
Higher order paracontrolled calculus

I. BAILLEUL1 and F. BERNICOT2

Abstract. We develop in this work a general version of paracontrolled calculus that allows
to treat analytically within this paradigm some singular partial differential equations with
the same efficiency as regularity structures, with the benefit that there is no need to
introduce the algebraic apparatus inherent to the latter theory. This work deals with the
analytic side of the story and offers a toolkit for the study of such equations, under the
form of a number of continuity results for some operators. We illustrate the efficiency
of this elementary approach on the example of the generalised parabolic Anderson model
equation

pBt ` Lqu “ fpuqζ

for a spacial ’noise’ ζ of Hölder regularity α ´ 2, with 2
5
ă α ď 2

3
, and the generalized

KPZ equation
pBt ` Lqu “ fpuqζ ` gpuqpBuq2,

in the relatively mild case where 1
2
ă α ď 2

3
.
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1 Paracontrolled calculus

1.1 Overview

Starting with T. Lyons’ work on controlled differential equation [22], it is now well-
understood that the construction of a robust approximation theory for continuous
time stochastic systems, such as stochastic differential equations or stochastic partial
differential equations, requires a twist in the notion of noise that allows to treat the
resolution of such equations in a two step process.

(a) Enhance the noise into an enriched object that lives in some space of analytic
objects – this is a purely probabilistic step;

(b) given any such object pζ in this space, one can introduce a pζ-dependent Ba-

nach space S
`

pζ
˘

such that the equation makes sense for the unknown in

S
`

pζ
˘

, and it can be solved uniquely by a deterministic analytic argument,
such as the contraction principle, which gives the continuity of the solution

as a function pζ.

These two steps are very different in nature and require totaly different tools. The
present work deals with the deterministic side of the story, point (b), for the study of
singular partial differential equations (PDEs). The term singular refers here to the
fact that the ’noise’ in the equation is not regular enough for all the expressions in
the equation to make sense analytically, given the expected regularity of the solution
in terms of the regularity of the ’noise’. Recall that one can generically not make
sense of the product of a distribution with a continuous function.

While the space of enhanced controls in Lyons’ theory of controlled differential
equations is universal, in the sense that it depends only on the dimension and the
irregularity exponent of the control, the ground-breaking works of Hairer [16, 17]
and Gubinelli-Imkeller-Perkowski [13] uncovered the fact that this space of enhanced

noises, and the solution space S
`

pζ
˘

with it, are equation-dependent in the study of
singular PDEs. Both objects will pop out naturally in our setting.

Hairer’s theory of regularity structures [17] provides undoubtedly the most com-
plete picture for the study of a whole class of singular stochastic PDEs from the
above point of view – the class of the so-called singular subcritical parabolic sto-
chastic PDEs. It comes with a very rich algebraic structure and an entirely new
setting that are required to give flesh to the guiding principle that a solution should
be described by the datum at each point in space-time of its high order ’jet’ in a basis
given by the elements of the enhanced noise. Regularity structures are introduced
as a tool for describing these jets. At the same time that Hairer built his theory,
Gubinelli-Imkeller-Perkowski implemented in [13] this idea of giving a local/global
description of a possible solution in a different way, using the language of paraprod-
ucts and avoiding the introduction of any new setting, but providing only a first
order description of the objects under study. This is what we shall call from now
on the first order paracontrolled calculus. While this kind of approach may seem
far from being as powerful as Hairer’s machinery, the first order paracontrolled ap-
proach to singular stochastic PDEs has been successful in recovering and extending
a number of results that can be proved within the setting of regularity structures, on
the parabolic Anderson model and Burgers equations [13, 1, 2, 8], the KPZ equation
[15], the scalar Φ4

3 equation [4], the stochastic Navier-Stokes equation [24, 25, 26],
or the study of the continuous Anderson Hamiltonian [7], to name but a few.
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We develop in this work a high order version of paracontrolled calculus that allows
to treat analytically within this paradigm some parabolic singular partial differential
equations that are beyond the scope of the original formulation of the theory, with
the same efficiency as regularity structures, with the benefit that there is no need
to introduce the algebraic apparatus inherent to the latter theory. We refer to
our setting as paracontrolled calculus. By a ’noise’ in an equation we shall simply
mean a function/distribution-valued parameter ζ – realisations of a white noise are
typical examples. Within our setting, and given as input a noise ζ and some initial
condition, the resolution process of a typical parabolic equation

pBt ` Lqu “ fpu, ζq, (1.1)

involves the following elementary steps. Write R :“ pBt ` Lq´1 for the resolution
operator, and keep in mind that we have in hands two space-time paraproducts Π

and rΠ, related by the intertwining relation

R ˝Π “ rΠ ˝R;

all the objects are properly introduced below.

1. Paracontrolled ansatz. The irregularity of the noise ζ, and the form of the
equation, dictate the choice of a Banach solution space made up of func-
tions/distributions of the form

u “
k0
ÿ

i“1

rΠuiZi ` u
7, (1.2)

for some reference functions/distributions Zi that depend formally only on
ζ, to be determined later; we have for instance Z1 “ Rpζq, if the equation
is affine with respect to ζ. The derivatives’ ui of u also need to satisfy such
a structural equation, to order pk0 ´ 1q, and their derivatives a structural
equation of order pk0´ 2q, and so on. (See Proposition 21 for a justification
of the name ’derivative’ for the ui.) One sees the above description (1.2) of
u as a paracontrolled Taylor expansion at order k0 for it; denote by pu the
datum of u and all its derivatives.

2. Right hand side. The use of a Taylor expansion formula, and continuity
results for some operators, allow to rewrite the right hand side fpu, ζq of
equation (1.1) in the canonical form

fpu, ζq “
k0
ÿ

j“1

ΠvjYj ` p7q

where p7q is some nice, in particular sufficiently regular, remainder and the
distributions Yj depend only on ζ and the Zi.

3. Fixed point. Denote by P the resolution of the free heat equation

Pu0 :“ pτ, xq ÞÑ
`

e´τLu0

˘

pxq.
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Then the fixed point relation

u “ Pu0 `R
`

fpu, ζq
˘

“ Pu0 `

k0
ÿ

j“1

R
´

ΠvjYj

¯

`Rp7q

“ Pu0 `

k0
ÿ

j“1

rΠvjZj `Rp7q,

imposes some consistency relations on the choice of the Zi “ RpYiq that
determine them uniquely as a function of ζ and Z1. Those expressions inside
the Yi’s that do not make sense on a purely analytical basis are precisely those

elements that need to be given as components of the enhanced distribution pζ.
Schauder estimates for R play a role in running the fixed point argument.
Note that, strictly speaking, the fixed point relation is a relation on pu rather
than u. We choose to emphasize that point by rewriting the equation under
the form

pBt ` Lqu “ f
`

pu, pζ
˘

.

As expected, the elements that need to be added in pζ to ζ are those needed to
make sense of the corresponding ill-defined products in the regularity structures

setting. List the elements of pζ in non-decreasing order of regularity and consider
them as a basis of a finite dimensional space. A renormalisation map is a linear map
of the form

M : pζ ÞÑ T pζ ´ Ξ,

for some upper triangular constant matrix T , with a unit diagonal, and some possibly
space-time dependent renormalisation functions/constants Ξ.

4. Symmetry group. The role of the extra components of pζ in the dynamics is
completely clarified by writing

fpu, ζq “ f
`

pu, pζ
˘

“ f0ppu, ζq ` f1

`

pu
˘

pζ

as a sum of a continuous function f0 of pu and ζ, and a continuous function

f1 of pu and pζ, that is linear with respect to pζ. If ζ is a stochastic noise
and ζε stands for a regularized noise, with associated canonical enhancement
pζε, and if a renormalisation procedure M ε provides an enhanced distribution

M ε
pζε converging in probability to some limit element in the space of enhanced

distributions, then the solution to the well-posed equation

pBt ` Lqu
ε “ f

`

uε, ζε
˘

` f1pu
εq
`

M ε ´ Id
˘

pζε

converges in probability to the first component u of the solution to the equa-
tion

pBt ` Lqu “ f
`

pu, pζ
˘

. (1.3)

Equation (1.3) makes it clear how the renormalisation group acts on the equation
as a symmetry group. We shall not touch in this work on renormalisation matters,

so we shall always assume that the enhancement pζ of ζ is given. Three ingredients
are used to run the above scheme in any concrete situation.
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(i) The pair
`

Π, rΠ
˘

of intertwined paraproducts introduced in [2]. It is crucially

used to define a continuous map Φ from S
`

pζ
˘

to itself. The use of an ansatz

solution space where Π-operators would be used in place of rΠ-operators would

not produce a map from S
`

pζ
˘

to itself.

(ii) A high order Taylor expansion formula generalizing Bony’s paralinearization
formula is used to give a paracontrolled Taylor expansion of a non-linear
function of u, starting from a paracontrolled function u. See section 2 for the
Taylor formula.

(iii) Continuity results. The technical core of Gubinelli-Imkeller-Perkowski’ sem-
inal work [13] is a continuity result for the operator

Cpf, g ;hq “ Π
`

Πfg, h
˘

´ fΠpg, hq.

We introduce a number of other operators and prove their continuity – section
3. These operators are used crucially in analyzing the right hand side fpu, ζq
of the equation, step 2.

1.2 Setting and results

We adopt in this work essentially the same geometric and functional setting as
in our previous work [2], slightly restricted so as not to bother here with the use of
weighted functional spaces. All this work could be formulated in the more general
geometric/functional setting of [2] (in particular the use of space-time weights allow
to deal with an unbounded ambiant space); we refrain from doing this as it may
blur the simple ideas that we want to promote in this work. Let then pM,d, µq be
stand for a compact smooth Riemannian manifold equipped with a measure µ, and
let V1, . . . , V`0 stand for some smooth vector fields on M , identified with first order
differential operators. Given a tuple I “ pi1, . . . , ikq in t1, . . . , `0u

k, we shall set
|I| :“ k and

VI :“ Vik ¨ ¨ ¨Vi1 .

Set

L :“ ´
`0
ÿ

i“1

V 2
i

and assume that L is elliptic, so that the Vi span at every point of M the whole
tangent space. The operator L is then a sectorial operator in L2pMq, it is injective on
the quotient space of L2pMq by the space of constant functions, it has a boundedH8-
calculus on L2pMq, and ´L generates a holomorphic semigroup pe´tLqtą0 on L2pMq.
The above class of operators includes obviously the Laplacian on the flat torus.
Note that under the above smoothness and ellipticity conditions, the semigroup
e´tL has regularity estimates at any order, by which we mean that for every tuple

I, the operators
´

t
|I|
2 VI

¯

e´tL and e´tL
´

t
|I|
2 VI

¯

have kernels Ktpx, yq satisfying the

Gaussian estimate
ˇ

ˇ

ˇ
Ktpx, yq

ˇ

ˇ

ˇ
À

1

µ
`

Bpx,
?
tq
˘ e´c

dpx,yq2

t

and the following regularity estimate. For dpx, zq ď
?
t

ˇ

ˇ

ˇ
Ktpx, yq ´Ktpz, yq

ˇ

ˇ

ˇ
À
dpy, zq
?
t

1

µ
`

Bpx,
?
tq
˘ e´c

dpx,yq2

t ,



6

for some constants which may depend on |I|. Note here that we could equally well
develop paracontrolled calculus in the more general setting adopted in our previous
work [2]; we refrain from doing that here as it could obscure the simplicity of the
ideas put forward here.

Given a finite time horizon T , we define the parabolic space M as

M :“ r0, T s ˆM,

and equip it with the parabolic metric

ρ
`

pτ, xq, pσ, yq
˘

“
a

|τ ´ σ| ` dpx, yq

and the parabolic measure ν “ µ b dt. Then pM, ρ, νq is a doubling space (of
homogeneous type). Note that for pτ, xq PM and small positive radii r, the parabolic
ball BM

`

pτ, xq, r
˘

has volume

ν
´

BM
`

pτ, xq, r
˘

¯

« r2 µ
`

BM px, rq
˘

.

We shall denote by e “ pτ, xq a generic element of the parabolic space M.

We have chosen to work in the scale of Hölder spaces; this makes life easier,
although we could equally develop paracontrolled calculus in the larger functional
setting of Sobolev spaces, in the line of what we did in our previous work [1]. For
a real number s, we will denote by Cs “ CspMq the Hölder space on M or order
s, defined in terms of Besov spaces; and Cs “ CspMq the parabolic Hölder space.
We refer the reader to the Appendix for more details on these spaces. Following our
previous work [2], one can define parabolic paraproduct and resonnant operators
that have good continuity properties in the scale of parabolic Hölder spaces – section
Appendix A.3. The high order Taylor formula and the continuity results stated in
sections 2 and 3 and fully proved in Appendix B and C, make use of these operators
and provide the spine of paracontrolled calculus. They are the main contributions
of this work.

We illustrate our approach of the study of singular PDEs, such as described above,
on the example of the generalised parabolic Anderson model equation (gPAM)

pBt ` Lqu “ fpuqζ, (1.4)

in the case where the noise ζ has the same regularity as the 2` or 3-dimensional
space white noise, and on the example of the generalized KPZ equation

pBt ` Lqu “ fpuqζ ` pBuq2, (1.5)

in the relatively mild case where the one-dimensional space-time noise ζ is pα´ 2q-
Hölder, with 1

2 ă α ď 2
3 – one dimensional space-time white noise corresponds to

α ă 1
2 , by proving in both cases that one can define for each equation a solution

space S
`

pζ
˘

where the equation is well-posed, under the assumption that the en-

hancement pζ of the noise ζ is given. Once again, defining pζ in a stochastic setting
is a very different question that is not studied here. We also describe explicitly the
symmetry group of these equations. Along the way, we also adapt the notion of truly
rough function to the present multi-dimensional setting and prove that a functions
paracontrolled by a truly rough function has a uniquely determined derivative.

We have organised this work as follows. Section 2 is dedicated to our high order
Taylor expansion formula. The latter provides a generalisation of Bony’s paralin-
earisation formula. Whereas our Taylor formula deals with the fine description of
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nonlinear images of parabolic Hölder functions, we provide in section 2 simple proofs
of their spatial counterpart – full proofs of the parabolic claims are given in Appen-
dix B. A number of operators are introduced and studied in section 3; the continuity
results proved here are some of our main contributions. Here again, while all the
statements are about parabolic functions/distributions, we have given in this section
some simple proofs of their spatial counterpart, defering the proofs of the full state-
ments to Appendix C. We test our paracontrolled calculus, such as described above
in section 1.1, on the example of the 2` and 3-dimensional generalized parabolic
Anderson model equation (1.4) in section 4, and on the example of the generalized
KPZ equation (1.5) in section 5. Appendix A contains all the relevant details about
the parabolic setting, approximation operators, Hölder spaces and paraproducts.

2 High order Taylor expansion

We explain in this section a simple procedure for getting an abritrary high order
expansion of a nonlinear map of a given Hölder function u defined on the parabolic
space M, in terms of its parabolic regularity properties. It provides, in the setting
of Hölder spaces, a refinement over Bony’s paralinearisation theorem in the form of
a viable alternative to the paper [9] of Chemin; see also [10], theorem 2.5, p.18, for
a more readable account of [9] in the case of a third order expansion.

In its simplest form, the classical paraproduct operator Π0 on the d-dimensional
torus is defined via Fourier analysis by modulation of the high frequencies of a
given ’reference’ function/distribution g by the low frequencies of another func-
tion/distribution f . For a function f on the torus, we denote by f “

ř

fi its usual
Littlewood-Paley representation: fi is the dyadic bloc with Fourier coefficients only
at the frequency scale 2i. Consider the two Littlewood-Paley decompositions of two
functions f, g

f “
ÿ

fi, g “
ÿ

gj ,

as sums of smooth functions with localized frequencies, the paraproduct of g by f
is defined as

Π0
f g “

ÿ

iăj´1

figj , (2.1)

and the resonant part as

Π0pf, gq “
ÿ

|i´j|ď1

figj

in order that we have the product decomposition

fg “ Π0
gpfq `Π0

f pgq `Π0pf, gq.

In the parabolic setting of section 1.2, one can define some paraproduct and
resonant operators associated with the operator L and its semigroup, that have the
same regularity properties in the scale of parabolic Hölder spaces as the operator Π0

in the scale of spatial Hölder spaces. We denote by Π this paraproduct, introduced
in [2], and whose definition is recalled in Appendix A.3. It depends implicitly on an
integer-valued parameter b that is chosen once and for all, and whose precise choice
is irrelevant for our purposes. It is not crucial at that stage to go into the details of
the definition of Π.
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The mechanics of the proof of our general Taylor expansion formula is fairly simple
and better understood in the light of the proof of Bony’s paralinearisation theorem
given by Gubinelli, Imkeller and Perkowski in [13], which we recall first.

Theorem (Bony’s Paralinearisation). Let f : R ÞÑ R be a C2
b function and u be

a real-valued α-Hölder function on the d-dimensional torus, with 0 ă α ă 1. Then

fpuq “ Π0
f 1puqpuq ` fpuq

7

for some remainder fpuq7 of spatial Hölder regularity 2α.

Proof – This is just a copy and paste from [13]. Denote by Ki the kernels of
the Fourier projectors ∆i corresponding to the Littlewood-Paley decomposition
operator, and write Kďk for

ř

iďkKi, with associated operator Sk. Note that
by their definition we have, for any i ě 1,

ż

Rd
Kipyq dy “ 0; (2.2)

or more properly
ş

Rd Kipx, yq dy “ 0, for any x P Rd. The trick is then simply
to write

fpuq ´Πf 1puqpuq “
ÿ

∆i

`

fpuq
˘

´ Si´1

`

f 1puq
˘

∆ipuq “:
ÿ

εi

with

εipxq “

ż

Kipx, yqKďi´1px, zq
!

f
`

upyq
˘

´ f 1
`

upzq
˘

upyq
)

dzdy,

and to take profit from the fact that Ki has null mean for i ě 1, as put forward
in identity (2.2), to see that one also has, for i ě 1,

εipxq “

ż

Kipx, yqKďi´1px, zq
!

f
`

upyq
˘

´ f
`

upzq
˘

´ f 1
`

upzq
˘`

upyq ´ upzq
˘

)

dzdy.

One thus has
ˇ

ˇεipxq
ˇ

ˇ À }f2}8

ż

ˇ

ˇKipx, yqKďi´1px, zq
ˇ

ˇ

ˇ

ˇupyq ´ upzq
ˇ

ˇ

2
dzdy À 2´2iα }u}2Cα ,

which proves the claim.
B

One can play exactly the same game and prove a general Taylor expansion result
in a parabolic setting, with our paraproduct Π in the role of the comparison operator.

Theorem 1 (Higher order Taylor expansion). Let f : R ÞÑ R be a C4 function
with bounded fourth derivative, and let u be a real-valued α-Hölder function on the
parabolic space M, with 0 ă α ă 1. Then

fpuq “ Πf 1puqpuq `
1

2

!

Πf p2qpuqpu
2q´2Πf p2qpuqupuq

)

`
1

3!

!

Πf p3qpuqpu
3q´3Πf p3qpuqupu

2q ` 3Πf p3qpuqu2puq
)

` fpuq7
(2.3)

for some remainder fpuq7 of parabolic Hölder regularity 4α. Moreover the remainder
term fpuq7 is a locally Lipschitz function of u, in the sense that

›

›fpuq7 ´ fpvq7
›

›

C4α À
`

1` }u}Cα ` }v}Cα
˘4
}u´ v}Cα .
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We give here a proof of this statement in the case where u is a time-independent
function on the d-dimension torus and we can use the elementary paraproduct Π0

instead of Π. The full proof of theorem 1 is given in Appendix B, Theorem 22; we
hope this way of proceding will make the reasoning clear and technical-free.

Proof – Let us prove the second order formula in the special case where u : Td Ñ R,
and we use the elementary paraproduct Π0 in place of Π. The claim amounts
in the case to proving that

p‹q :“ fpuq ´Π0
f 1puqpuq ´

1

2

!

Π0
f p2qpuqpu

2q´2 Π0
f p2qpuqupuq

)

is a 3α-Hölder function on the torus. As in the proof of Bony’s paralinearisation
result, write p‹q under the form

ÿ

∆i

`

fpuq
˘

´Si´1

`

f 1puq
˘

∆ipuq´

"

1

2
Si´1

`

f p2qpuq
˘

∆ipu
2q ` Si´1

`

f p2qpuqu
˘

∆ipuq

*

“:
ÿ

εi.

Denote by D
pkq
u f , the kth-derivative f pkqpuq of f at u. For each i ě 1, we have

εipxq “

ż

Kipx, yqKďi´1px, zq

"
ż 1

0

`

D
p2q
upzq`tpupyq´upzqqf

˘`

upyq ´ upzq
˘2
tdt

´
1

2

`

D
p2q
upzqf

˘

u2pyq `
`

D
p2q
upzqf

˘

upzqupyq

*

dzdy,

which we can rewrite as

εipxq “

ż

Kipx, yqKďi´1px, zq

ż 1

0

ż 1

0

´

D
p3q
upzq`stpupyq´upzqqf

¯

`

upyq ´ upzq
˘3
ds tdt dzdy,

using once again the fact that the kernels Kipx, ¨q have null mean. One reads
on this expression for εi that it is of order 2´3iα, uniformly in x. See Appendix
B for a full proof of the statement, in the parabolic setting.

B

Observe that the expansion (2.3) is exact, fpuq7 “ 0, for a polynomial function
f of degree at most 3. The above Taylor formula for fpuq is conveniently rewritten
under the form

fpuq “ Πf 1puq´uf p2qpuq` 1
2
u2f p3qpuqpuq `

1

2
Πf p2qpuq´uf p3qpuqpu

2q `
1

6
Πf p3qpuqpu

3q ` fpuq7.

