Higher order paracontrolled calculus
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Abstract. We develop in this work a general version of paracontrolled calculus that allows
to treat analytically within this paradigm some singular partial differential equations with
the same efficiency as regularity structures, with the benefit that there is no need to
introduce the algebraic apparatus inherent to the latter theory. This work deals with the
analytic side of the story and offers a toolkit for the study of such equations, under the
form of a number of continuity results for some operators. We illustrate the efficiency
of this elementary approach on the example of the generalised parabolic Anderson model

equation
(0 + L)u = f(u)C

for a spacial 'noise’ { of Holder regularity o — 2, with % < a< % and the generalized
KPZ equation
(0t + L)u = f(u)¢ + g(u)(0u)?,

2

in the relatively mild case where + < o < 5

2
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1 Paracontrolled calculus

1.1 Overview

Starting with T. Lyons’ work on controlled differential equation [22], it is now well-
understood that the construction of a robust approximation theory for continuous
time stochastic systems, such as stochastic differential equations or stochastic partial
differential equations, requires a twist in the notion of noise that allows to treat the
resolution of such equations in a two step process.

(a) Enhance the noise into an enriched object that lives in some space of analytic
objects — this is a purely probabilistic step;

(b) given any such object QA” in this space, one can introduce a 6—dependent Ba-
nach space S (C ) such that the equation makes sense for the unknown in

S(E ), and it can be solved uniquely by a deterministic analytic argument,
such as the contraction principle, which gives the continuity of the solution
as a function (.

These two steps are very different in nature and require totaly different tools. The
present work deals with the deterministic side of the story, point (b), for the study of
singular partial differential equations (PDEs). The term singular refers here to the
fact that the 'noise’ in the equation is not regular enough for all the expressions in
the equation to make sense analytically, given the expected regularity of the solution
in terms of the regularity of the 'noise’. Recall that one can generically not make
sense of the product of a distribution with a continuous function.

While the space of enhanced controls in Lyons’ theory of controlled differential
equations is universal, in the sense that it depends only on the dimension and the
irregularity exponent of the control, the ground-breaking works of Hairer [16] [17]
and Gubinelli-Imkeller-Perkowski [I3] uncovered the fact that this space of enhanced
noises, and the solution space & (6 ) with it, are equation-dependent in the study of
singular PDEs. Both objects will pop out naturally in our setting.

Hairer’s theory of regularity structures [I7] provides undoubtedly the most com-
plete picture for the study of a whole class of singular stochastic PDEs from the
above point of view — the class of the so-called singular subcritical parabolic sto-
chastic PDEs. It comes with a very rich algebraic structure and an entirely new
setting that are required to give flesh to the guiding principle that a solution should
be described by the datum at each point in space-time of its high order ’jet’ in a basis
given by the elements of the enhanced noise. Regularity structures are introduced
as a tool for describing these jets. At the same time that Hairer built his theory,
Gubinelli-Imkeller-Perkowski implemented in [I3] this idea of giving a local/global
description of a possible solution in a different way, using the language of paraprod-
ucts and avoiding the introduction of any new setting, but providing only a first
order description of the objects under study. This is what we shall call from now
on the first order paracontrolled calculus. While this kind of approach may seem
far from being as powerful as Hairer’s machinery, the first order paracontrolled ap-
proach to singular stochastic PDEs has been successful in recovering and extending
a number of results that can be proved within the setting of regularity structures, on
the parabolic Anderson model and Burgers equations [13}, [} 2, [§], the KPZ equation
[15], the scalar ®4 equation [4], the stochastic Navier-Stokes equation [24] 25| 26],
or the study of the continuous Anderson Hamiltonian [7], to name but a few.



We develop in this work a high order version of paracontrolled calculus that allows
to treat analytically within this paradigm some parabolic singular partial differential
equations that are beyond the scope of the original formulation of the theory, with
the same efficiency as regularity structures, with the benefit that there is no need
to introduce the algebraic apparatus inherent to the latter theory. We refer to
our setting as paracontrolled calculus. By a ’noise’ in an equation we shall simply
mean a function/distribution-valued parameter ¢ — realisations of a white noise are
typical examples. Within our setting, and given as input a noise ( and some initial
condition, the resolution process of a typical parabolic equation

(at+L)u: f(u7C)7 (11)

involves the following elementary steps. Write R := (&; + L)~! for the resolution
operator, and keep in mind that we have in hands two space-time paraproducts II
and II, related by the intertwining relation

ROH:ﬁoR;

all the objects are properly introduced below.

1. Paracontrolled ansatz. The irregularity of the noise (, and the form of the
equation, dictate the choice of a Banach solution space made up of func-
tions/distributions of the form

ko
w= Y11, Z +u, (1.2)
=1

for some reference functions/distributions Z; that depend formally only on
¢, to be determined later; we have for instance Z1 = R((), if the equation
1s affine with respect to (. The derivatives’ u; of u also need to satisfy such
a structural equation, to order (ko — 1), and their derivatives a structural
equation of order (ko —2), and so on. (See Proposition 21| for a justification
of the name ’derivative’ for the u;.) One sees the above description of
u as a paracontrolled Taylor expansion at order kg for it; denote by u the
datum of u and all its derivatives.

2. Right hand side. The use of a Taylor expansion formula, and continuity
results for some operators, allow to rewrite the right hand side f(u,C) of
equation (L.1)) in the canonical form

ko

flu,¢) = Y T, Y5+ (8)

=1

where (8) is some nice, in particular sufficiently reqular, remainder and the
distributions Y; depend only on ¢ and the Z;.

3. Fixed point. Denote by P the resolution of the free heat equation

Pug = (1,2) — (e Fug) (v).



Then the fized point relation
u = Pug + R(f(u, C))

_ Puy + % R (I, Y;) +R(2)
=1

ko
= Pug+ Y 11, Z; + R(Y).

j=1
imposes some consistency relations on the choice of the Z; = R(Y;) that
determine them uniquely as a function of ( and Z1. Those expressions inside
the Y;’s that do not make sense on a purely analytical basis are precisely thoie
elements that need to be given as components of the enhanced distribution (.
Schauder estimates for R play a role in running the fixed point argument.
Note that, strictly speaking, the fized point relation is a relation on U rather
than uw. We choose to emphasize that point by rewriting the equation under
the form

(@ + L)u = f(,C).

As expected, the elements that need to be added in 2 to ¢ are those needed to
make sense of the corresponding ill-defined products in the regularity structures
setting. List the elements of 6 in non-decreasing order of regularity and consider
them as a basis of a finite dimensional space. A renormalisation map is a linear map
of the form

M (T —Z,
for some upper triangular constant matrix 7', with a unit diagonal, and some possibly
space-time dependent renormalisation functions/constants E.

4. Symmetry group. The role of the extra components off in the dynamics s
completely clarified by writing

fu,Q) = (@.C) = fo@.¢) + f1(@)C
as a sum of a continuous function fy of w and ¢, and a continuous function
f1 of u and 6, that is linear with respect to 6 If  is a stochastic noise
and C° stands for a reqularized noise, with associated canonical enhancement
2‘5, and if a renormalisation procedure ¢ provides an enhanced distribution
//1565 converging in probability to some limit element in the space of enhanced
distributions, then the solution to the well-posed equation

(@ + Ly = f(uf,¢%) + f1(uf) (a® — 1d)C
converges in probability to the first component u of the solution to the equa-
tion

(@ + L)u = f(,C). (1.3)

Equation makes it clear how the renormalisation group acts on the equation
as a symmetry group. We shall not touch in this work on renormalisation matters,
so we shall always assume that the enhancement ¢ of ( is given. Three ingredients
are used to run the above scheme in any concrete situation.



(i) The pair (11, ﬁ) of intertwined paraproducts introduced in [2]. Tt is crucially
used to define a continuous map ® from S (C ) to itself. The use of an ansatz

solution space where II-operators would be used in place of ﬁ—operators would
not produce a map from S (C ) to itself.

(ii) A high order Taylor expansion formula generalizing Bony’s paralinearization
formula is used to give a paracontrolled Taylor expansion of a non-linear
function of u, starting from a paracontrolled function u. See section [2|for the
Taylor formula.

(iii) Continuity results. The technical core of Gubinelli-Imkeller-Perkowski’ sem-
inal work [13] is a continuity result for the operator

C(f,g;h) =1I(Izg,h) — fIl(g, h).

We introduce a number of other operators and prove their continuity — section
These operators are used crucially in analyzing the right hand side f(u, ()
of the equation, step 2.

1.2 Setting and results

We adopt in this work essentially the same geometric and functional setting as
in our previous work [2], slightly restricted so as not to bother here with the use of
weighted functional spaces. All this work could be formulated in the more general
geometric/functional setting of [2] (in particular the use of space-time weights allow
to deal with an unbounded ambiant space); we refrain from doing this as it may
blur the simple ideas that we want to promote in this work. Let then (M, d, 1) be
stand for a compact smooth Riemannian manifold equipped with a measure p, and
let Vi,...,V}, stand for some smooth vector fields on M, identified with first order

differential operators. Given a tuple I = (i1,...,i;) in {1,...,4o}*, we shall set
|I| :== k and
Vii=Vi, Vi,
Set
Lo
L:i=-> 1V
i=1

and assume that L is elliptic, so that the V; span at every point of M the whole
tangent space. The operator L is then a sectorial operator in L2(M), it is injective on
the quotient space of L?(M) by the space of constant functions, it has a bounded H®-
calculus on L?(M), and — L generates a holomorphic semigroup (e )~ on L?(M).
The above class of operators includes obviously the Laplacian on the flat torus.
Note that under the above smoothness and ellipticity conditions, the semigroup
e tL has regularity estimates at any order, by which we mean that for every tuple

I, the operators <t%| V1> e tL and et (t% V1> have kernels K;(x,y) satisfying the

Gaussian estimate
1 e d(z,y)?

(B, VD) ©

and the following regularity estimate. For d(z, z) < v/t

‘Kt(%y)‘ <

d(y, z) 1 —c dz)®
‘Kt(x7y) _Kt<z7y)‘ S \/% /L(B(.ﬁ,\/%)) e )




for some constants which may depend on |I|. Note here that we could equally well
develop paracontrolled calculus in the more general setting adopted in our previous
work [2]; we refrain from doing that here as it could obscure the simplicity of the
ideas put forward here.

Given a finite time horizon T', we define the parabolic space M as
M :=[0,T] x M,

and equip it with the parabolic metric

p((T, x)’ (0" y)) =V |T - U| + d(x,y)

and the parabolic measure v = pu ® dt. Then (M, p,r) is a doubling space (of
homogeneous type). Note that for (7, ) € M and small positive radii , the parabolic
ball By ((T, x), r) has volume

Z/(BM ((T,x),r)) ~ 12 (B (z,7)).

We shall denote by e = (7, ) a generic element of the parabolic space M.

We have chosen to work in the scale of Holder spaces; this makes life easier,
although we could equally develop paracontrolled calculus in the larger functional
setting of Sobolev spaces, in the line of what we did in our previous work [I]. For
a real number s, we will denote by C* = C*(M) the Holder space on M or order
s, defined in terms of Besov spaces; and C* = C*(M) the parabolic Holder space.
We refer the reader to the Appendix for more details on these spaces. Following our
previous work [2], one can define parabolic paraproduct and resonnant operators
that have good continuity properties in the scale of parabolic Holder spaces — section
Appendix [A:3] The high order Taylor formula and the continuity results stated in
sections [2] and [l and fully proved in Appendix [B] and [C] make use of these operators
and provide the spine of paracontrolled calculus. They are the main contributions
of this work.

We illustrate our approach of the study of singular PDESs, such as described above,
on the example of the generalised parabolic Anderson model equation (gPAM)

(0 + L)u = f(u)C, (1.4)

in the case where the noise ¢ has the same regularity as the 2% or 3-dimensional
space white noise, and on the example of the generalized KPZ equation

(0 + L)u = f(u)C + (0u)?, (1.5)

in the relatively mild case where the one-dimensional space-time noise ¢ is (o — 2)-
Holder, with % < a< % — one dimensional space-time white noise corresponds to
a < i
space S(z ) where the equation is well-posed, under the assumption that the en-

by proving in both cases that one can define for each equation a solution

hancement 6 of the noise ( is given. Once again, defining 2 in a stochastic setting
is a very different question that is not studied here. We also describe explicitly the
symmetry group of these equations. Along the way, we also adapt the notion of truly
rough function to the present multi-dimensional setting and prove that a functions
paracontrolled by a truly rough function has a uniquely determined derivative.

We have organised this work as follows. Section [2]is dedicated to our high order
Taylor expansion formula. The latter provides a generalisation of Bony’s paralin-
earisation formula. Whereas our Taylor formula deals with the fine description of



nonlinear images of parabolic Holder functions, we provide in section [2]simple proofs
of their spatial counterpart — full proofs of the parabolic claims are given in Appen-
dix[B] A number of operators are introduced and studied in section 3} the continuity
results proved here are some of our main contributions. Here again, while all the
statements are about parabolic functions/distributions, we have given in this section
some simple proofs of their spatial counterpart, defering the proofs of the full state-
ments to Appendix [Cl We test our paracontrolled calculus, such as described above
in section on the example of the 2% and 3-dimensional generalized parabolic
Anderson model equation in section [4) and on the example of the generalized
KPZ equation in section Appendix contains all the relevant details about
the parabolic setting, approximation operators, Holder spaces and paraproducts.

2 High order Taylor expansion

We explain in this section a simple procedure for getting an abritrary high order
expansion of a nonlinear map of a given Hélder function u defined on the parabolic
space M, in terms of its parabolic regularity properties. It provides, in the setting
of Holder spaces, a refinement over Bony’s paralinearisation theorem in the form of
a viable alternative to the paper [9] of Chemin; see also [10], theorem 2.5, p.18, for
a more readable account of [9] in the case of a third order expansion.

In its simplest form, the classical paraproduct operator II° on the d-dimensional
torus is defined via Fourier analysis by modulation of the high frequencies of a
given ’'reference’ function/distribution g by the low frequencies of another func-
tion/distribution f. For a function f on the torus, we denote by f = >, f; its usual
Littlewood-Paley representation: f; is the dyadic bloc with Fourier coefficients only
at the frequency scale 2°. Consider the two Littlewood-Paley decompositions of two

functions f, g

as sums of smooth functions with localized frequencies, the paraproduct of g by f
is defined as
Mhg= > fig (2.1)
i<j—1
and the resonant part as
°(f,9) = >, fig;
li—j]<1

in order that we have the product decomposition

fg=T9(f) +T%(g) + TI°(f, 9).

In the parabolic setting of section one can define some paraproduct and
resonant operators associated with the operator L and its semigroup, that have the
same regularity properties in the scale of parabolic Holder spaces as the operator 110
in the scale of spatial Holder spaces. We denote by II this paraproduct, introduced
in [2], and whose definition is recalled in Appendix It depends implicitly on an
integer-valued parameter b that is chosen once and for all, and whose precise choice
is irrelevant for our purposes. It is not crucial at that stage to go into the details of
the definition of II.



The mechanics of the proof of our general Taylor expansion formula is fairly simple
and better understood in the light of the proof of Bony’s paralinearisation theorem
given by Gubinelli, Imkeller and Perkowski in [I3], which we recall first.

Theorem (Bony’s Paralinearisation). Let f : R — R be a C}? function and u be
a real-valued a-Hélder function on the d-dimensional torus, with 0 < o < 1. Then

flu) = H?“(u) (u) + f(u)f
for some remainder f(u)* of spatial Hélder reqularity 2cv.

