.4]) gives the
identity of the Lemma. >
2.3. Corollary — Pick m < B < a, and set
2
. 2[Flyllzla\ =P
T, := mm{ 2| F | ooll]l) (1 T .
Then we have for any 0 < S <11 and any 0 < n < m, the m-uniform bound
sup |27| < %2 (527 (2.6)
[s,t]em ()

the supremum is over consecutive points s,t of (),

Proof — The proof is again by descending induction on n € {0,...,m}. We first have for
two consecutive points s, t of 7("™) the estimate
< 1 Ffoofl]a(S527),

so ([2.6) holds true for m = nsince 0 < S < T7. Assume now that (2.6|) has been proved
for n < m, an let s,¢ be two consecutive points of 7", We use the representation
formula

253
K

27+1? z+1

2 ) 21+1

from Lemma with s¥ = s + i2‘"‘k+15 Note that M(sgtrll) = n + k, here, and
the ancestor s(sgt}l) of sgtrll is s¥. Then, using ) for n + k, we have

HFHVS*”(S? k),

‘U ke gh+1 ‘F”v‘z k k+1

70 21+1

so we obtain for |z[}| the upper bounds

m—n+1
"F|‘OO|‘$|‘ (2 n+1S Z 2k57'y go—n— k)ﬂ’YHxH (52 n— k)
— —n(a+p87)
—n+lg)@ g ez, 27TV
< IFlolela(27418)" + falal Pl st ™ 22

The choice of S < T} ensures that

a—

|Flloo|z]a(27"F18)* ST(Q—(”—l)S)ﬁ

| =

and since a +y8>1>aand S <1

(=g 27 Ma+BY)
2

1
a+yp+ < =
lzllol ]S 1 —9—(a+By—1) S 9

this closes the descending induction step. >
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Recall the oscillation Osc(v, I) of a function v : I — RY, is defined by the formula

Osc(v,I) := sup (v(b) — v(a)).
a,bel
The uniform control of the oscillation of the v™ provided by the next statement is necessary
to use the compactness result on the set of bounded functions equipped with uniform norm
stated in Theorem 5, Section 4, Chapter 0 of Aubin and Cellina’s book [I]. Recall the
definition of Ty < T} from the statement of Proposition The notation [s,t] € =™
used below stands for two consecutive points s,¢ in 7("),

Corollary — For any 0 < S < Ty, we have, for any 0 < n < m,

sup Osc(v™,[s,t)) < s BM(
[s,t]en (™)

S2- ) (2.7)

Proof — Note that if n > m and s and ¢ are two consecutive points of 7("), the function
v™ has null oscillation on the interval [s,t), since it is constant on the intervals of the
partition (™). Let then take n < (m — 1). Set so = s and define a finite sequence

(8i)i=0,...m—n setting s;;1 = s; + 2-(ntitl) g if g + 2=t G <t and s = s,

otherwise. Then s; € 7("*9), for any 4, and either s;,1 = s; or its ancestor s(8i+1) is

s;. We then have from the uniform estimate (2.6) on 2" the bound

a—B n—i v
O | S VF e, [ < IR, (875 (527770)7)

We obtain (2.7) summing these inequalities for ¢ from 0 to (m — n), and from the
definition of Tj. >

Proof of Proposition - Take 0 < S < Tp, and let m = (s;)¥, be a partition of the
interval [0, S]. The following partition is a kind of greedy partition of the set {0, ..., N —1},
in terms of the size of corresponding increments in the above formula. Let then set

I = {f e{0,.,N—1};27'¢ (34,5“1]},

and, for 2 < j < m, set
I; = {E €{0,.,N —1};3t e 70N\x0~D (34,3”1]}.