As a reminder for future use, we note here that the general Taylor expansion
formula writes

fpuq “
k
ÿ

n“1

n´1
ÿ

j“1

p´1qj
ˆ

n

j

˙

Πujf pnqpuqpu
n´jq ` fpuq7,

for a function f of class Ck`1 with bounded pk ` 1qth derivative, and a remainder
fpuq7 of parabolic Hölder regularity pk ` 1qα.
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3 Toolkit for paracontrolled calculus

We prove in this section a number of continuity results for some operators built
from the parabolic paraproduct and resonnant operators associated with L. These
continuity results will play a crucial role in the analysis of the right hand side
fpu, ζq of a generic singular PDE such as equation (1.1); the two examples treated
in sections 4 and 5 will make that point clear. Together with the Taylor formula of
section 2, the results of this section are our main contribution. It is not necessary,
for the purpose of solving singular PDEs, to get into the details of the proofs of the
different results given here; we invite the reader to have a look at the results only
and then go directly to sections 4 and 5 to see them on stage.

We adopt in this section the same pedagogical point of view as in section 2,
giving the reader the general statements of our theorems, in the above parabolic
setting over a compact manifold that requires the use of the parabolic paraproduct
and resonnant operators of Appendix A, and only providing here the proofs of theirs
spatial counterparts on the torus, where only time-independent functions are in play
and one can use the elementary paraproduct Π0 in the analysis. A further simplifi-
cation in the proofs is done here, and detailed below; proofs of the full statements
are given in Appendix C. We hope this way of proceeding will convince the reader
that the basic ideas involved here are elementary.

3.1 Commutator, corrector and their iterates

Recall from [2] and Appendix C.2 that the modified paraproduct rΠ is defined by
the formula

rΠf pgq “ R
´

Πf pLgq
¯

,

where L stands for the parabolic differential operator pBτ ` Lq on the parabolic

space M. See section 4.1 of [2] for a study of the continuity properties of rΠ. We
provide in this section a number of continuity results for some operators involving
the paraproduct and resonnant operators, together with the modified paraproduct
rΠ. We state our results in their general form, in the parabolic setting of section
1.2, and give proofs in the time-independent, space setting of the torus, of versions

of each statement where we use Π0 instead of rΠ. This should make it easier for
the reader to go to the core of the machinery without fighting with some possibly
overwhelming technicalities; full proofs are given in Appendix C.

We define on the space L8 of bounded measurable functions on the parabolic
space M the commutator as the operator

Dpf, g ;hq :“ Π
´

rΠf pgq, h
¯

´Πf

´

Πpg, hq
¯

,

and the corrector as the operator

Cpf, g ;hq :“ Π
´

rΠf pgq, h
¯

´ f Πpg, hq.

The first part of the next theorem is the workhorse of the first order paracontrolled
calculus, such as devised in [13] by Gubinelli-Imkeller-Perkowski. Note how unfor-
tunate they were in naming the operator C a ”commutator”; which is definitely not
the case, unlike the operator D – up to the tilde on one of the Π operators in the
definition of D. Recall we denote by Cα the spacial Hölder spaces on the torus and
by Cα the parabolic Hölder spaces over the compact manifold M .
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Theorem 2. (i) If α, β and γ are positive, then the commutator D is continuous
from Cα ˆ Cβ ˆ Cγ to Cα`β`γ.

(ii) Assume α is positive, β ` γ is negative and α` β ` γ is positive. Then, the
corrector C extends continuously as a function from CαˆCβˆCγ to Cα`β`γ.

Proof – As said above, we prove here these continuity results for simplified versions
of the operators D and C. So, assume we are working in the time-independent
setting of the d-dimensional torus, with the operators

D0pf, g ;hq :“ Π0
´

Π0
f pgq, h

¯

´Π0
f

´

Π0pg, hq
¯

,

and

C0pf, g ;hq :“ Π0
´

Π0
f pgq, h

¯

´ fΠ0pg, hq.

We start by proving the claim about the continuity of the corrector C0, as a
function from Cα ˆ Cβ ˆ Cγ to Cα`β`γ , under the above sign assumptions on
α, β, γ.

(ii) The resonant part is given by

Π0pa, bq »
ÿ

∆ipaq∆ipbq. (3.1)

Write

Cpf, g ;hq “
ÿ

∆i

´

Π0
f pgq

¯

∆ih´ f∆ipgq∆iphq,

and set

ε1i :“ ∆i

´

Π0
f pgq

¯

´ f∆ipgq,

such that
C0pf, g ;hq “

ÿ

i

ε1i∆iphq.

The fact that ε1i has L8-norm of order 2´ipα`βq can be guessed on the expression

ε1ipxq “

ż

Kipx, yq
!

`

Π0
fg
˘

pyq ´ fpxqgpyq
)

dy

“

ż

Kipx, yq
!

Π0
f´fpxq1pgq

)

pyq dy.

As y is concentrated near x, at scale 2´i, and we are looking at the ith Paley-
Littlewood block of Πf´fp¨qg, we expect

ˇ

ˇε1ipxq
ˇ

ˇ À 2´iβ
›

›

›
Π0
f´fpxqg

›

›

›

Cβ
À 2´iβ

›

›f ´ fpxq
›

›

L8
}g}Cβ ,

with a term
›

›f ´ fpxq
›

›

L8
involving only the neighbourhood of x of size 2´i,

that is with
›

›f ´ fpxq
›

›

L8
À 2´iα}f}Cα ,

since f is α-Hölder. Such an estimate would imply the continuity of the corrector
C as a function from CαˆCβ ˆCγ to Cα`β`γ if α` β` γ, since h is γ-Hölder.
This heuristic argument, however, does not make it clear why we need β ` γ to
be negative to get the result.

A mathematically correct version of the above sketch of proof is done by esti-
mating the L8-norm of the dyadic blocks of ε1i. For j ě i` 2 then

∆jε
1
i “ ´∆j

`

f∆ipgq
˘

» ´∆jpfq∆ipgq

hence
›

›∆jε
1
i

›

›

L8
À 2´jα 2´iβ }f}Cα}g}Cβ .
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For j ď i´ 2 then

∆jε
1
i “ ´∆jpf∆ipgqq » ´∆j

`

∆ipfq∆ipgq
˘

hence
›

›∆jε
1
i

›

›

L8
À 2´ipα`βq }f}Cα}g}Cβ .

We adopt the classical notation Sj´1f for the partial sum
ř

`ďj´1 f` of the

Paley-Littlewood decomposition, so for |i´ j| ď 2 we have

∆jε
1
i » ∆j

´

∆jpgqSj´1pfq ´ Sj`2pfq∆ipgq
¯

,

hence
›

›∆jε
1
i

›

›

L8
À 2´ipα`βq }f}Cα}g}Cβ .

As a consequence, we always have the following estimate
›

›∆jε
1
i

›

›

L8
À 2´iβ 2´maxpj,iqα }f}Cα}g}Cβ . (3.2)

We can then estimate C0pf, g ;hq in some Hölder space. For a non-negative
integer k, we have

∆k

´

C0pf, g ;hq
¯

“
ÿ

i

∆k

´

ε1i ∆iphq
¯

»
ÿ

iďk´2

∆kpε
1
iq∆iphq `

ÿ

kďi´2

∆k

´

∆ipε
1
iq∆iphq

¯

`
ÿ

|k´i|ď2

∆k

´

Sipε
1
iq∆iphq

¯

which is then controlled, using estimate (3.2), by
›

›

›
∆k

`

C0pf, g ;hq
˘

›

›

›

L8

À

¨

˝

ÿ

iďk´2

2´iγ2´kα2´iβ `
ÿ

kďi´2

2´ipα`β`γq `
ÿ

|k´i|ď2

2´ipα`β`γq

˛

‚}f}Cα}g}Cβ

À 2´kpα`β`γq}f}Cα}g}Cβ ,

where we used the two conditions α ` β ` γ ą 0 and β ` γ ă 0 along the way.
The fact that the latter estimate holds uniformly in k concludes the proof of the
pα` β ` γq-Hölder regularity of the corrector.

(i) We refer the reader to Proposition 25, in Appendix C.1, for a full proof of the
regularity statement for the commutator D. Simply mention that in the special
case of D0, the regularity estimate comes from the following identity

∆k

`

D0pf, g;hq
˘

“
ÿ

`ěk´2

∆k

´

∆`pgqS`pfq∆`phq
¯

´ Skpfq∆k

´

∆`pgq∆`phq
¯

. (3.3)

B

We emphasize the importance of the above heuristic proof of point (i) by intro-
ducing a notation. Given a function-valued operator A on some function space, we
denote by C f , or Cxf , the function

pC fqp¨q :“ fp¨q ´ fpxq,

recentered around its value at the ’running’ variable x, so that

ApC fqpxq “ A
`

f ´ fpxq
˘

pxq.
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(Strictly speaking, the operator C is an operator on the space of operators A.)
The choice of letter C for this operator is for ’centering’, and we call C the outer
centering operator. In those terms, we have

C
`

f, g ;h
˘

“ Π
´

rΠC f pgq, h
¯

, (3.4)

and

Π
´

ΠC ΠCbpcqpgq , h
¯

pxq “ Π
´

ΠΠb´bpxqpcq´pΠb´bpxqpcqqpxqpgq , h
¯

pxq,

for instance. The main property of this operator is the following. For a function
f P CαpTdq with α positive, we have first

SkpC fqpxq “ Sk
`

f ´ fpxq
˘

pxq “ Skpfqpxq ´ fpxq

“
ÿ

`ěk`1

∆`pfqpxq.

Since f is supposed to have a positive regularity the dyadic blocks ∆`pfq have an
exponentially decreasing L8 size as a function of `, so one has approximately

SkpC fqpxq » ∆kpfqpxq. (3.5)

A very similar property holds in the parabolic setting, which is used in the proofs
of the continuity results of this section given in Appendix C.

The study of singular PDEs happens to require some finer analysis of the operators
D and C that take the form of some continuity estimates for some ’iterated’ versions
of them. More precisely, it is possible to decompose further D and C in case one
of their first two arguments are given in the form of a (modified) paraproduct or
an iterated (modified) paraproduct. We introduce here for that purpose a notation.
Given a tuple of functions pa, b, c ; gq, set

rΠÓa,bpcq :“ rΠ
rΠapbq

pcq

and
rΠÓa,b,cpgq :“ rΠ

rΠÓa,bpcq
pgq,

and give similar definitions of ΠÓa,bpcq and ΠÓa,b,cpgq using only Π operators. Depend-

ing on whether or not such a paraproduct appears in the low frequency, in place
of f , or high frequency, in place of g, in the formulas for the commutator D or the
corrector C, we shall talk about lower or upper iterated operators.

Proposition 3. Given some positive regularity exponents α, β, γ, δ, the formulas

Dpa, b ; g, hq :“ D
´

rΠab, g ;h
¯

´ΠaDpb, g ;hq, (lower iterated commutator)

Dpf ; a, b ;hq :“ D
´

f, rΠab ;h
¯

´ΠaDpf, b ;hq, (upper iterated commutator)

define continuous operators from Cα ˆ Cβ ˆ Cγ ˆ Cδ to Cα`β`γ`δ.

Proof – As in the proof of Theorem 2, we analyse in this proof what happens in the
time-independent setting of the d-dimensional torus, in the case where we also

use Π0 instead of rΠ. So we set

D0pa, b ; g, hq :“ D0
´

Π0
ab, g ;h

¯

´Π0
aD

0pb, g ;hq
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and have a look at its continuity properties on the spacial Hölder spaces. Using
formula (3.3), it follows that we roughly have

∆k

`

D0pa, b ; g, hq
˘

» ∆k

´

D0
`

Πab, g ;h
˘

¯

´ Sk´2paq∆k

´

D0pb, g ;hq
¯

»
ÿ

`ěk´2

∆k

”

∆`pgq∆`phq
´

S`Πapbq ´ SkΠapbq ´ Skpaq
`

S`pbq ´ Skpbq
˘

¯ı

.

The quantity inside the brackets is equal to

S`Πapbq ´ SkΠapbq ´ Skpaq
`

S`pbq ´ Skpbq
˘

“
ÿ̀

j“k`1

∆jΠapbq ´ Skpaq∆jpbq

»
ÿ̀

j“k`1

Sjpaq∆jpbq ´ Skpaq∆jpbq

»
ÿ̀

j“k`1

`

Sjpaq ´ Skpaq
˘

∆jpbq,

which is then easily bounded in L8 by

ÿ̀

j“k`1

2´kα}a}Cα2´jβ}b}Cβ À 2´kpα`βq}a}Cα}b}Cβ .

This estimate allows us to conclude that

∆k

`

D0pa, b ; g, hq
˘

À 2´kpα`β`γ`δq,

uniformly in k, which proves the continuity result for the 4-linear operator D0.
A very similar proof gives the continuity of the simplified version of the upper
iterated commutator; we leave the details to the reader.

B

Theorem 4. Let pa, b, c ; gq in CαˆCβˆCγˆCν1, with positive regularity exponents, be
given, together with h P Cν2, with possibly non-positive regularity exponent. Assume

α` β ` γ ` ν1 ` ν2 P p0, 1q.

Then the lower iterated corrector

Π
´

rΠÓa,b,cpgq , h
¯

´

!

rΠÓa,bpcqΠpg, hq ` rΠapbqΠ
´

rΠC cpgq, h
¯

` aΠ
´

rΠC rΠCbpcq
pgq , h

¯)

(3.6)
defines a continuous map from Cα ˆ Cβ ˆ Cγ ˆ Cν1 ˆ Cν2 to Cα`β`γ`ν1`ν2.

Proof – To get a clear idea of the mechanics at play, we prove here a simpler state-
ment and refer the reader to Appendix C.2 for the full proof. We work in the
time-independent setting of the flat torus and prove that the formula

Π0
´

Π0 Ó
a,b,cpgq , h

¯

´

!

Π0 Ó
a,bpcqΠ0pg, hq`Π0

apbqΠ0
´

Π0
C cpgq, h

¯

`aΠ0
´

Π0
C Π0

Cbpcq
pgq , h

¯)

defines a continuous map from Cα ˆ Cβ ˆ Cγ ˆ Cν1 ˆ Cν2 to Cα`β`γ`ν1`ν2 ,
under the above conditions on the regularity exponents. To see how the second
term in the expansion arises, use formula (3.4) for the corrector and write

!

Π0
´

Π0,Ó
a,b,cpgq , h

¯

´Π0,Ó
a,bpcqΠ0pg, hq

)

pxq “ C0
`

Π0,Ó
a,bpcq, g ;h

˘

pxq

“ Π0
´

Π0
C Π0,Ó

a,bpcq
pgq, h

¯

pxq.
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Note that since

Π0
apbq “

´

Π0
apbq

¯

pxq ` C Π0
apbq,

we have the identity

C Π0,Ó
a,bpcq “

´

Π0
apbq

¯

pxqC c` C Π0
C Π0

apbq
pcq.

It follows that

Π0
´

Π0,Ó
a,b,cpgq , h

¯

“ Π0,Ó
a,bpcqΠ0pg, hq`Π0

apbqΠ0
´

Π0
C cpgq, h

¯

`Π0
´

Π0
C Π0

CΠ0
apbq

pcqpgq , h
¯

.

Writing a “ apxq ` C a, in the above expression for the remainder yields that
the lower iterated corrector

Π0
´

Π0,Ó
a,b,cpgq , h

¯

´

!

Π0,Ó
a,bpcqΠ0pg, hq `Π0

apbqΠ0
´

Π0
C cpgq, h

¯

` aΠ0
´

Π0
C Π0

Cbpcq
pgq , h

¯)

“ Π0
´

Π0
C Π0

CΠ0
Ca

pbq
pcqpgq , h

¯

defines a
`

α`β` γ` ν1` ν2

˘

-Hölder function if α`β` γ` ν1` ν2 is positive.

Indeed, for every x we have

Π0
´

Π0
C Π0

CΠ0
Ca

pbq
pcqpgq , h

¯

pxq »
ÿ

k

∆k

”

Π0
C Π0

CΠ0
Ca

pbq
pcqpgq

ı

pxq∆krhspxq

»
ÿ

k

Sk
“

C Π0
C Π0

Capbq
pcq

‰

pxq∆krgspxq∆krhspxq

»
ÿ

k

∆k

“

Π0
C Π0

Capbq
pcq

‰

pxq∆krgspxq∆krhspxq,

where we used (3.5). Iterating the reasoning, we get

Π0
´

Π0
C Π0

CΠ0
Ca

pbq
pcqpgq , h

¯

pxq »
ÿ

k

∆kraspxq∆krbspxq∆krcspxq∆krgspxq∆krhspxq

(3.7)

and so since α` β ` γ ` ν1 ` ν2 is non-negative, we conclude that
ˇ

ˇ

ˇ

ˇ

Π0
´

Π0
C Π0

CΠ0
Ca

pbq
pcqpgq , h

¯

pxq

ˇ

ˇ

ˇ

ˇ

»
ÿ

k

2´kpα`β`γ`ν1`ν2q }a}Cα}b}Cβ}c}Cγ }g}Cν1 }h}Cν2

À }a}Cα}b}Cβ}c}Cγ }g}Cν1 }h}Cν2 ,

uniformly in x, which yields that the main quantity defines a bounded function.
Using (3.7), we can also obtain its Hölder character. For x ‰ y, and writing m
for }a}Cα}b}Cβ}c}Cγ }g}Cν1 }h}Cν2 , we have
ˇ

ˇ

ˇ

ˇ

Π0
´

Π0
C Π0

CΠ0
Ca

pbq
pcqpgq , h

¯

pxq ´Π0
´

Π0
C Π0

CΠ0
Ca

pbq
pcqpgq , h

¯

pyq

ˇ

ˇ

ˇ

ˇ

À
ÿ

k

ˇ

ˇ

ˇ
∆kraspxq∆krbspxq∆krcspxq∆krgspxq∆krhspxq

´∆kraspyq∆krbspyq∆krcspyq∆krgspyq∆krhspyq
ˇ

ˇ

ˇ

À m

¨

˝

ÿ

1ď2k|x´y|

2´kpα`β`γ`ν1`ν2q `
ÿ

1ě2k|x´y|

|x´ y| 2k´kpα`β`γ`ν1`ν2q

˛

‚

À m |x´ y|α`β`γ`ν1`ν2 ;
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in the second sum, over 1 ě 2k|x ´ y|, we have used the finite increment theo-
rem together with the fact that differentiating one operator ∆k is equivalent to
multiplying it by 2k, together with the condition pα` β ` γ ` ν1 ` ν2q P p0, 1q.

B

The above proof contains the fact that if the regularity exponent ν1 is allowed to
be negative, and α` β ` ν1 ` ν2 is positive, then the 4-lower iterated corrector

Cpa, b ; g, hq :“ Π
´

rΠÓa,bpgq , h
¯

´

!

rΠapbqΠpg, hq ` aΠ
´

rΠC bpgq, h
¯)

“ C
´

rΠab ; g, h
¯

´ aCpb, g ;hq
(3.8)

defines a continuous map from Cα ˆ Cβ ˆ Cν1 ˆ Cν2 to Cα`β`ν1`ν2 .

The 4 and 5-linear upper iterated correctors are defined by the formulas

C
`

f ; a, b ;h
˘

:“ C
´

f, rΠapbq ;h
¯

´ aC
`

f, b ;h
˘

.

and

C
´

f ; a, pb, cq ;h
¯

:“ C
´

f ; a, rΠbpcq ;h
¯

´ bC
`

f ; a, c ;h
˘

.

Theorem 5. The following continuity results for the 4 and 5-linear upper iterated
correctors holds.

(i) If α, β P p0, 1q, the exponents pα`ν1`ν2q and pβ`ν1`ν2q are negative and

α` β ` ν1 ` ν2 ą 0,

then the 4-linear upper iterated corrector C defines a continuous linear map
from Cα ˆ Cβ ˆ Cν1 ˆ Cν2 to Cα`β`ν1`ν2.

(ii) If α, β, γ P p0, 1q, the exponents pα` ν1` ν2q, pβ ` ν1` ν2q and pγ ` ν1` ν2q

are negative, and
α` β ` γ ` ν1 ` ν2 ą 0,

then the 5-linear upper iterated corrector C defines a continuous linear map
from Cα ˆ Cβ ˆ Cγ ˆ Cν1 ˆ Cν2 to Cα`β`γ`ν1`ν2.

Proof – We only sketch the proof of the continuity result of the 4-linear operator
in the model case of the time-independent setting of the flat torus, and rely on
formula (3.1) for the diagonal operator Πp¨, ¨q for the purpose; see Proposition
27 in Appendix C.2 for a fully detailed proof in the parabolic setting. In the
present setting, the quantity C0pf ; a, b ; gq is then given by a sum of the form

C0pf ; a, b ;hq “
ÿ

i

ε1i ∆ih,

with

ε1i “
!

∆i

`

Πf

`

Πapbq
˘˘

´ a∆i

`

Πf pbq
˘

)

` f
!

a∆ib´∆i

`

Πapbq
˘

)

We read on the expression

ε1ipxq “

ż

Kipx, yq
!

Πf

`

Πapbq
˘

pyq ´ apxq
`

Πf pbq
˘

pyq ` pfaqpxqbpyq ´ fpxq
`

Πapbq
˘

pyq
)

dy

“

ż

Kipx, yqΠf´fpxq1

´

Πa´apxq1pbq
¯

pyq dy,

that

ε1i “ ∆i

´

ΠC f

`

ΠCapbq
˘

¯
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has L8-norm of order 2´ipν1`α`βq, as a consequence of (3.5). The proof is then
not fully completed, since the block ε1i∆ih is not perfectly localized in frequency
at scale 2i, so an extra decomposition is necessary. We do not give the details
here and refer the reader to the proof of Proposition 27 in Appendix C.

B

3.2 Iterated paraproducts

In addition to the above continuity results for the commutator/corrector and
their iterates, we shall also need ’expansion’/continuity results for some iterated
paraproducts. This requires the introduction of a notation for a particular difference
operator on functions. We give here its definition in the model setting of the time-
independent flat torus and refer the reader to Appendix C.2 for the description of
how things work in the parabolic setting.