Proof — This is just a copy and paste from [I3]. Denote by K; the kernels of
the Fourier projectors A; corresponding to the Littlewood-Paley decomposition
operator, and write K<y for >}, K;, with associated operator Sy. Note that
by their definition we have, for any ¢ > 1,

y Ki(y)dy = 0; (2.2)

or more properly pa Ki(z,y)dy = 0, for any z € R?. The trick is then simply
to write

Fu) =y (u) = D A (F(w) = Sica (f'(w) As(u) =: Y &
with
(o) = [ Ko Keina(o,9){ () = F (u(2)uly) | dzdy,

and to take profit from the fact that K; has null mean for i > 1, as put forward
in identity (2.2)), to see that one also has, for i > 1,

(o) = [ Kilw ) Kaina(o, ) { F(uw) = F(u(2)) — £ (u(2) (u(p) — u(:) } d=dy.
One thus has
@) 1o [ 1Ko ) Kzioa(,2)] ) = w(o) dady < 272 e,

which proves the claim.
>

One can play exactly the same game and prove a general Taylor expansion result
in a parabolic setting, with our paraproduct II in the role of the comparison operator.

Theorem 1 (Higher order Taylor expansion). Let f : R — R be a C* function
with bounded fourth derivative, and let u be a real-valued a-Hélder function on the
parabolic space M, with 0 < o < 1. Then

1
F () = Mgy () + 5 { Tt 0y (42) =20 g o, ()}

1

(2.3)
+ g{ﬂf(?’)(u) (%) =3I 13) (1, (4?) + 3T 43) 02 (U)} + f(u)*

for some remainder f(u)ﬁ of parabolic Holder regularity 4a. Moreover the remainder
term f(u)ﬁ s a locally Lipschitz function of u, in the sense that

| £(w)f = F ()] s < (1 + Julce + Jvlca)u — v]a.



We give here a proof of this statement in the case where u is a time-independent
function on the d-dimension torus and we can use the elementary paraproduct II°
instead of II. The full proof of theorem [1]is given in Appendix [B] Theorem we
hope this way of proceding will make the reasoning clear and technical-free.

Proof — Let us prove the second order formula in the special case where u : T¢ — R,
and we use the elementary paraproduct II° in place of II. The claim amounts
in the case to proving that

1
() 7= f(u) = My (u) — 3 {1‘[‘}(2)(“)(&)_2 H?c@)(u)u(u)}

is a 3a-Holder function on the torus. As in the proof of Bony’s paralinearisation
result, write (x) under the form

Z A (f(w)=Si—1 (f'(w) Ag(u)— { %Si_l (FP(u))Ai(u?) + Sia (f(%(u)u)Ai(u)} =: Z &5
Denote by D&k)f, the k™-derivative f(*)(u) of f at u. For each i > 1, we have

i) = f Ki(z, y)K<ioi (1, 2)

1
{L (D1(L2()z)+t(u(y)—u(z))f) (u(y) — u(2)) tat
—% (D 1) u(y) + (D) 1) u(z)u(y)} dzdy,

which we can rewrite as

i) = fK(ac W) K<io1(z,2)

1,1
(3) 3
Jo L <Du(z)+st(u(y)—u(z))f) (u(y) — u(z)) ds tdt dzdy,

using once again the fact that the kernels Ki(x, -) have null mean. One reads
on this expression for €; that it is of order 273*, uniformly in . See Appendix
for a full proof of the statement, in the parabolic setting.

>

Observe that the expansion (2.3) is exact, f(u)* = 0, for a polynomial function
f of degree at most 3. The above Taylor formula for f(u) is conveniently rewritten
under the form
1 1
F) = Mgy —up@ @+ L uzpe @) (W) + 5 L po @) —up® w) (u?) + 6 Lrow (w®) + f(u)t.

As a reminder for future use, we note here that the general Taylor expansion
formula writes

n—1

k n—
Fy =3 Y (-1 (’?)Hm sy (0") + f (),
n=1 j=1 J

for a function f of class C¥*! with bounded (k + 1) derivative, and a remainder
f(u)t of parabolic Hélder regularity (k + 1)a.
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3 Toolkit for paracontrolled calculus

We prove in this section a number of continuity results for some operators built
from the parabolic paraproduct and resonnant operators associated with L. These
continuity results will play a crucial role in the analysis of the right hand side
f(u, ) of a generic singular PDE such as equation ; the two examples treated
in sections [4] and [5| will make that point clear. Together with the Taylor formula of
section [2], the results of this section are our main contribution. It is not necessary,
for the purpose of solving singular PDEs, to get into the details of the proofs of the
different results given here; we invite the reader to have a look at the results only
and then go directly to sections [4] and [5| to see them on stage.

We adopt in this section the same pedagogical point of view as in section
giving the reader the general statements of our theorems, in the above parabolic
setting over a compact manifold that requires the use of the parabolic paraproduct
and resonnant operators of Appendix[A] and only providing here the proofs of theirs
spatial counterparts on the torus, where only time-independent functions are in play
and one can use the elementary paraproduct II° in the analysis. A further simplifi-
cation in the proofs is done here, and detailed below; proofs of the full statements
are given in Appendix [C| We hope this way of proceeding will convince the reader
that the basic ideas involved here are elementary.

Commutator, corrector and their iterates

Recall from [2] and Appendix that the modified paraproduct Il is defined by

the formula N
I;(g) = R(Hf(ﬁg)),

where £ stands for the parabolic differential operator (0; + L) on the parabolic
space M. See section 4.1 of [2] for a study of the continuity properties of II. We
provide in this section a number of continuity results for some operators involving
the paraproduct and resonnant operators, together with the modified paraproduct
II. We state our results in their general form, in the parabolic setting of section
and give proofs in the time-independent, space setting of the torus, of versions
of each statement where we use II° instead of II. This should make it easier for
the reader to go to the core of the machinery without fighting with some possibly
overwhelming technicalities; full proofs are given in Appendix [C|

We define on the space L* of bounded measurable functions on the parabolic
space M the commutator as the operator

D(f,95h) = T1(TI;(9), h) =TI (TH(g, 1)),

and the corrector as the operator

C(f.g:h) :=11(TLy(g), ) = FTL(g, h).

The first part of the next theorem is the workhorse of the first order paracontrolled
calculus, such as devised in [I3] by Gubinelli-Imkeller-Perkowski. Note how unfor-
tunate they were in naming the operator C a ”commutator”; which is definitely not
the case, unlike the operator D — up to the tilde on one of the II operators in the
definition of D. Recall we denote by C“ the spacial Holder spaces on the torus and
by C* the parabolic Holder spaces over the compact manifold M.
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Theorem 2. (i) If a, B and ~y are positive, then the commutator D is continuous
from C* x CP x CY to COHP+,

(ii) Assume « is positive, B + v is negative and o + 3 + 7y is positive. Then, the

corrector C extends continuously as a function from C* x CP x CY to COHPA+,

Proof — As said above, we prove here these continuity results for simplified versions
of the operators D and C. So, assume we are working in the time-independent
setting of the d-dimensional torus, with the operators

D°(f,g3h) = 1I° (1} (g), h) — 13 (11°(g. 1)),
and
C'(f.g:h) = 11°(TH(g), h) — FI(g, h).
We start by proving the claim about the continuity of the corrector C°, as a
function from C® x C# x C7 to C**8+7 under the above sign assumptions on
a, B, 7.

(ii) The resonant part is given by

11%(a, b) ZA (3.1)
Write
C(fr93h) = X, A (H?@))Am ~ [Ail9) Ai(h),
and set
&= A:(T5(9)) = FAulg),
such that

C%f,g:h) Z eiN;(h
The fact that ¢/ has L*-norm of order 2~ Z(“Jrﬂ) can be guessed on the expression

r) = fKi<$,y){(H(}g)(y) _ f(a?)g(y)} ay
N JKi(x’y){H[J)”—f(xn(g)}(y) dy.

As y is concentrated near z, at scale 277, and we are looking at the i*! Paley-
Littlewood block of IIy_¢(.)g, we expect

i) < 27 [ yg] L, <277 1 = @)oo gl

with a term Hf f(x
that is with

H 1 involving only the neighbourhood of = of size 271,

If = (@) < 27 flloe,
since f is a-Holder. Such an estimate would imply the continuity of the corrector
C as a function from C® x C% x C7 to C**P*+7 if a 4 B+, since h is y-Holder.
This heuristic argument, however, does not make it clear why we need 5 + « to
be negative to get the result.

A mathematically correct version of the above sketch of proof is done by esti-
mating the L*-norm of the dyadic blocks of €. For j = i + 2 then

Ajei = =N (fAi(g)) ~ —A;(f)Ai(g)
hence ‘ ‘
|Ajel] e 5277277 | flloallgllos-
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For j < i — 2 then
Ajei = —Aj(fAig) = —A;(Ai(f)Ai(g))
hence

[Azeil < 2774 floalglos-

We adopt the classical notation Sj_1f for the partial sum Zzgjfl fe of the
Paley-Littlewood decomposition, so for |i — j| < 2 we have

Ajer > 8(85(9)851(0) = Sir2(HA9) ).
hence

|Asel] o < 27 | flloalglce.
As a consequence, we always have the following estimate

|Ajei] e < 278 27200 | £ gl s (3.2)

We can then estimate C°(f,g;h) in some Holder space. For a non-negative
integer k, we have

A(C(fg:h) = X Ax(=f A
D Aw(E) Ailh) + )] Ak(Ai(Eli)Ai(h)>

i<k—2 k<i—2

which is then controlled, using estimate (3.2)), by
HAk(CO(ﬁg : h))HLw

< | D 2mvhegmify N gmiledBn g A 9= @ ) | | £ ca g os
i<k—2 k<i—2 k—i|<2

< 27MH ) fca gl s,

where we used the two conditions v + 8 + v > 0 and 8 + v < 0 along the way.
The fact that the latter estimate holds uniformly in k£ concludes the proof of the
(o + B + v)-Holder regularity of the corrector.

(i) We refer the reader to Proposition in Appendix for a full proof of the
regularity statement for the commutator D. Simply mention that in the special
case of DU, the regularity estimate comes from the following identity

Ae((f:gm) = 5 Ak(Ae(@)SiNAR)) = SeDNA(Aelg) (). (3:3)
l=k—2

>

We emphasize the importance of the above heuristic proof of point (i) by intro-

ducing a notation. Given a function-valued operator A on some function space, we
denote by €' f, or €, f, the function

(@)0) = f() = f(2),

recentered around its value at the 'running’ variable x, so that

A(Ef)(x) = A(f = f(@) ().
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(Strictly speaking, the operator ¢ is an operator on the space of operators A.)
The choice of letter € for this operator is for ’centering’, and we call € the outer
centering operator. In those terms, we have

C(f.9;h) =11(Ties(9), 2), (3.4)
and
H(H%’)Hcgb(c) (g) ) h) ($) = H(HHb_b(x)(c)—(Hb_b(gc)(c))(a:) (g) ; h) (ZL‘),

for instance. The main property of this operator is the following. For a function
f e C*(T9) with a positive, we have first

Sk(€ f)(x) = Sk(f — f(2))(z) = Sk(f)(z) — f(z)
= 2 Ae(f)(z).

I=k+1

Since f is supposed to have a positive regularity the dyadic blocks Ay(f) have an
exponentially decreasing L® size as a function of £, so one has approximately

Sk(Cf)(x) = Ar(f)(2). (3.5)

A very similar property holds in the parabolic setting, which is used in the proofs
of the continuity results of this section given in Appendix [C]

The study of singular PDEs happens to require some finer analysis of the operators
D and C that take the form of some continuity estimates for some ’iterated’ versions
of them. More precisely, it is possible to decompose further D and C in case one
of their first two arguments are given in the form of a (modified) paraproduct or
an iterated (modified) paraproduct. We introduce here for that purpose a notation.
Given a tuple of functions (a,b,c;g), set

and

~ o
Ha’b’c(g) T Hﬁi,b(c) (9)7

and give similar definitions of Hi »(c) and Hi »..(9) using only II operators. Depend-

ing on whether or not such a paraproduct appears in the low frequency, in place
of f, or high frequency, in place of g, in the formulas for the commutator D or the
corrector C, we shall talk about lower or upper iterated operators.

Proposition 3. Given some positive reqularity exponents «, 3,7, 6, the formulas
D(a,b:g,h) = D(ﬁab, g;h) _I,D(b,g;h), (lower iterated commutator)
D(f;a,b;h) = D(f7 ﬁab;h> —1I,D(f,b;h), (upper iterated commutator)

define continuous operators from C* x CP x CY x C° to COTA+71+9,

Proof — As in the proof of Theorem [2, we analyse in this proof what happens in the
time-independent setting of the d-dimensional torus, in the case where we also
use II° instead of II. So we set

D%(a,bg,h) = D°(T10b,g:h) — D (b, g3 )



14

and have a look at its continuity properties on the spacial Holder spaces. Using
formula (3.3)), it follows that we roughly have

Ap(D"(a,b;9.1) = Ay (D (b, g3 1) ) = Sk-a(a) A (D (b, 93 1))
Sy Ak[Az(Q)Az(h) (Seﬂa(b) — SiIla(b) — Sk(a)(Se(b) — Sk(b))>]'
I=k—2
The quantity inside the brackets is equal to
¢
Sella(b) — SkIla(b) — Sk(a) (Se(b) — Sk(b)) = D> ATILa(b) — Sk(a)A;(b)

j=k+1

j=k+1
which is then easily bounded in L® by
)4
> 27" alca2 P bles < 27HH D aab] o
j=k+1

This estimate allows us to conclude that

Ay(D%(a,b; g, h)) < 27 HatBtrH),
uniformly in k, which proves the continuity result for the 4-linear operator DP.
A very similar proof gives the continuity of the simplified version of the upper

iterated commutator; we leave the details to the reader.
>

Theorem 4. Let (a,b,c;g) in C*xCP xCYxC"', with positive regularity exponents, be
given, together with h € C*2, with possibly non-positive reqularity exponent. Assume
a+f+y+uv+rre(0,1).

Then the lower iterated corrector
(L, (). h) = {TI (@) (g, 1) + T ) T (Tlel9). h) + al1 (L, (0) . 1) |
(3.6)

defines a continuous map from C® x CP x CY x C** x C*2 to CotB+y+vitrz,

Proof — To get a clear idea of the mechanics at play, we prove here a simpler state-
ment and refer the reader to Appendix for the full proof. We work in the
time-independent setting of the flat torus and prove that the formula

(114 (9) . ) —{ 00 (0) 1°(g, )+ LI2(0) 1I* (115 (). 1) +a 10 (W ()(9) . ) |

defines a continuous map from C® x CP x C7 x C¥' x C*2 to CotB+ytritra
under the above conditions on the regularity exponents. To see how the second
term in the expansion arises, use formula (3.4) for the corrector and write

{0 (1% o(9), B) = T4 () (g, ) (@) = CO (4 (0), g3 ) ()

— 1 (ngm% o9): P (@).



15

Note that since
() = (T0(b) ) (2) + CTI),
we have the identity
CTH () = (I5(0) ) (2) G+ ETMG 0, (c):
It follows that
0 (1%,.(9) 1) = () (g, h)+ 113 () T (11 (9)., 1) +11° (115 1

a,b,c

(C)(g)a h>‘

Writing a = a(x) + %a, in the above expression for the remainder yields that
the lower iterated corrector

(195 o(9), h) = {TI5 (@) (g, b) + () T (T (9), B ) + a1 (W (1 (9) s 1) |
—1 (W0 ((9), h)

defines a (a +B+v+v+ ug)—H('deer function if a + 8 + v + v1 + 15 is positive.