We define a partition of {0,..., N — 1} setting Ky := Iy and

j—1
Kj = j\ U Ik,
k=0
for 2 < j < m. Note that K; has at most 27 elements.

e For / € Ky, we know from Corollary [2.4] on oscillations of v, with n = 0, that

(a—B)y
m m V6
’vsz“ v | <S4 .

e For ¢ € Kj, there exists ¢ € TI'(j)\ﬂ'(j_l) such that sy < t < sy41, and for all
we wU=Y one has either u < sy, or u > Spi1-
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Then [sg,s011) < [t — S277,¢ + §277), and using Corollarywith j — 1, one gets

o | < 4T (927607,

Se+1

Taking p > 1/(yf), one then has

1

N—-1 m

(a=B) ; (i (a=B)
Z;) [ofr,, — s <28 3 29 (S2UT) P <o g,
1=

j=0

from which ([2.3)) follows

1 VP s
vaHp—var,[O,S] < <1_2—7,3p) S +’Yﬁ'

2.3 - Local and global existence for solutions

We finally give the proof of Theorem in this section. We first prove the existence
of a solution to the differential inclusion on the time interval [0, Tp], for the time Tp
defined in in Proposition Since the definition of T does not involve the initial
condition & of the dynamics, we obtain by concatenation a solution to the inclusion defined
over the whole interval [0, T].

e Recall that a sequence of bounded functions (y™),,>0 from compact segment [a, b]
into a compact set K is said to be equioscillating if, and only if, one can associate to any
positive ¢ a finite partition (J)o<k<r of [a, b] into subintervals such that Osc(y™, Ji) < ¢,
uniformly in k, m. The Ascoli-Arzela-type convergence theorem from Theorem 5 of section
4 of chap 0 of Aubin and Cellina’s book [1], ensure the existence of a subsequence (y™*)x>0
that converges uniformly to some limit bounded function y. Since the family (v™),,>0 is
bounded by |F|, and equioscillating, from Corolary it has a uniformly converging
subsequence, with limit v.

Pick then ¢ > p such that % + a > 1. Since all the v have the same starting point, we
have the elementary interpolation bound

p/q

a=p
- Un”q—var,[O,To] < (2”Um - Un“oo,[O,Tg]) e (H’Ume—VaI',[O,TO] + anHp—V&mr,[O,TO]) ’

v
on which we read off the convergence of a subsequence 2" of the v in g-variation norm
to its limit, as a consequence of the uniform bound from Proposition The convergence
to v of this subsequence is thus in the sense of the || - |[q_var [0,75] c0-nOTM.

e The continuity result on Young integrals recalled in Corollary [A22] from Appendix [A]

implies then the convregence in the norm | - [lo,00 of 2™* on [0,Tp] to the path z defined
by the equation

¢
ze =€+ J Vo d Ty
0

e It remains to prove that v, € F(z;), for all times 0 < t < Tp. For a dyadic time
t € Um=o 7™ then for k big enough, one has v]™ € F(z]"). Then, since F is y-Holder,
one has

d(ve, F(2t)) < |ve — o™ | + d(F(2"), F (1)) < |ve — v/ | + | Flly |2 — 2|
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so one gets d(vg, F((z)) = 0, and v, € F(z), since F(z;) is closed. For an non-dyadic time
t € [0, Tp], there exists two consecutive points in 7(™) such that ¢ € [u, v[, for every m > 0.
Then,

d(ve, F(z1)) < |ve —of"| + o — o| + d(v, F(20) + d(F(23"), F(2u))

+ d(F(zu), F(zt)),

while we have from Corollary 2.4] and Corollary [2.3]

d(ve, F(z)) < |vr — o] + (To2~™)"? + |F|y |20 = zu|” + | Fly| 20 — 2|
and

d(ve, F(21)) < |jv— o™ ”oc,[O,T] + (Ty2~ )78

1 (2 = 0™ | oy + 12l aomy (To2 7)),

So one gets d(vi, F'(2)) = 0, and v € F(2;), since F(z) is closed.