The value at x P Td of some paraproduct Πuv is a sum over the integers i of terms
of the form

´

Π0,piq
u v

¯

pxq :“

ĳ

Kipx, yqKďi´1px, zqupzqvpyq dzdy.

We thus have for instance, for f P L8, g P Cν and a P Cα with α P p0, 1q,
´

Π
0,piq
f

`

Π0
apgq

˘

´Π
0,piq
fa pgq

¯

pxq “

ĳ

Kipx, yqKďi´1px, zq fpzq
´

Π0
a´apzqpgq

¯

pyq dzdy

“:

ĳ

Kipx, yqKďi´1px, zq fpzqΠ
0
Dapgqpyq dzdy,

where we have defined the inner difference operator D
`

“ Dz

˘

by the formula
ĳ

`

Df
˘

pyqgpzq dzdy :“

ĳ

`

fpyq ´ fpzq
˘

gpzq dzdy;

we may also call this difference operator the low frequency difference operator to
emphasize the fact that it acts, in the paraproduct formula, on the function that
has the low frequencies. In those terms, and given the definition of the difference
operator D given in section A.3 in the parabolic setting, we have

Π0
f

`

Π0
apgq

˘

´Π0
fapgq “ Π0

f

´

Π0
Dapgq

¯

and, more generally,

Πf

´

rΠapgq
¯

´Πfapgq “ Πf

´

rΠDapgq
¯

. (3.9)

Compare this expression with the formal multiple integral, where we use the same
letters to make it more stricking,

ż

fpzqd

ˆ
ż z

adg

˙

“

ż

fadg `

ż

fpzqd

ˆ
ż z

`

a´ apzq
˘

dg

˙

.

Using the fact that Kipx, ¨q has null mean (2.2), we can rewrite the preceding quan-
tity as
´

Π
0,piq
f

´

Π0
apgq

¯

´Π
0,piq
fa pgq

¯

pxq “

ĳ

Kipx, yqKďi´1px, zq fpzq
`

DΠ0
Dapgq

˘

pyq dzdy;

from which we read off the fact that

R0pf, a ; gq :“ Π0
f

´

Π0
apgq

¯

´Π0
fapgq “ Π0

f

´

Π0
Dapgq

¯
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and, more generally,

Rpf, a ; gq :“ Πf

´

rΠapgq
¯

´Πfapgq “ Πf

´

rΠDapgq
¯

are pα` νq-Hölder; so the linear map R is bounded from L8 ˆ Cα ˆ Cν to Cα`ν , as
soon as α P p0, 1q – a detailed proof is given in the parabolic setting in Appendix
C.2, Proposition 23. This result can be refined if a is given under the form of a
paraproduct or a modified paraproduct.

Theorem 6. Let f P L8 and g P Cν be given.

(a) Let also a P Cα and b P Cβ be given with α, β P p0, 1q. Then

R
`

f ; a, b ; g
˘

:“ Πf

´

rΠ
rΠapbq

pgq
¯

´Π
f rΠapbq

pgq ´Πfa

´

rΠDbpgq
¯

:“ R
´

f, rΠab ; g
¯

´ Rpfa, b ; gq

is an element of Cα`β`ν .

(b) If a P Cα, b P Cβ and c P Cγ are given with α, β, γ P p0, 1q, then

R
´

f ; pa, bq, c ; g
¯

:“ R
´

f ; rΠab, c ; g
¯

´ R
`

fa ; b, c ; g
˘

is an element of Cα`β`γ`ν .

We invite the reader to right the analogues of Πf

´

rΠ
rΠapbq

pgq
¯

and R
´

f ; rΠab, c ; g
¯

in terms of iterated integrals to built his own intuition about the above statement.
The range p0, 1q for the exponent α (β and γ) is dictated by the operator D , which
makes appear a first order increment and so can only encode regularity at order at
most 1.

Proof – We prove the corresponding statement in the model time-independent set-
ting of the flat torus. Starting from equation (3.2) with Πapbq instead of a, we
see that

Π0
f

´

Π0
Π0
apbq
pgq

¯

´Π0
fΠ0

apbq
pgq ´Π0

fa

´

Π0
Dbpgq

˘

“ Π0
f

´

Π0
DΠ0

apbq
pgq

¯

´Π0
fa

´

Π0
Dbpgq

¯

is a sum over i of double integrals
ĳ

Kipx, yqKďi´1px, zq fpzq
`

DΠ0
DpΠ0

apbq´apzqbq
pgq

˘

pyq dzdy

“

ĳ

Kipx, yqKďi´1px, zq fpzq
`

DΠ0
DΠ0

Dapbq
pgq

˘

pyq dzdy

on which we read off that their L8 norm is of order 2´ipα`β`νq. The proof is then
finished, since this last quantity corresponds to the dyadic blocks ∆i

“

Rpf ; a, b ; gq
‰

.
B

A careful examination of the proof reveals that the following finer result holds. If
f P Cν1 with ν1 P p0, 1q then item paq of the previous theorem can be improved to
the following expansion

R
`

f ; a, b ; g
˘

´Πf

`

R
`

1 ; a, b ; g
˘˘

P Cα`β`ν`ν1 . (3.10)

Beware that the notation Πfa

´

rΠDbpgq
¯

may be a bit misleading, as the function

rΠDbpgq that appears in this formula is a function of two variables, one of which being
the (parabolic equivalent of the) z that is integrated in the integral formula in dzdy
defining the ith-term of the paraproduct sum.
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Theorem 7. Let f P L8 and g P Cν be given. Let also a P Cα and b P Cβ be given
with α, β P p0, 1q. Then

Ipf, a, b ; gq :“ Πf

´

rΠa

`

rΠbg
˘

¯

´

!

Πfabg `Πfa

`

rΠDbg
˘

`Πf

´

rΠbDpaqg
¯)

is an element of Cα`β`ν .

Here again, we invite the reader to right the analogue of Πf

´

rΠa

`

rΠbg
˘

¯

in terms

of iterated integrals to built his own intuition about the above statement. Observe
that Ipf, a, 1 ; gq “ 0 as a consequence of the defining relation (3.9).

Proof – Let us prove the statement in the model setting of the time-independent

flat torus, with Π operators used in place of rΠ. In that case, a dyadic bloc
∆k

“

Ipf, a, b ; gq
‰

is given by

∆k

“

Ipf, a, b ; gq
‰

pxq “ ∆krgspxq
!

SkrbspxqSkraspxqSkrf spxq ´ Skrabf spxq

´ SkrfaspxqSkrDbspxq ´ Skrf spxqSkrbDpaqspxq
)

.

Using the normalization Skp1q “ 1, we obtain

∆k

“

Ipf, a, b ; gq
‰

pxq “ ∆krgspxq Ipxq

with

Ipxq :“

¡

Kďk´1px, z1qKďk´1px, z2qKďk´1px, z3q

!

bpz1qapz2qfpz3q ´ apz3qbpz3qfpz3q

´ apz3qfpz3q
`

bpz1q ´ bpz3q
˘

´ fpz3q
`

apz2q ´ apz3q
˘

bpz2q
˘

)

dz1dz2dz3

“

¡

Kďk´1px, z1qKďk´1px, z2qKďk´1px, z3qfpz3q

!

bpz1qapz2q ´ apz3qbpz1q ´ apz2qbpz2q ` apz3qbpz2q

)

dz1dz2dz3.

Since a and b have a positive regularity, we deduce that
ˇ

ˇ

ˇ
bpz1qapz2q ´ apz3qbpz1q ´ apz2qbpz2q ` apz3qbpz2q

ˇ

ˇ

ˇ
“

ˇ

ˇapz2q ´ apz3q
ˇ

ˇ

ˇ

ˇbpz1q ´ bpz3q
ˇ

ˇ

À max
`

|z2 ´ z3|, |z1 ´ z3|
˘α`β

}a}Cα}b}Cβ

and so
›

›

›
∆k

“

Ipf, a, b ; gq
‰

›

›

›

L8
À }∆kg}L8}f}L8 2´kpα`βq }a}Cα}b}Cβ

À 2´kpα`β`νq }f}L8}g}Cν }a}Cα}b}Cβ ,

which concludes the proof.
B

Our last ingredient is a continuity result for the commutator of two paraproducts,
and their iterates. The result stated below in Theorem 8 is fully proved in Appendix
C.2. Given bounded functions u, a, b, c, g, f , we define the modified commutator on
paraproducts and its iterates by the formulae

Tupg, fq :“ Πu

´

rΠgpfq
¯

´Πg

´

Πupfq
¯

,

and

Tupa, b, fq :“ Tu

´

rΠapbq, f
¯

´Πa

´

Tupb, fq
¯
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and

Tupa, b, c, fq :“ Tu

´

rΠapbq, c, f
¯

´Πa

´

Tupb, c, fq
¯

.

The continuity properties of these operators are given in the following statement.

Theorem 8. (a) Let α, β, γ be Hölder regularity exponents with α P R, β P p0, 1q
and γ P p´8, 0q and set δ :“ α ` β ` γ. Then the commutator defines a
trilinear continuous map from Cα ˆ Cβ ˆ Cγ to Cδ.

(b) Let α, β, gamma, ν be Hölder regularity exponents with α P R, β, γ P p0, 1q
and ν P p´8, 0q and set δ :“ α ` β ` γ ` ν. Then the commutator defines
a trilinear continuous map from Cα ˆ Cβ ˆ Cγ ˆ Cν to Cδ. A similar result
holds for the 5-linear operator.

Let us mention here that all the continuity results of section also hold true when

we replace rΠ by Π; the corresponding operators will also be denoted by the same
letter as the setting will make the situation clear.

Together with the results on the pair of paraproducts
`

Π, rΠ
˘

proved in [2], the
Taylor expansion formula of section 2 and the above continuity results provide the
technical basis needed to run the paracontrolled analysis of a generic equation of type
(1.1), along the lines described in section 1.1. Rather than providing the reader with
a general statement identifying a class of equations that can be solved within our set-
ting, we concentrate on what seems to us to be two typical and interesting examples,
the study of the 2` and 3-dimensional generalised parabolic Anderson model equa-
tion (gPAM), and the study of the generalized KPZ equation. Both examples are out
of reach of the Gubinelli-Imkeller-Perkowski first order paracontrolled calculus. We
find it reasonable to proceed this way in so far as a systematic approach of singular
stochastic PDEs requires the development of a systematic approach to renormali-
sation problems which is still under study in the present setting, and which is only
almost achieved within the setting of regularity structures at the time of writing.

4 Nonlinear singular PDEs: a case study (gPAM)

Let f : R ÞÑ R be a function of class C3, with bounded third derivative. We aim
here to make sense of, and solve uniquely, the equation

pBt ` Lqu “ fpuqζ (4.1)

in a high order paracontrolled setting, for a spatial ’noise’ ζ that is pα ´ 2q-space-
Hölder. For α ě 2

3 , the first order original formulation of paracontrolled calculus is
sufficient for solving equation (4.1) ; see Gubinelli-Imkeller-Perkowski’ seminal work
[13] or [1]. We deal with the range of exponents 1

2 ă α ď 2
3 in sections 4.1, 4.2 and

4.3, and deal with the range 2
5 ă α ď 1

2 in section 4.5 – the latter range of exponents
corresponds to the irregularity of space white noise in dimension 3, or space-time
white noise in dimension 1. Note that for 1

2 ă α ď 2
3 we have 0 ă 4α´ 2 ď α.

We set up the equation in a paracontrolled setting where the spacial distribution

ζ is enhanced into a time-space rough distribution pζ “
`

ζ, . . .
˘

. The components of
this extended ’noise’ will appear along the computations done below to give sense
to the equation. Write R “ pBt ` Lq

´1 for the resolution operator, and set

Z1 :“ Rpζq.
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Recall that R sends any space L8T C
β´2 into Cβ, for any β in the interval p0, 2q – see

for instance proposition 10 in [2], and notice that L8T C
β´2 Ă Cβ´2 in that case.

We take as a solution space for equation (4.1) the set of functions u satisfying
the following second order paracontrolled ansatz

u “ rΠu1pZ1q ` rΠu2pZ2q ` u
7

u1 “ rΠu11pZ1q ` u
7
1,

(4.2)

with Z1 “ Rpζq, with ’derivatives’ u1, u2, u11 in Cα, and remainders u7 and u71 in C3α

and C2α respectively. The functions Z2, possibly equal to a tuple pZ1
2 , Z

2
2 , . . . q, are

constructed from the enhanced noise pζ, and are 2α-Hölder continuous. The notation

u2 may stand for a tuple pu1
2, u

2
2, . . . q, if Z2 does, in which case the expression rΠu2pZ2q

involves an implicit sum.

Our first task is to make sense of the product fpuqζ for functions u with the
above second order paracontrolled structure; this is where we use the continuity
results proved in sections 2 and 3.1. We want for that purpose to give a description
of fpuqζ under the form

fpuqζ “ Πfpuqpζq `Πv2pY2q `Πv3pY3q ` p7q, (4.3)

up to some remainder term p7q in C4α´2, and for some distributions Y2 “ pY
1

2 , Y
2

2 , . . . q

in L8T C
2α´2, Y3 “ pY

1
3 , . . . q in L8T C

3α´2, built from the rough distribution pζ, and
some functions v2, v3 of positive regularity, constructed from u, u1, u2, u11. It will
follow from the defining intertwinning relation

R
´

Πa1a2

¯

“ rΠa1

`

Ra2

˘

relating Π and rΠ, together with the Schauder and the continuity estimates for rΠ
proved in [2] that it will make sense to consider terms of the form Πv3pY3q and p7q as
remainders in the computations to follow. Recall that the model functions Zi will
be defined as Z1 “ Rpζq and Zi “ RpYiq for i ě 2. Writing

u “ R
`

fpuqζ
˘

` e´τLu0,

that is

rΠu1pZ1q ` rΠu2pZ2q ` u
7 “ rΠfpuqpZ1q ` rΠv2pZ2q `

´

rΠv3pZ3q `Rp7q ` e´τLu0

¯

,

will allow us to set up a fixed point problem for
`

u, u1, u2, u11

˘

, and solve it by
Banach contraction principle on a small time interval.

4.1 Enhanced distribution

The archetype of equation (4.1) is given by the controlled ordinary differential
equation

dxt “ V pxtqdht, (4.4)

where h is a non-differentiable R`-valued control and V an LpR`,Rdq-valued one form

on Rd, say. Think of a Brownian path for the control h. One of the deepest insights of
T. Lyons in his theory of rough paths [22] was to understand that one needs to change
the notion of control to make sense of such an equation, and that this enhanced
control takes values in a very specific universal algebraic structure. In simple terms,
the enhanced control consists of h and the collection of a number of objects playing
the role of the non-existsing iterated integrals

ş

sďs1ď¨¨¨ďskďt
dhs1 b ¨ ¨ ¨ b dhs1 – such
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iterated integrals cannot be defined as continuous functions of their integrands, here
ph, . . . , hq, if h is not sufficiently regular; see proposition 1.29 in [23]. Once given
these extra data, one can make sense of, and solve uniquely, the controlled ordinary
differential equation (4.4) under some appropriate regularity conditions on the one
form V , and the solution path happens to be a continuous function of the enhanced
control, in some appropriate topology. The enhancement of the control cannot be
made on a purely analytic basis and requires some extra input, typically the use of
probabilistic methods when the control h is random.

Hairer’s theory of regularity structures provides a conceptually close framework
for the study of a class of singular partial differential equations containing equation
(4.1) as a particular case. To make sense of equation (4.1), one needs to enhance the
distribution ζ with the a priori datum of a number of other distributions. Contrary
to the case of the controlled ordinary differential equation (4.4), this enhanced ’con-
trol’ takes values in an equation-dependent algebraic structure. The solving process
is also different, as the equation is first recast in some abstract space of jets of so-
lutions, where it can be solved under appropriate conditions. This corresponds to
looking for a solution in a specific space of distributions where one can actually make
sense of all the terms in the equation, especially some a priori undefined products.
A fundamental tool, the reconstruction operator, allows then to associate to this ab-
stract solution a classical distribution. The equation-dependent algebraic structure
in which the enhanced distribution lives also allows to give sense to this solution
distribution as a limit of solutions to some family of classically well-posed equations
in which the distribution ζ has been smoothened. The latter point is related to
renormalisation matters.

The setting which we develop in the present work shares some common features
with Lyons’ theory of rough paths and Hairer’s theory of regularity structures.

‚ One needs a notion of enhanced distribution to make sense of the equation.

‚ This enhancement cannot be made on a purely analytic basis, and requires
the use of probabilistic tools when ζ is random.

‚ Our solutions are described by some kind of Taylor expansion; this is the
paracontrolled ansatz (1.2), here (4.2), which defines at the same time the
restricted space of functions/distributions where one looks for a solution to
the problem.

However, this ’local’ description of a possible solution is of a different analytical
nature from Hairer’s notion of modelled distribution; it is in particular a classically
well-defined distribution/function that is defined everywhere in time-space. There is
no need as a consequence to rephrase the problem in any abstract space of jets, and
the paracontrolled analysis of equation (4.1), or any other singular PDE, is made
’downstairs’ with classical objects. Let 1

2 ă α ď 2
3 , and a finite time interval r0, T s,

be given.

Definition. We define the space of enhanced distributions for equation (4.1)
as the space

Cα´2 ˆ

´

L8T C
2α´2

¯2
ˆ

´

L8T C
3α´2

¯8
,

and denote by pζ a generic element of that space.

As said above, the elements of this enhanced distribution represent some quanti-
ties that are needed to make sense of all the terms of equation (4.1), and that either
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one cannot define on a purely analytic basis when ζ is not regular enough or that
need to be assumed to be slightly more regular than what analysis gives for free
from their expressions . With a smooth ζ, and

Z1 “ Rpζq,

set pζ “
´

ζ, ζ
p2q
1 , ζ

p2q
2 ,

`

ζ
p3q
i

˘

i“1..8

¯

, with

ζ
p2q
1 :“ ΠpZ1, ζq, ζ

p2q
2 :“ ΠζZ1

Y2 :“ ζ
p2q
1 ` ζ

p2q
2 , Z2 :“ RpY2q,

and

ζ
p3q
1 :“ ΠpZ2, ζq, ζ

p3q
2 :“ CpZ1, Z1, ζq,

ζ
p3q
3 :“ Π

`

ΠpZ1, Z1q, ζ
˘

, ζ
p3q
4 :“ Π

`

Z1,ΠpZ1, ζq
˘

ζ
p3q
5 :“ TζpZ1, Z1q, ζ

p3q
6 :“ Πζ

`

ΠDZ1Z1

˘

,

ζ
p3q
7 :“ ΠζZ2, ζ

p3q
8 :“ ΠζΠpZ1, Z1q.

(4.5)

Observe that the last terms ζ
p3q
i (for i “ 4, .., 8) are well-defined and have an

analytic sense in C3α´2; we need however to assume them well-defined in L8T C
3α´2.

One now shows that one can make good sense of the product fpuqζ, and that it
has an expression of the form (4.3), provided one replaces the occurence of the above

quantities in its expansion when ζ is smooth by the above a priori given ζ
pjq
i ’s, when

ζ is only an element of Cα´2. Note that one adds inside the enhanced distributions
those quantities that one needs to make sense of the products

Z1ζ, Z
2
1ζ, RpZ1ζqζ,

in accordance with what one expects from the theory of regularity structures. The
fact that each ill-posed product above is decomposed into three terms in the para-
product picture explains why our space of enhanced distributions contains so many
elements; there is nothing anoying in that fact. (Note here that, as far as renormal-
isation matters are concerned, we expect that robust tools that are currently being
developed for the study of renormalisation within the theory of regularity structures,
by Hairer and his co-authors, to be usable in our paracontrolled setting as well, up
to some ad hoc modification. )

4.2 Analysis of the product fpuqζ.

We start from the paraproduct decomposition, which gives

fpuqζ “ Πfpuqζ `Πζ

`

fpuq
˘

`Π
`

fpuq, ζ
˘

;

the first term on the right hand side suits us. We shall use along the way the notation

apuq :“ f 1puq ´ uf p2qpuq

for this expression of u that appears in the Taylor expansion formula for fpuq in
Theorem 1,

fpuq “ Πf 1puq´f p2qpuquu`
1

2
Πf p2qpuqpu

2q ` p3αq

“ Πapuqu`Πf p2qpuq

`

Πuu
˘

`
1

2
Πf p2qpuq

`

Πpu, uq
˘

` p3αq.

(4.6)
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Here and below, a term pβq stands for some element in Cβ that depends in a locally
Lipscthiz way on u P Cα – with polynomial dependence on u for the Lipschitz
constant. Let first use this Taylor expansion for fpuq to rewrite fpuqζ under the
form

Πfpuqζ `

"

Πζ

`

Πapuqu
˘

`Πζ

`

Πfp2qpuqpΠuuq
˘

`
1

2
Πζ

´

Πfp2qpuq

`

Πpu, uq
˘

¯

`Πζp3αq

*

`

"

Π
`

Πapuqu , ζ
˘

`Π
´

Πfp2qpuq

`

Πuu
˘

, ζ
¯

`
1

2
Π
´

Πfp2qpuq

`

Πpu, uq
˘

, ζ
¯

`Π
`

p3αq , ζ
˘

*

The following intermediate analysis of this expression will be useful in section 4.4
to analyse the dynamical consequences of renormalisation.

Lemma 9. Let ζ be a continuous function, and let u, or rather pu “
`

u71, u
7 ;u11, u2

˘

,
be a function satisfying the second order paracontrolled ansatz (4.2). Then one can
write the product fpuqζ under the form

fpuqζ “ Πfpuqζ `Πζfpuq ` f
1puqu1 ΠpZ1, ζq `

´

f 1puqu11 ` f
p2qpuqu2

1

¯

CpZ1, Z1; ζq

` f 1puqu2 ΠpZ2, ζq `
1

2
f p2qpuqu2

1 Π
`

ΠpZ1, Z1q, ζ
˘

` p7q

“: Πfpuqζ `Πζfpuq ` F
`

pu
˘

pζ ` p7q,
(4.7)

for some remainder p7q in C4α´2, that is a continuous function of u P Cα and ζ, seen
as an element of L8T C

α´2 – the remainder p7q is in particular of positive Hölder

regularity since α ą 1
2 .