«19 (b)

<5n0 RO

Indeed, for every x we have

(W | (o(0). 1) (@) ZAk[ by @)@ 401
~ D5 %H%’H%a(b)(c)](l’) Aklgl(x) Ag[h](z)
k

= Y A ) (0)](@) Axlg](2) Alh] (@),
k

nd, ()

where we used (| m Iterating the reasoning, we get

0(9):h) @) 3 Aulole) Aulble) Aulele) Aulgle) M)
(3.7)

HO(H( .
@”Hgno RO)

and so since a + B + v + v1 + v2 is non-negative, we conclude that

\HO(HW (@), ) (@)| = D 2K o bl llen gl oy [l

<gn0 o ®

< lalcalblcslelclgloyhles

uniformly in x, which yields that the main quantity defines a bounded function.
Using (3.7), we can also obtain its Holder character. For x # y, and writing m
for [lallce|blcsclorllglorihllcy, we have

(0 @) )@ -1y (@) 1))

<2 | [a)() A 8] (@) A 6] ) A ] ) A ] ()

<gn0 L %”HO O

= Aylal(y) Axlb] () Ax[el () Axlg] () Ar [P (v)]

<m Z 2—k(a+6+'y+1/1+u2) + Z ‘ y‘ 2k k(a+B+y+v1+12)
12k |z—y| 1>2F|z—y|
a+p+y+ritra.
sm ‘x - y‘ Brytn )
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in the second sum, over 1 > 2¥|z — y|, we have used the finite increment theo-
rem together with the fact that differentiating one operator Ay is equivalent to
multiplying it by 2¥, together with the condition (o + 3 + v + v1 + 10) € (0, 1).

>

The above proof contains the fact that if the regularity exponent v, is allowed to
be negative, and o + 8 + v1 + o is positive, then the 4-lower iterated corrector

Cla,bsg.h) = T1(TLL (9, 1) = {TLa(®) 11(g, n) + a1 (Tigs (). 1) }

- C(ﬁab;g, h) —aC(b,g:h) 35

defines a continuous map from C® x C? x C"* x C¥2 to COTA+n+vz,

The 4 and 5-linear upper iterated correctors are defined by the formulas
C(f;a,b:h) = C(f,ﬁa(b);h> —aC(f,b;h).

and

c(f;a, (b,c);h) - C(f;a,ﬁb(c);h> —bC(fiarc;h).

Theorem 5. The following continuity results for the 4 and 5-linear upper iterated
correctors holds.

(i) If o, 5 € (0,1), the exponents (o +v1 +v2) and (B + v1 + v2) are negative and
a+B8+v+rvy >0,

then the 4-linear upper iterated corrector C defines a continuous linear map
from C® x CP x C¥' x C¥2 to COtA+vitve,

(i) If a,5,7€(0,1), the exponents (o + v1 + v2), (B +v1 + v2) and (v + vy + 12)
are negative, and
a+B8+y+v+uv >0,
then the 5-linear upper iterated corrector C defines a continuous linear map
from C® x CP x CY x C"* x C¥2 to CotPHyintrz,

Proof — We only sketch the proof of the continuity result of the 4-linear operator
in the model case of the time-independent setting of the flat torus, and rely on
formula for the diagonal operator II(-,-) for the purpose; see Proposition
in Appendix for a fully detailed proof in the parabolic setting. In the
present setting, the quantity C°(f;a,b;g) is then given by a sum of the form

C'(f;a,b:h) Ze Ajh,
with
ef = { AT (Ta(8))) — ali (T (1) } + f{adib — Ay (11 (0) |
We read on the expression

~ [ Kt {1 (0.0) )~ ola) ([T, 0) ) + (Fa)@0) ~ 7)) 1)} dy

= f Ki(x,y) M pz)1 (Hafa(m)l (b)) (v) dy,

that
&) = Ai (T (Ta(0)) )
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has L®-norm of order 271 +at8) a5 a consequence of . The proof is then
not fully completed, since the block e/A;h is not perfectly localized in frequency
at scale 2, so an extra decomposition is necessary. We do not give the details
here and refer the reader to the proof of Proposition 27 in Appendix [C]

>

Iterated paraproducts

In addition to the above continuity results for the commutator/corrector and
their iterates, we shall also need ’expansion’/continuity results for some iterated
paraproducts. This requires the introduction of a notation for a particular difference
operator on functions. We give here its definition in the model setting of the time-
independent flat torus and refer the reader to Appendix for the description of
how things work in the parabolic setting.

The value at 2 € T? of some paraproduct IT,v is a sum over the integers i of terms
of the form

(1200 @) = [[ Kilo ) Kir (. 2)uz) o) dody.

We thus have for instance, for f € L, g e C” and a € C* with a € (0,1),
(130 (19) - 139(0)) (@) = [[ Kl Kcir(,2) £2) (W 90) () oy

= || Kiw.pBaia(o.2) NG (0)0) ddy,

where we have defined the inner difference operator 7 ( = 2.) by the formula

| @nwst)azay = [[ (1) - )9t dzay

we may also call this difference operator the low frequency difference operator to
emphasize the fact that it acts, in the paraproduct formula, on the function that
has the low frequencies. In those terms, and given the definition of the difference
operator Z given in section in the parabolic setting, we have

11 (112(9)) ~ 1fa(9) = 1} (1% (9))
and, more generally,
11y (Tha(9)) = Tgalg) = 117 (Tiza(o))- (3.9)

Compare this expression with the formal multiple integral, where we use the same
letters to make it more stricking,

Jf(z)d <J adg) — Jfadg + Jf(z)d U (a— a(z))dg> .

Using the fact that Kj;(x,-) has null mean (2.2), we can rewrite the preceding quan-
tity as

(30 (20)) ~ 10 (0)) @) = [ [ Kala) Kaioa2) £ (211, 0) () dd
from which we read off the fact that
R'(fa59) := I (T0(g) ) — 1%, (9) = 13 (115,,(9))
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and, more generally,
R(f,a39) = 117 (Tla(9)) = Tyalg) = T4 (Tsa(o))

are (« + v)-Holder; so the linear map R is bounded from L* x C* x C¥ to C*TY, as
soon as « € (0,1) — a detailed proof is given in the parabolic setting in Appendix
Proposition This result can be refined if a is given under the form of a
paraproduct or a modified paraproduct.

Theorem 6. Let f e L® and g € C¥ be given.
(a) Let also a € C* and b e CP be given with o, B € (0,1). Then

R(f ; @, 539) = Iy (ﬁﬁa(b) (9)) - Hfﬁa(b) (9) — Iy, (ﬁ@b(9)>

= R(f,f[ab;g> —R(fa,b;9)

is an element of CATA+Y,

(b) IfaeC¥beCP and ceCY are given with o, B, € (0,1), then
R(f;(a,b),C;g) 1= R(f;ﬁab,csg> —R(fa;b,c;9)
is an element of CoHAtY+Y,

We invite the reader to right the analogues of I, (ﬁﬁa(b) (g)) and R(f T,b, c; g)

in terms of iterated integrals to built his own intuition about the above statement.
The range (0, 1) for the exponent « (5 and 7) is dictated by the operator &, which
makes appear a first order increment and so can only encode regularity at order at
most 1.

Proof — We prove the corresponding statement in the model time-independent set-
ting of the flat torus. Starting from equation ([3.2]) with II,(b) instead of a, we
see that

115 (M) (9)) — Mg (9) = 10 (M0(0)) = T (Womg(9)) = 15 (M00))

is a sum over ¢ of double integrals
[ Kt as(o.2) 1N I gy (9) ) dody

~ [ Kitr K m,2) £ MGy (0)) ) dedy

on which we read off that their L® norm is of order 2-#@+#+¥)  The proof is then
finished, since this last quantity corresponds to the dyadic blocks A; [R( fia,b; g)]
>

A careful examination of the proof reveals that the following finer result holds. If
f e C" with v € (0,1) then item (a) of the previous theorem can be improved to
the following expansion

R(f;a,b;9) —1;(R(1;a,b;9)) e cotFrviv, (3.10)
Beware that the notation Ilg, (ﬁ%(g)> may be a bit misleading, as the function

ﬁ%(g) that appears in this formula is a function of two variables, one of which being
the (parabolic equivalent of the) z that is integrated in the integral formula in dzdy
defining the i*"-term of the paraproduct sum.
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Theorem 7. Let f € L® and g € C¥ be given. Let also a € C* and b e C? be given
with o, 5 € (0,1). Then

I(f,a,b;g) =Tl (ﬁa (ﬁbg)) - {Hfabg + o (Tgpg) + TI5 (ﬁb@(aw)}

is an element of CATA+Y,

Here again, we invite the reader to right the analogue of II; (ﬁa (ﬁbg)> in terms

of iterated integrals to built his own intuition about the above statement. Observe
that I(f,a,1;g9) = 0 as a consequence of the defining relation (3.9)).

Proof — Let us prove the statement in the model setting of the time-independent
flat torus, with II operators used in place of II. In that case, a dyadic bloc

Ak[l(f, a, b;g)] is given by
A[I(f,a,b39)](@) = Aelg)@){ Sulb](@)Sylal(@) Skl (@) — Silabf](x)
~ Silfa)(@)S[Zb](x) — Syl f1(@)Sk[b2(@)](x)}.

Using the normalization Sg(1) = 1, we obtain
AIF 0,b:0)] (@) = Al () I(2)
with
@) i= [ [ Kermaoom) Karma o2 Koo ) ben)ae) £ ) = aleabza) )
— a(25) f(28) (b(1) — b(z3)) — £(25) (al22) — al25))b(2)) } d1dzaddzg
~ ][ Ketr o) K (o, 20) Kcis (200 )

{b(zl)a(zg) — a(z3)b(z1) — a(22)b(22) + a(23)b(22)} dzdzodzs.
Since a and b have a positive regularity, we deduce that

’b(zl)a(ZQ) — a(z3)b(z1) — a(z2)b(z2) + a(zg)b(ZQ)’ — |a(z2) — a(z3)| [b(21) — b(z3))|

< max (|22 — 23], |21 — 23))* 7 Jallca [b] s
and so

Flle 27D ] ca|b] oo

A1 ab:9)]| < 1Bkl

—k v
< 27H@HBH) £ gl lal co bl oo,

which concludes the proof.
>

Our last ingredient is a continuity result for the commutator of two paraproducts,
and their iterates. The result stated below in Theorem [§]is fully proved in Appendix
Given bounded functions u, a, b, ¢, g, f, we define the modified commutator on
paraproducts and its iterates by the formulae

Tulg, f) = 1, (T, (N) = 10, (IL(5)),
and

Tu(a,b, f) = Tu(TLa®). ) — 1 (Tu(b, 1)
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and
Tula,b,c, f) := T (ﬁa(b), c, f) —1, (Tu(b, ¢, f)).

The continuity properties of these operators are given in the following statement.

Theorem 8. (@) Let o, 8,7 be Hélder regularity exponents with « € R, € (0,1)
and v € (—00,0) and set 6 := o+ B+ . Then the commutator defines a
trilinear continuous map from C* x CP x CY to C°.

(b) Let a, 8, gamma,v be Hélder regularity exponents with o € R, 5,y € (0,1)
and v € (—0,0) and set 0 := a+ 8+ v+ v. Then the commutator defines
a trilinear continuous map from C* x CP x CY x C” to C°. A similar result
holds for the 5-linear operator.

Let us mention here that all the continuity results of section also hold true when
we replace II by II; the corresponding operators will also be denoted by the same
letter as the setting will make the situation clear.

Together with the results on the pair of paraproducts (H,ﬁ) proved in [2], the
Taylor expansion formula of section [2| and the above continuity results provide the
technical basis needed to run the paracontrolled analysis of a generic equation of type
, along the lines described in section Rather than providing the reader with
a general statement identifying a class of equations that can be solved within our set-
ting, we concentrate on what seems to us to be two typical and interesting examples,
the study of the 2% and 3-dimensional generalised parabolic Anderson model equa-
tion (gPAM), and the study of the generalized KPZ equation. Both examples are out
of reach of the Gubinelli-Imkeller-Perkowski first order paracontrolled calculus. We
find it reasonable to proceed this way in so far as a systematic approach of singular
stochastic PDEs requires the development of a systematic approach to renormali-
sation problems which is still under study in the present setting, and which is only
almost achieved within the setting of regularity structures at the time of writing.

4 Nonlinear singular PDEs: a case study (gPAM)

Let f : R — R be a function of class C?, with bounded third derivative. We aim
here to make sense of, and solve uniquely, the equation

(0 + L)u = f(u)C (4.1)

in a high order paracontrolled setting, for a spatial 'noise’  that is (o — 2)-space-
Holder. For a > %, the first order original formulation of paracontrolled calculus is
sufficient for solving equation ; see Gubinelli-Imkeller-Perkowski’ seminal work
[13] or [1]. We deal with the range of exponents 3 < « < % in sections and
and deal with the range % <a< % in section — the latter range of exponents
corresponds to the irregularity of space white noise in dimension 3, or space-time
white noise in dimension 1. Note that for % <a< % we have 0 < 4o —2 < a.

We set up the equation in a paracontrolled setting where the spacial distribution
¢ is enhanced into a time-space rough distribution 6 = ({ yens ) The components of
this extended ’'noise’ will appear along the computations done below to give sense
to the equation. Write R = (0; + L)' for the resolution operator, and set

Z1 = R(C).
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Recall that R sends any space L%C@*2 into C#, for any 8 in the interval (0,2) — see
for instance proposition 10 in [2], and notice that LEC?~2 < C#~2 in that case.

We take as a solution space for equation (4.1)) the set of functions u satisfying
the following second order paracontrolled ansatz

U = ﬁul (Zl) + ﬁu2(Z2) + uﬁ

N i (4.2)
up = Iy, (Z1) + uf,

with Z1 = R(¢), with ’derivatives’ uj, u2, u11 in C%, and remainders u? and ui} in C3«
and C2® respectively. The functions Zs, possibly equal to a tuple (ZQI, Z227 ...), are

constructed from the enhanced noise (, and are 2a-Holder continuous. The notation
uz may stand for a tuple (ud, u3, ... ), if Zy does, in which case the expression I, (Z2)

involves an implicit sum.

Our first task is to make sense of the product f(u)¢ for functions u with the
above second order paracontrolled structure; this is where we use the continuity
results proved in sections [2| and We want for that purpose to give a description
of f(u)¢ under the form

f(U)C = Hf(u) (C) + 1, (YQ) + Hv:s (}/3) + (ﬁ)? (43)

up to some remainder term () in C**~2, and for some distributions Yo = (Y3}, YZ,...)
in LEC?72 Yy = (Yql,...) in LEC3*~2 built from the rough distribution 5, and
some functions vg,v3 of positive regularity, constructed from w,ui,ug,uq1. It will
follow from the defining intertwinning relation

R(Hm@) = ﬁa1 (Rag)

relating IT and ﬁ, together with the Schauder and the continuity estimates for II
proved in [2] that it will make sense to consider terms of the form II,,(Y3) and (f) as
remainders in the computations to follow. Recall that the model functions Z; will
be defined as Z; = R(¢) and Z; = R(Y;) for i > 2. Writing

u=R(f(u)¢) + e ug,
that is
ﬁu1 (Zl) + ﬁuz(Zz) + uf = ﬁf(u) (Z1) + ﬁvz(Zz) + <ﬁv3 (Z3> + R(ﬁ) + eiTLu()),

will allow us to set up a fixed point problem for (u,ul,uQ,uu), and solve it by
Banach contraction principle on a small time interval.