3 — A selection result

As a by product of the proof of Theorem we obtain the selection result of The-
orem wich partially answers Remark 8.1 of Chistyakov and Galkin’s work [9]. This
section is dedicated to proving Theorem [I.2}

We use the same notations an in Section [2 Define for each non-negative integer m the
partition 7" := {tI"};—o.2m of the interval [0, 1], with ¢]" := i27"™. We define as follows a
path 2™ : [0, 1] — R? on each sub-interval [0,¢"), recursively over i.

e For m =0, set 2°(t) = x, for all 0 < ¢ < 1.

e For m > 1, set first 2™ (t) = z, on [0, ¢]"), and assuming =" has been constructed
on the time interval [0, 7), set 2’f = 2" ,_,,, if 7 = T, otherwise choose z]" € F(7)
such that

d(arsaly ) < |F],2 MO

and set z}" = 27", for T <t <7+ 27,

We first prove that we have for all r,m the estimate

F
max sup |zhY] < M 27, (3.1)
e seltt+2-7) =2
By construction, ™ is constant on the each interval of 7™, so if r = m,t € «" and
s € [t,t +277), then 2, = 0 and (3.1) holds true. Let then consider the case where
r < m. We define a finite sequence of times (s;)i—o,...m—r, With so = ¢, such that for
0<i<(m-—r-—1), we have s;j41 = s; + 27l i 5, + 277 < s and s = S
otherwise. Then, for s; € 71" for i > 1, and either s(s;41) = s; or s;11 = s;. The path
2™ is constructed in such a way as to have
_ i—1
2 gy | S IFy27H0.

Summing these estimates for 0 < i < m — r, gives (3.1), and

2|F
max Osc(z™, [t,t +27")) < 2Fl -

Y
ten” S 1-9 ’ (3.2)
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Since = is constant along the sub-intervals of the partition #™ it is enough, to compute
the p-variation of 2™ along any partition © = {s;, i = 0,..., N} of [0,1], to assume that
all the partition times s; € 7. Let then define as follows be a finite partition (K;)j—o,...m
of {0,..., N — 1}, with possibly empty sets.

e fee 1) e )

I = {Ee{O,...,N—l}; It e ni\ni 1, te(s@,sm]}, 2<j<m

}(0:==]b,
J
K1 = Ijt1\ U Iy | .
k=1
For ¢ € K1, using (3.2)) for r = 0 we bound
2| F
w5, 2] < T (33)

For ¢ € K, then there exists ¢ € 7/\7/~! such that
S <t< S0+1,

and any u € m/ ! satisfies either u < sy or u > sgy1. Then [sg,8011) < [t — 279, + 277),
and using inequality (3.2) for j — 1, we see that

21Flly o
o, — 2l < T U (3:4)

The number of indices ¢ € K; is at most 2/. Using the fact that the family (K;)i<j<m
defines a partition of {0,..., N — 1}, and adding inequalities (3.3]) and (3.4) for ¢ > 1/~,

we then have

N—-1 m
2| F[l,27\? i
_ q 20 iy Jvaq
> e, — gl < (1 — ) 222
1=0 7=0

< (2AF27\* 1
“\1-27) 1-29tt

2| F)l427 1
1-277(1- 2—7q+1)1/q'

and we derive

[ lg—var <

From Helly’ selection principle, see e.g. Theorem 6.1 in Chistyakov and Galkin’s work [9],
the sequence =" has a convergent subsequence in p-variation, for any p > ¢q. We identify
the path f from the statement as such a limit. One proves that f is a selection of F' in the
same way as we proved that vy € F'(z;) in Section using the fact that F(¢) is closed
for all times, and the regularity properties of F.
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4 — Rough differential inclusions

This section is dedicated to the proof of Theorem and Theorem We refer the
reader to Appendix [A] for basics on rough paths theory. All we need to know is recalled
there. The reader will notice that the proof of Theorem is much shorter than the proof
of Theorem [L.4l This is due to the fact that we somehow assume much more in Theorem
asking in particular that the set-valued drift has compact conver images. Together
with the assumed upper semicontinuity, this allows for the use of powerful approximate
selection theorems that greatly simplify the matter. See e.g. Section 1 of Chapter 2 in [I]
for the differential inclusion case.