Proof – We provide more details than necessary as this is the first time that we see
the corrector and its iterates in action. We use the term p7q as in the statement,
with different expressions at every occurence. Let us focus on studying the
resonant part Πpfpuq, ζq and use identity (4.6) and the correctors C to get

Π
´

Πapuqu, ζ
¯

“ apuqΠpu, ζq ` C
`

apuq, u; ζ
˘

“ apuq
!

u1ΠpZ1, ζq ` Cpu1, Z1; ζq ` u2ΠpZ2, ζq ` Cpu2, Z2; ζq `Π
`

u7, ζ
˘

)

` C
`

apuq, u; ζ
˘

.

We analyze successively the different terms. First u7 P C3α so Π
`

u7, ζ
˘

P C4α´2,
since 4α ´ 2 ą 0, and this term goes into the remainder p7q. Then, from the
ansatz for u, we have

Cpu1, Z1; ζq “ C
´

rΠu11Z1, Z1; ζ
¯

` C
`

p2αq, Z1; ζ
˘

“ u11C
`

Z1, Z1; ζ
˘

` C
´

u11, Z1;Z1, ζ
¯

` p4α´ 2q

“ u11C
`

Z1, Z1; ζ
˘

` p4α´ 2q,

where we used Theorems 2 and 4 on the boundedness of C and its iterates,
equation (3.8). So it comes

Π
´

Πapuqu, ζ
¯

“ apuqu1 ΠpZ1, ζq ` apuqu11 CpZ1, Z1; ζq ` apuqu2 ΠpZ2, ζq

` C
`

apuq, u; ζ
˘

` p7q.
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For the last commutator in the right hand side of the above equation, we use
the ansatz for u to get first

C
`

apuq, u; ζ
˘

“ C
´

apuq, rΠu1Z1; ζ
¯

` C
`

apuq, p2αq; ζ
˘

“ u1C
`

apuq, Z1; ζ
˘

` C
`

apuq;u1, Z1; ζ
˘

` p4α´ 2q

“ u1C
`

apuq, Z1; ζ
˘

` p4α´ 2q;

we used the boundedness of the upper iterated commutator, Theorem 5. We
can now also paralinearize apuq, with Theorem 1, and by (3.8), it comes

C
`

apuq, u; ζ
˘

“ u1C
`

Πa1puqpuq, Z1; ζ
˘

` p4α´ 2q

“ u1a
1puqCpu, Z1; ζq ` p4α´ 2q

“ u2
1a
1puqCpZ1, Z1; ζq ` p4α´ 2q

At the end, putting these estimates together yields

Π
´

Πapuqu, ζ
¯

“ apuqu1 ΠpZ1, ζq ` apuqu11 CpZ1, Z1; ζq ` apuqu2 ΠpZ2, ζq

` a1puqu2
1 CpZ1, Z1; ζq ` p7q

and similarly

Π
´

Πfp2qpuq

`

Πuu
˘

, ζ
¯

“ f p2qpuqΠ
`

Πuu, ζ
˘

` C
´

f p2qpuq,Πuu; ζ
¯

“ f p2qpuq
!

uΠpu, ζq ` Cpu, u; ζq
)

` f p3qpuqu2
1uCpZ1, Z1; ζq ` p7q

“ f p2qpuq
!

uu1 ΠpZ1, ζq ` uu11 CpZ1, Z1; ζq ` uu2 ΠpZ2, ζq ` p7q

` u2
1 CpZ1, Z1; ζq ` p7q

)

` f p3qpuqu2
1uCpZ1, Z1; ζq ` p7q

and

1

2
Π
´

Πf p2qpuqΠpu, uq, ζ
¯

“
1

2
f p2qpuqu2

1 Π
`

ΠpZ1, Z1q, ζ
˘

` p7q.

These three identities together give the statement of the lemma.
B

Note that the only term that does not make obvious sense analytically in the
decomposition (4.7), given the regularity of the different components of the enhanced

distribution pζ, is the term f 1puqu1 ΠpZ1, ζq. To analyse it, note that

f 1puqu1 “ Πf 1puqu1 `Πu1

`

f 1puq
˘

` p2αq

“ Πf 1puq

´

rΠu11Z1

¯

`Πu1

´

Πf p2qpuq

`

Πu1Z1

˘

¯

` p2αq

“ Πf 1puqu11`f p2qpuqu2
1
Z1 ` p2αq,

Hence, one has

f 1puqu1 ΠpZ1, ζq “ Πf 1puqu1
ΠpZ1, ζq `ΠΠpZ1,ζq

`

f 1puqu1

˘

`Π
`

f 1puqu1,ΠpZ1, ζq
˘

“ Πf 1puqu1
ΠpZ1, ζq `ΠΠpZ1,ζq

`

f 1puqu1

˘

`

´

f 1puqu11 ` f
p2qpuqu2

1

¯

Π
`

Z1,ΠpZ1, ζq
˘

` p4α´ 2q,

from which it appears as a well-defined element of C2α´2.
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Proposition 10. One can decompose the product fpuqζ in canonical form

fpuqζ “ Πfpuqζ `Πf 1puqu1

´

ΠpZ1, ζq `ΠζZ1

¯

`Πv3Y3 ` p4α´ 2q,

where the distributions Y3 “
`

Y 1
3 , . . .

˘

belong to L8T C
3α´2, and v3 P Cα, for some

remainder term p4α´ 2q in C4α´2, whose norm depends polynomially on pu and pζ.

Proof – Given the result of lemma 9 and the fact that

f 1puqu1 “ Πf 1puqu11`f 1puqu2
1
Z1 ` p2αq,

we already know that

fpuqζ “ Πfpuqζ `Πζfpuq `
!

Πf 1puqu1
ΠpZ1, ζq

`Πf 1puqu11`f p2qpuqu2
1

´

ΠΠpZ1,ζqZ1 `Π
`

Z1,ΠpZ1, ζq
˘

¯

` p4α´ 2q
)

`

´

f 1puqu11 ` f
p2qpuqu2

1

¯

CpZ1, Z1; ζq

` f 1puqu2 ΠpZ2, ζq `
1

2
f p2qpuqu2

1 Π
`

ΠpZ1, Z1q, ζ
˘

` p7q

“ Πfpuqζ `Πζfpuq `Πf 1puqu1
ΠpZ1, ζq

`Πf 1puqu11`f p2qpuqu2
1

´

ΠΠpZ1,ζqZ1 `Π
`

Z1,ΠpZ1, ζq
˘

` CpZ1, Z1; ζq
¯

`Πf 1puqu2
ΠpZ2, ζq `

1

2
Πf p2qpuqu2

1

´

Π
`

ΠpZ1, Z1q, ζ
˘

¯

` p4α´ 2q.

It suffices then to decompose the paraproduct Πζfpuq in canonical form to prove
the statement of the proposition. Building on the second order Taylor formula
(4.6), this is done first by putting each of the terms Πapuqu,Πf p2qpuqpΠuuq and

Πf p2qpuqΠpu, uq in canonical form, and then commuting the paraproducts with
the operator Πζ , using the continuity results on the operator T given in Theorem
8. One has first

Πapuqu “ Πapuq

´

rΠu1Z1

¯

`Πapuq

´

rΠu2Z2

¯

` p3αq

“ Πapuq

´

rΠu1Z1

¯

`Πapuqu2
Z2 ` p3αq,

Using Theorem 6 on the continuity of the iterates of R, we have

Πapuq

´

rΠu1Z1

¯

“ Πapuqu1
Z1 ` R

´

apuq, u1;Z1

¯

“ Πapuqu1
Z1 ` R

´

apuq, rΠu11Z1;Z1

¯

` p3αq

“ Πapuqu1
Z1 ` R

´

apuqu11, Z1;Z1

¯

` p3αq

“ Πapuqu1
Z1 `Πapuqu11

`

ΠDZ1Z1

˘

` p3αq,

using again identity (3.9) at the last line. We thus have

Πapuqu “ Πapuqu1
Z1 `Πapuqu11

`

ΠDZ1Z1

˘

`Πapuqu2
Z2 ` p3αq

at that point. A similar reasoning gives

Πf p2qpuq

`

Πuu
˘

“ Πf p2qpuq

´

Πuu1Z1 `Πuu11

`

ΠDZ1Z1

˘

`Πuu2Z2 ` p3αq
¯

“ Πf p2qpuquu1
Z1 `Πf p2qpuqpu2

1`2uu11q

`

ΠDZ1Z1

˘

`Πf p2qpuquu2
Z2 ` p3αq
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and

Πf p2qpuq

`

Πpu, uq
˘

“ Πf p2qpuq

´

Πu2
1
ΠpZ1, Z1q ` p3αq

¯

“ Πf p2qpuqu2
1
ΠpZ1, Z1q ` p3αq.

So one can rewrite the Taylor formula for fpuq (equation 4.6) under the form

fpuq “ Πf 1puqu1
Z1 `Π`

f 1puq`uf p2qpuq
˘

u11`f p2qpuqu2
1

`

ΠDZ1Z1

˘

`Πf 1puqu2
Z2 `

1

2
Πf p2qpuqu2

1
ΠpZ1, Z1q ` p3αq.

Using the continuity result on the operator T, one then gets the decomposition

Πζfpuq “ Πζ

!

Πf 1puqu1
Z1 `Π`

f 1puq`uf p2qpuq
˘

u11`f p2qpuqu2
1

`

ΠDZ1Z1

˘

`Πf 1puqu2
Z2 `

1

2
Πf p2qpuqu2

1
ΠpZ1, Z1q

)

` p4α´ 2q

“ Πζ

´

Πf 1puqu1
Z1

¯

`Π`

f 1puq`uf p2qpuq
˘

u11`f p2qpuqu2
1

´

Πζ

`

ΠDZ1Z1

˘

¯

`Πf 1puqu2

`

ΠζZ2

˘

`
1

2
Πf p2qpuqu2

1

´

ΠζΠpZ1, Z1q

¯

` p4α´ 2q

“ Πζ

`

Πf 1puqu1
Z1

˘

`Πv3Y
1

3 ` p4α´ 2q,

for some distributions Y 13 P L
8
T C

3α´2. It remains to explain the decomposition
of the first term in the right hand side of the above identity. We use again the
commutator T and its iterates to write

Πζ

´

Πf 1puqu1
Z1

¯

“ Πf 1puqu1

`

ΠζZ1

˘

` Tζ
`

f 1puqu1, Z1

˘

“ Πf 1puqu1

`

ΠζZ1

˘

` Tζ
`

Πu1Πf p2qpuqΠu1Z1, Z1

˘

` Tζ
`

Πf 1puqΠu11Z1, Z1

˘

` p4α´ 2q

“ Πf 1puqu1

`

ΠζZ1

˘

`Πu2
1f
p2qpuq`u11f 1puqTζpZ1, Z1q ` p4α´ 2q.

So at the end, we conclude to

Πζfpuq “ Πf 1puqu1

`

ΠζZ1

˘

`Πv3Y
1

3 ` p4α´ 2q,

for some distributions Y 13 P L
8
T C

3α´2. A careful reading of this proof gives the
assertion about the dependence of the norm of the remainder as a function of

the norms of pu and pζ.
B

As a sanity check, we invite the reader to look at the linear case where fpuq “ u.
A number of terms in the analysis disappear or simplify, and one can work with a
smaller space of enhanced distributions.

4.3 Solving the equation

Assume that the enhanced distribution pζ is given, together with an initial condi-
tion u0 P C

3α. The study of equation (4.1) from the paracontrolled calculus point
of view is a three step process.

(a) Set yourself an ansatz for the solution space S
`

pζ
˘

, in the form of a Banach
space of paracontrolled functions/distributions.
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(b) Recast the equation as a fixed point problem for a map Φ from the solution

space S
`

pζ
˘

to itself.

(c) Prove that Φ is a contraction of S
`

pζ
˘

for a small enough choice of time
horizon T .

Fix a finite time horizon T and recall the notation Cαw for the weighted spaces
introduced in Appendix A.2, for a weight depending on a non-negative parameter
κ; all these spaces are equal as a set, with equivalent norms, for κ in a bounded
set. All of the above continuity results hold in these spaces, with implicit constants
independent of κ in a bounded set, as the weight is non-decreasing and all the
approximation operators have temporal support in r0,8q. This elementary fact will
allow us to gain in some estimate a crucial multiplicative factor depending on κ that
will eventually provide the contraction property for Φ.

Given 1
2 ă β ă α ď 2

3 , with 3α ` β ą 2, we choose to work with the functions
satisfying the second order paracontrolled ansatz

u “ rΠu1pZ1q ` rΠu2pZ2q ` u
7

u1 “ rΠu11pZ1q ` u
7
1,

(4.8)

with remainders u7 P C2α`β
w and u71 P Cα`βw , and u2, u11 in Cβw. Note that we use

the operator rΠ introduced in [2] rather than the usual paraproduct operator Π; the
advantage of this choice will appear clearly in the proof of theorem 11 given below.
Here the parameter β has to be thought as very close to α and will play the same
role as α. The main trick is to use another parameter β, slightly lower than α, in
order to prove the contraction property of the map Φ. We write

pu :“
`

u ;u1, u2 ;u11

˘

and set

pu0 :“
´

u0 ; fpu0q, f
1pu0qfpu0q ; f 1pu0qfpu0q

¯

,

and turn the solution space

S
`

pζ
˘

:“
 

puτ“0 “ pu0

(

into a Banach space by defining its norm as
›

›

pu
›

› :“
›

›u2

›

›

Cβw
`
›

›u11

›

›

Cβw
`
›

›u71
›

›

Cα`βw
`
›

›u7
›

›

C2α`β
w

.

The analysis of the product fpuqζ done in section 4.2 corresponds to working with
β “ α. Everything works verbatim under the assumption that 3α ` β ą 2, by
replacing p2α´2q, p3α´2q and p4α´2q by pα`β´2q, p2α`β´2q and p3α`β´2q,
respectively; the product fpuqζ is in particular well-defined for functions u, or rather
pu, satisfying the second order paracontrolled ansatz (4.8). We adopt the notations
of equation (4.3) and write

fpuqζ “ Πfpuqpζq `Πf 1puqu1
pY2q `Πv3pY3q ` p7q.

A better notation for fpuqζ would be pf
`

pu
˘

pζ, emphasizing the dependence on pu and
pζ of this notion of product between fpuq and ζ – we stick to the former notation
however. We define the map Φ by setting

Φ
`

pu
˘

“

´

v ; fpuq, f 1puqu1 ; f 1puqu1

¯

,
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where v is the solution to the equation

pBt ` Lqv “ fpuqζ,

with initial condition vτ“0 “ u0. Notice that the definition of the space S
`

pζ
˘

and
the map Φ implicitely depend on the finite time interval r0, T s on which we are
working. We define a solution of the equation

pBt ` Lqu “ fpuqζ,

as a fixed point of the map Φ.

Theorem 11. Let a function f P C3
b pRq, an enhanced distribution pζ, and an initial

condition u0 P C
3α be given. For any interval of time r0, T s, the map Φ has a unique

fixed point pu in S
`

pζ
˘

.

Proof – The proof is an elementary application of Banach fixed point theorem. Let
ux explain it in details.

Let us fix a time interval r0, T s and agree that all the implicit constants below
are allowed to depend on T . Recall that we denote by P the free evolution given
by the semigroup

P pu0q :“ pτ, xq ÞÑ e´τLpu0qpxq.

Given pu P S
`

pζ
˘

, the solution v of the well-posed parabolic equation

pBt ` Lqv “ fpuqζ, vτ“0 “ u0

is given by

v “ R
`

fpuqζ
˘

` P pu0q

Since we assume the initial data u0 to be in space Hölder space C3α, then P pu0q

belongs to the parabolic Hölder space C3α
w . So to prove that

Φ
`

pu
˘

“

´

v ; fpuq, f 1puqu1 ; f 1puqu1

¯

,

belongs to S
`

pζ
˘

, it suffices to see that the map

Ψ
`

pu
˘

:“
´

R
`

fpuqζ
˘

; fpuq, f 1puqu1 ; f 1puqu1

¯

sends S
`

pζ
˘

into itself. This is precisely what is given by Proposition 10, the

regularity properties of rΠ and Schauder estimates, Theorem 18, which altogether

show that Ψ
`

pu
˘

is in S
`

pζ
˘

, and
›

›v71
›

›

Cα`βw
`
›

›v7
›

›

C2α`β
w

À κ´pα´βq{2C
`

}pu}
˘

where C is a positive constant that depends polynomially on }pu}. At the same
time, the paracontrolled structure of R

`

fpuqζ
˘

, and Schauder estimates, also
give

}R
`

fpuqζ
˘

}Cβw
À κ´εC

`

}pu}
˘

,

giving a control of R
`

fpuqζ
˘

by a small factor κ´ε. Unfortunately, there is

no reason so that the three paracontrolled derivatives of R
`

fpuqζ
˘

enjoy that
property, although they are given in terms of pu. We iterate the map Φ to get
around this problem. Indeed, by iterating four times the map Φ we observe that

Φppuq is also a paracontrolled function of the space S
`

pζ
˘

whose derivatives are
given in the iterative process by the heat resolution R of some functions; as such



30

one can use Schauder estimates to estimate them in the corresponding Holder
space with a small factor of order κ´ε. We deduce from that fact that

Φ˝4ppuq “ pw

with w “ P pu0q ` rw and

} pw} À κ´pα´βq{2C
`

}pu}
˘

.

So Φ˝4 is indeed a small perturbation of the constant map puÑ P pu0q. Then it

is standard that if one chooses κ big enough for κ´pα´βq{2 to be small enough,

the map Φ˝4 will send a large enough ball of the space S
`

pζ
˘

into itself.

It remains us to see that Φ˝4 is a contraction. Indeed, we have

Φ˝4ppu1q ´ Φ˝4ppu2q “ pw1 ´ pw2

where pw1 and pw2, and their derivatives, are paracontrolled distributions obtained
by iterating four times the map R

`

fp‚qζ
˘

, applied to pu1 and pu2, respectively.
This map is locally Lipschitz from the continuity results of section 3, and taking
advantage of the game between α and β, it follows from Schauder estimates that

›

›

pw1 ´ pw2
›

› À κ´pα´βq{2C
`

}pu1}, }pu2}
˘
›

›

pu1 ´ pu2
›

›,

where C is some polynomial function of two variables. So we conclude that Φ˝4

is a contraction of any large enough ball of S
`

pζ
˘

, for a large enough choice of
constant κ.

B

Remarks.

‚ A local in time well-posedness result can be proved following the same rea-
soning, assuming only that the nonlinearity f is of class C3, with a bounded
third derivative.

‚ We assume here that the initial condition is in C3α. We use that fact to
put the term P pu0q in the remainder. One can improve upon this constraint
on u0 and only require that u0 P C

α, at the price of working with weighted
Hölder spaces with an explosive weight. This is well explained in Lemma A.7
and A.9 of [13].

‚ So far, the theory of regularity structures has not been developed in a manifold
setting. A forthcoming work of Dahlqvist-Diehl-Driver shows how this can be
done in the simplest case where the noise is not too rough, corresponding
in our setting to a regularity exponent α ą 2

3 . A first order description of
the objects is sufficient in that setting, as was the case in our previous work
[1], whose content covers partly their results. It is very likely that one can
improve upon the Dahlqvist-Diehl-Driver approach to regularity structures on
a manifold by working on the second order frame bundle in order to study the
(gPAM) equation in the range of regularity exponents 1

2 ă α ď 2
3 for the noise

– this is how the story of stochastic differential equations on manifolds can
be told from Schwartz-Meyer’s point of view. This potential extension of the
work of Dahlqvist-Diehl-Driver is what is covered by the results of the present
section, in our paracontrolled setting. On the other hand, it is not clear to
us what geometric setting will be needed to get the equivalent of the results
we obtain in section 4.5, where the exponents α is in the range 2

5 ă α ď 1
2 .
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One gets as a direct consequence of the fact that the solution u to equation (4.1)
has the form

u “ ΠfpuqZ1 ` p2αq,

the following corollary; it is the analogue of a result of Hairer and Pardoux [20,
Corollary 1.11] – their result is a direct consequence of the content of section 4.5.
Recall ρ stands for the parabolic distance on M; it was introduced in section 1.2.

Corollary 12. Let f be C5
b . For 0 ă t ă T , there exists a positive constant C such

that one has the estimate
ˇ

ˇupe1q ´ upeq ´ f
`

upeq
˘`

Z1pe
1q ´ Z1peq

˘ˇ

ˇ ď Cρpe1, eq,

uniformly in e1 “ pσ, yq and e “ pτ, xq with |τ ´ σ| ď T
2 .

Proof – The proof is a direct application of the representation of the solution u as
a paracontrolled distribution

u “ ΠfpuqZ1 ` p2αq

together with Proposition 21.
B

A similar result holds in the rougher case where 2
5 ă α ď 1

2 , studied in section 4.5,
with the exponent 1 for ρpe1, eq in the right hand side of the estimate of corollary
12 replaced by an exponent 2α, in accordance with the above mentioned result of
Hairer and Pardoux.

4.4 Symmetry group

The study of equation (4.1) is particularly motivated when ζ is assumed to be the
realization ζpωq of a random field ζ, defined on some probability space pΩ,F ,Pq,
typically a Gaussian spatial noise of Hölder regularity pα ´ 2q, with α in the range
`

1
2 ,

2
3

‰

. One needs to assume that we are able to construct on that probability space

a random enhanced distribution pζ to use the above deterministic machinery for each

realization pζpωq of pζ, and construct in this way a random solution upωq to equation
(4.1) – the measurability of upωq as a function of ω comes from the fact that upωq

is a continuous function of pζpωq. Although it is always possible to enhance ζpωq in
an arbitrary (measurable) way (with respect to ω), it makes sense to

(a) ask for some more or less canonical way of doing the enhancement,

(b) relate the solution to the singular equation (4.1), such as built and understood
in section 4.3, to some family of solutions to some classically well-posed
partial differential equations.