Enhanced distribution

The archetype of equation is given by the controlled ordinary differential
equation
dry = V(x¢)dhy, (4.4)
where h is a non-differentiable R®-valued control and V an L(R?, R%)-valued one form
on R?, say. Think of a Brownian path for the control 2. One of the deepest insights of
T. Lyons in his theory of rough paths [22] was to understand that one needs to change
the notion of control to make sense of such an equation, and that this enhanced
control takes values in a very specific universal algebraic structure. In simple terms,
the enhanced control consists of h and the collection of a number of objects playing

the role of the non-existsing iterated integrals S5§51§-~~<sk<t dhs, ® -+ - ®@dhs, — such
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iterated integrals cannot be defined as continuous functions of their integrands, here
(h,...,h), if h is not sufficiently regular; see proposition 1.29 in [23]. Once given
these extra data, one can make sense of, and solve uniquely, the controlled ordinary
differential equation under some appropriate regularity conditions on the one
form V', and the solution path happens to be a continuous function of the enhanced
control, in some appropriate topology. The enhancement of the control cannot be
made on a purely analytic basis and requires some extra input, typically the use of
probabilistic methods when the control A is random.

Hairer’s theory of regularity structures provides a conceptually close framework
for the study of a class of singular partial differential equations containing equation
as a particular case. To make sense of equation , one needs to enhance the
distribution ¢ with the a priori datum of a number of other distributions. Contrary
to the case of the controlled ordinary differential equation , this enhanced ’con-
trol’ takes values in an equation-dependent algebraic structure. The solving process
is also different, as the equation is first recast in some abstract space of jets of so-
lutions, where it can be solved under appropriate conditions. This corresponds to
looking for a solution in a specific space of distributions where one can actually make
sense of all the terms in the equation, especially some a priori undefined products.
A fundamental tool, the reconstruction operator, allows then to associate to this ab-
stract solution a classical distribution. The equation-dependent algebraic structure
in which the enhanced distribution lives also allows to give sense to this solution
distribution as a limit of solutions to some family of classically well-posed equations
in which the distribution ¢ has been smoothened. The latter point is related to
renormalisation matters.

The setting which we develop in the present work shares some common features
with Lyons’ theory of rough paths and Hairer’s theory of regularity structures.

e One needs a notion of enhanced distribution to make sense of the equation.

e This enhancement cannot be made on a purely analytic basis, and requires
the use of probabilistic tools when ( is random.

e Our solutions are described by some kind of Taylor expansion; this is the
paracontrolled ansatz , here , which defines at the same time the
restricted space of functions/distributions where one looks for a solution to
the problem.

However, this ’local’ description of a possible solution is of a different analytical
nature from Hairer’s notion of modelled distribution; it is in particular a classically
well-defined distribution/function that is defined everywhere in time-space. There is
no need as a consequence to rephrase the problem in any abstract space of jets, and
the paracontrolled analysis of equation (4.1]), or any other singular PDE, is made
"downstairs’ with classical objects. Let % <a< %, and a finite time interval [0, 7],
be given.

Definition. We define the space of enhanced distributions for equation (4.1))
as the space

2 8
Ca—? % (L%C2a—2> % (L%Jcr?)a—Q) ,
and denote by E a generic element of that space.

As said above, the elements of this enhanced distribution represent some quanti-
ties that are needed to make sense of all the terms of equation (4.1)), and that either
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one cannot define on a purely analytic basis when ( is not regular enough or that
need to be assumed to be slightly more regular than what analysis gives for free
from their expressions . With a smooth ¢, and

Z1 = R(C),
set: C= (€767 (7)) with
P =(21,0, (D=1
Yy = ¢ 4 ¢, Zy = "R(Y2),

and
B (2, 0), Y= (2, 24,0,
B oz, 21),¢), P =12, 11(2,0))
& =Tz, 2), Y =1 (Uoz 2),
=1z, =12, 7).

Observe that the last terms CZ-(S) (for i = 4,..,8) are well-defined and have an
analytic sense in C3*~2; we need however to assume them well-defined in LEC3*~2,

One now shows that one can make good sense of the product f(u)(, and that it
has an expression of the form (4.3)), provided one replaces the occurence of the above
quantities in its expansion when ( is smooth by the above a priori given Ci(j )’s, when
( is only an element of C*~2. Note that one adds inside the enhanced distributions
those quantities that one needs to make sense of the products

Zi¢, Z3¢, R(Z1C)C,

in accordance with what one expects from the theory of regularity structures. The
fact that each ill-posed product above is decomposed into three terms in the para-
product picture explains why our space of enhanced distributions contains so many
elements; there is nothing anoying in that fact. (Note here that, as far as renormal-
isation matters are concerned, we expect that robust tools that are currently being
developed for the study of renormalisation within the theory of regularity structures,
by Hairer and his co-authors, to be usable in our paracontrolled setting as well, up
to some ad hoc modification. )

4.2 Analysis of the product f(u)(.

We start from the paraproduct decomposition, which gives

the first term on the right hand side suits us. We shall use along the way the notation

a(u) := f'(u) = uf® (u)
for this expression of u that appears in the Taylor expansion formula for f(u) in
Theorem

1
Fw) = py)— g @putt + 5 Lperw) (u®) + (3c) @6

1
= Ha(u)u + Hf(z) (w) (Huu) + 5 Hf<2) (u) (H(u, u)) + (30{).
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Here and below, a term (3) stands for some element in CP that depends in a locally
Lipscthiz way on u € C® — with polynomial dependence on u for the Lipschitz
constant. Let first use this Taylor expansion for f(u) to rewrite f(u)( under the
form

1
Hf(u)C + {HC (Ha(u)u) + Hg (Hf<2)(u) (Huu)) + 5 HC (Hf(Z)(u) (H(u, u))) + HQ(SOZ)}

+ {H(Ha(u)u, <) + H(Hf(2>(u) (M), () n %H(Hf@)(u) (T (u, ) <) +11((30), c)}

The following intermediate analysis of this expression will be useful in section [4.4
to analyse the dynamical consequences of renormalisation.

Lemma 9. Let ¢ be a continuous function, and let u, or rather 4 = (u%, uf s ugg, ug),
be a function satisfying the second order paracontrolled ansatz (4.2). Then one can
write the product f(u)( under the form

)¢ =gy ¢ + e f(u) + f(u)ur (21, C) + (f/(u)uu + f(2)(u)U%> C(Z1, Z1;¢)
P (s TH(Za,C) + = FOya T(TI(Z1, Z1),€) + (8)

2
= Ty ¢ + e f(u) + F (@) + (1),
(4.7)

for some remainder (1) in C**~2, that is a continuous function of u € C% and (, seen
as an element of LEC™2 — the remainder (§) is in particular of positive Hélder
regularity since o > %

Proof — We provide more details than necessary as this is the first time that we see
the corrector and its iterates in action. We use the term (f) as in the statement,
with different expressions at every occurence. Let us focus on studying the
resonant part II(f(u), () and use identity and the correctors C to get

H(Ha(u)u7 C) = CL(U)H(’U,, C) + C(a(u)a U3 C)
= a(U){mH(Z1,<) + Clu, Z1; Q) + u2ll(Z2, ¢) + Clua, Z2; () + H(Uﬁ7C)}
+C(a(u),u;§).

We analyze successively the different terms. First uf € C3 so H(uﬁ, ¢ ) e Cla=2,
since 4o — 2 > 0, and this term goes into the remainder (f). Then, from the
ansatz for u, we have

Clur, 215¢) = C(ILuy, 21, Z13C) + C((20), Z1:)
=unC(Z1, Z1;¢) + C(U11,21;21,C> + (4a —2)
= U11C(Z1, Zl;C) + (4a — 2),

where we used Theorems [2| and M| on the boundedness of C and its iterates,
equation (3.8]). So it comes

1(Mauyu,€) = a(wur IH(Z1,¢) + a(wyun C(Z1, Z15€) + a(u)uz T1(Zy, )
+ C(a(u),u;() + (8).
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For the last commutator in the right hand side of the above equation, we use
the ansatz for u to get first

C(a(u),u; ¢) = c( (), T, Z15€) + C(aw), (20);)
(a( ), Z1; ) + C(a(u);ul,Zl;C) + (4 — 2)
= ulC(a(ULZuC) (4o —2);

we used the boundedness of the upper iterated commutator, Theorem We
can now also paralinearize a(u), with Theorem (1, and by (3.8)), it comes

Cla(u),u; ¢) = urC(Iy ) (u), Z1;¢) + (4o — 2)
= uya’ (u)C(u, Z1;¢) + (4o — 2)
= u2ad (u)C(Z1, Z1;¢) + (4o — 2)
At the end, putting these estimates together yields
H(Ha(u)u, C) = a(uw)uy I(Z1,¢) + a(u)uyr C(Z1, Z1;¢) + a(u)us I1(Z2, C)
+a' (u)ut C(Z1, Z1:¢) + (4)
and similarly
(T o oy (), € ) = S (@) (T, ) + (£ (), ;)
= O ) {ull(u, ) + Clu,us O} + fO (wutu C(Z1, Z150) + (2)
= f(2)(u){uu1 H(Zl, C) + uugy C(Zl, Zl; C) + uug H(ZQ, C) + (h)
+ud C(21, 25:0) + (1)} + FPwufu (21, Z350) + ()

and

1

ST 10, w),€) = & 7O @ I(T(Z1, 21),) + (8).

These three identities together give the statement of the lemma.
>

Note that the only term that does not make obvious sense analytically in the
decomposition (4.7)), given the regularity of the different components of the enhanced

distribution ¢, is the term f'(u)ui II(Z1, ). To analyse it, note that
f(uwyur = Wpryur + Iy, (' (u) + (20)
= My (s 21) + 1L, (Hf(g)(u) (M 1)) + (20)
= Wy 5@ 21+ (20),
Hence, one has
S (w)ur T(Z1,¢) = Wpruyu, (21, €) + Uiz, 0) (f (w)ur) + I(f (u)ur, 1(Z1, €))
= W pr(uyuy (21, €) + Hpyz,0) (f (w)ur)
(@ + D) 1(Z1,1(Z1,0) + (da - 2),

from which it appears as a well-defined element of C2*~2.
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Proposition 10. One can decompose the product f(u)C in canonical form

where the distributions Y3 = (Y};l, .. ) belong to L%C‘g“_g, and vz € C%, for some

remainder term (4a — 2) in C**~2, whose norm depends polynomially on 4 and E
Proof — Given the result of lemma [ and the fact that
) =gy, 4 2t + (20),
we already know that
fu)¢ =y ¢ + e fu) + {Hf’(u)uln(ZhC)
+ g (g 4+ £ (wyu (HH(Zl,C)Zl + (21, 1(Zy, C))) + (4o — 2)}
+ (@ + O wpd) €2, 213)
P TI(Z0,Q) + 5 FO A T(TT(Z1, 21),) + (3)
= ()¢ + e f(u) + Iy, (21, €)
F I gy, + 7 (uyus? (Hn(zl,ozl + (21, 11(Z1,Q)) + C(Z1, Z1; g))

1
+ pruyuy (22, €) + 5 gy (H(H(Zh Zv), C)) + (4a —2).

It suffices then to decompose the paraproduct Il¢ f(u) in canonical form to prove
the statement of the proposition. Building on the second order Taylor formula
(4.6), this is done first by putting each of the terms gy, I g2 () (IT,u) and
IT4(2) () I1(u, u) in canonical form, and then commuting the paraproducts with
the operator II¢, using the continuity results on the operator T given in Theorem
Bl One has first

Tyt = T (ﬁulzl) + ) (ﬁu2 22) + (3a)
= ) (ﬁu1Z1) + My uyus Z2 + (3a),
Using Theorem [6] on the continuity of the iterates of R, we have
My () (ﬁulzl) = Haquyu, Z1 + R<G(U), u1; 21)
— Ty, 21 + R(a(u), [y, Z1: Zl> + (3a)
= Hoquyu, Z1 + R(G(U)Un, Zy; Zl) + (3a)
= Wyguyur 21 + Uauyur, Moz, Z1) + (30),
using again identity at the last line. We thus have
Moyt = Mouyu, 21 + Waguyun, Moz, Z1) + Moguyu, Z2 + (3)
at that point. A similar reasoning gives
L o) () (Ttt) = Ty (Huul Zy + Moy, (U2, Z1) + Ty Zo + (3a)>

= Hf<2)(u)uu1 Z1+ Hf(2>(u)(u§+2uu11) (Hfgzl Zl) + I_If(Q)(u)uuQZ2 + (30&)
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and
I 2 () (T0(w, 1)) = T g2y oy (Hu%H(Zb Z) + (3a)>
= Hf@)(u)u%H(Zla Zl) + (30()
So one can rewrite the Taylor formula for f(u) (equation under the form
f(u) =T p @y, 21 + H(f/(u)-i-uf(?)(u))u11+f(2)(u)u% (H921 ZI)

1
+ Hf,(u)’lLQZZ + 5 Hf(Q)(u)u%H(Zla Z1) + (3a).
Using the continuity result on the operator T, one then gets the decomposition

Mefu) = HC{Hf’W)“lZl I gy 5 g 1921 21)

1
+ Hf/(u)UQZQ + 5 Hf(2)(u)u§H(Z1, Zl)} + (404 — 2)
=1 (Hf (w2 1) * H(f'(u>+uf<2><u))uu+f<2>(u)u§ (HC gz, 2 1)>

1
gy (e Z2) + 5 Ty (TeT(Z1, 20)) + (da = 2)
= e (W pruyuy Z1) + I Y + (4o — 2),

for some distributions Y3 € L§‘9C3°‘_2. It remains to explain the decomposition
of the first term in the right hand side of the above identity. We use again the
commutator T and its iterates to write

I (Hf’(u)le) = Wy, (HeZ1) + T (f (W, 21)
= pruyuy (e Z1) + T (T, T o) () Iy 21, Z1)
+ Te (g Z1, 21) + (4o —2)
= Iy (uyu, (e Z1) + T2 42 () g 17y Te (21, Z1) + (4o = 2).
So at the end, we conclude to
e f (u) = Wiy, (MeZ1) + MYy + (4o = 2),

for some distributions Y3 € L%C?’Q_Q. A careful reading of this proof gives the
assertion about the dependence of the norm of the remainder as a function of
the norms of & and (.

>

As a sanity check, we invite the reader to look at the linear case where f(u) = u.
A number of terms in the analysis disappear or simplify, and one can work with a
smaller space of enhanced distributions.

4.3 Solving the equation

Assume that the enhanced distribution E is given, together with an initial condi-
tion ug € C3*. The study of equation (4.I)) from the paracontrolled calculus point
of view is a three step process.

(a) Set yourself an ansatz for the solution space 8(6), in the form of a Banach
space of paracontrolled functions/distributions.
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(b) Recast the equation as a fixed point problem for a map ® from the solution
space S(C) to itself.

(c) Prove that ® is a contraction of S(QA”) for a small enough choice of time
horizon T.

Fix a finite time horizon 7' and recall the notation C for the weighted spaces
introduced in Appendix for a weight depending on a non-negative parameter
k; all these spaces are equal as a set, with equivalent norms, for x in a bounded
set. All of the above continuity results hold in these spaces, with implicit constants
independent of k in a bounded set, as the weight is non-decreasing and all the
approximation operators have temporal support in [0, c0). This elementary fact will
allow us to gain in some estimate a crucial multiplicative factor depending on s that
will eventually provide the contraction property for ®.

Given % <f<ac< %, with 3a + 8 > 2, we choose to work with the functions

satisfying the second order paracontrolled ansatz

u =11y, (Z1) + Iy (Zy) + u* (4.8)
up = ﬁull(Zl) + ug?

with remainders u’ € CZ,(HB and uq € Cf‘UJrB , and uo,uq1 in cﬁ,. Note that we use

the operator II introduced in [2] rather than the usual paraproduct operator IT; the
advantage of this choice will appear clearly in the proof of theorem [11] given below.
Here the parameter S has to be thought as very close to a and will play the same
role as a. The main trick is to use another parameter 3, slightly lower than «, in
order to prove the contraction property of the map ®. We write

U= (w;u, ug;un)
and set
tg = (uo ; f(uo), f'(uo) f(uo) ;f’(uo)f(uo)>7

and turn the solution space

~

S(0) = {0 = 0}
into a Banach space by defining its norm as
[l = Jualleg + [unilleg + fullegea + [ fczess.