4.1 - Upper semicontinuous drift

This section is dedicated to proving Theorem we work in this section in the setting
of that statement. Here, X is an a-Holder weak geometric rough path with o € (1/3,1/2]
and G € Cb2 7 with (2 + v) > 1. We recall that according to the notation introduced in
the Introduction, C1([0, T'], R?) is the space of R%-valued Lipschitz paths defined on [0, T7].
Given x € C1([0,T],R%), we denote by (¢, x) the solution path to the rough differential
equation

t
Yy =&+ xp + J;) G(ys)dXSa (4'1)

with fixed initial condition £&. The controlled solution path comes under the form of a
pair (yt, G (yt)) Classical results from rough paths theory ensure that ¢ is a continuous
function from C1([0,T],R?) with values in the space C*([0,T],R?) — see e.g. Theorem
3 of [10]. This is where we need the assumption that G is (2 + «)-Hoélder, rather than
just (1 + v)-Holder, as in the proof of Theorem given in the next section. For each
0 <t<T,onehas

Uit z) = P(t,T),
for any other € C''([0,T],R?) that coincides with = on the time interval [0,t]. We can
then work in the setting of differential inclusions with memory — see e.g. Section 7 in

Chapter 4 of Aubin & Cellina’s book [I]. Let us define
F(t,z) = F(t,¢(t,z)).

The function F is upper semicontinuous on R, x C1([0,7],RY), with values in the set
of convex compact subsets of R%. We can then use the obvious variant of Theorem 1 in
Section 7 in Chapter 4 in [I], with no constraint and K (t) = R for all ¢ with the notations
therein, to get the existence of a time 7% € (0,7, and a Lipschitz path z, defined on the
time interval [0,7*], such that one has for almost all ¢ € [0, 7]

e F (t, x)
This condition is equivalent to saying that the path y from (4.1]) solves the rough differential
inclusion
dy; € F(t, yt) + G(yt)dXt

(Note that the convexity assumption on the pointwise images of F' is essential for the use
Theorem 1 in Section 7 in Chapter 4 of Aubin-Cellina’s book [I].)
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4.2 — Lower semicontinuous drift

This section is dedicated to proving Theorem We take advantage in that task of
the approach to Filipov’s theorem given by Bressan in [7], based on a selection theorem
of independent interest. We recall the setting before embarking on the proof of Theorem

T4
Recall also that a cone of R™ is a subset I' of R™ such that
['n (=T) = {0},
and A\aeI',if A > 0 and a € I'. As an example, given a positive constant M, the set
Ty o= {(t,x) eRxRY E>0, 2] < tM} < RI*1
is a cone.

Definition — Let I' be a cone of R™. A map h : R™ — R? is said to be I'-continuous at
point a € R™, if for any ¢ > 0, there is § > 0 such that
|h(b) = h(a)| <&,
for any be B(a,d) n(a+T).
We say that h is I'-continuous on a subset S < R™, if h is I'-continuous at any point of

S. The relevance of the notion of I'-continuity in the setting of differential inclusions is a
consequence of the following selection result, due to Bressan, Theorem 1 in [7].

Theorem — Let H : R™ — 2R be lower semicontinuous set-valued map with non-empty
closed values. Then, for any cone I' = R™, there is a I'-continuous selection of H.

For a positive finite constant L, and (3,€) € (0,1] x R?, set
& = {ue 0. TL,RY); Juls < L, uo = ¢},

where |ug is the g-Hélder norm of u, for 0 < § < 1, and |uf; is the Lipschitz norm of

u. The set £ is a compact subset of (C°([0,T7,RY), || - [lo). We do not emphasize the
dependence on ¢ and T in the notation.

Lemma — Assume the set-valued map F is defined on a closed subset Q of R x R* where it
is lower semicontinuous and takes values in the set K(RY) of nonempty compact subsets of
Re. Assume further that there is a positive constant L such that [0,T] x B(f , LTﬁ) c Q,
and

HF(t,x)H < L,
for all (t,x) € [0,T] x B(& LT?). Then there exists a continuous map
¢:Ef — &L
such that one has
dgb(;;t)(t) € F(t,u(t)), for almost allte [0,T], (4.2)

B
for anyue&;.
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Proof — We first extend F' into a lower semicontinuous map F* defined on R x R?, setting
F*(t,x) = B(0, L),

if (t,z) ¢ Q. Pick M > L, and use Theorem to pick a I'js-continuous selection f
of F'*, Forueé‘g, and 0 <t < T, set

b(u)(t) = € + f £(s, ua)ds

We have || f(t,us)| < L, since u € 85, and given the assumptions on F. So ¢(u) € €},
and one has indeed the inclusion (4.2) for almost all times.