The most natural and naive way of defining the random variable pζ is to smoothen
ζ into ζε by any deterministic classical mean, such as convolution with a smooth

kernel, define its associated enhancement pζε, via formula (4.5), and pass to the limit.
Unfortunately, this family of random variables cannot converge in any sensible sense
as ε goes to 0, and it is the object of renormalisation to provide a robust approach
to this problem, by taking deterministic special linear combinations of these oth-
erwise diverging quantities to make them converge. See the forthcoming works of
Bruned-Hairer-Zambotti and Chandra-Hairer for a systematic study of these ques-
tions within the setting of regularity structures; note that the renormalisation of
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the term ΠpZ1, ζq was already done in [1]. This renormalisation story has direct
consequences on point (b).

The analysis of equation (4.1) done in section 4.3 shows that the solution pu to

equation (4.1) is a continuous function of pζ; write

pu “
´

u ; fpuq, f 1puqfpuq ; f 1puqfpuq
¯

“: I
`

pζ
˘

.

Better, one can write

pBt ` Lqu “ Πfpuqζ `Πζ

`

fpuq
˘

` Fppuq pζ ` p4α´ 2q,

for some continuous map F of pu and pζ, that is linear with respect to pζ, and some
remainder p4α ´ 2q that is a continuous function of pu and ζ only. The first two
paraproduct terms on the right hand side also have the latter property. Precisely,
one knows from lemma 9 that

Fppuq pζ “ f 1puqfpuqΠpZ1, ζq ` f
1puq2fpuqΠpZ2, ζq `

1

2
f p2qpuqfpuq2 Π

`

ΠpZ1, Z1q, ζ
˘

`

´

f 1puq2fpuq ` uf p2qpuqfpuq2
¯

CpZ1, Z1, ζq

“: g2puq pζ
p2q `

3
ÿ

i“1

gipuq pζ
p3q
i .

(4.9)

The renormalisation procedure provides in the present case a deterministic, possibly
constant, element Cε “

`

0, Cε2 , C
ε
3

˘

in the space of enhanced distributions such that

the family
`

pζε ´ Cε
˘

converges in that space, in probability say, as ε goes to 0. Set

puε :“
`

uε, . . .
˘

:“ I
´

pζε ´ Cε
¯

;

so this family converges in probability to pu “ Ippζq, by the continuity of the solution
map I. One reads on equation (4.9) the effect of adding Cε into the dynamics. The
function uε is a solution to the well-posed equation

pBt ` Lqu
ε “ fpuεqζε ` Cε2 g2pu

εq `

3
ÿ

i“1

Cε3,i g
piq
3 pu

εq,

and it converges in Cα, in probability, to the first component u of the solution pu to
equation (4.1).

4.5 Rougher noise ζ.

The above methods are robust enough to deal with the generalized parabolic
Anderson model equation

pBt ` Lqu “ fpuqζ

when the spatial noise ζ has the regularity pα ´ 2q of a 3-dimensional space white
noise, that is ζ is pα ´ 2q-Hölder regular, for some α ă 1

2 , with α ą 2
5 say. We

describe in this section the essentials of the analysis of the product term fpuqζ that
one can do to study the equation; the fixed point problem is tackled with the very
same tools as those used in section 4.3.

Fix some regularity exponents 2
5 ă β ď α ď 1

2 , and assume we are given some
reference functions

Z1 “ Rpζq, Z2 “ RpY2q, Z3 “ RpY3q
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with Yi P L8T C
iα´2 to be determined latter from consistency conditions; from

Schauder estimates, these regularity assumptions on the Yi ensure that Zi is piαq-
parabolic Hölder continuous. We take as a solution space for equation (4.1) the set
of functions satisfying the following third order paracontrolled ansatz

u “ rΠu1Z1 ` rΠu2Z2 ` rΠu3Z3 ` u
7

u1 “ rΠu11Z1 ` rΠu12Z2 ` u
7
1

u2 “ rΠu21Z1 ` u
7
2

u11 “ rΠu111Z1 ` u
7
11

(4.10)

with u3, u12, u21, u111 in Cβ and the remainders u711, u
7
2 in Cα`β, with u71 in C2α`β

and u7 in C3α`β. Note here again that we use the rΠ operator introduced in [2] rather
than the usual paraproduct operator Π The set of all such tuples

pu :“
´

u ;u1, u2, u3 ;u11, u12, u21 ;u111

¯

satisfying identity (4.10) is turned into a Banach space setting
›

›

pu
›

› :“
›

›u3

›

›

Cβ`
›

›u12

›

›

Cβ`
›

›u21

›

›

Cβ`
›

›u111

›

›

Cβ`
›

›u711

›

›

Cα`β`
›

›u72
›

›

Cα`β`
›

›u71
›

›

C2α`β`
›

›u7
›

›

C3α`β .

One says that u is in (dressed) canonical form (4.10) to mean that we are given pu
as here. The naked canonical form consists of a similar decomposition for u, but

with the Π operator used in place of rΠ; we use the expression canonical form for
dressed canonical form. One gets a clear picture of the product fpuqζ, or rather
pf
`

pu
˘

pζ, by

(a) showing that, for pu in dressed canonical form, one can write fpuq in naked
canonical form,

(b) for pv “
`

v ; v1, v2, v3 ; ¨ ¨ ¨
˘

in dressed or naked canonical form, the product

vζ, or rather pvpζ, is well-defined and

vζ “ Πvζ `Πv1Y2 `Πv2Y3 `Πv3Y4 ` p4α` β ´ 2q,

for some Y4 P L
8
T C

3α`β´2, and vi P Cβ.

Consistency conditions imply some relations between the Zi. These two steps
also dictate the choice of Yi and single out the different components of the space
of enhanced distributions, as those expressions in Z1, ζ that do not make sense on
a purely analytic basis. One uses the full strength of the Taylor formula stated in
theorem 1 to deal with point (a). Given identity (2.3) and the fact that

u2 “ 2Πuu`Πpu, uq,

u3 “ 2Πu

`

Πuu
˘

`Πu2u`Πu

`

Πpu, uq
˘

` 2Π
`

u,Πuu
˘

`Π
`

u,Πpu, uq
˘

,

we see that point (a) holds if the following condition holds.

(a’) For u and v in dressed canonical form and g satisfying the second order
paracontrolled ansatz (4.2), then Πgu and Πpu, vq can be written in naked
canonical form.

Proposition 13. Let f : R ÞÑ R be a function of class C4, with bounded fourth
derivative. For a function u in dressed canonical form fpuq can be decomposed in
naked canonical form.
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Proof – We prove point (a’) and start with Πgu – recall we are working up to
elements in p3α` βq. We have

Πg

´

rΠu1Z1

¯

“ Πgu1Z1 `Πg

´

rΠDu1Z1

¯

,

with u1 “ rΠu11Z1 ` rΠu12Z2 ` p2α` βq. One has

Πg

´

rΠD rΠu11Z1
Z1

¯

“ Πgu11

´

ΠDZ1Z1

¯

` R
`

g ;u11, Z1 ;Z1

˘

“ Πgu11

´

ΠDZ1Z1

¯

` R
`

gu111, ;Z1, Z1 ;Z1

˘

¯

` p3α` βq

“ Πgu11

´

ΠDZ1Z1

¯

`Πgu111

´

R
`

1;Z1, Z1 ;Z1

˘

¯

` p3α` βq,

after (3.10); we also have

Πg

´

rΠD rΠu12Z2
Z1

¯

“ Πgu12

´

ΠDZ2Z1

¯

` p3α` βq.

This gives us as a decomposition for Πg

`

rΠu1Z1

˘

the sum

Πg

´

rΠu1Z1

¯

“ Πgu1Z1 `Πgu11

´

ΠDZ1Z1

¯

`Πgu111

´

R
`

1;Z1, Z1 ;Z1

˘

¯

`Πgu12

´

ΠDZ2Z1

¯

` p3α` βq.

The same computations shows that

Πg

´

rΠu2Z2

¯

“ Πgu2Z2 `Πgu21

´

ΠDZ1Z2

¯

` p3α` βq

and

Πg

´

rΠu3Z3

¯

“ Πgu3Z3 ` p3α` βq,

which shows that indeed the operator Πg transforms a function u in dressed
canonical form into an object in naked canonical form, under the assumption
that g satisfies the second order paracontrolled ansatz (4.2) – the latter assump-
tion is needed to ensure that the different derivatives of Πgu satisfy the structure
equation imposed to u1, u2, u111 in (4.10).

To analyse the term Πpu, vq, look first at

Π
´

rΠu1Z1, rΠv1Z1

¯

“ Πu1

´

Π
`

Z1,Πv1Z1

˘

¯

` D
`

u1, Z1,Πv1Z1

˘

“ Πu1

´

Πv1ΠpZ1, Z1q ` Dpv1, Z1, Z1q

¯

`Πv1Dpu1, Z1, Z1q ` p4αq

“ Πu1

´

Πv1ΠpZ1, Z1q

¯

`Πu1

´

Πv11D
`

Z1, Z1, Z1

˘

¯

` p4αq

`Πv1

´

Πu11DpZ1, Z1, Z1q

¯

` p4αq

“ Πu1

´

Πv1ΠpZ1, Z1q

¯

`Πu1v11`v1u11

´

DpZ1, Z1, Z1q

¯

` p4αq,

and note that the term Πu1

´

Πv1ΠpZ1, Z1q

¯

can be analysed as the term Πgu

above. For Π
`

Πu1Z1,Πv2Z2

˘

or Π
`

Πu2Z2,Πv1Z1

˘

, write simply

Π
`

Πu1Z1,Πv2Z2

˘

“ Πu1v2ΠpZ1, Z2q,

and
Π
`

Πu2Z2,Πv1Z1

˘

“ Πu2v1ΠpZ1, Z2q.

In the end, one sees that all the terms of the Taylor expansion formula for fpuq
can be decomposed in naked canonical form.
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B

Recall that each Zi may have several components pZki qk, in which case the notation
Π‚Zi stands for an implicit sum

Π‚Zi “
ÿ

k

Π‚kZ
k
i .

The above proof shows that for consistency purposes the reference operators Π‚Z2

need to have at least the following components

Π‚
`

ΠDZ1Z1

˘

, Π‚

´

ΠpZ1, Z1q

¯

,

and the operators Π‚Z3 the following components

Π‚
`

ΠDZ2Z1

˘

, Π‚
`

ΠDZ1Z2

˘

, Π‚

´

ΠDZ1ΠpZ1, Z1q

¯

Π‚

´

Rp1, Z1, Z1, Z1q

¯

, Π‚

´

DpZ1, Z1, Z1q

¯

, Π‚

´

ΠpZ1, Z2q

¯

Π‚
`

ΠDZ1ΠpZ1, Z1q
˘

.

Other components of the operators Π‚Z2 and Π‚Z3 will pop out from the proof of
the next statement.

Proposition 14. For pv “
`

v ; v1, v2, v3 ; ¨ ¨ ¨
˘

in dressed or naked canonical form, the
product vζ is well-defined and

vζ “ Πvζ `Πv1Y2 `Πv2Y3 `Πv3Y4 `
`

4α` β ´ 2
˘

, (4.11)

for some Y4 P L
8
T C

3α`β´2 and vi P Cβ.

Proof – We do the proof for pv in dressed canonical form; cosmetic changes are
needed to deal with the other case. Given that

vζ “ Πvζ `Πζv `Πpv, ζq,

it should be clear to the reader that the main work is to show that Πζ

`

rΠv1Z1

˘

and Π
`

rΠv1Z1, ζ
˘

can be written under the form (4.11) – which also justifies
that the latter a priori undefined term makes sense. We give the details for the
analysis of these two terms and trust the reader for completing the analysis of
the other, easier, terms in the expansion of vζ. We use the continuity results
proved in sections 3.1 and 3.2 along the way without explicit mention.

‚ Let start with the term Πζ

`

rΠv1Z1

˘

, of parabolic regularity p2α´ 2q. One has

Πζ

´

rΠv1Z1

¯

“ Πv1

´

ΠζZ1

¯

` Tζ
`

v1, Z1

˘

“ Πv1

´

ΠζZ1

¯

` Tζ

´

rΠv11Z1, Z1

¯

` Tζ

´

rΠv12Z2, Z1

¯

` p4α` β ´ 2q

“ Πv1

´

ΠζZ1

¯

`Πv11

´

Tζ
`

Z1, Z1

˘

¯

` Tζ
`

v11, Z1 ;Z1

˘

`Πv12

´

Tζ
`

Z2, Z1

˘

¯

` p4α` β ´ 2q

“ Πv1

´

ΠζZ1

¯

`Πv11

´

Tζ
`

Z1, Z1

˘

¯

`Πv111

´

Tζ
`

Z1, Z1 ;Z1

˘

¯

`Πv12

´

Tζ
`

Z2, Z1

˘

¯

` p4α` β ´ 2q.

‚ We start from the identity

Π
´

rΠu1Z1, ζ
¯

“ u1 ΠpZ1, ζq ` C
`

u1, Z1, ζ
˘
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to analyse the term Π
´

rΠu1Z1, ζ
¯

, and look at each term on the right hand side

separately. First, we have

u1 ΠpZ1, ζq “ Πu1

´

ΠpZ1, ζq
¯

`ΠΠpZ1,ζqu1 `Π
´

u1,ΠpZ1, ζq
¯

with

Π
´

u1,ΠpZ1, ζq
¯

“ u11 Π
´

Z1,ΠpZ1, ζq
¯

` C
´

u11, Z1 ; ΠpZ1, ζq
¯

` u12 Π
´

Z2,ΠpZ1, ζq
¯

`
`

4α` β ´ 2
˘

“ Πu11

´

Π
`

Z1,ΠpZ1, ζq
˘

¯

`Π
Π
`

Z1,ΠpZ1,ζq
˘pu11q `Π

´

u11,Π
`

Z1,ΠpZ1, ζq
˘

¯

` u111C
`

Z1, Z1 ; ΠpZ1, ζq
˘

`Πu12

´

Π
`

Z2,ΠpZ1, ζq
˘

¯

`
`

4α` β ´ 2
˘

“ Πu11

´

Π
`

Z1,ΠpZ1, ζq
˘

¯

`Πu111

!

Π
Π
`

Z1,ΠpZ1,ζq
˘Z1

`Π
`

Z1,Π
`

Z1,ΠpZ1, ζq
˘˘

` C
`

Z1, Z1,ΠpZ1, ζq
˘

)

`Πu12

´

ΠpZ2,ΠpZ1, ζq
˘

¯

`
`

4α` β ´ 2
˘

and

ΠΠpZ1,ζqu1 “ ΠΠpZ1,ζq

`

Πu11Z1

˘

`ΠΠpZ1,ζq

`

Πu12Z2

˘

` p4α` β ´ 2q

“ Πu11

`

ΠΠpZ1,ζqZ1

˘

` TΠpZ1,ζqpu11, Z1q `Πu12

´

ΠΠpZ1,ζqZ2

¯

` p4α` β ´ 2q

“ Πu11

`

ΠΠpZ1,ζqZ1

˘

`Πu111

´

TΠpZ1,ζqpZ1, Z1q

¯

`Πu12

´

ΠΠpZ1,ζqZ2

¯

` p4α` β ´ 2q.

Second, the term

Cpu1, Z1, ζq “ u11CpZ1, Z1, ζq ` C
`

u11, Z1 ;Z1, ζ
˘

has the same structure as the term Π
`

u1,ΠpZ1, ζq
˘

analysed above; one can
repeat the same computations. We are then left with checking that the distri-
butions Yi that appear in this decomposition of vζ are indeed in L8T C

iα; the

assumptions on the enhanced distribution pζ are made on purpose.

‚ It is straigtforward to adapt the above computations to the analysis of the

terms Π
´

rΠu2Z2, ζ
¯

and Π
´

rΠu3Z3, ζ
¯

, by tracking the indices and running the

computations up to remainders of regularity p4α` β ´ 2q.
B

One gets from propositions 13 and 14 that for pu in canonical form (4.10) one can
write the product fpuqζ under the form

fpuqζ “ Πfpuqζ `Πv2Y2 `Πv3Y3 `Πv4Y4 ` p4α` β ´ 2q,

with Y2 depending only on ζ and Z1 “ Rpζq, with Y3 depending on ζ, Z1 and
Z2 “ RpY2q, and so on. The consistency relation

R
`

fpuqζ
˘

“ rΠfpuqZ1 ` rΠv2Z2 ` rΠv3Z3 `
`

3α` β
˘

,

determines then uniquely the choice of Z1, Z2 and Z3, or rather the operators Π‚Zi.

The different components of pζ also pop out of the above computations, as those
expressions in Z1, ζ that do not make sense on a purely analytic basis. From the

study of the term Π
´

rΠu1Z1, ζ
¯

, we have just singled out

ΠζZ1 and ΠpZ1, ζq
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to be assumed in L8T C
2α´2,

ΠpZ1, ζq, Π
`

Z1,ΠpZ1, ζq
˘

,TζpZ1, Z1q and ΠΠpζ,Z1qZ1

in L8T C
3α´2 and

TζpZ1, Z1, Z1q, TζpZ2, Z1q, CpZ1, Z1, ζq, Π
`

Z2,ΠpZ1, ζq
˘

,

Π
´

Z1,Π
`

Z1,ΠpZ1, ζq
˘

¯

, C
`

Z1, Z1,ΠpZ1, ζq
˘

, CpZ1, Z1 ;Z1, ζq, CpZ2, Z1, ζq,

Π
Π
`

Z1,ΠpZ1,ζq
˘Z1, ΠΠpZ1,ζqZ2, TΠpZ1,ζqpZ1, Z1q,

in L8T C
4α´2. The study of the terms corresponding to rΠu2Z2 and rΠu3Z3, only add

the expressions

ΠζpZ2q, ΠpZ2, ζq, Π
`

Z1,ΠpZ2, ζq
˘

, CpZ1, Z2, ζq,

ΠΠpζ,Z2qZ1, ΠζpZ3q, ΠpZ3, ζq

to the above list; this is the list of the components of the enhanced distribution pζ.
One sees that they correspond to the terms needed to make sense of the products

Z1ζ ; Z2
1ζ, Z2ζ ; Z1Z2ζ, Z

3
1ζ, Z3ζ,

in accordance with the overall picture provided by the theory of regularity structures
– see Hairer and Pardoux work [20] for a study of equation (4.1) from the regularity
structure point of view, amongst other things. Here again, recall that to each product
in the theory of regularity structures are associated three terms in our paracontrolled
setting, so the reader should not be afraid to see so many terms in our enhancement
pζ of the noise ζ.

One can proceed, from that point on, to the analysis of equation (1.4) by the fixed
point method of section 4.3 by following almost verbatim the details given there.
The analysis of the symmetry group of this equation in the present low regularity
regime is done in exactly the same way as in section 4.4, and requires from the reader

to write the explicit formula for the function F
`

pu
˘

pζ by collecting its different pieces
from the above computations; we leave her/him the task of doing that.

5 Generalized KPZ equation

We provide in this section sufficiently many details on the study of the generalized
KPZ equation

pBt ` Lqu “ fpuqζ ` gpuqpBuq2, (5.1)

for the reader to fill in the gaps herself/himself. The noise ζ is here a one dimensional
space-time noise on r0, T sˆS1, almost surely of parabolic regularity pα´2q, and the
symbol B stands for the derivative with respect to the space variable. Such a kind
of equation appears in the study of the random motion of a string on a manifold
[19], where α ă 1

2 in that case ; its study in the setting of regularity structures
is the object of Bruned-Hairer-Zambotti’s forthcoming work [3]. The renormali-
sation of the 50ish terms that appear in the models for this equation motivated
the development of systematic renormalisation procedures. This is the content of
Bruned-Haire-Zambotti’s and Chandra-Hairer’s forthcoming works [3, 5].

Theorem 15. For 1
2 ă α, one can formulate the generalized KPZ equation (5.1) as

a well-posed differential equation within the setting of paracontrolled calculus.
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We show here how some elementary, and relatively short, computations allow for
the analysis of this equation within the paracontrolled calculus setting developped
here, in the mild case where 1

2 ă α ď 2
3 , and the second order paracontrolled calculus

suffices for the analysis. Similar computations can be done in the space-time white
noise case 2

5 ă α ă 1
2 , to the price of some heavier, unappealing, computations. We

do not touch upon the renormalisation problem, which is a different subject.

We set the scene in the second order paracontrolled setting of section 4.3, for some

generalized KPZ enhancement pζ of ζ to be identified from the analysis of equation
(5.1). The term pBuq2 is of parabolic regularity p2α´2q, more regular than the term
fpuqζ, of regularity α ´ 2. The main task in the analysis of the generalized KPZ
equation (5.1) is to put the term gpuqpBuq2 in the form

gpuqpBuq2 “ Πv2Z2 `Πv3Z3 ` p4α´ 2q (5.2)

for some reference distributions Zi in L8T C
iα´2, i P t2, 3u, depending only on an

enhancement pζ of ζ, and some functions v2, v3 in some Hölder space – typically Cβ,
for some β ă α, as in section 4.3. The analysis proceeds in two elementary steps.
To lighten notations, we do the computations here in the case where the regularity
exponent β equals α; only cosmetic changes are needed in the case where β ă α is
close enough to α.

Proof of theorem 15 – We provide a sketch of proof, living the details to the
reader; we proceed in two steps.

Step 1 – pBuq2. Given u with the second order paracontrolled structure (4.2),
one has

Bu “ rΠu1pBZ1q `

´

rΠBu1pZ1q ` rΠu1pBZ2q

¯

` p3α´ 1q,

so the only ill-defined terms in the product pBuq2 are the three terms
!

rΠu1pBZ1q

)2
,

!

rΠu1pBZ1q

)!

rΠBu1pZ1q

)

,
!

rΠu1pBZ1q

)!

rΠu2pBZ2q

)

.