The analysis of the product f(u)¢ done in section corresponds to working with
8 = «a. Everything works verbatim under the assumption that 3a + 8 > 2, by
replacing (2a—2), (3a—2) and (4a—2) by (a+8—2), (2a+—2) and (3a+3—-2),
respectively; the product f(u)( is in particular well-defined for functions u, or rather
u, satisfying the second order paracontrolled ansatz . We adopt the notations
of equation and write

FW)C =Ty (C) + gy, (Y2) + o (Ya) + (8)-

A better notation for f(u)¢ would be f (@) f , emphasizing the dependence on u and

5 of this notion of product between f(u) and ¢ — we stick to the former notation
however. We define the map ® by setting

®(a) = (U;f(U),f'(U)m;f'(U)m),
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where v is the solution to the equation
(at + L)U = f(u)Ca

with initial condition v,—g = ug. Notice that the definition of the space S(g ) and
the map ® implicitely depend on the finite time interval [0,7] on which we are
working. We define a solution of the equation

as a fixed point of the map ®.

Theorem 11. Let a function f € CE(R), an enhanced distribution 6, and an initial
condition ug € C3* be given. For any interval of time [0,T], the map ® has a unique

fized point u in S(E)

Proof — The proof is an elementary application of Banach fixed point theorem. Let
ux explain it in details.

Let us fix a time interval [0, 7] and agree that all the implicit constants below
are allowed to depend on T'. Recall that we denote by P the free evolution given
by the semigroup

P(ug) := (1,2) — e "(ug)(z).

Given u e S (E ), the solution v of the well-posed parabolic equation

(0 + L)v = f(u)¢, Vreg = Ug
is given by
v =R(f(u)¢) + P(uo)

Since we assume the initial data ug to be in space Hélder space C3%, then P(uq)
belongs to the parabolic Holder space C3%. So to prove that

@ (@) = (vs S (), f (s f (W),
belongs to & (E ), it suffices to see that the map
() = (R(F()C) s f (), f (s f (u)us

sends S (5 ) into itself. This is precisely what is given by Proposition the
regularity properties of IT and Schauder estimates, Theorem which altogether

~

show that \If(ﬁ) is in S(C), and
[oilegrs + 0¥ gaass < s~ C (1)

where C' is a positive constant that depends polynomially on |ul. At the same
time, the paracontrolled structure of 7?,( f (u)C), and Schauder estimates, also
give

IR(f(w))llps < w=C(]al),

£

giving a control of R( f (u)() by a small factor k7. Unfortunately, there is
no reason so that the three paracontrolled derivatives of ’R( f (u)() enjoy that
property, although they are given in terms of u. We iterate the map ® to get
around this problem. Indeed, by iterating four times the map ® we observe that
®(u) is also a paracontrolled function of the space S (CA ) whose derivatives are
given in the iterative process by the heat resolution R of some functions; as such
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one can use Schauder estimates to estimate them in the corresponding Holder
space with a small factor of order xk~¢. We deduce from that fact that

o4 (0) = w
with w = P(up) + w and
|@ < =22 C(|al).

So ®°4 is indeed a small perturbation of the constant map 4 — P(ug). Then it
is standard that if one chooses s big enough for k= (@=8)/ 2Ato be small enough,
the map ®°* will send a large enough ball of the space S (C ) into itself.

It remains us to see that ®°4 is a contraction. Indeed, we have
q)o4(a1) _ @04(,@2) _ ,@1 _ ,@2

where @' and @?, and their derivatives, are paracontrolled distributions obtained
by iterating four times the map R( f (O)C), applied to 4! and 42, respectively.
This map is locally Lipschitz from the continuity results of section [3| and taking
advantage of the game between a and 3, it follows from Schauder estimates that

[ —@2| < x="P2e (@), [@%)) Jat - @),

where C is some polynomial function of two variables. So we conclude that ®°4
is a contraction of any large enough ball of & (E ), for a large enough choice of
constant k.

>

Remarks.

o A local in time well-posedness result can be proved following the same rea-
soning, assuming only that the nonlinearity f is of class C3, with a bounded
third derivative.

o We assume here that the initial condition is in C3®. We use that fact to
put the term P(ug) in the remainder. One can improve upon this constraint
on ug and only require that ug € C%, at the price of working with weighted
Hélder spaces with an explosive weight. This is well explained in Lemma A.7
and A.9 of [13].

e So far, the theory of reqularity structures has not been developed in a manifold
setting. A forthcoming work of Dahlquist-Diehl-Driver shows how this can be
done in the simplest case where the moise is not too rough, corresponding
i our setting to a reqularity erponent o > % A first order description of
the objects is sufficient in that setting, as was the case in our previous work
1], whose content covers partly their results. It is very likely that one can
improve upon the Dahlquist-Diehl-Driver approach to regularity structures on
a manifold by working on the second order frame bundle in order to study the
(9gPAM) equation in the range of reqularity exponents % <a< % for the noise
— this is how the story of stochastic differential equations on manifolds can
be told from Schwartz-Meyer’s point of view. This potential extension of the
work of Dahlquist-Diehl-Driver is what is covered by the results of the present
section, in our paracontrolled setting. On the other hand, it is not clear to
us what geometric setting will be needed to get the equivalent of the results
we obtain in section where the exponents « is in the range % <a< %
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One gets as a direct consequence of the fact that the solution u to equation (4.1
has the form

u = Hf(u)Zl + (2a),

the following corollary; it is the analogue of a result of Hairer and Pardoux [20,
Corollary 1.11] — their result is a direct consequence of the content of section
Recall p stands for the parabolic distance on M; it was introduced in section

Corollary 12. Let f be C’;:’. For 0 <t < T, there exists a positive constant C such
that one has the estimate

[u(e') = u(e) — £ (u(e)) (Z1(e') — Zi(€))| < Co(,e),

uniformly in € = (o,y) and e = (1,x) with |1 — 0| < %

Proof — The proof is a direct application of the representation of the solution u as
a paracontrolled distribution

U = Hf(u)Zl + (204)

together with Proposition
>

A similar result holds in the rougher case where % <a< %, studied in section
with the exponent 1 for p(¢/,e) in the right hand side of the estimate of corollary
replaced by an exponent 2, in accordance with the above mentioned result of
Hairer and Pardoux.

4.4 Symmetry group

The study of equation is particularly motivated when ( is assumed to be the
realization ((w) of a random field ¢, defined on some probability space (Q, F,P),
typically a Gaussian spatial noise of Holder regularity (o — 2), with « in the range
(%, %] One needs to assume that we are able to construct on that probability space
a random enhanced distribution Z to use the above deterministic machinery for each
realization ((w) of ¢, and construct in this way a random solution u(w) to equation
(4.1) — the measurability of u(w) as a function of w comes from the fact that u(w)
is a continuous function of ¢ (w). Although it is always possible to enhance ((w) in
an arbitrary (measurable) way (with respect to w), it makes sense to

(a) ask for some more or less canonical way of doing the enhancement,

(b) relate the solution to the singular equation (4.1)), such as built and understood
in section to some family of solutions to some classically well-posed
partial differential equations.

The most natural and naive way of defining the random variable E is to smoothen
¢ into (¢ by any deterministic classical mean, such as convolution with a smooth
kernel, define its associated enhancement Ea , via formula , and pass to the limit.
Unfortunately, this family of random variables cannot converge in any sensible sense
as € goes to 0, and it is the object of renormalisation to provide a robust approach
to this problem, by taking deterministic special linear combinations of these oth-
erwise diverging quantities to make them converge. See the forthcoming works of
Bruned-Hairer-Zambotti and Chandra-Hairer for a systematic study of these ques-
tions within the setting of regularity structures; note that the renormalisation of
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the term II(Z7,() was already done in [I]. This renormalisation story has direct
consequences on point (b).

The analysis of equation (4.1)) done in section shows that the solution u to
equation (4.1) is a continuous function of (; write

i = (wi f (). £ W f @) £ ) @) =3(C).
Better, one can write
(& + L)u = ¢ + e (f(w) + F(@) € + (4o —2),

for some continuous map F of & and 6 , that is linear with respect to 6 , and some
remainder (4o — 2) that is a continuous function of u and ¢ only. The first two
paraproduct terms on the right hand side also have the latter property. Precisely,
one knows from lemma [ that

P(E)C = £/ () T1(Z1,Q) + /(0 F() 1(Z2, Q) + 5 O ) f() TH(T(Z1, 21), )
(/@2 ) + uf® @) f(w)?) €21, 21,Q)

3
=: ga(u) 2(2) + Z gi(u) @(3).
- (4.9)

The renormalisation procedure provides in the present case a deterministic, possibly
constant, element C* = (0, s, 05 ) in the space of enhanced distributions such that

the family (55 - C* ) converges in that space, in probability say, as € goes to 0. Set
ut = (ue,...) = 3(&\6 — C€>;

so this family converges in probability to 4 = 3(6 ), by the continuity of the solution
map J. One reads on equation (4.9) the effect of adding C*¢ into the dynamics. The
function u° is a solution to the well-posed equation

3
(0 + D)us = ()G + C5 ga(w?) + 3, O 95 (u),
i=1
and it converges in C%, in probability, to the first component u of the solution @ to

equation (4.1)).

Rougher noise (.

The above methods are robust enough to deal with the generalized parabolic
Anderson model equation
(0r + L)u = f(u)C
when the spatial noise ¢ has the regularity (o — 2) of a 3-dimensional space white

noise, that is ¢ is (o — 2)-Holder regular, for some o < %, with o > 2 say. We

5

describe in this section the essentials of the analysis of the product term f(u)( that
one can do to study the equation; the fixed point problem is tackled with the very
same tools as those used in section [£.3

Fix some regularity exponents % <pf<a< %, and assume we are given some

reference functions

Zr =R, Zo=RYa), Z3=mR(Ys)
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with V; € LEC 2 to be determined latter from consistency conditions; from
Schauder estimates, these regularity assumptions on the Y; ensure that Z; is (ic)-
parabolic Holder continuous. We take as a solution space for equation the set
of functions satisfying the following third order paracontrolled ansatz

ﬁulZl + ﬁu222 + ﬁu3Z3 + uﬁ
Iy, Z1 + 1Ly, Zo + uf

U

Uy
- 4 (4.10)
Ug = Hu21 Z1 + Us

T f
Uil = Hulllzl +ugy

with wus, u1a, ug1, u111 in C? and the remainders u%l,ug in Ct8 with uﬁ in C2ot+8
and u* in C3@8. Note here again that we use the II operator introduced in [2] rather
than the usual paraproduct operator II The set of all such tuples

U= (u;u17u27u3;u117u127u21 ;U111>
satisfying identity (4.10)) is turned into a Banach space setting

[l = fusl s+l e+ lum o+ les+ ok cos 0 o8 fezacn e foaass

One says that u is in (dressed) canonical form to mean that we are given u
as here. The naked canonical form consists of a similar decomposition for u, but
with the II operator used in place of ﬁ; we use the expression canonical form for
dressed canonical form. One gets a clear picture of the product f(u)(, or rather

f(a)¢, by
(a) showing that, for @ in dressed canonical form, one can write f(u) in naked

canonical form,

(b) for v = (v;vl,vg,vg ;- ) in dressed or naked canonical form, the product
v(, or rather ¢, is well-defined and

v¢ =11, + 11, Yo + 1L, Y3 + 11, Ya + (4o + 5 — 2),

for some Yy € LLC3*+F=2 and v; € CP.

Consistency conditions imply some relations between the Z;. These two steps
also dictate the choice of Y; and single out the different components of the space
of enhanced distributions, as those expressions in Z7,( that do not make sense on
a purely analytic basis. One uses the full strength of the Taylor formula stated in
theorem 1| to deal with point (a). Given identity and the fact that

u? = 2w + T (u, u),
u? = 201, (Iyu) + Myeu + I, (T (u, w)) + 210 (u, Tyu) + I (u, (u, u)),
we see that point (a) holds if the following condition holds.

(a') For v and v in dressed canonical form and g satisfying the second order
paracontrolled ansatz (4.2), then II;ju and II(u,v) can be written in naked
canonical form.

Proposition 13. Let f : R — R be a function of class C*, with bounded fourth
derivative. For a function u in dressed canonical form f(u) can be decomposed in
naked canonical form.
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Proof — We prove point (a') and start with II,u — recall we are working up to
elements in (3a + ). We have

My (T, 21) = g, 21+ 11, (T, 21,
with uy = Iy, Z1 + My, Zo + (20 + B). One has
I, (ﬁ@ﬁleZl> = Hguy, <H921Z1> +R(g;u11,21; Z1)

— Tgu, (Mo 21) + R(guine,s 21, 215 21) ) + (30 + )

~ Ty, (nglzl) T (R(l; 71,70 Z1)> + (3a+B8),
after ; we also have

(g, 7,%1) = guss (02,21 + (30 + 5).
This gives us as a decomposition for II, (ﬁulZl) the sum
1, (ﬁulzl) = My, Z1 + gy, (nglzl) + Ty, (R(l; 71, 7 ;Zl))
+ Mgy, (H%221> + (3a + ).
The same computations shows that
11, (ﬁu2 22) = My Zs + Mgy, (H% ZQ) + (3a+ B)

and
I, (Huszg) = Mg, Zs + (30 + ),

which shows that indeed the operator II, transforms a function u in dressed
canonical form into an object in naked canonical form, under the assumption
that ¢ satisfies the second order paracontrolled ansatz (4.2]) — the latter assump-
tion is needed to ensure that the different derivatives of II,u satisfy the structure

equation imposed to wuj, w2, w111 in (4.10)).
To analyse the term II(u,v), look first at

H(ﬁulZl,ﬁle> ~ L, (H(Zl,HUIZl)> +D(u1, 21,10, Z))
= T, (1, T(Z1, Z1) + D(vy, Z1, 21) ) + 1, D(us, 21, Z1) + (4a)
= T, (11,1121, Z1)) + Ty, (T, D (21, 21, 1) ) + (4a)
+ 1y, (M, D(Z1, 21, Z1)) + (4a)
= oy (T T(Z1, 21) ) + Ty oy (D21, 21, 21)) + (da),
and note that the term II,, (HUIH(Zl, Z1)> can be analysed as the term Il u
above. For H(Hu1 Z1, H/UQZQ) or H(Hug Zo, 11, Zl), write simply

H<Hu1217 HUQZ2) = Hu1v2H(Zla Z2)a

and

(1L, Z2, 1Ly, Z1) = Wyyu, 1L(Z1, Z5).
In the end, one sees that all the terms of the Taylor expansion formula for f(u)
can be decomposed in naked canonical form.
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>

Recall that each Z; may have several components (ZF)y, in which case the notation
II, Z; stands for an implicit sum

M.Z =) 1., 2.
k

The above proof shows that for consistency purposes the reference operators 11,25
need to have at least the following components

L. (Ilgz, Z1), H.<H(Z1,Zl)),
and the operators 11, Z3 the following components
(s, 21), (T Z), H.(H%H(Zl,zl))
11, <R(1, Zy, 2y, Zl))> 11, <D(Zl, Zy, Zl)>, II, (H(Zl, Zz))

L (Hyz,11(Z1, Z1)).

Other components of the operators 11,72 and Il,Z3 will pop out from the proof of
the next statement.