One can proceed as follows to show the continuity of the map ¢. Since f is I'py-
continuous, one can associate to any time ¢t € [0,7] a positive 7; such that for all
s€ [t,t +m]n[0,T] and |a — u| < Mn,, one has

|£(s,a) — f(t,u)| < % (4.3)

Write LEB for Lebesgue measure on the real line. From Lemma 1 in Bressan’s work

1
[7], there is a finite family ([ti, t; + ntf )) of disjoint intervals, such that
1<i<N

N 1
LEB (U {t ti + n;j)) T — 8% (4.4)
=1

Define
i ((E N g
0= mm((SNL) REAN 2>(M L),
and set
[tz,t+( ))
Then

) < SiL (4.5)

n(()2) <

Pick now v € Sf such that |u —v|, < 4. For

te <CJ [ti, t; + m%)) \ <[VJ Ji) =:1\J,

i=1 =1

1
one has t € [t + ( ) b+ ), for an index 4, and

while
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Thus, with we obtain that, for ¢t € I'\J, we have
|f(tve) = f(tue)] < Hf (t,ve) — f(ti,

< o5
2T

Since f is bounded by L on [0,T] x B(Zo,LTﬂ), it follows that we have for any
t € [0,T] the estimate

(ti,ue,) — f(t,ut)H

T
[6(v)(t) — d(w)(1)] < L |t vs) = f(t,us)] ds

< L\J | £(s,0s) = f(5,us)] ds + LU[OT\I | £(s,0s) — f(t,us)| ds

Tﬁ + (LEB(J) + Les([0, T]\I))

€ € €
<z — + — 2L <
2+<8L+8L>

We use from now on the notations on controlled paths recalled in Appendix [A] Recall
the one form G in Theorem |1.4|is assumed to be C’;”, with 1 < a(2 4+ 7) < 3a. Choose a
constant 3 € (1/3, «) such that (2 + ) > 1.

We define a ball in the space of paths controlled by X € C“ ([O, T, Rg), using the S-norm

B = {(y’y/) e DO ([0, T).RY) : (5,4 505 < Lo w0 = &, v = G(g)}.
It follows from Ascoli-Arzela theorem that this ball is a compact convex subset of
([0, 71,R?) x C°([0. 7], L(R",RY)),

with both factor endowed with the uniform norm. For (y,y') € D%25([0,T],R%), and
t € [0,T], we set

By o) (1) = (¢<y><t> + [ Gluix. G(ya) |

We prove below that ® is a continuous map from Bg into itself, provided T is small
enough. See point (a) for the stability and point (b) for the continuity. It follows then
from Schauder fixed point theorem that ® has a fixed point (Z,2’) in Bg. One gets the
fact that (Z,2') € D%2%([0,T],RY) from the equation that it satisfies, as yields the
estimate

|2lo < LT + |G(Z) o0 | X Ny + [GE) 0 [ X0 + CIXg [(G(2), GE) ) g 1 0s TP
from which we get ||Z'], ||GHC§ |2],,, and finally for RZ, := Zg — . X
R, < L1720 4 |G ol Xl + CIX 3 (G, G 1y TE VP2

The triple ((Z,2'), ¢(Z)) is then a solution of the rough differential inclusion ([L.5]).

9
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(a) Stability — Write RY, for yy — y. X, for any 0 < s < t < T, and similary for 2
where (z,2") = ®(y,y’). On the one hand, for (y,y') € Bg, one has

19l < 19'loc 1 XI5 + 1 RY 155 T°
< (o] + H?/Hg 7%) [ Xl + 112Y] 5 77
< (|G| + LT?)T*? | X|, + LT".
We then have y € 6’5. On another hand, according to Proposition one has
(G(y), G(y)') e D*POHD,

because By < 28. Using (A3) and the fact that |X|as < T%7#|X|2q, one has for any
s,t € 10,77,