We analyse in detail the worst term
!

rΠu1pBZ1q

)2
, of regularity p2α ´ 2q; the

two other, more regular, terms are easier to study. All the computations below
use the continuity results proved in section 3. We have
!

rΠu1pBZ1q

)2
“ 2Π

rΠu1 pBZ1q

´

rΠu1pBZ1q

¯

`Π
´

rΠu1pBZ1q, rΠu1pBZ1q

¯

“ 2Πu1

´

Π
rΠu1 pBZ1q

pBZ1q

¯

` 2T
rΠu1 pBZ1q

pu1, BZ1q

` u1Π
´

BZ1, rΠu1pBZ1q

¯

` C
´

u1, BZ1, rΠu1pBZ1q

¯

“ 2Πu2
1

´

rΠBZ1pBZ1q

¯

` 2R
`

u1 ;u1, BZ1 ; BZ1

˘

` 2T
rΠu1 pBZ1q

´

rΠu11Z1 ` p2αq ; BZ1

¯

` u2
1 ΠpBZ1, BZ1q ` 2u1Cpu1, BZ1, BZ1q ` p4α´ 2q

“ 2Πu2
1

´

rΠBZ1pBZ1q

¯

` 2Πu2
11

´

R
`

Z1 ;Z1, BZ1 ; BZ1

˘

¯

` p4α´ 2q

`Πu1u11

´

TBZ1pZ1 ; BZ1q

¯

` p4α´ 2q

` u2
1 ΠpBZ1, BZ1q ` 2Πu1u11CpZ1, BZ1, BZ1q,
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with

u2
1 ΠpBZ1, BZ1q “ Πu2

1

`

ΠpBZ1, BZ1q
˘

`ΠΠpBZ1,BZ1qpu
2
1q `Π

´

u2
1,ΠpBZ1, BZ1q

¯

“ Πu2
1

`

ΠpBZ1, BZ1q
˘

` 2Πu1u11

´

ΠΠpBZ1,BZ1qZ1 `Π
`

Z1,ΠpBZ1, BZ1q
˘

¯

` p4α´ 2q.

This computation shows what terms need to be considered as part of the en-

hanced distribution and that
!

rΠu1pBZ1q

)2
can indeed be written under the

form
!

rΠu1pBZ1q

)2
“ Π‚2Y2 `Π‚3Y3 ` p4α´ 2q. (5.3)

The very same kind of computations shows that we have in the end

pBuq2 “ Πu2
1

´

2ΠBZ1BZ1 `ΠpBZ1, BZ1q

¯

`Π‚3Y3 ` p4α´ 2q

“: Πu2
1
Y2 `Π‚3Y3 ` p4α´ 2q,

for some Yi in L8T C
3α´2 – and a definition of Y3 different from its definition in

equation (5.3).

Step 2 – gpuqpBuq2. We finally have the decomposition

gpuqpBuq2 “ Πgpuq

´

Πu2
1
Y2

¯

`ΠΠ
u2

1
Y2

`

gpuq
˘

`Π
´

gpuq,Π‚2Y2

¯

`Πgpuq‚3Y3

` p4α´ 2q

“ Πgpuqu2
1
Y2 `Πgpuq

´

ΠDpu2
1q
Y2

¯

`Πg1puqu3
1

´

ΠY2Z1 `ΠpZ1,Y2q

¯

`Πgpuq‚3Y3 ` p4α´ 2q

“ Πgpuqu2
1
Y2 `Π2gpuqu1u11

´

ΠDZ1Y2

¯

`Πg1puqu3
1

´

ΠY2Z1 `ΠpZ1,Y2q

¯

`Πgpuq‚3Y3 ` p4α´ 2q,

in the required form (5.2).
B

It is easy, although a bit tedious, to give from that point on an explicit description
of the space of enhanced distributions for equation (5.1), and prove its well-posed
character in the present second order paracontrolled setting. It is of fundamen-
tal interest that the solution map for the equation is a continuous solution of the
enhanced distribution and the sufficiently regular initial condition.

‚ It is elementary to describe the symmetry group of the generalized KPZ equa-
tion, in the present mild setting where α ą 1

2 . As in section 4.4, one can indeed

write the right hand side fpuqζ ` gpuqpBuq2 of the generalized KPZ equation under
the form

fpuqζ ` gpuqpBuq2 “ H
`

pu, ζ
˘

`K
`

pu
˘

pζ,

for some continuous functions H, of pu and ζ P L8T C
α´2, and a continuous function

K of pu and pζ that is linear with respect to pζ. Such a decomposition for the product
fpuqζ was given in section 4.4, and an elementary computations shows that one has

pBuq2 “ pXq ` u2
1ΠpBZ1, BZ1q ` 2pu1 ` Bu1qu11CpZ1, BZ1, BZ1q ` 2u1Bu1ΠpBZ1, Z1q

` 2u1u11CpZ1, Z1, BZ1q ` 2u2
1ΠpBZ1, BZ2q ` p4α´ 2q,
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with

pXq :“ 2Π
rΠu1 pBZ1q

´

rΠu1pBZ1q

¯

`Π
rΠu1 pBZ1q

´

rΠBu1pZ1q

¯

`Π
rΠBu1

pZ1q

´

rΠu1pBZ1q

¯

`Π
rΠu1 pBZ1q

´

rΠu2pBZ2q

¯

`Π
rΠu2 pBZ2q

´

rΠu1pBZ1q

¯

“ 2Π
rΠu1 pBZ1q

´

rΠu1pBZ1q

¯

` p3α´ 2q,

with p3α ´ 2q a continuous function of pu and ζ. Note that the term CpZ1, Z1, BZ1q

in the formula for pBuq2 has positive Hölder regularity, so it will be part of H
`

pu, ζ
˘

,
after multiplication by gpuq. Now, for the term pXq, we have

gpuqΠ
rΠu1 pBZ1q

´

rΠu1pBZ1q

¯

“ Πgpuq

´

Π
rΠu1 pBZ1q

`

rΠu1pBZ1q
˘

¯

`Π
Π

rΠu1 pBZ1q

`

rΠu1 pBZ1q

˘

`

gpuq
˘

` g1puqu1Π
´

Z1,Π
rΠu1 pBZ1q

`

rΠu1pBZ1q
˘

¯

` p4α´ 2q;

the first two paraproducts are continuous functions of pu and ζ, and, since 2α´ 1 is
positive,

g1puqu1Π
´

Z1,Π
rΠu1 pBZ1q

`

rΠu1pBZ1q
˘

¯

“ rΠu1pBZ1q g
1puqu1 Π

´

Z1, rΠu1pBZ1q

¯

` g1puqu1 C
´

rΠu1pBZ1q, Z1, rΠu1pBZ1q

¯

“ rΠu1pBZ1q g
1puqu1 Π

´

Z1, rΠu1pBZ1q

¯

` g1puqu3
1 CpBZ1, Z1, BZ1q ` p4α´ 2q

“

´

u1BZ1 ` p2α´ 1q
¯

g1puqu1

´

u1ΠpZ1, BZ1q ` p3α´ 1q
¯

` g1puqu3
1 CpBZ1, Z1, BZ1q

“ g1puqu3
1

´

pBZ1qΠpZ1, BZ1q ` CpBZ1, Z1, BZ1q

¯

``p4α´ 2q

for some continuous function p¨ ¨ ¨ q of pu and ζ. In the end, we have

K
`

pu
˘

pζ “ F
`

pu
˘

pζ ` gpuq
!

u2
1ΠpBZ1, BZ1q ` 2pu1 ` Bu1qu11CpZ1, BZ1, BZ1q

` 2u1Bu1ΠpBZ1, Z1q ` 2u2
1ΠpBZ1, BZ2q

)

` 2g1puqu3
1

´

pBZ1qΠpZ1, BZ1q ` CpBZ1, Z1, BZ1q

¯

,

with the function F that appears in the decomposition of fpuqζ given in lemma
9. Note that the additional terms that appear in this formula for K, compared to
the formula for F, are precisely those terms that are needed to make sense of the
products

pBZ1q
2, Z1 pBZ1q

2, pBZ1qpBZ2q, Z1 BZ1, Z
2
1 BZ1,

once again in accordance with the theory of regularity structures.

List the elements of pζ in non-decreasing order of regularity. Buiding on the con-
tinuity of the solution map for the generalized KPZ equation, one readily sees the
effect on the dynamics of a renormalisation procedure of the form

M : pζ ÞÑ T pζ ´ Ξ,

for some upper triangular constant matrix T , with a unit diagonal, and some possibly
space-time dependent renormalisation functions/constants Ξ. If ζε stands for a

regularized noise, with associated canonical enhancement pζε, and if M ε
pζε converges
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in probability to some limit element in the space of enhanced distributions for the
generalized KPZ equation (5.1), then the solution to the well-posed equation

pBt ` Lqu
ε “ fpuεqζε ` gpuεq

`

Buε
˘2
`Kpuεq

`

M ε ´ Id
˘

pζε

converges in probability to the first component of the solution to the generalized
KPZ equation constructed in the present third order paracontrolled setting. (The
different components of puε are all explicit functions of uε, which is why we abuse
slightly notations above and write Kpuεq instead of K

`

puε
˘

.)

A Details on the parabolic setting

For the reader’s convenience, we recall in this Appendix a number of notions/facts
introduced and studied in detail in our previous work [2], with the hope that this
will make the reading of the present work self-contained. We refer the reader to
[2] for the proofs of the different statements given here. We describe in section A.1
a class of operators with some cancellation property. Parabolic Hölder spaces are
described in section A.2, together with the fundamental Schauder estimates in this

scale of spaces. We introduce the pair
`

Π, rΠ
˘

of paraproducts in section A.3. The
statements given here are explicitly used in the proofs of the continuity results of
section 3, given in Appendix C.

We use the notations introduced in section 1.2 and assume the operator L astisfies
the assumption stated there. Recall in particular that we denote by e a generic
element of the parabolic space M.

A.1 Approximation operators

The use of paraproducts and other kind of singular operators involve the funda-
mental notion of approximation operators, of which we discuss some aspects in this
section.

The following parabolic Gaussian-like kernels pGtq0ătď1 will be used as reference
kernels. For 0 ă t ď 1 and σ ď τ , set

Gt
`

pτ, xq, pσ, yq
˘

:“ ν
´

BM
`

pτ, xq,
?
t
˘

¯´1
˜

1` c
ρ
`

pτ, xq, pσ, yq
˘2

t

¸´`1

and set Gt ” 0 if τ ď σ. We do not emphasize the dependence of G on the positive
constant c in the above definition, and we shall allow ourselves to abuse notations
and write Gt for two functions corresponding to two different values of that constant.
So we have for instance, for s, t P p0, 1q, the estimate

ż

M
Gt
`

pτ, xq, pσ, yq
˘

Gs
`

pσ, yq, pλ, zq
˘

νpdσdyq À Gt`s
`

pτ, xq, pλ, zq
˘

. (A.1)

Presently, note that a large enough choice of constant `1 ensures that we have

sup
tPp0,1s

sup
pτ,xqPM

ż

M
Gt
`

pτ, xq, pσ, yq
˘

νpdσdyq ă 8,

so any linear operator on M, with a kernel pointwisely bounded by some Gt is
bounded in Lppνq for every p P r1,8s.
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Definition. We shall denote throughout by G the set of families pPtq0ătď1 of linear
operators on M with kernels pointwisely bounded by

ˇ

ˇ

ˇ
KPtpe, e

1q

ˇ

ˇ

ˇ
À Gtpe, e1q.

Given a real-valued integrable function φ on R, set

φtp¨q :“
1

t
φ
´

¨

t

¯

;

the family pφtq0ătď1 is uniformly bounded in L1pRq. We also define the “convolution”
operator φ‹ associated with φ via the formula

φ‹pfqpτq :“

ż 8

0
φpτ ´ σqfpσqdσ.

Note that if φ has support in R`, then the operator φ‹ has a kernel supported on
the same set

 

pσ, τq ;σ ď τ
(

as our Gaussian-like kernel. Moreover, we let the reader

check that if φ1, φ2 are two L1-functions with φ2 supported on r0,8q then
`

φ1 ˚ φ2

˘‹
“ φ‹1 ˝ φ

‹
2,

where φ1 ˚ φ2 stand for the usual convolution of φ1 and φ2.
Given an integer b ě 1, we define a special family of operators on L2pMq setting

Q
pbq
t :“ γ´1

b ptLq
be´tL and ´ tBtP

pbq
t “ Q

pbq
t ,

with γb :“ pb´1q!; so P
pbq
t is an operator of the form pbptLqe

´tL, for some polynomial
pb of degree b´ 1, with value 1 in 0. Under the assumptions on L stated in section

1.2, the operators P
pbq
t and Q

pbq
t both satisfy the Gaussian regularity estimates

ˇ

ˇ

ˇ

ˇ

K
t
|I|
2 VIR

px, yq

ˇ

ˇ

ˇ

ˇ

_

ˇ

ˇ

ˇ

ˇ

K
t
|I|
2 RVI

px, yq

ˇ

ˇ

ˇ

ˇ

À
1

µ
`

Bpx,
?
tq
˘ e´c

dpx,yq2

t ,

with R standing here for P
pbq
t or Q

pbq
t , as well as the pointwise regularity estimates.

For dpx, zq ď
?
t, we have
ˇ

ˇ

ˇ
Kpx, yq ´Kpz, yq

ˇ

ˇ

ˇ
À
dpy, zq
?
t

1

V
`

x,
?
t
˘e´c

dpx,yq2

t ,

where K is the kernel of either t
|I|
2 VIR or t

|I|
2 RVI .

The parameters b and `1 are chosen large enough and fixed once and for all – see
[2] to see how this choice needs to be done. The reader should just keep in mind
that the higher b and `1 are, the higher order of regularity we can deal with. In
our applications, we need all the objects to have a regularity order in the range
p´3, 3q, so b and `1 are chosen big enough to allow for this range in all the following
continuities result.

Definition. Let an integer a P J0, 2bK be given. The following collection of families
of operators is called the standard collection of operators with cancellation
of order a, denoted by StGCa. It is made up of all the space-time operators

´

`

t
|J|
2 VJ

˘

ptLq
a´|J|´2k

2 P
pcq
t bm‹t

¯

0ătď1

where k is an integer with 2k`|J | ď a, and c P J1, bK, and m is any smooth function
supported on

“

1
2 , 2

‰

such that
ż

τ impτq dτ “ 0, (A.2)
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for all 0 ď i ď k ´ 1, with the first b derivatives bounded by 1. These operators
are uniformly bounded in LppMq for every p P r1,8s, as functions of the scaling
parameter t. We also set

StGCr0,2bs :“
ď

0ďaď2b

StGCa.

The above mentioned cancellation effect is quantified by the property (A.3) stated
in Proposition 16 below; note here that it makes sense at an intuitive level to say

that L
a´|J|´2k

2 encodes cancellation in the space-variable of order a´ |J | ´ 2k, that
VJ encodes a cancellation in space of order |J | and that the moment condition (A.2)
encodes a cancellation property in the time-variable of order k for the convolution
operator m‹t . Since we are in the parabolic scaling, a cancellation of order k in time

corresponds to a cancellation of order 2k in space, so that VJL
a´|J|´2k

2 P
pcq
t bm‹t has

a space-time cancellation property of order a. We give one more definition before
stating the cancellation property.

Definition. Given an operator Q :“ VI φpLq, with |I| ě 1, defined by functional cal-
culus from some appropriate function φ, we write Q‚ for the formal dual operator

Q‚ :“ φpLqVI .

For I “ H, and Q “ φpLq, we set Q‚ :“ Q. For an operator Q as above we set
`

Qbm‹
˘‚

:“ Q‚ bm‹.

Note that the above definition is not related to any classical notion of duality and
let emphasize that we do not assume that L is self-adjoint in L2pµq. This notation
is only used to indicate that a Qt operator , resp. a Q‚t operator, can be composed
on the right, resp. on the left, by another operator ψpLq, for a suitable function ψ,
due to the functional calculus on L.

Proposition 16. Consider Q1 P StGCa1 and Q2 P StGCa2 two standard collections
with cancellation, and set a :“ minpa1, a2q. Then for every s, t P p0, 1s, the compo-
sition Q1

s ˝Q2‚
t has a kernel pointwisely bounded by

ˇ

ˇ

ˇ
KQ1

s˝Q2‚
t
pe, e1q

ˇ

ˇ

ˇ
À

ˆ

ts

ps` tq2

˙
a
2

Gt`spe, e1q. (A.3)

The above mentioned orthogonality property of standard operators with cancel-

lation is encoded in the factor
´

ts
ps`tq2

¯
a
2

that appears in the above estimate. This

factor is small as soon as s or t is small compared to the other.

Definition. Let 0 ď a ď 2b be an integer. We define the subset GCa of G of families
of operators with the cancellation property of order a as the set of elements
Q of G with the following cancellation property. For every 0 ă s, t ď 1 and every

standard family S P StGCa
1

, with a1 P Ja, 2bK, the operator Qt ˝ S‚s has a kernel
pointwisely bounded by

ˇ

ˇ

ˇ
KQt˝S‚s pe, e

1q

ˇ

ˇ

ˇ
À

ˆ

st

ps` tq2

˙
a
2

Gt`spe, e1q. (A.4)

We introduced above the operators Q
pbq
t and P

pbq
t acting on functions/distributions

on M ; we now their parabolic counterpart. Choose arbitrarily a smooth real-valued
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function ϕ on R, with support in
“

1
2 , 2

‰

, unit integral and such that for every integer
k “ 1, .., b

ż

τkϕpτq dτ “ 0.

Set

Ppbqt :“ P
pbq
t b ϕ‹t and Qpbqt :“ ´tBtPpbqt .

An easy computation yields that

Qpbqt “ Q
pbq
t b ϕ‹t ` P

pbq
t b ψt

where ψpσq “ ϕpσq`σϕ1pσq. Note that, from its very definition, a parabolic operator

Qpbqt belongs at least to GC2, for b ě 2. Note also that due to the normalization of
ϕ, then for every f P LppRq supported on r0,8q then we have the Lp convergence

ϕ‹t pfq ÝÝÑ
tÑ0

f.

So, the operators Pt weakly tend to the identity on Lp0pMq (the set of functions
f P LppMq with time-support included in r0,8q), p P r1,8q, and the set of functions
f P C0pMq with time-support included in r0,8q, as t goes to 0; so we have the
following Calderón reproducing formula. For every continuous function f P
L8pMq with time-support in r0,8q, then

f “

ż 1

0
Qpbqt pfq

dt

t
` Ppbq1 pfq. (A.5)

Noting that the measure dt
t gives unit mass to intervals of the form

“

2´i´1, 2´i
‰

, and

considering the operator Qpbqt as a kind of multiplier roughly localized at frequencies

of size t´
1
2 , Calderón’s formula appears as nothing else than a continuous time

analogue of the Paley-Littlewood decomposition of f , with dt
t in the role of the

counting measure.

A.2 Parabolic Hölder spaces and Schauder estimates

We recall in this section the definitions and basic properties of the space and
space-time weighted Hölder spaces, with possibly negative regularity index. We also
recall the fundamental regularization properties of the heat operator, quantified by
Schauder estimates.

Let us start recalling the following well-known facts about Hölder space on M ,
and single out a good class of weights on M . Given 0 ă α ď 1, the classical metric
Hölder space Hα is defined as the set of real-valued functions f on M with finite
Hα-norm, defined by the formula

}f}Hα :“
›

›f
›

›

L8pMq
` sup
x‰yPM

ˇ

ˇfpxq ´ fpyq
ˇ

ˇ

dpx, yqα
ă 8.

Definition. For α P p´3, 3q, define Cα :“ CαpMq as the closure of the set of bounded
and continuous functions for Cα-norm, defined by the formula

}f}Cα :“
›

›e´Lf
›

›

L8pMq
` sup

0ătď1
t´

α
2

›

›

›
Q
paq
t f

›

›

›

L8pMq
;

this norm does not depend on the integer a ą |α|
2 , and the two spaces Hα and Cα

coincide and have equivalent norms when 0 ă α ă 1 – see for instance [1].
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These notions have parabolic counterparts which we now introduce. Recall wa
work with the parabolic space M “ r0, T s ˆM , for a finite time horizon; the in-
troduction of a time weight in the next definition thus has no effect on the space
involved, nor on its topology. Its introduction happens however to be a convenient
freedom which allows to simplify a number of arguments. Let then a positive pa-
rameter κ be given and denote by w the weight

wpτq :“ eκτ . (A.6)

For 0 ă α ď 1, the metric parabolic Hölder space Hα “ HαpMq is defined as the
set of all functions on M with finite Hα-norm, defined by the formula

}f}Hα :“
›

›w´1f
›

›

L8pMq
` sup

0ăρppτ,xq,pσ,yqqď1; τěσ

|fpτ, xq ´ fpσ, yq|

w´1pτq ρ
`

pτ, xq, pσ, yq
˘α .

As in the above space setting one can recast this definition in a more functional
setting, using the parabolic standard operators. A set of distributions was introduced
in [2], whose precise definition is irrelevant here.

Definition. For α P p´3, 3q, we define the parabolic Hölder space Cα :“ CαpMq as
the closure, in the set of distributions, of the set of bounded and continuous functions
on M for the Cα-norm, defined by

}f}Cα :“ sup
QPSOk
0ďkď2b

›

›w´1Q1pfq
›

›

L8pMq
` sup

QPSOk
|α|ăkď2b

sup
0ătď1

t´
α
2

›

›w´1Qtpfq
›

›

L8pMq
.

We write Cw if we want to emphasize the dependence of the norm on w. The
following result was proved in [2] building on Calderón’s formula (A.5).

Proposition 17. Given α P p0, 2q, set

Eα :“
´

Cα{2τ L8x

¯

X

´

L8τ C
α
x

¯

,

and endow this space with its natural norm. Then Eα is continuously embedded into
Cα. Furthermore, if α P p0, 1q, the spaces Eα, Cα and Hα are equal, with equivalent
norms.

The weighted version
´

L8τ C
α
x

¯

w
of L8τ C

α
x is the same space, equiped with the

norm

}f}´
L8τ C

α
x

¯

w

:“ sup
0ďτďT

e´κτ
›

›fpτ, ¨q
›

›

Cα
.