Proposition 14. For v = (v 1U1, V2,03 ) in dressed or naked canonical form, the
product v( is well-defined and
v¢ = T,¢ + 10, Yo + 1L, Y3 + 11, Yy + (4o + B — 2), (4.11)

for some Yy € LLC3*+P~2 and v; € CP.

Proof — We do the proof for ¥ in dressed canonical form; cosmetic changes are
needed to deal with the other case. Given that

v¢ = II,¢ + Iev + I(v, €),

it should be clear to the reader that the main work is to show that 11, (ﬁvl Zl)

and H(ﬁlel,C) can be written under the form (4.11) — which also justifies
that the latter a priori undefined term makes sense. We give the details for the
analysis of these two terms and trust the reader for completing the analysis of
the other, easier, terms in the expansion of v{. We use the continuity results
proved in sections [3.1] and [3.2] along the way without explicit mention.

¢ Let start with the term II, (ﬁvl Zl), of parabolic regularity (2« — 2). One has
e (T 21) =, (T 21 ) + Te (o1, 21)
~ 10, (ngl) + T, (ﬁmzl, Zl) + T, (ﬁmZQ, Zl) +(da+B—2)
0, (Hng> 0, (TC(Zl, Zl)) +Te(vi1, 215 Z1)
+ 10, (TC (2, Zl)) + (da+B—2)
= I, (HgZ1> + 1L, (Tg(Zl, Z1)> + 1Ly (Tg(Zl, Al ;Zl))

4, (TC (2, Z1)> +(da+ B —2).

e We start from the identity
H<ﬁu1Zh<> = u1 I1(Z1,¢) + C(u1, Z1,¢)
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to analyse the term I_I(ﬁU1 Z1, C), and look at each term on the right hand side

separately. First, we have

u1 1(Z1, €) = 11, (H(Zl,C)) + Uz, oyur + H<u1,H(Zl,C)>
with
H(ul,H(Zl,()> = un H(Zl,H(Zl,C)) + c(uu,z1 ;H(Zl,())
+u12H(Z2, (Z1,¢ ) + (o + B —2)
Il,,, (H(ZhH Z1,C )) + HH(Zl,H(Zl,c))(ull) + H(UllaH(Zlan(ZLC)))
+uiniC(Z1, Z1311(Z4,C)) + L, (H(ZQ,H(Zl, c))) + (da + B —2)
(

= Ty, (T1(21,11(21,0))) + H“IH{HH(Zl,H(Zl,<>)Zl

+T1(20,11( 2, T1(Z4,C))) + C(Zl,Zl,H(Zl,())}

My, (T2, T1(Z1,€) ) + (da + 5 = 2)
and
r(z, 01 = nez,,0) (M, Z1) + Tz, ¢) (Muy, Z2) + (4o + B = 2)
= Huu (HH(Z1,C)Z1) + TH(ZhC) (ull, Zl> + Hu12 (HH(ZI,C)ZQ> + (405 + ﬂ — 2)

= Iy, (Try(z,.0)Z1) + My, (TH(Zl,C)(Zla Zl)) + oy, (Hn(zl,g)%)
+ (da+ B —2).
Second, the term
C(u1, Z1,¢) = un1C(Z1, Z1,¢) + Cwar, Z15 21, C)

has the same structure as the term H(ul,H(Zl,C)) analysed above; one can
repeat the same computations. We are then left with checking that the distri-
butions Y; that appear in this decomposition of v( are indeed in LFC"*; the

assumptions on the enhanced distribution 5 are made on purpose.
o It is straigtforward to adapt the above computations to the analysis of the
terms H(ﬁu2 Zo, () and I_I(ﬁU3 Zs, C), by tracking the indices and running the
computations up to remainders of regularity (4o + 5 — 2).

>

One gets from propositions 13| and [14] that for @ in canonical form (4.10]) one can
write the product f(u)¢ under the form

fu)C = Mpp)¢ + My, Yo + Ty, Y + 11, Ya + (da + 5 — 2),
with Y5 depending only on ¢ and Z; = R(¢), with Y3 depending on ¢, Z; and
Zy = R(Y2), and so on. The consistency relation
R(f(u){) = ﬁf(u)Zl + ﬁv2ZQ + ﬁv3Z3 + (30& + ﬁ),
determines then uniquely the choice of Z1,Z5 and Zs, or rather the operators 11, 7;.

The different components of ¢ also pop out of the above computations, as those
expressions in Z1,( that do not make sense on a purely analytic basis. From the

study of the term H(ﬁulZl, C), we have just singled out
H<21 and H(Zl,é)
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to be assumed in LEC?*2
11(Z1,¢), (Z1,1(Z1,¢)),T¢(Z1,Z1) and Iy z,) %1
in LEC32 and
T(Z1,21,21), T(Z2,Z1), C(Z1,21,¢), 1(Z2,01(Z1,)),
M2, 10(Z0,1(21,0) ), C(%, 20, 1(Z0,C)), C(Z1, 203 20,C), - (%2, Z1,),

HH(Zl,H(Zl,C))Zl’ Mz.0%: T 20),
in LOTOC4°‘*2. The study of the terms corresponding to ﬁw Zo and ﬁug Zs, only add
the expressions

HC(ZQ)7 H(227C)7 H(ZlaH(ZQaC))v C(ZLZQaC)a
Hire,z0)21,  He(Z3), 1(Z3,Q)

to the above list; this is the list of the components of the enhanced distribution Z .
One sees that they correspond to the terms needed to make sense of the products

ZiC;  ZEC, ZoC;  ZiZoC, Z3C, ZsC,

in accordance with the overall picture provided by the theory of regularity structures
— see Hairer and Pardoux work [20)] for a study of equation from the regularity
structure point of view, amongst other things. Here again, recall that to each product
in the theory of regularity structures are associated three terms in our paracontrolled
setting, so the reader should not be afraid to see so many terms in our enhancement
¢ of the noise (.

One can proceed, from that point on, to the analysis of equation by the fixed
point method of section by following almost verbatim the details given there.
The analysis of the symmetry group of this equation in the present low regularity
regime is done in exactly the same way as in sectionl@, and requires from the reader
to write the explicit formula for the function F(ﬁ)c by collecting its different pieces
from the above computations; we leave her/him the task of doing that.

5 Generalized KPZ equation

We provide in this section sufficiently many details on the study of the generalized
KPZ equation
(0 + Lyu = f(u)C + g(u)(ou)?, (5.1)
for the reader to fill in the gaps herself/himself. The noise ¢ is here a one dimensional
space-time noise on [0, 7] x St, almost surely of parabolic regularity (a—2), and the
symbol ¢ stands for the derivative with respect to the space variable. Such a kind
of equation appears in the study of the random motion of a string on a manifold
[19], where a < % in that case ; its study in the setting of regularity structures
is the object of Bruned-Hairer-Zambotti’s forthcoming work [3]. The renormali-
sation of the 50ish terms that appear in the models for this equation motivated
the development of systematic renormalisation procedures. This is the content of
Bruned-Haire-Zambotti’s and Chandra-Hairer’s forthcoming works [3, [5].

Theorem 15. For % < a, one can formulate the generalized KPZ equation ((5.1) as
a well-posed differential equation within the setting of paracontrolled calculus.
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We show here how some elementary, and relatively short, computations allow for
the analysis of this equation within the paracontrolled calculus setting developped
here, in the mild case where 1 5 <a< 3, and the second order paracontrolled calculus
suﬂices for the analy51s Similar computations can be done in the space-time white

noise case g < a < 3, to the price of some heavier, unappealing, computations. We

do not touch upon the renormalisation problem, which is a different subject.

We set the scene in the second order paracontrolled setting of section [4.3] for some
generalized KPZ enhancement C of ¢ to be identified from the analysis of equation
(5.1). The term (0u)? is of parabolic regularity (2a:—2), more regular than the term
f(u)¢, of regularity o — 2. The main task in the analysis of the generalized KPZ
equation is to put the term g(u)(u)? in the form

g(u)(0u)? = Ty, 32 + Ty, 33 + (4a — 2) (5.2)

for some reference distributions 3; in L%Cm_Q, i € {2,3}, depending only on an
enhancement 5 of ¢, and some functions v, v3 in some Holder space — typically C?,
for some 8 < «, as in section The analysis proceeds in two elementary steps.
To lighten notations, we do the computations here in the case where the regularity
exponent 8 equals a; only cosmetic changes are needed in the case where 8 < « is
close enough to a.

Proof of theorem [I5 — We provide a sketch of proof, living the details to the
reader; we proceed in two steps.

Step 1 — (du)2. Given u with the second order paracontrolled structure (4.2)),
one has

ou = ﬁul (&Zl) + (ﬁau1(Z1) + ﬁul (aZﬂ) + (30& — 1),

so the only ill-defined terms in the product (du)? are the three terms
~ 2 ~ ~ ~ ~
(Tl @z}, {T, 020 H{Ta (20)}, {020 H{l(022)}.

~ 2
We analyse in detail the worst term {Hul(aZl)} , of regularity (2« — 2); the

two other, more regular, terms are easier to study. All the computations below
use the continuity results proved in section (3, We have

{ﬁul(azl)} = M, oz (T (020)) + 11 (T, (020), T, (020))
- 21'[“1( i, (o2 (&Zl)) +2Th, (o) (01, 021)
+ u1H<(7Z1, (azl)) 4 C(ul, 07y, 1, (azl))
= 2N, (Mo, (071) ) + 2R (wr 31,0211 02)
+2T5 oz (T 21+ (20):021)
+udT1(0Z1,071) + 2u1C(uy, 071, 07;) + (4a — 2)
— 210, (ﬁazl(azl)) + oI, (R(Z1 74,07 ; azl)) + (da—2)

+ Huluu <T6Z1 (Zl 5 aZl)) + (4a — 2)
+udT1(0Z1,021) + 2Myy0,, C(Z1, 021,071,
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with
W 11(021,021) = W, (1021, 021)) + Hiygas o) (ud) + H(uf, (871, azl))
= 11,2 (11(0Z1,021))
IS (HH((}ZhaZl)Z1 +11( 2y, TI(021, azl))) + (4o —2).

This computation shows what terms need to be considered as part of the en-

~ 2
hanced distribution and that {Hul(aZl)} can indeed be written under the
form

(M, (020)} = T2 + 11,; + (42— 2). (5.3)
The very same kind of computations shows that we have in the end
(0u)? = T,z (2Mo, 021 + (271, 071) ) + Ty D + (4o - 2)
= 11,292 + ey Y3 + (4o — 2),

for some 9); in LLC3*~2 — and a definition of 93 different from its definition in

equation (|5.3]).
Step 2 — g(u)(du)?. We finally have the decomposition

9(u)(@w)? = Ty() (ILsD2 ) + M o, (9()) + T1(9(w). ey V2) + My, Vs
+ (4o — 2)

= gy V2 + gy (H@(uf)%) + g uug (H%Zl + H(ZLQJZ))
+ Hgu)e; V3 + (4a = 2)

= HQ(U)U%Q‘J2 + H2Q(U)U1U11 <H921@2> + Hg’(u)u? (H@221 + H(Zla 2)2))
+ Hg(u)032)3 + (40( - 2)7

in the required form (5.2]).
>

It is easy, although a bit tedious, to give from that point on an explicit description
of the space of enhanced distributions for equation , and prove its well-posed
character in the present second order paracontrolled setting. It is of fundamen-
tal interest that the solution map for the equation is a continuous solution of the
enhanced distribution and the sufficiently regular initial condition.

e It is elementary to describe the symmetry group of the generalized KPZ equa-

tion, in the present mild setting where a > % As in section one can indeed
write the right hand side f(u)¢ + g(u)(du)? of the generalized KPZ equation under

the form
F)¢ + g(u)(0u)® = H(@, ) + K(a)C,
for some continuous functions H, of @ and ¢ € LLC*2, and a continuous function

K of u and 2 that is linear with respect to 2 . Such a decomposition for the product
f(u)¢ was given in section and an elementary computations shows that one has

(u)? = (V) + uiI(0Z1,07y) + 2(uy + Our)u1C(Z1, 021,021 + 2u10u11(0 2y, Zy)
+ QU1U11C(Zl, Zl, 621) + QU%H(aZh (9Z2) + (4a — 2),
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with
(V) = 2Ty (g (ﬁul (azl)) T, oz (ﬁau1 (Zl)) g, 7 (ﬁu (azl))
g, oy (M0a(022)) + Ty, (o (T (020))

=2y oz (Hul (azl)) +(3a—2),

with (3a — 2) a continuous function of u and ¢. Note that the term C(Z1, Z1,071)
in the formula for (du)? has positive Holder regularity, so it will be part of H(ﬁ, C),
after multiplication by g(u). Now, for the term (v'), we have

9() g, (57 (T (021))
= g (Hﬁul (071) (ﬁm (621))) + Hnﬁulwzl) (L, (021)) (9(w))

+g’( >U1H<Z1,H (52)( u1(521)>) +(40é—2);

the first two paraproducts are continuous functions of @ and ¢, and, since 2 — 1 is
positive,

o (unll (20,1, 5 (1, (021)) )
= 11, (021) g/ (w)e T1( 21, Ty (020)) + ¢’ (w)er C(Thuy (021), 21, T, (020) )
= 11, (021) g/ () T1( 21, Ty (021)) + g (w)us? (071, 24, 020) + (4o = 2)
(u1621 + (20— 1)) (w)ur (ulﬂ(Zl, 071) + (3 — 1))
+ ¢/ (w)ud C(0Zy, Z1,0Z1)
— /(i ((020) W(Z1,021) + C(0Z1, Z1,071) ) + +(4a — 2)
for some continuous function (---) of @ and ¢. In the end, we have
K(2)¢ = F(a)C + g(u ){ufn(azl, 071) + 2(ur + ou)unC(Z1, 021, 071)
+ 2u 0w I1(82y, Z1) + 2u3TI(0 74, 022)}
+ 20/ () ((020) T2, 024) + C(074, 74, 0%4) )

with the function F that appears in the decomposition of f(u){ given in lemma
O Note that the additional terms that appear in this formula for K, compared to
the formula for F, are precisely those terms that are needed to make sense of the
products

(021)%, 71 (021)?, (021)(0Z2), Z1 071, Z3 07,
once again in accordance with the theory of regularity structures.

List the elements of E in non-decreasing order of regularity. Buiding on the con-
tinuity of the solution map for the generalized KPZ equation, one readily sees the
effect on the dynamics of a renormalisation procedure of the form

M (T —E,
for some upper triangular constant matrix 7', with a unit diagonal, and some possibly
space-time dependent renormalisation functions/constants =Z. If (¢ stands for a

regularized noise, with associated canonical enhancement (¢, and if .#°(® converges
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in probability to some limit element in the space of enhanced distributions for the
generalized KPZ equation (5.1]), then the solution to the well-posed equation

(@ + Duf = F(uf)C + g(u) (0uf)? + K(us) (= —1d) (7

converges in probability to the first component of the solution to the generalized
KPZ equation constructed in the present third order paracontrolled setting. (The
different components of u° are all explicit functions of u®, which is why we abuse
slightly notations above and write K(uf) instead of K(@*).)

A Details on the parabolic setting

For the reader’s convenience, we recall in this Appendix a number of notions/facts
introduced and studied in detail in our previous work [2], with the hope that this
will make the reading of the present work self-contained. We refer the reader to
[2] for the proofs of the different statements given here. We describe in section
a class of operators with some cancellation property. Parabolic Holder spaces are
described in section together with the fundamental Schauder estimates in this
scale of spaces. We introduce the pair (H, ﬁ) of paraproducts in section m The
statements given here are explicitly used in the proofs of the continuity results of
section [3] given in Appendix [C|

We use the notations introduced in section[I.2]and assume the operator L astisfies
the assumption stated there. Recall in particular that we denote by e a generic
element of the parabolic space M.