IR = 2a — 2. X
t
< o()sel + j Glyn)dX, — Glys) X

< Ljt — |+ [GW) ol Xlaslt — s + CIX[5 |(Cw). Cw) ) o 1y It — 57O

< (ETV2 4 |Gy ool X paT* ™ + X5 [(G(w), G0 5 500y T2 ) 1t = 5122

Using the estimate of the size of the nonlinear image of a controlled path given in (A.2)),
one has eventually for HthH the upper bound

(BT 4 [Glopo Iyl XI6T 2 + CIX[a | Glgps (14 [GE)] + LT ) |t — 527
< (L4 |Glopolylol Xl + CIXla [Glopr (14 IGE)] + L72) [t =5 (46)

where we use the inequalities 7% # > T172% T57 in the last line. Since |RY|25 < L, we
also have

Iyl < €]+ GO X 6T + LT (4.7)
Hence, we obtain from (4.6 and (4.7) the upper bound

70 (L +lolcao Xl (Il + IGENX1sT7 + LT*) + CIX[la [Gll o1 (1 + G )] + L)2>,
(4.8)

for | R?||25. We control the S-Hélder norm of 2’ as follows
125 < 1G] gpollyla
< 1Gl o (1911 X1 + | RY2577)
< 1Glepo (bl + 19/ 157%) X 1T + | RV |25 T7)
< |Gl ((IGE] + LT7) | X [T + LT7)
< IGlezo (1G] + LT?) | X o + L) T (4.9)

With T small enough, we obtain from (4.8) and (4.9)) that |(z, 2)]|
indeed that ® sends B/Lg into itself.

020 < L. This shows
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(b) Continuity — The continuity of ¢ on Bg, for the uniform topology on Bg, is a direct
consequence of the continuity of ¢ and the continuity estimate (A.3]) on rough integrals.

A — Basics on Young and rough integrals

Let p > 1 be given. Recall that an R%-valued path = defined on the time interval [a, b].
We say that z has finite p-variation over that interval [s,t] < [a,b] if

HyHg_var7[s7t] 1= sup Z |y5i+1 - ysi‘p < 00,
[

where the supremum runs over the set of finite partitions {s;} of the interval [s,t]. We
denote by V,([a,b],R?) the set of R%-valued path with finite p-variation over [a,b] and
by CV/?([a,b],R%) the set of R%valued path %—Hélder continuous on [a,b]. Note that an
element of V,([a, b],R?) need not be continuous, while C'/?([a, b]R?) < Vj([a, b],R%). Also,
a continuous path with finite p-variation has a reparametrized version that is %—Hélder
over its interval of definition. Refer to [9] for a reference. We endow the space of paths
with finite p-variation with the norm

”pr—var,oO,[a,b] = Hy”p—var,[a,b] + “yHOO,[a,b]a (Al)

where H'Hoo,[a,b] denotes the uniform norm over [a, b]. Similarly, for a € [0, 1], we define a

norm on the space of R%valued a-Hélder functions defined on the interval [a, b], setting

H'ZHa,OO,[a,b] = ”x”a,[a,b] + “"EHO(M

where [|-[|, 4,4 18 the classical semi-norm of a-Hélder paths. For these norms and semi-

a’7
norms, we omit to precise the interval [a,b] when the norms and semi-norms are taken
over the whole interval of the path is defined.

Given a < b, set Agyp := {(s,t);a < s <t < b}. A control over the interval [a,b] is a
map w : A,p — RT that is null on the diagonal, is non-increasing, resp. non-decreasing,
as a function of each of its first, resp. second, argument, and is sub-additive

w(s,u) + w(u,t) <w(s,t), Va<s<u<t<b.

Denote by w(s,t™) the left limit in ¢ of the non-decreasing function w(s,-). A control is
said to be regular if it is continuous in a neighbourhood of the diagonal. As an example,

for any path y € V,([a,b],R?), the function wy(s,t) := |y ;{far [s.] 18 8 control. For an
Re-valued a-Holder path z, with 0 < o < 1, the function w,(s,t) := H:r:||;/f; ;) is a regular

control.