We use in the body of the work the following regularization properties of the heat
operator associated with L – it is proved under this form in section 3.4 of [2]. This
property is used crucially in the fixed point argument in the resolution process of
singular PDEs in our paracontrolled setting.

Theorem 18 (Schauder estimates). For any choice of parameters β and ε ą 0,
such that ´2` 2ε ă β ă 0, we have

›

›Rpvq
›

›

Cβ`2´2a´2ε
w

ÀT κ
´ε
›

›v
›

›
`

L8T C
β
x

˘

w

.

Before turning to the definition of an intertwined pair of parabolic paraproducts
we close this section with two other useful continuity properties involving the Hölder
spaces Cσω – recall the manifold M is compact.



46

Proposition 19. Given α P p0, 1q, a space-time weight ω, some integer a ě 0 and a
standard family P P StGCa, there exists a constant c depending only on the weight
ω, such that

ωpτq´1
ˇ

ˇ

ˇ

`

Ptf
˘

peq ´
`

Psf
˘

pe1q
ˇ

ˇ

ˇ
À

`

s` t` ρpe, e1q2
˘
α
2
›

›f
›

›

Cαω
,

uniformly in s, t P p0, 1s and e “ pτ, xq and e1 “ pσ, yq PM, with τ ě σ.

A.3 Parabolic paraproducts

We give a quick presentation in this subsection of the pair of intertwined para-
products introduced in [2], following the semigroup approach developed first in [1].
The starting point for the introduction of the operator Π is Calderón’s reproducing
formula (A.5). Using iteratively the Leibniz rule for the differentiation operators Vi
or Bτ , we have the following decomposition

fg “
ÿ

Ib

aI,Jk,`

ż 1

0

´

AI,J
k,` pf, gq `AI,J

k,` pg, fq
¯ dt

t
`
ÿ

Ib

bI,Jk,`

ż 1

0
BI,Jk,` pf, gq

dt

t
,

where

‚ Ib is the set of all tuples pI, J, k, `q with the tuples I, J and the integers k, `
satisfying the constraint

|I| ` |J |

2
` k ` ` “

b

2
;

‚ aI,Jk,` , b
I,J
k,` are bounded sequences of numerical coefficients;

‚ for pI, J, k, `q P Ib, AI,J
k,` pf, gq has the form

AI,J
k,` pf, gq :“ Ppbqt

´

t
|I|
2
`kVIB

k
τ

¯´

Spb{2qt f ¨
`

t
|J|
2
``VJB

`
τ

˘

Ppbqt g
¯

with Spb{2q P GCb{2;

‚ for pI, J, k, `q P Ib, BI,Jk,` pf, gq has the form

BI,Jk,` pf, gq :“ Spb{2qt

´!

`

t
|I|
2
`kVIB

k
τ

˘

Ppbqt f
)

¨

!

`

t
|J|
2
``VJB

`
τ

˘

Ppbqt g
)¯

with Spb{2q P GCb{2.

Definition. Given f in
Ť

sPp0,1q Cs and g P L8pMq, we define the paraproduct Π
pbq
g f

by the formula

Πpbqg f :“

ż 1

0

#

ÿ

Ib; |I|2 `ką
b
4

aI,Jk,` A
I,J
k,` pf, gq `

ÿ

Ib; |I|2 `ką
b
4

bI,Jk,` B
I,J
k,` pf, gq

+

dt

t
,

and the resonant term Πpbqpf, gq by the formula

Πpbqpf, gq :“
ż 1

0

#

ÿ

Ib; |I|2 `kď
b
4

aI,Jk,`

´

AI,J
k,` pf, gq `AI,J

k,` pg, fq
¯

`
ÿ

Ib; |I|2 `k“
|J|
2
``“ b

4

bI,Jk,` B
I,J
k,` pf, gq

+

dt

t
.
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With these notations, Calderón’s formula becomes

fg “ Πpbqg pfq `Π
pbq
f pgq `Πpbqpf, gq `∆´1pf, gq

with the “low-frequency part”

∆´1pf, gq :“ Ppbq1

´

Ppbq1 f ¨ Ppbq1 g
¯

.

If b is chosen large enough, then all the operators involved in the paraproduct
and resonant terms have a kernel pointwisely bounded by a kernel Gt at the right
scaling. Moreover,

(a) the paraproduct term Π
pbq
g pfq is a finite linear combination of operators of

the form
ż 1

0
Q1‚
t

´

Q2
t f ¨ P1

t g
¯ dt

t

with Q1,Q2 P StGC
b
4 , and P1 P StGC,

(b) the resonant term Πpbqpf, gq is a finite linear combination of operators of the
form

ż 1

0
P1
t

´

Q1
t f ¨Q2

t g
¯ dt

t

with Q1,Q2 P StGC
b
4 and P1 P StGC.

We invite the reader to see what happens of all this when working with in the

flat torus with its associated Laplacian. Note also that Π
pbq
f p1q “ Πpbqpf,1q “ 0, and

that we have the identity

Π
pbq
1 pfq “ f ´ Ppbq1 Ppbq1 f,

as a consequence of our choice of the renormalizing constant. Therefore the para-
product with the constant function 1 is equal to the identity operator, up to the

strongly regularizing operator Ppbq1 Ppbq1 . The regularity properties of the paraprod-
uct and resonant operators can be described as follows; it behaves as it classical,
Fourier-based, counterpart (2.1).

Proposition 20. (a) For every real-valued regularity exponent α, β, and every
positive regularity exponent γ, we have

›

›∆´1pf, gq
›

›

Cγ À }f}Cα}g}Cβ

for every f P Cα and g P Cβ.

(b) For every α P p´3, 3q and f P Cα, we have
›

›

›
Πpbqg pfq

›

›

›

Cα
À

›

›g
›

›

8
}f}Cα

for every g P L8, and
›

›

›
Πpbqg pfq

›

›

›

Cα`β
À }g}Cβ}f}Cα

for every g P Cβ with β ă 0 and α` β P p´3, 3q.

(c) For every α, β P p´8, 3q with α` β ą 0, we have the continuity estimate
›

›

›
Πpbqpf, gq

›

›

›

Cα`β
À }f}Cα}g}Cβ

for every f P Cα and g P Cβ.
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Definition. We define a modified paraproduct rΠpbq setting

rΠpbqg pfq :“ R
´

Πpbqg
`

Lf
˘

¯

.

The next proposition shows that if one chooses the parameters `1 that appears
in the reference kernels Gt, and the exponent b in the definition of the paraproduct

large enough, then the modified paraproduct rΠ
pbq
g p¨q has the same algebraic/analytic

properties as Π
pbq
g p¨q.

Proposition. ‚ For a large enough choice of constants `1 and b, the modified

paraproduct rΠgf is a finite linear combination of operators of the form
ż 1

0
Q1‚
t

´

Q2
t f ¨ P1

t g
¯ dt

t

with Q1 P GC
b
8
´2, Q2 P StGC

b
4 and P1 P StGC.

‚ For every α P p´3, 3q and ε P p0, 1q with α´ ε P p´3, 3q and f P Cα, we have
›

›

›

rΠpbqg pfq
›

›

›

Cα´εw

À κ´ε
›

›w´1g
›

›

8
}f}Cα ,

for every g P L8.

Note that the norm }f}Cα above has no weight. Note here the normalization
identity

rΠ
pbq
1 f “ f ´RPpbq1 Ppbq1 pLfq

for every distribution in f P S 1o; it reduces to

rΠ
pbq
1 f “ f ´ Ppbq1 Ppbq1 pfq

if fˇ
ˇτ“0

“ 0.

Following the definition of the inner difference operator D given in subsection
3.2, we extend it to a parabolic versionby defining D

`

“ De1
˘

by the formula
ĳ

M2

`

Df
˘

pe1qgpe1q νpdeqνpde1q :“

ĳ

M2

`

fpe1q ´ fpeq
˘

gpeq νpdeqνpde1q;

with this notation, the crucial motivating relation

Πj

´

rΠapgq
¯

´Πfapgq “ Πf

´

rΠDapgq
¯

holds indeed.

Last, we prove an elementary property of the modified paraproduct that pro-
vides some pointwise information on the solutions to singular PDEs constructed via
paracontrolled calculus.

Proposition 21. Let α be a positive regularity exponent, and let u, v, Z P Cα be given,
with Zp0, ¨q “ 0. Assume that

u´ rΠvZ P C2α,

and define β :“ minp2α, 1q. If α ‰ 1
2 , we have

ˇ

ˇupeq ´ upe1q ´ vpeq
`

Zpeq ´ Zpe1q
ˇ

ˇ À ρpe, e1qβ,
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uniformly in e, e1 PM with ρpe, e1q ď 1. If α “ 1
2 , we have a logarithmic loss

ˇ

ˇupeq ´ upe1q ´ vpeq
`

Zpeq ´ Zpe1q
ˇ

ˇ À ρpe, e1q log
´

1` ρpe, e1q´1
¯

.

Proof – Due to the assumption, one has
ˇ

ˇupeq ´ upe1q ´ vpeq
`

Zpeq ´ Zpe1q
ˇ

ˇ À ρpe, e1qβ ` p‹q

with

p‹q :“
ˇ

ˇ

ˇ

´

rΠvZ
¯

peq ´
´

rΠvZ
¯

pe1q ´ vpeq
`

Zpeq ´ Zpe1q
ˇ

ˇ

ˇ
.

Using Calderón reproducing formula, or the normalization which yields

rΠ1Z “ Z

since Zp0, ¨q “ 0, we see that p‹q is equal to
ˇ

ˇ

ˇ

ˇ

ż 1

0
Q‚t

“

QtZPtv
‰

peq ´Q‚t
“

QtZPtv
‰

pe1q ´ vpeqQ‚t
“

QtZ
‰

peq ` vpeqQ‚t
“

QtZ
‰

pe1q
dt

t

ˇ

ˇ

ˇ

ˇ

,

so

p‹q À

ż 1

0

ˇ

ˇ

ˇ

ˇ

ż

`

KQ‚t pe, aq ´KQ‚t pe
1, aq

˘

QtZpaq
`

Ptvpaq ´ vpeq
˘

νpdaq

ˇ

ˇ

ˇ

ˇ

dt

t
.

Using the regularity estimates on v and on the kernel of the approximation
operators, one sees that

p‹q À }v}Cα

ż 1

0

ż

min

"

1,
ρpe, e1q
?
t

*

Gtpe, aq |QtZpaq|
`

t` ρpa, eq2
˘β{4

νpdaq
dt

t

À }v}Cα}Z}Cα

ż ρ2

0
tp2α`βq{4

dt

t
` }v}Cα}Z}Cα

ż 1

ρ2

ż

ρpe, e1q
?
t

tp2α`βq{4
dt

t

À }v}Cα}Z}Cαρpe, e
1qβ,

which concludes the proof.
B

The next proposition gets its flavour from the remark that a function defined up
to some remainder by a paraproduct may have different derivatives. Consider for
example real-valued functions on the interval p0, 1q, and take Z “ t. A smooth
function u of time, seen as an element of Cα, with 0 ă α ă 1, satisfies both

u “ Π0Z ` p2αq

and
u “ Π1Z ` p2αq “ Z ` p2αq,

since Z itself can go inside the remainder p2αq. In other terms, the derivative of
a paracontrolled function is not generically determined by the function itself. This
happens, however, if the reference function Z is sufficiently ’wiggly’. Let a positive
index β be given. Following Friz and Shekar in their study of controlled paths [12],
we say that a parabolic function Z is β-truly rough at space-time point e if

lim sup
e1Ñe

ˇ

ˇZpe1q ´ Zpeq
ˇ

ˇ

dpe1, eqβ
“ 8.

It is said to be β-truly rough if it is β-truly rough at a dense set of points in
M. The following result stating that the derivative of a paracontrolled function is
determined by the function itself if the reference function is truly rough comes as a
direct consequence of proposition 21.
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Corollary. Let α ă β ď 2α be positive exponents. Let Z P Cα be a β-truly rough
function such that Zp0, ¨q “ 0, and let also u, v be elements of Cα such that

u´ rΠvZ P C2α.

Then v “ 0, if u “ 0.

It is elementary to proceed as in [12] and check that if ζ stands for a d-dimension
space white noise in M , for d “ 2 or 3, then Rpζq is almost surely p4 ´ dq´-truly
rough. A sufficient condition for a function for being truly rough is provided by
Hairer-Pillai’s notion of θ-rough function [21]; see for instance section 6.4 of Friz-
Hairer’s lecture notes [11]. It may be interesting to note that Norris lemma holds in
that case, giving a control of the L8-norm of v in terms of the modulus of continuity

of u and the 2α-norm of
`

u´rΠvZ
˘

. The proof that Brownian motion is Hölder rough
given in section 6.5 of [11] shows that Z “ Rpζq is Hölder rough if ζ stands for space
white noise in the flat torus, with L its associated Laplace operator. We shall show
elsewhere that this result also holds true in our closed manifold setting, as expected.

B Taylor expansion formula

We give in this section a detailed and rigorous proof of Theorem 1. The parameter
b is fixed, and we note Π for Πpbq.

Theorem 22 (Higher order Taylor expansion). Let f : R ÞÑ R be a C4 function,
and let u be a real-valued and Cα function on M, with α P p0, 1q. Then

fpuq “ Πf 1puqpuq `
1

2

!

Πf p2qpuqpu
2q ´ 2Πf p2qpuqupuq

)

`
1

3!

!

Πf p3qpuqpu
3q ´ 3Πf p3qpuqupu

2q ` 3Πf p3qpuqu2puq
)

` fpuq7
(B.1)

for some remainder fpuq7 P C4α. If moreover f is of class C5, then the remainder
term fpuq7 is locally-Lipschitz with respect to u, in the sense that

›

›fpuq7 ´ fpvq7
›

›

C4α À
`

1` }u}Cα ` }v}Cα
˘4
}u´ v}Cα .

Proof – Let us give a detailed proof of the third order expansion, that claims that

p‹q :“ fpuq ´Πf 1puqpuq ´
1

2

!

Πf p2qpuqpu
2q ´ 2Πf p2qpuqupuq

)

is a 3α-Hölder function. We invite the reader to follow what comes next in the
light of the proof given in section 2 in the time-independent, flat, model setting
of the torus.

As, by definition, the paraproduct operator Πgp¨q is a finite sum of different
terms, each of them of the form

A1
gp¨q :“

ż 1

0
Q1‚
t

´

Q2
t p¨qP1

t pgq
¯ dt

t
,

with Q1,Q2 at least to StGC3, it is sufficient to prove that the following function

p‹q :“ fpuq´

ż 1

0

„

Q1‚
t

´

Q2
t puqP1

t

`

f 1puq
˘

¯

`
1

2
Q1‚
t

´

Q2
t pu

2qP1
t

`

f p2qpuq
˘

¯

´Q1‚
t

´

Q2
t puqP1

t

`

f p2qpuqu
˘

¯ı dt

t
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is an element of C3α. Using Calderón’s reproducing formula together with the
normalization of the paraproduct, we have

fpuq »

ż 1

0
Q1‚
t Q2

t

`

fpuqP1
t p1q

˘ dt

t

up to a remainder quantity corresponding to the low frequency part that is as
smooth as we want. So one can write p‹q under the form

p‹q “

ż 1

0
Q1‚
t pεtq

dt

t
, (B.2)

with

εt :“Q2
t

´

fpuq
¯

P1
t p1q ´Q2

t puqP1
t

´

f 1puq
¯

´
1

2
Q2
t pu

2qP1
t

´

f p2qpuq
¯

`Q2
t puqP1

t

´

f p2qpuqu
¯

.

Due to the orthogonality/cancellation property of the operators Q1‚
t , it suffices

for us to get an L8 control of εt. Using the kernel representation of the different
operators, we have for every e PM

εtpeq “

ĳ

M2

KQ2
t
pe, e1qKP1

t
pe, e2q

!

f
`

upe1q
˘

´ upe1qf 1
`

upe2q
˘

´
1

2
u2pe1qf p2q

`

upe2q
˘

` upe1qf p2q
`

upe2q
˘

upe2q
)

νpde1qνpde2q

Note also that we have from the usual Tayor formula for f

f
`

upe1q
˘

´ upe1qf 1
`

upe2q
˘

´
1

2
u2pe1qf p2q

`

upe2q
˘

` upe1qf p2q
`

upe2q
˘

upe2q

“

¡

r0,1s3

f p3q
´

upe2q ` αβγ
`

upe1q ´ upe2q
˘

¯

βγ
`

upe1q ´ upe2q
˘3
dα dβ dγ

` fpupe2qq ` upe2qf 1
`

upe2q
˘

`
1

2
u2pe2qf p2q

`

upe2q
˘

.

When we integrate against KQ2
t
pe, e1qKP1

t
pe, e2q a quantity depending only in

e2 has no contribution, since the latter kernel satisfies a cancellation property
along the e1-variable; so we have exactly

εtpeq “

ĳ

M2

KQ2
t
pe, e1qKP1

t
pe, e2q

¨

˚

˝

¡

r0,1s3

f p3q
´

upe2q ` αβγ
`

upe1q ´ upe2q
˘

¯

βγ
`

upe1q ´ upe2q
˘3
dαdβdγ

˛

‹

‚

νpde1qνpde2q.

Since KQ2
t

and KP1
t

are both pointwisely dominated by the Gaussian kernel Gt,
and using the fact that f p3q is bounded on the range of u, we obtain the uniform
control

ˇ

ˇεtpeq
ˇ

ˇ À

ĳ

M2

Gtpe, e1qGtpe, e2q
`

upe1q ´ upe2q
˘3
νpde1qνpde2q

À }u}3Cα t
3α{2,
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from which the fact that p‹q belongs to C3α follows from (B.2). We used for that
purpose the identity

upe1q ´ upe2q “
`

upe1q ´ upeq
˘

`
`

upeq ´ upe2q
˘

,

together with Proposition 17 on the characterization of parabolic regularity in
terms of increments, to see that

ˇ

ˇupe1q ´ upe2q
ˇ

ˇ À
`

dpe1, eq ` dpe2, eq
˘α
}f}Cα .

The fourth order expansion of the statement is proved by a very similar reasoning
left to the reader.

B

C Continuity results

Recall the definitions of the corrector

Cpf, g;hq :“ Π
´

rΠf pgq, h
¯

´ f Πpg, uq,

and the (modified) commutators

Dpf, g;hq “ Π
´

rΠf pgq, h
¯

´Πf

´

Πpg, hq
¯

,

Tupg, fq :“ Πu

´

rΠgpfq
¯

´Πg pΠupfqq ,

and their iterates, introduced in section 3; they are initially defined on the space of
smooth functions. We prove in this last Appendix the continuity results on these
operators stated in section 3.

C.1 Boundedness of commutators/correctors

We start by looking at the case of the operator T.

Proposition 23. ‚ Let α, β, γ be Hölder regularity exponents with α P p´3, 3q, β P
p0, 1q and γ P p´8, 0q. Then if

α` β ă 3, and δ :“ α` β ` γ P p´3, 3q,

we have
›

›Tupg, fq
›

›

Cδ À }f}Cα }g}Cβ }u}Cγ , (C.1)

for every f P Cα, g P Cβ and u P Cγ; so the modified commutator on para-
products extends naturally into a trilinear continuous map from CαˆCβˆCγ
to Cδω.

‚ If γ “ 0 then the product ug has a sense for u P L8pMq and g P Cβ, and we
have

›

›Rpu, g; fq
›

›

Cα`β À }f}Cα }g}Cβ }u}L8 . (C.2)

Proof – Recall that the operators Π
pbq
g p¨q, respectively rΠ

pbq
g p¨q, are given by a finite

sum of operators of the form

A1
gp¨q :“

ż 1

0
Q1‚
t

´

Q2
t p¨qP1

t pgq
¯ dt

t
,
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respectively

rA1
gp¨q :“

ż 1

0

rQ1‚
t

´

rQ2
t p¨qP1

t pgq
¯ dt

t
,

where Q1,Q2, rQ2 belong at least to StGC3 and rQ1 is an element of GC3. We

describe similarly the operator Π
pbq
u p¨q as a finite sum of operators of the form

A2
up¨q :“

ż 1

0
Q3‚
t

´

Q4
t p¨qP2

t puq
¯ dt

t
.

Thus, we need to study a generic modified commutator

A2
u

´

rA1
gpfq

¯

´A1
g

`

A2
upfq

˘

,

and introduce for that purpose the intermediate quantity

Epf, g, uq :“

ż 1

0
Q3‚
s

´

Q4
spfq ¨ P1

s pgq ¨ P2
s puq

¯ ds

s
.

Note here that due to the normalization Π1 » Id, up to some strongly regular-
izing operator, there is no loss of generality in assuming that

ż 1

0

rQ1‚
t

rQ2
t

dt

t
“

ż 1

0
Q1‚
t Q2

t

dt

t
“

ż 1

0
Q3‚
t Q4

t

dt

t
“ Id. (C.3)

Step 1. Study of A2
u

´

rA1
gpfq

¯

´ Epf, g, uq. We shall use a family Q in StGCa,

for some a ą |δ|, to control the Hölder norm of that quantity. By definition,

and using the normalization (C.3), the quantity Qr

´

A2
u

´

rA1
gpfq

¯

´ Epf, g, uq
¯

is, for every r P p0, 1q, equal to
ż 1

0

ż 1

0

QrQ3‚
s

!

Q4
s
rQ1‚
t

´

rQ2
t pfqP1

t pgq
¯

¨ P2
s puq

) ds dt

st
´

ż 1

0

QrQ3‚
s

´

Q4
spfq ¨ P1

s pgq ¨ P2
s puq

¯ ds

s

“

ż 1

0

ż 1

0

QrQ3‚
s

!