Approximation operators

The use of paraproducts and other kind of singular operators involve the funda-
mental notion of approximation operators, of which we discuss some aspects in this
section.

The following parabolic Gaussian-like kernels (G)o<t<1 will be used as reference
kernels. For 0 <t <1 and o < 7, set

_ . 2\ 4
gt((T,:U),(U,y)) ZZU(BM((T’x)’\/Z)> 1 <1+CP(( ) )at( ,y)) )

and set G; = 0 if 7 < 0. We do not emphasize the dependence of G on the positive
constant ¢ in the above definition, and we shall allow ourselves to abuse notations
and write G; for two functions corresponding to two different values of that constant.
So we have for instance, for s,t € (0,1), the estimate

JM Ge((7,2), (0,9)) Gs((0,9), (A, 2)) v(dody) < Gres((7,2), (A, 2)). (A1)

Presently, note that a large enough choice of constant ¢; ensures that we have
sup sup | Gi((r,a),(0,0) vldody) < e,
te(0,1] (r,.z)eM JM

so any linear operator on M, with a kernel pointwisely bounded by some G; is
bounded in LP(v) for every p € [1,©].
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Definition. We shall denote throughout by G the set of families (Pt)o<t<1 of linear
operators on M with kernels pointwisely bounded by

K, (e )| < Gile. ).
Given a real-valued integrable function ¢ on R, set
1 ;-

the family (¢¢)g<t<1 is uniformly bounded in L!(R). We also define the “convolution”
operator ¢* associated with ¢ via the formula

¢Wﬁww=£fwr—@f@ma

Note that if ¢ has support in Ry, then the operator ¢* has a kernel supported on
the same set {(J, T);0 < T} as our Gaussian-like kernel. Moreover, we let the reader
check that if ¢1, ¢ are two L!-functions with ¢o supported on [0, 00) then

(¢1 * ¢2)* = QS{ © ¢57
where ¢1 * ¢o stand for the usual convolution of ¢, and ¢,.
Given an integer b > 1, we define a special family of operators on L?(M) setting

Eb) i= 7, L (tL)Pe and - tatpt(b) = Eb)’

with v, := (b—1)!; so Pt(b) is an operator of the form py(tL)e™*", for some polynomial
pp of degree b — 1, with value 1 in 0. Under the assumptions on L stated in section
the operators Pt(b) and ng) both satisfy the Gaussian regularity estimates

1 oc d<x£y>2
u(B(z, V1)) ’

with R standing here for Pt(b) or ng), as well as the pointwise regularity estimates.
For d(x,z) < /t, we have

\%

(x,y)‘ <

K
t2 RVy

d(y, z) 1 o d(z;y>2
Vi V() ’

where K is the kernel of either t% VIR or t% RV;.

K(,y) — K(zy)| <

The parameters b and ¢ are chosen large enough and fixed once and for all — see
[2] to see how this choice needs to be done. The reader should just keep in mind
that the higher b and ¢; are, the higher order of regularity we can deal with. In
our applications, we need all the objects to have a regularity order in the range
(—3,3), so b and ¢; are chosen big enough to allow for this range in all the following
continuities result.

Definition. Let an integer a € [0,2b] be given. The following collection of families
of operators is called the standard collection of operators with cancellation
of order a, denoted by StGC*. It is made up of all the space-time operators

J|—2k

((t%VJ) (L) 2 " P @m:

>O<t<1

where k is an integer with 2k +|J| < a, and c € [1,b], and m is any smooth function
supported on [%, 2] such that

f#’m(r) dr =0, (A.2)
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for all 0 < i < k — 1, with the first b derivatives bounded by 1. These operators
are uniformly bounded in LP(M) for every p € [1,0], as functions of the scaling
parameter t. We also set

StGCl0:20] . — U StGCe.

0<a<2b

The above mentioned cancellation effect is quantified by the property (A.3) stated

in Proposition below; note here that it makes sense at an intuitive level to say
a—|J|—2k . . .
that L™ 2 encodes cancellation in the space-variable of order a — |J| — 2k, that

Vy encodes a cancellation in space of order |J| and that the moment condition (A.2])
encodes a cancellation property in the time-variable of order k for the convolution
operator my. Since we are in the parabolic scaling, a cancellation of order £ in time

. . a—|J|—2k
corresponds to a cancellation of order 2k in space, so that V;L™ 2 Pt(c) ®m; has
a space-time cancellation property of order a. We give one more definition before
stating the cancellation property.

Definition. Given an operator Q := Vi ¢(L), with |I| = 1, defined by functional cal-
culus from some appropriate function ¢, we write Q° for the formal dual operator

Q* = d(L)Vr.
ForI =, and Q = ¢(L), we set Q* := Q. For an operator @ as above we set
(Q®m*). =Q*@m”.

Note that the above definition is not related to any classical notion of duality and
let emphasize that we do not assume that L is self-adjoint in L?(u). This notation
is only used to indicate that a (Q; operator , resp. a )} operator, can be composed
on the right, resp. on the left, by another operator (L), for a suitable function 1,
due to the functional calculus on L.

Proposition 16. Consider Q' € StGC™ and Q% € StGC* two standard collections
with cancellation, and set a := min(ay,az). Then for every s,t € (0,1], the compo-
sition QL o Q2* has a kernel pointwisely bounded by

ts 2
’Kggogg-(e,e’)’ < <(s+t)2> Grrs(e,e). (A.3)
The above mentioned orthogonality property of standard operators with cancel-

lation is encoded in the factor (ﬁ) % that appears in the above estimate. This

factor is small as soon as s or t is small compared to the other.

Definition. Let 0 < a < 2b be an integer. We define the subset GC® of G of families
of operators with the cancellation property of order a as the set of elements
Q of G with the following cancellation property. For every 0 < s,t < 1 and every
standard family S € StGC®, with o’ € [a,2b], the operator Q; o 8 has a kernel
pointwisely bounded by

st

(s+t)2> Giis(e, e). (A.4)

Kowss(e.e)] =

We introduced above the operators ng) and Pt(b) acting on functions/distributions
on M ; we now their parabolic counterpart. Choose arbitrarily a smooth real-valued
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function ¢ on R, with support in [%, 2], unit integral and such that for every integer
k=1,..,b

JTkQO(T) dr = 0.
Set
p(b) _ P(b) ® and (b) = —t0, p(b)
An easy computation yields that

o =" @i+ P @u
where ¢(0) = ¢(0)+0¢' (o). Note that, from its very definition, a parabolic operator
ng) belongs at least to GC?, for b > 2. Note also that due to the normalization of

¢, then for every f e LP(R) supported on [0,00) then we have the LP convergence

i (f) —> f

t—0

So, the operators P; weakly tend to the identity on L{j(M) (the set of functions
f € LP(M) with time-support included in [0, 0)), p € [1, 20), and the set of functions
f € C°(M) with time-support included in [0, 0), as t goes to 0; so we have the
following Calderén reproducing formula. For every continuous function f €
L*(M) with time-support in [0, 00), then

f = f th) VL) (A.5)

Noting that the measure % glves unit mass to intervals of the form [2 =19~ ] and
conmdermg the operator Qt as a kind of multiplier roughly localized at frequencies
of size t~ 2 Calderon’s formula appears as nothing else than a continuous time

analogue of the Paley-Littlewood decomposition of f, with Cit in the role of the
counting measure.

Parabolic Holder spaces and Schauder estimates

We recall in this section the definitions and basic properties of the space and
space-time weighted Holder spaces, with possibly negative regularity index. We also
recall the fundamental regularization properties of the heat operator, quantified by
Schauder estimates.

Let us start recalling the following well-known facts about Holder space on M,
and single out a good class of weights on M. Given 0 < a < 1, the classical metric
Holder space H® is defined as the set of real-valued functions f on M with finite
H%norm, defined by the formula

(@) = f(y)]
a = ooy T SUP T
e s= ey s LI
Definition. For a € (—3,3), define C* := C*(M) as the closure of the set of bounded

and continuous functions for C*-norm, defined by the formula

A o

< Q0.

Pyp— _L _g
Ifllee =™ Floqary + sup 72

this norm does not depend on the integer a > ‘%', and the two spaces H* and C*

coincide and have equivalent norms when 0 < a < 1 — see for instance [1].
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These notions have parabolic counterparts which we now introduce. Recall wa
work with the parabolic space M = [0,T] x M, for a finite time horizon; the in-
troduction of a time weight in the next definition thus has no effect on the space
involved, nor on its topology. Its introduction happens however to be a convenient
freedom which allows to simplify a number of arguments. Let then a positive pa-
rameter k be given and denote by w the weight

w(r) = e"". (A.6)

For 0 < o < 1, the metric parabolic Holder space H® = H*(M) is defined as the
set of all functions on M with finite H“-norm, defined by the formula

T,2)— f(o
HfH’H”‘ = ”w_lf”Loo(M) + sup _‘1f( ) ) f( 7y)‘ -
0<p((ra) (o) <tir=a W H(T) p((T,2), (0,9))
As in the above space setting one can recast this definition in a more functional
setting, using the parabolic standard operators. A set of distributions was introduced
in [2], whose precise definition is irrelevant here.

Definition. For « € (—3,3), we define the parabolic Hélder space C* := C*(M) as
the closure, in the set of distributions, of the set of bounded and continuous functions
on M for the C*-norm, defined by

o= - 5w .
Iflle= = sup, Jw™ QU oo gy + Sup - sup 2w Qe oo
0<k<2b lo] <k<2b

We write C,, if we want to emphasize the dependence of the norm on w. The
following result was proved in [2] building on Calderén’s formula (A.5]).

Proposition 17. Given a € (0,2), set
£ = (C$/2L;O) A (L:ch),

and endow this space with its natural norm. Then E% is continuously embedded into
C®. Furthermore, if a € (0,1), the spaces E*,C* and H* are equal, with equivalent
norms.

The weighted version (LfCﬁ) of LPCY is the same space, equiped with the
w
norm

Cor

f( ) = sup e "7 f(r,")
L®Ce 0<r<T
w

We use in the body of the work the following regularization properties of the heat
operator associated with L — it is proved under this form in section 3.4 of [2]. This
property is used crucially in the fixed point argument in the resolution process of
singular PDEs in our paracontrolled setting.

Theorem 18 (Schauder estimates). For any choice of parameters  and € > 0,
such that —2 + 2e < § < 0, we have
< —&
”R(U)Hcg+2—2a—zg ST R HUH (L%ch)w.
Before turning to the definition of an intertwined pair of parabolic paraproducts

we close this section with two other useful continuity properties involving the Holder
spaces CJ, — recall the manifold M is compact.
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Proposition 19. Given a € (0,1), a space-time weight w, some integer a = 0 and a
standard family P € StGC?, there exists a constant ¢ depending only on the weight
w, such that

() (P e) = (Paf)(€)

uniformly in s,t € (0,1] and e = (1,z) and € = (o,y) € M, with T = o

< (5414 pe. @) |fly.

Parabolic paraproducts

We give a quick presentation in this subsection of the pair of intertwined para-
products introduced in [2], following the semigroup approach developed first in [I].
The starting point for the introduction of the operator II is Calderén’s reproducing
formula . Using iteratively the Leibniz rule for the differentiation operators V;
or 0, we have the following decomposition

fg—;auf(fti;i(f,g) . 0) dt+2b JB

where

o T is the set of all tuples (I, J, k, ¢) with the tuples I, J and the integers k, ¢
satisfying the constraint

1] + | ] b
Pl =2,
5 +k+ %

ol bl . .
a g, bk’g are bounded sequences of numerical coefficients;

o for (I, k() € T,, Ay} (f.g) has the form
111 1J1
ALl (f )= PO (£ Rviak) (S - (82 vl )
with S®/2) e GCY/2;
o for (1,J,k,0) € Iy, Bé:j(f,g) has the form
11 171
Byl (F.9) = 8" ({ (2 Fvidky PP g - { (£ 7 Vi) PPgf )

with S®/2) ¢ GC¥/2,

Definition. Given f in Use(O,l) C* and g € L*(M), we define the paraproduct Hgb)f
by the formula

' dt

- | { A G+ Y B >} ,
0 Tyl 4 k> 2 Ty Hl 4>

and the resonant term I1)(f, g) by the formula

n®(f,g) :=

1
f{ Y (AU + AT N) Y BB >}f

Tyl 4 k< Ty 4 k=1l 1ot
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With these notations, Calderén’s formula becomes

fo =10 () + 1P (g) + TO(f,9) + A_s(f,9)

with the “low-frequency part”
Alf,g) =P (P Pg).

If b is chosen large enough, then all the operators involved in the paraproduct
and resonant terms have a kernel pointwisely bounded by a kernel G; at the right
scaling. Moreover,

(a) the paraproduct term Héb)( f) is a finite linear combination of operators of

the form )
dt
1o [ A2 1
Q%r.plg) —
L t ( t t )t

with Q!, Q% € StGCH, and P! € StGC,

(b) the resonant term II®)(f, ¢) is a finite linear combination of operators of the

form .
dt
Pl Qlf . QZg we
L t ( t t ) ;
with Q1, Q2 € StGCT and P! € StGC.

We invite the reader to see what happens of all this when working with in the
flat torus with its associated Laplacian. Note also that chb)(l) =TI (f,1) = 0, and
that we have the identity

b b b
) (f) = £ =PV,

as a consequence of our choice of the renormalizing constant. Therefore the para-

product with the constant function 1 is equal to the identity operator, up to the

strongly regularizing operator 73£b)73£b). The regularity properties of the paraprod-

uct and resonant operators can be described as follows; it behaves as it classical,
Fourier-based, counterpart (2.1)).

Proposition 20. (a) For every real-valued regularity exponent «,f3, and every
positive reqularity exponent v, we have

A (£ 9er < 1Flle=lgles
for every f e C* and g € CP.

(b) For every a e (=3,3) and f € C®, we have
O . < Lol flee

for every g € L*, and

()
for every g € CP with B <0 and o + § € (—3,3).

< o
coss ~ 19les ] fle

(c) For every a, B € (—0,3) with a + > 0, we have the continuity estimate

HH(") (f.9)

for every f e C* and g € CP.

cors < Iflleelgles
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Definition. We define a modified paraproduct ® setting
S (b . b
1P (f) = R(IP(£1)).

The next proposition shows that if one chooses the parameters ¢; that appears
in the reference kernels G;, and the exponent b in the definition of the paraproduct

large enough, then the modified paraproduct ﬁfqb) (+) has the same algebraic/analytic
properties as Héb)(-).

Proposition. e For a large enough choice of constants ¢1 and b, the modified
paraproduct I, f is a finite linear combination of operators of the form

! dt
1o A2 1
Qf-Prg)—
fo t ( t t ) ;
with Q' € GC3~2, Q% € StGCH and P! e StGC.
o For every a € (—3,3) and ¢ € (0,1) with « —e € (—3,3) and f € C*, we have
()

for every g e L.

< wlg] | flee,

COL*E
w

Note that the norm ||f|ca above has no weight. Note here the normalization
identity

il = r—rPPPY (Lf)

for every distribution in f € S; it reduces to
~(b b b
s = f PP ()
it ],y = 0.

Following the definition of the inner difference operator 2 given in subsection
3.2, we extend it to a parabolic versionby defining 2 ( = ,@e/) by the formula

|| @@ viaewaey = [[ (1) - r)gterviaerwae
M2 M2

with this notation, the crucial motivating relation
115 (Ta(9)) — Tgal9) = 11y (Tla(9))
holds indeed.

Last, we prove an elementary property of the modified paraproduct that pro-
vides some pointwise information on the solutions to singular PDEs constructed via
paracontrolled calculus.