From the present day perspective, Gubinelli’ sewing lemma [I6] offers an easy road to
constructing the Young integral — see also [13]. We give here a variation due to Friz and
Zhang [15], tailor-made to our needs. Given a map p: Agp — R? and a finite partition
7 = {s;} of the interval [a,b], set

Mr = Z Hsiyqsi-
)
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A.1. Proposition — Let a map pn: Agp — R? be given. If there exists positive exponents o, o,
with a1 + as > 1 and controls wi,ws, with

|Mts - (//Jtu + Mus)| < wl(svu)al w2(u)t)a23 Va<s<u<t< ba

with wy reqular, then, for any interval [s,t] < [a,b], the pr,, converge to some limit It(u)
as the mesh of the partition w5 of [s,t] tends to 0, and one has

< Cwi(s, t7)* wa(s,t)*?,

[I5(1) — pr

for some positive constant C depending only on a1, as.
Given z € C%([a,b],R?) and y € V},([a, b], L(RY, Rd)), set

pst 1= Ys(zt — T5),
and note that
pits — (ftu + pus) = (Ys — Yu) (Tt — Tu), s <u<t,
so one has for any interval [s,¢] the estimate
1/p

p-Var,[s,t] H:L'|

|Mts - (,utu + Nus)| < Hy|

«
a,[S,t] ’

A.2. Corollary — If% +a > 1, the Riemann sums (ir,, associated with the preceding two-index

map | converge to some limit which we denote by Si YudTy. One has
S Hqufvar,[s,t] ||$’|a,[s,t]a

f YudTy
0 a,[s,t]

and for any e > 0 with % +a>1,andy,y € VII([a,b],L(RZ, Rd)), one has

f YudTy — f y;da:u
0 0

We refer the reader to the lecture notes [8, [17, [6] for pedagogical accounts of rough
paths theory. The following definitions and propositions will be sufficient for our needs
here.

Definition — Let o € (1/3,1/2). We say that X := (X, X) is an a-Holder rough path if

e X is an R'-valued a-Hélder path on a time interval [0,T],
e X is a path from [0,T]? to R ® R’ such that

Xt
1X|gy, := sup —
2 5,t€[0,T],s%t |t - S|2a

l1—¢

S TR A (Y O 4 PO N £

a,[s,t]*
a,[s,t]

< 400,

e we have
Xrt - X'rs - Xst = er ®Xst7
forall0<r<s<t<T.

The formula
IX o = 1X 1o + 1X] 24

defines a seminorm on the space of a-Hélder rough paths.
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Definition — Let a € (0,1], § > a and X € C*([0,T],R?). A path y € C*([0,T],R?) is
said controlled by X, with a remainder of order 0, if there is a path

y' e C?7*([0,T], L(R",R?)),

and a map R : [0,T]?> — RY, such that
|7

|R|p:=  sup <

s,te[0,T],t#s |t - 3|9
and
Yst = y;Xst + R
We denote by Do‘e([() T, Rd) the space of such pairs (y,y’), and talk of (y,y’) as a

controlled path. We make no reference to the reference path X in the notation as there is
no risk of confusion. We define a semi-norm on D%?([0, T'], R?) setting

1w 9o = 19 lg—a + 1R o
a norm is defined by the formula
[ 9915 = lwoll + ol + 9

The next proposition says that the class of controlled paths is stable by nonlinear maps.
See Corollary 3 and Proposition 4 of Gubinelli’s original statement [16].

Proposition A.1. For (y,y') € DO‘G([O T),RY), and f € Cp° with € (0,1], one has
(fW), f(v)) = (f®), Df(y)y') € DV,
with 6 := min(0, a(1 + €)), and

H(f(y)7 f(y),)Ha,Gl

v ey (1o

1+e 0/«
bl + 1)),

(A.2)

for an implicit multiplicative constant depending only on T, that decreases to 0 when T
goes to 0.

Mao + [0 + 150

For a controlled path (y,y’) € DY([0,T],R?), with o + 6 > 1, it is elementary to see
that the two-index map
Hst = ysXst + ygxsta
satisfies the estimate
Hst — Hsu — /qut‘ S |t - S|a+97
forall 0 < s <u <t <T,soone can use the sewing lemma to make sense of the integral

J YsdXs
0

as the additive functional associated to p. It satisfies, for any s,t € [0,T], the estimate

t
| s = Xt = X)X 09 I 1 (A.3)
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