Q4
s
rQ1‚
t

´

rQ2
t pfq

`

P1
t pgq ´ P1

s pgq
˘

¯

¨ P2
s puq

) dsdt

st
,

where in the last line the variable of P1
s pgq is that of Q3‚

s , and so it is frozen

through the action of rQ4
sQ1‚

t . Then using that g P Cβ with β P p0, 1q, we know
by Proposition 19 that we have, for τ ě σ,

ˇ

ˇ

ˇ

`

P1
s g
˘

px, τq ´
`

P1
t g
˘

py, σq
ˇ

ˇ

ˇ
À

´

s` t` ρ
`

px, τq, py, σq
˘2
¯

β
2
}g}Cβ .

Note that it follows from equation (A.1) that the kernel of Q4
s
rQ˚1
t is pointwisely

bounded by Gt`s, and allowing different constants in the definition of G, we have

Gt`s
`

px, τq, py, σq
˘ `

s` t` dpx, yq2
˘

β
2 À ps` tq

β
2 Gt`s

`

px, τq, py, σq
˘

. (C.4)

So using the cancellation property of the operators Q, resp. Qi and rQi, at an
order no less than a, resp. 3, we deduce that
›

›

›
Qr

´

A2
u

´

rA1
gpfq

¯

´ Epf, g, uq
¯›

›

›

8

À }f}Cα}g}Cβ}u}Cγ

ż 1

0

ż 1

0

ˆ

sr

ps` rq2

˙
a
2
ˆ

st

ps` tq2

˙
3
2

t
α
2 ps` tq

β
2 s

γ
2
ds dt

st
,
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where we used that γ is negative to control P2
s puq. The integral over t P p0, 1q

can be computed since α ą ´3 and α` β ă 3, and we have
›

›

›
Qr

´

A2
u

´

rA1
gpfq

¯

´ Epf, g, uq
¯
›

›

›

8

À }f}Cα}g}Cβ}u}Cγ

ż 1

0

ż 1

0

ˆ

sr

ps` rq2

˙
a
2

s
δ
2
ds

s

À }f}Cα}g}Cβ}u}Cγr
δ
2 ,

uniformly in r P p0, 1q because |a| ą δ. That concludes the estimate for the
high frequency part. We repeat the same reasoning for the low-frequency part
by replacing Qr with Q1 and conclude that

›

›

›
A2
u

´

rA1
gpfq

¯

´ Epf, g, uq
›

›

›

Cδ
À }f}Cα}g}Cβ}u}Cγ .

Step 2. Study of A1
g

`

A2
upfq

˘

´ Epf, g, uq. This term is almost the same
as that of Step 1 and can be treated in exactly the same way. Note that

Qr

´

A1
g

`

A2
upfq

˘

´ Epf, g, uq
¯

is equal, for every r P p0, 1q, to

ż 1

0

ż 1

0

QrQ1‚
t

`

Q2
tQ3‚

s

“

Q4
spfqP2

s puq
‰

¨ P1
t pgq

˘ ds dt

st
´

ż 1

0

QrQ3‚
s

`

Q4
spfq ¨ P1

s pgq ¨ P2
s puq

˘ ds

s

“

ż 1

0

ż 1

0

QrQ1‚
t

!

Q2
tQ3‚

s

´

Q4
spfq

`

P1
t pgq ´ P1

s pgq
˘

¨ P2
s puq

¯) ds dt

st
,

where in the last line the variable of P1
t pgq is that of Q1‚

t , so it is frozen through
the action of Q3‚

s . The same proof as in Step 1 can be repeated, which gives the
first statement of the theorem.

Step 3. Proof of the second statement. For the second statement, Step 1
still holds. So it only remains to compare Epf, g, uq with A2

ugpfq. This amounts

to compare P2
t pugq with P1

t pgqP2
t puq. Using the regularity of g P Cβ and the

uniform boundedness of u P L8, we get
›

›P2
t pugq ´ P1

t pgqP2
t puq

›

›

L8
À tβ{2

which allows us to conclude.
B

Remark 24. The above proof actually shows the following property of the operator

Tu,f :“ g ÞÑ Tupg, fq

where f P Cα and u P Cν are fixed. For all families Q1,Q2 P GCa for some a ą 0,
the linear operator Q1

tTu,fQ2‚
s has a kernel pointwisely bounded by

pt` sq
β`ν

2

ˆ

st

ps` tq2

˙
a
2

Gt`s
`

e, e1
˘

}f}Cα }u}Cν .

Proposition 25. ‚ Let α, β, γ be Hölder regularity exponents with α P p0, 1q, β P
p´3, 3q and γ P p´8, 3s. Set

δ :“ pα` βq ^ 3` γ.

If

0 ă α` β ` γ ă 1 and β ` γ ă 0
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then the corrector C extends continuously into a trilinear map from CαˆCβˆ
Cγ to Cδ.

‚ If α, β, γ are positive then the commutator D is a continuous trilinear map
from Cα ˆ Cβ ˆ Cγ to Cδ.

Proof – The result on C was already proved in [1, Proposition 3.6] in a more general
setting. We only focus here on proving the boundedness of D. As already done

above, we represent the operator Π
pbq
f p¨q under the form

Af p¨q :“

ż 1

0
Q1‚
t

´

Q2
t p¨qP1

t pfq
¯ dt

t
,

and the resonant term Πpbqpg, hq as

Bpg, hq :“

ż 1

0
P2‚
t

´

Q3
t pgqQ4

t phq
¯ dt

t
.

Thus, we need to study a generic modified commutator

p‹q :“ B
`

Af pgq, h
˘

´Af

`

Bpg, hq
˘

“

ż 1

0

ż 1

0
P2‚
t

´

Q3
tQ1‚

s

`

Q2
spgqP1

t pfq
˘

Q4
t phq

¯ ds

s

dt

t

´

ż 1

0

ż 1

0
Q1‚
s

´

Q2
sP2‚

t

`

Q3
t pgqQ4

t phq
˘

P1
s pfq

¯ ds

s

dt

t
,

and introduce for that purpose the intermediate quantity

Epf, g, hq :“

ż 1

0
P2‚
t

´

P1
t pfqQ3

t pgqQ4
t phq

¯ dt

t
.

Then we compare the two quantities with Epf, g, hq, such as done previously.
Each of these two comparisons makes appear an exact commutation on the
function f , due to our choice of normalization for our paraproducts. Using the
Cα regularity on f together with the cancellation property of the Q operators,
we get

}Qrp‹q}L8 À

ż 1

0

ż 1

0

ˆ

r

r ` t

˙3 ˆ st

ps` tq2

˙3

sβ{2tγ{2ps` tqα{2
dt

t

ds

s

`

ż 1

0

ż 1

0

ˆ

rs

pr ` sq2

˙3 ˆ s

s` t

˙3

tβ{2tγ{2ps` tqα{2
dt

t

ds

s

À

ż 1

0

ˆ

r

r ` t

˙3

tpα`β`γq{2
dt

t
`

ż 1

0

ˆ

r

r ` t

˙3

tβ{2tγ{2pr ` tqα{2
dt

t

À rδ{2,

which shows that p‹q belongs to Cδ.
B

C.2 Boundedness of iterated commutators/correctors

We now turn to the study of the continuity properties of the iterated versions
of commutators/correctors, and start with the (modified) iterated commutator on
paraproducts.
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Proposition 26. ‚ Let α, β, γ, ν be Hölder regularity exponents with α P p´3, 3q,
β, γ P p0, 1q and ν P p´8, 0q. Then if

α` β ` γ ă 3, and δ :“ α` β ` γ ` ν P p´3, 3q,

we have
›

›Tuph, g; fq
›

›

Cδ À }f}Cα }g}Cβ }h}Cγ }u}Cν , (C.5)

for every f P Cα, g P Cβ, h P Cγ and u P Cν ; so the commutator defines a
trilinear continuous map from Cα ˆ Cβ ˆ Cγ ˆ Cν to Cδω.

‚ A similar result holds for the 5-linear iterate of T.

Proof – Fix some functions u P Cν and f P Cα; we have

Tuph, g; fq :“ Tu

´

rΠhg, f
¯

´Πh

´

Tupg, fq
¯

.

With the same notations as in the proof of Proposition 23, for which we have
relations (C.3), we write

Πh

“

Tupg, fq
‰

“

ż 1

0
Q1‚
t

´

Q2
t

“

Tupg, fq
‰

¨ P1
t h

¯ dt

t

“

ż 1

0

ż 1

0
Q1‚
t

´

Q2
t

“

Tup rQ1‚
s

rQ2
sg, fq

‰

¨ P1
t h

¯ ds

s

dt

t
.

Expanding Tu
`

rΠhg, f
˘

correspondingly, we get

Tuph, g; fq “

ż 1

0

ż 1

0
Q1‚
t

!

Q2
t

”

Tu
`

rQ1‚
s

rQ2
sg, f

˘

ı

¨
`

P1
t h´ P1

sh
˘

) ds

s

dt

t
, (C.6)

where the variable of Pth is that of Q1‚
t . Since h belongs to Cγ , with γ P p0, 1q,

we know from Proposition 19 that
ˇ

ˇ

ˇ

`

P1
t h

˘

peq ´
`

P1
sh

˘

pe1q
ˇ

ˇ

ˇ
À

`

t` s` ρpe, e1q2
˘

γ
2 }h}Cγ ,

for all e, e1 P M. As above, fix a collection Q of sfStGCa, for some a ą 3, to
control Hölder norms. We need to estimate

›

›

›
QrTuph, g; fq

›

›

›

L8pMq
.

Using decomposition (C.6), we have

›

›

›
QrTuph, g; fq

›

›

›

L8pMq
À

ż 1

0

ż 1

0

ˆ

rt

pr ` tq2

˙
a
2

Is,t
ds

s

dt

t
, (C.7)

where

Is,t :“ sup
ePM

Q2
t

”

Tu

´

rQ1‚
s

rQ2
sg, f

¯

¨
`

P1
t hpeq ´ P1

sh
˘

ı

peq.

Due to Remark 24, we have a pointwise estimate of the kernel of the operator
Q2
tTu

`

Q1‚
s p¨q, f

˘

, so with the pointwise regularity estimate on h and (C.4), we
deduce that

Is,t À ps` tq
α`γ`ν

2

›

›Q2
sg
›

›

L8
}f}Cα }h}Cγ }u}Cν

À ps` tq
δ
2 }f}Cα }g}Cβ }h}Cγ }u}Cν .

It follows from that estimate and the fact that |σ| ă a, that
›

›

›
QrTuph, g; fq

›

›

›

L8pMq
À r

δ
2 }f}Cα }g}Cβ }h}Cγ }u}Cν ,
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uniformly in r P p0, 1q. A similar analysis of the low frequency of Tuph, g; fq can
be done and completes the proof of the Hölder estimate.

B

Proposition 27. Let α, β P p0, 1q, ν1 P p´3, 3q and ν2 P p´8, 3s. Assume that α`β`
ν1 ă 3 with

δ :“ α` β ` ν1 ` ν2 P p0, 1q, α` ν1 ` ν2 ă 0 and β ` ν1 ` ν2 ă 0.

Then the iterated corrector C is a continuous trilinear map from Cαˆ Cβ ˆ Cν1 ˆ Cν2 to
Cδ.

Proof – Fix some functions f P Cα and h P Cν2 and define the operator

C : φ ÞÑ Cpf, φ;hq,

so that

Cpf ; a, b;hq “ C
´

rΠapbq
¯

´ aCpbq.

Using the same notation as previously, and omitting for convenience the indices
on the different collections Q and P, we write

C
´

rΠapbq
¯

“

ż 1

0
C rQ‚s

´

rQsb ¨ Psa
¯ ds

s
,

aCpbq “ aC
´

rΠ1pbq
¯

“ a

ż 1

0
C rQ‚s

´

rQsb ¨ Ps1
¯ ds

s
.

Note that due to the conservation property of the heat semigroup associated
with L, the quantity Ps1 is either constant equal to 1 or to 0, depending on
whether Ps encodes some cancellation or not. Thus, given e “ px, τq PM, and
setting

Fs,e :“ rQsb ¨
`

Psa´ Psp1q ¨ bpeq
˘

,

we have

C
`

f ; a, b, ;h
˘

peq “ C
´

rΠapbq
¯

peq ´ apeqCpbqpeq “

ż 1

0
C
´

rQ‚sFs,e
¯

peq
ds

s
.

As before, we can use that a P Cβ, with β P p0, 1q. We have for e, e1 P M and
s ą 0

ˇ

ˇapeq ´ ape1q
ˇ

ˇ À ρpe, e1qβ }a}Cβ ,

and therefore, using the “Gaussian bounds” for Ps,
ˇ

ˇ

`

Psa
˘

pe1q ´
`

Ps1
˘

pe1q apeq
ˇ

ˇ À
`

s` ρpe, e1q2
˘

β
2 }a}Cβ .

As done in the proof of Proposition 25 – see also [1, Proposition 3.6], we intro-
duce an intermediate quantity of the form

S
`

f, b, h
˘

:“

ż 1

0
Ptp

´

Qtb ¨Qth ¨ Ptf
¯ dt

t
,

and write

C
´

p rQ‚sFs,e
¯

peq “ Π
´

rΠf p rQ‚sFs,eq, h
¯

peq ´ S
´

f, p rQ‚sFs,e, h
¯

peq

` S
´

f, rQ‚sFs,e, h
¯

peq ´ fpeq ¨Π
´

rQ‚sFs,e, h
¯

peq

“: I1psq ` I2psq. (C.8)
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‚ We start with the estimate for I2. One can then write with generic notations
for the resonant term Π

´

S
`

f, b, h
˘

´ f ¨Πpb, hq
¯

peq “

ż 1

0
Pt
´

Qtb ¨Qth ¨
`

Ptf ´ fpeq
˘

¯

peq
dt

t
,

and it is known that the integrand is pointwisely bounded by t
α`ν1`ν2

2 . Since this
argument only uses pointwise estimates, we can replace b by Q‚sFs,e. Therefore,
by writing

ż 1

0
I2psq

ds

s
“

ż 1

0

ż 1

0
Pt
´

Qt
rQ‚sFs,e ¨Qth ¨

`

Ptf ´ fpeq
˘

¯

peq
dt

t

ds

s

and using

›

›Qt
rQ‚sφ

›

›

L8pMq
À

ˆ

st

ps` tq2

˙3{2
›

›φ
›

›

L8pMq
, (C.9)

with φ “ Fs,e, we obtain

›

›

›

›

ż 1

0
I2psq

ds

s

›

›

›

›

L8pMq

ď

ż 1

0

ż 1

0

›

›

›
e ÞÑ Pt

`

Qt
rQ‚sFs,e ¨Qth ¨ pfpeq ´ Ptfq

˘

peq
›

›

›

L8

dt

t

ds

s

À }b}Cν1 }a}Cβ}f}Cα}h}Cν2

ˆ

ż 1

0

ż 1

0

ˆ

st

ps` tq2

˙
3
2

Gt`spe, e1q
´

s` ρpe, e1q2
¯

β
2
sν1{2t

α`ν2
2

ds

s

dt

t

À }f}Cα}a}Cβ}b}Cν1 }h}Cν2

ż 1

0

ż 1

0

ˆ

st

ps` tq2

˙
3
2

sν1{2ps` tqβ{2t
α`ν2

2
ds

s

dt

t

À }f}Cα}a}Cβ}b}Cν1 }h}Cν2 ,

since α` β ` ν1 ` ν2 ą 0.

‚ Let us now estimate the regularity of I2psq. Let e, e1 PM with ρpe, e1q ď 1. We
split the integral in t into two parts, corresponding to t ă ρpe, e1q2 or t ą ρpe, e1q2.
In the first case, note that

ż ρpe,e1q2

0
tpα`β`ν1`ν2q{2 dt

t
À ρpe, e1qα`β`ν1`ν2 ,
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so that by repeating the arguments above, we get the desired estimate. In the
case t ą ρ2 with ρ :“ ρpe, e1q, write for s P p0, 1q

ż 1

ρ2

!

Pt
´

Qt
rQ‚sFs,e ¨Qth ¨

`

fpeq ´ Ptf
˘

¯

peq

´ Pt
´

Qt
rQ‚sFs,e1 ¨Qth ¨

`

fpe1q ´ Ptf
˘

¯

pe1q
) dt

t

“

ż 1

ρ2

!

Pt
´

Qt
rQ‚sFs,e ¨Qth ¨

`

fpeq ´ Ptf
˘

¯

peq

´ Pt
´

Qt
rQ‚sFs,e ¨Qth ¨

`

fpeq ´ Ptf
˘

¯

pe1q
) dt

t

`
`

apeq ´ ape1q
˘

ż 1

ρ2

Pt
´

Qt
rQ‚s rQsb ¨Qth ¨

`

fpe1q ´ Ptf
˘

¯

pe1q
dt

t

´
`

fpeq ´ fpe1q
˘

ż 1

ρ2

Pt
´

Qt
rQ‚sFs,e ¨Qth

¯

pe1q
dt

t
. (C.10)

For the second and third term, we can assume s » t by (C.9). One obtains

ˇ

ˇapeq ´ ape1q
ˇ

ˇ

ż 1

ρ2

ˇ

ˇ

ˇ
Pt
´

Qt
rQ‚s rQsb ¨Qth ¨ pfpe

1q ´ Ptfq
¯

pe1q
ˇ

ˇ

ˇ

dt

t

À }f}Cα}a}Cβ}b}Cν1 }h}Cν2ρ
β

ż 1

ρ2

t
α`ν1`ν2

2
dt

t

À }f}Cα}a}Cβ}b}Cν1 }h}Cν2ρ
α`β`ν1`ν2 ,

since α` ν1 ` ν2 is negative, and

ˇ

ˇfpeq ´ fpe1q
ˇ

ˇ

ż 1

ρ2

ˇ

ˇ

ˇ
Pt
´

Qt
rQ‚sFs,e ¨Qth

¯

pe1q
ˇ

ˇ

ˇ

dt

t

À }f}Cα}a}Cβ}b}Cν1 }h}Cν2ρ
α

ż 1

ρ2

t
β`ν1`ν2

2
dt

t

À }f}Cα}a}Cβ}b}Cν1 }h}Cν2ρ
α`β`ν1`ν2 ,

since β`ν1`ν2 is also negative. For the first term in (C.10), we now repeat the
arguments of the proof of Proposition 25, which rely on the Lipschitz regularity
of the heat kernel as well as the fact that α` β ` ν1 ` ν2 P p0, 1q. Summarising
the above, we have shown that for e, e1 PM with ρpe, e1q ď 1

ˇ

ˇ

ˇ

ˇ

ż 1

0

´

I2psqpeq ´ I2psqpe
1q

¯ ds

s

ˇ

ˇ

ˇ

ˇ

À ρpe, e1qα`β`ν1`ν2}f}Cα}a}Cβ}b}Cν1 }h}Cν2 .

Let us now come to I1psq as defined in (C.8). We write with φ :“ rQ‚sFs,e
ˇ

ˇ

ˇ
Π
`

rΠf pφq, h
˘

´ S
`

f, b, h
˘

ˇ

ˇ

ˇ
ď

ż 1

0

ˇ

ˇPtpAtpφ, fq ¨Qthq
ˇ

ˇ

dt

t

with

Atpφ, fq :“ Qt

ˆ
ż 1

0
Pt rQ‚r

`

rQrφ ¨ Prf
˘ dr

r
´ PtfPtφ

˙

.
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Following the proof of Proposition 25, and using (C.9), one obtains
›

›

›
At

`

rQ‚sFs,e, u
˘

›

›

›

L8pMq

À

ż 1

0

ˆ

rt

pr ` tq2

˙
3
2
ˆ

sr

ps` rq2

˙
3
2

s
nu1

2 pr ` tq
α`β

2
dr

r
}f}Cα}a}Cβ}b}Cν1 ,

hence
›

›

›

›

ż 1

0
I1psq

ds

s

›

›

›

›

L8pMq

À }f}Cα}a}Cβ}b}Cν1 }h}Cν2

ˆ

ż 1

0

ż 1

0

ż 1

0

ˆ

rt

pr ` tq2

˙
3
2
ˆ

sr

ps` rq2

˙3{2

s
ν1
2 pr ` tq

α`β
2 t

ν2
2
dr

r

ds

s

dt

t
,

and the triple integral is finite since α` β ` ν1 ` ν2 is positive.

‚ For the regularity estimate of I1psq, consider
ż 1

0

!

Pt
´

Atp rQ‚sFs,e, fq ¨Qth
¯

peq ´ Pt
´

Atp rQ‚sFs,e1 , fq ¨Qth
¯

pe1q
) dt

t
.

The estimate of this expression is similar, though simpler, compared to the one
of I2psq, as here e is frozen only in one spot. As before, one deals with this
terms using the heat kernel regularity of Pt and the regularity estimate for a.

B
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Bull. Soc. Math. France, 116(3) (1988), 341–383.

[11] P. Friz and M. Hairer, A course on rough paths, with an introduction to regularity structures.
Universitext, Springer, (2014).

[12] P. Friz and A. Shekhar, Doob–Meyer for rough paths. Special Varadhan issue of Bulletin of
Institute of Mathematics Academia Sinica New Series, 2012.

[13] M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs.
Forum Math. Pi, 3, (2015).

[14] M. Gubinelli and N. Perkowski, Lectures on singular stochastic PDEs. Ensaios Math.,
(2015).



61

[15] M. Gubinelli and N. Perkowski, KPZ reloaded. arXiv:1508.03877, (2015).
[16] M. Hairer, Solving the KPZ equation. Ann. Math., 178(2), (2013), 559–664.
[17] M. Hairer, A theory of regularity structures. Invent. Math., 198 (2), (2014), 269–504.
[18] M. Hairer, Introduction to regularity structures. Braz. J. Probab. Stat., 29 (2), (2015),

175–210.
[19] M. Hairer, The motion of a random string. arXiv:1605.02192, (2016).
[20] M. Hairer and E. Pardoux, A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Japan,

67 (4), (2015), 1551–1604.
[21] M. Hairer and N. Pillai, Regularity of laws and ergodicity of hypoelliptic SDEs driven by

rough paths. Ann. Probab., 41 (4), (2013), 2544 – 2598.
[22] T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14 (2),

(1998), 215–310.
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