Proposition 21. Let « be a positive reqularity exponent, and let u,v, Z € C* be given,
with Z(0,-) = 0. Assume that

u— 11,7 e C?,
and define f := min(2a, 1). If a # %, we have
[ule) — ul(e') — v(e) (Z(e) — Z()] 5 ple,')P,
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uniformly in e, e’ € M with p(e,e’) < 1. If a = %, we have a logarithmic loss
[u(e) = u(e) = vle)(Z(e) = Z(e")] £ ple,e')log (1 + ple. ) 7).
Proof — Due to the assumption, one has
[u(e) — ule') — v(e) (Z(e) = Z(e)| < ple,e)? + ()
with
(%) := ‘(Hvz) (e) — (nvz) (/) —v(e)(Z(e) — Z(e)|.
Using Calderén reproducing formula, or the normalization which yields
0,7 =27
since Z(0,-) = 0, we see that (%) is equal to

Jo Q7 [Q1ZPw](e) — Q7 [ Qe ZPw](€') — v(e)Qf [ Qe Z](e) + v(e) Qs [Q: Z](€') dt

t
1
(*) < L J(Kgg(e»a) — Koz (¢, a)) QuZ(a)(Prv(a) — v(e))v(da)

Using the regularity estimates on v and on the kernel of the approximation
operators, one sees that

)

SO
dt

1 e e/
(*) < |Ucaf0 fmin{l,p(\}i >}Qt(e,a) 1012 (a)| (t + pla, €)?)* y(da)%

o dt ! (e, €e) dt
< lolealZlea [ 2a+By2 4 1 Z e J f e €) @atp)a b
foler)Zles | el Zles | [P s
< [vlcalZleape, )’
which concludes the proof.
>

The next proposition gets its flavour from the remark that a function defined up
to some remainder by a paraproduct may have different derivatives. Consider for
example real-valued functions on the interval (0,1), and take Z = t. A smooth
function w of time, seen as an element of C%, with 0 < a < 1, satisfies both

u = IlgZ + (20()

and

u=1I17Z+ (2a) = Z + (2a),
since Z itself can go inside the remainder (2«). In other terms, the derivative of
a paracontrolled function is not generically determined by the function itself. This
happens, however, if the reference function Z is sufficiently 'wiggly’. Let a positive
index 8 be given. Following Friz and Shekar in their study of controlled paths [12],
we say that a parabolic function Z is S-truly rough at space-time point e if

. Z(e') = Z(e)]

hr;l_s)lelp (e, e)? = 0.
It is said to be [B-truly rough if it is S-truly rough at a dense set of points in
M. The following result stating that the derivative of a paracontrolled function is
determined by the function itself if the reference function is truly rough comes as a
direct consequence of proposition
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Corollary. Let a < B < 2« be positive exponents. Let Z € C* be a B-truly rough
function such that Z(0,-) =0, and let also u,v be elements of C* such that

u—ﬁvZeCQO‘.
Thenv =0, ifu=20

It is elementary to proceed as in [I12] and check that if ¢ stands for a d-dimension
space white noise in M, for d = 2 or 3, then R(¢) is almost surely (4 — d)~-truly
rough. A sufficient condition for a function for being truly rough is provided by
Hairer-Pillai’s notion of #-rough function [2I]; see for instance section 6.4 of Friz-
Hairer’s lecture notes [I1]. It may be interesting to note that Norris lemma holds in
that case, giving a control of the L*-norm of v in terms of the modulus of continuity
of u and the 2a-norm of (u—ﬁvZ ) The proof that Brownian motion is Holder rough
given in section 6.5 of [I1] shows that Z = R(() is Holder rough if ¢ stands for space
white noise in the flat torus, with L its associated Laplace operator. We shall show
elsewhere that this result also holds true in our closed manifold setting, as expected.

B Taylor expansion formula

We give in this section a detailed and rigorous proof of Theorem|[I] The parameter
b is fixed, and we note II for TI(®).

Theorem 22 (Higher order Taylor expansion). Let f : R +— R be a C* function,
and let u be a real-valued and C* function on M, with o € (0,1). Then

Fl) = Ty () + 5 {00 (02) = 2 0)}

4 M0 ) (09) = 31T 40 (02) + BTy ()} + (0

for some remainder f(u)f € C**. If moreover f is of class C®, then the remainder
term f(u)f is locally-Lipschitz with respect to u, in the sense that

(B.1)

[f)f = ()i < (1 + [ullea + [v]ca)” u —v]ca.

Proof — Let us give a detailed proof of the third order expansion, that claims that

() 1= F0) ~ Ty ) — 5 {TT 000y (62) = 27T (1)

is a 3a-Holder function. We invite the reader to follow what comes next in the
light of the proof given in section [2]in the time-independent, flat, model setting
of the torus.

As, by definition, the paraproduct operator Il4(-) is a finite sum of different
terms, each of them of the form

1 ! 1o A2 1 dt
Aj():= | (20 PH9) T
with Ql, Q? at least to StGC?’, it is sufficient to prove that the following function

(%) = f(w)~ fo 1 [Q;(Q%w) PH(w)) + 5O (G PP W)

ol (@) P (1P )] &

t
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is an element of C3@. Using Calderén’s reproducing formula together with the
normalization of the paraproduct, we have

J 0} Q3 (P} (1)) %

up to a remainder quantity corresponding to the low frequency part that is as
smooth as we want. So one can write () under the form

f %" (B.2)
with
e =02 (f(w))PH1) — Q2 w) P (1'(w)
_ %Q? (u2) Ptl (f(2) (u)) + Q? (u) Ptl (f(Q) (u)u) .

Due to the orthogonality/cancellation property of the operators Q;°, it suffices
for us to get an L™ control of e;. Using the kernel representation of the different
operators, we have for every e € M

eie) = J Kgg(e, e’)Kptl (e, 6”){f(u(e/)) _ u(el)f/(u(e//))

—ule (e )f(Z) (u(e”) + u(e’)f(2) (u(e”))u(e”)} v(de")v(de")
Note also that we have from the usual Tayor formula for f

F((e)) — (@) (u(e")) — Ju2()FO (")) + u(e)f (u(e))ule")

ffff ¢") + apy(ule) - “(e”)))BV(U(e’)—u(e”))3dad5d7

P+ ule) () + Ju2 ()7 (u(e")).

When we integrate against Kg2 (e, € )Kptl (e,e"”) a quantity depending only in
¢’ has no contribution, since the latter kernel satisfies a cancellation property
along the e’-variable; so we have exactly

f Kgz(e.)Kpi (e, )

f f f 79 (ule") + aBy(u(e) = u(e) )57 (u(e!) — u(e"))” dadsady |v(de)u(de").

Slnce K2 and Kp1 are both pointwisely dominated by the Gaussian kernel Gy,
t t

and using the fact that f®) is bounded on the range of u, we obtain the uniform
control

le(e)| < J Gi(e,eGile, ") (u(e) — u(e”))3 v(de')v(de”)
M2

s HU”%a t3a/27
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from which the fact that (x) belongs to C3* follows from (B.2)). We used for that
purpose the identity

u(e’) —u(e") = (u(e') — u(e)) + (u(e) — u(e”)),

together with Proposition [17] on the characterization of parabolic regularity in
terms of increments, to see that

Ju(e’) —u(e”)| < (d(e',e) +d(e”, €))"| fllco-

The fourth order expansion of the statement is proved by a very similar reasoning
left to the reader.

>

C Continuity results

Recall the definitions of the corrector
C(f,g:h) =11 (Tl (g), ) — £ TL(g, w),
and the (modified) commutators
D(f.gsh) =11 (Tis(g), h) =T (TH(g, 1) ).

Tulg, £) = (T () =TTy (I (F))

and their iterates, introduced in section [3} they are initially defined on the space of
smooth functions. We prove in this last Appendix the continuity results on these
operators stated in section

C.1 Boundedness of commutators/correctors

We start by looking at the case of the operator T.

Proposition 23. o Leta, 3,7 be Hélder regqularity exponents with o € (—3,3), €
(0,1) and vy € (—0,0). Then if
a+ f <3, and 0:=a+p+v€(-3,3),
we have
I Tul9: D)l < 1 fllea lgles Tullen (C.1)

for every f € C*, g € C? and u € C7; so the modified commutator on para-

products extends naturally into a trilinear continuous map from C® x C8 x C7
to CO.

o If v =0 then the product ug has a sense for u e L®(M) and g € C?, and we
have

IR, 95 Nl cars < 1flce lgles Il (C.2)

Proof — Recall that the operators Hgb)('), respectively ﬁgb)(-), are given by a finite
sum of operators of the form

A = [ et (et P) ¢

t )



53

respectively
~ LSRN dt
A= | o (@0 Pw) T
0

where Q' Q2, @2 belong at least to StGC? and @1 is an element of GC?. We
describe similarly the operator Hgb)(-) as a finite sum of operators of the form

0= [ @i (abomi) &

Thus, we need to study a generic modified commutator
2 ( 1( 42
A2 (L)) = AL (A2()).
and introduce for that purpose the intermediate quantity

1
. ds
e(f.g) = | 0 (H) - Pla) - P2w) T
Note here that due to the normalization II; ~ Id, up to some strongly regular-
izing operator, there is no loss of generality in assuming that

1
J‘ Q%. ~2 dt J‘ Q 2 dt J‘ Qt.Q4 dt (03)
0

Step 1. Study of A2 (ﬂ;(f)) —&(f,g,u). We shall use a family Q in StGC?,
for some a > |§|, to control the Holder norm of that quantity. By definition,

and using the normalization (C.3), the quantity Q, (.Ag <.%T£17( f)) —&(f, g,u))

is, for every r € (0, 1), equal to

[ [ eer{eiar (@) P} 28 - [ 0.0 (i) P Piw) %
- [ [ ear{aiar (@ (o) - Phe)) PR}

where in the last line the variable of Pl(g) is that of Q3°, and so it is frozen

through the action of Qﬁ *. Then using that g € C® with 8 € (0,1), we know
by Proposition [19 that we have, for 7 > o,

B
(PLo) (@, 7) = (PLg) (. o)| < (5+ £+ (2. 7), (4,0))%) lgles-

Note that it follows from equation (A.1]) that the kernel of Q2 Nz‘l is pointwisely
bounded by G;. s, and allowing different constants in the definition of G, we have

gtJrs((x? T)> (ya U)) (5 +t+ d(.l‘, y)2)§ < (S + t)g gt+s((x> 7-)’ (yv U)) (C4)

So using the cancellation property of the operators Q, resp. Q' and @i, at an
order no less than a, resp. 3, we deduce that

|2 (A4 (&) ~etam)],

< I fllexlgles ul H A L (N L YR I L
~ cl9lics Ccv o Jo (S+T)2 (3+t>2 p” ,
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where we used that v is negative to control P2(u). The integral over t € (0, 1)
can be computed since « > —3 and a + 8 < 3, and we have

o (4 (&) ~etra )],

= al|lg u 5 S
eI Jo Jo \ (s +7)2

J
S [ fllexllgles [wlerr>,

N[>

ds
S

uniformly in 7 € (0,1) because |a| > 0. That concludes the estimate for the
high frequency part. We repeat the same reasoning for the low-frequency part
by replacing 9, with Q; and conclude that

2 (&) -efg.w) ,

S [ fllexllgles e

Step 2. Study of A; (A2(f)) — €(f,g,u). This term is almost the same
as that of Step 1 and can be treated in exactly the same way. Note that

9, (Al (A2() — E(f,g,u)) is equal, for every r € (0,1), to

[ [ o0 @erainmw] pe) 28 - [ a.e @0 Pl P2w) ©
j j 0, Q*{grar (Qin(P <g>f7>;<g>)-7>3<u>)}d§ft,

where in the last line the variable of P} (g) is that of Q}*, so it is frozen through
the action of @3*. The same proof as in Step 1 can be repeated, which gives the
first statement of the theorem.

Step 3. Proof of the second statement. For the second statement, Step 1
still holds. So it only remains to compare E£(f, g, ) with Aag(f). This amounts
to compare P?(ug) with P}(g)P?(u). Using the regularity of g € C% and the
uniform boundedness of u € L®, we get

HPE(UQ) —PHg)Pi (u HLoo < 92

which allows us to conclude.
>

Remark 24. The above proof actually shows the following property of the operator

Turi=9— Tulg, f)

where f € C* and u € C¥ are fized. For all families o', 9? € GC* for some a > 0,
the linear operator QtlTwc Qz’ has a kernel pointwisely bounded by

Btv st 2
(t+5)% <<+t>> Grvo(er€') Ifco Juler-
Proposition 25. o Let «, B, be Holder regularity exponents with o € (0,1), 5 €

(—3,3) and vy € (—0,3]. Set
di=(a+pB)A3+7.

If
O<a+p+v<1 and B+v<0
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then the corrector C extends continuously into a trilinear map from C® x CP x
CY to C0.

o If a, B, are positive then the commutator D is a continuous trilinear map
from C* x CP x CY to C°.

Proof — The result on C was already proved in [I, Proposition 3.6] in a more general
setting. We only focus here on proving the boundedness of D. As already done

above, we represent the operator H;b)() under the form
Lo dt
4500:= | al(@0 i) T
0
and the resonant term I1®) (g, h) as

B = [ P (Qoim) T

Thus, we need to study a generic modified commutator

(x) := B(As(g), h) — As(B(g, h))

- [ [ 7 (ater (@ pi) atim) 24
[ [ e (@rr@watmypiin) 2.

and introduce for that purpose the intermediate quantity

0= [ P(PLIQRDQEM) T

Then we compare the two quantities with E(f, g, h), such as done previously.
Each of these two comparisons makes appear an exact commutation on the
function f, due to our choice of normalization for our paraproducts. Using the
C® regularity on f together with the cancellation property of the Q operators,
we get

Ll T 3 st 3 dt ds
- < B/24v/2 a/2 20 %2
19, (%)L NLL (T—l—t) ((s+t)2> sPIEE (s + t) P
Ll TS 3 s dtds
B/24v/2 a/2 2
+LL ((7’+S)2> (SH) P T

L/ . \3 dt L7 \3 dt
< tlatB+7)/2 27 f 18/247/2 He2 22
"L<r+t> t ), e r+ 775

<2,

which shows that (x) belongs to C°.

C.2 Boundedness of iterated commutators/correctors

We now turn to the study of the continuity properties of the iterated versions
of commutators/correctors, and start with the (modified) iterated commutator on
paraproducts.
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Proposition 26. o Let o, 8,7, v be Holder reqularity exponents with o € (—3,3),
B,v€(0,1) and v € (—0,0). Then if
a+ [ +y<3, and di=a+pB+v+re(-3,3),
we have
[ Tulhs g; lles < 1 flce lgles [Rler [uler, (C.5)

for every f € C*, g€ CP, h e CY and u € C¥; so the commutator defines a
trilinear continuous map from C* x CP x CY x C¥ to Cg.

o A similar result holds for the 5-linear iterate of T.

Proof — Fix some functions v € C*¥ and f € C'“; we have

Tulhg: £) 1= Tu(Tlng, £) = a(Tulo. 1))

With the same notations as in the proof of Proposition [23] for which we have
relations (C.3), we write

L[ Tu(g, f)] = f (Qt[ ug: )] Pin) Cf

ds dt
f J Tu(Q1°Q%. f)] - P ) SS =
Expanding T, (ﬁhg, f) correspondingly, we get
ds dt
Wi f) = ff@t' Q[Tu(1*2.1)] - (PIn - Pin) } T,

where the variable of P;h is that of Q}*. Since h belongs to C7, with v € (0, 1),
we know from Proposition [19] that

() () - (PLR)(e)

for all e,e’ € M. As above, fix a collection Q of sfStGC*, for some a > 3, to
control Holder norms. We need to estimate

HQT u(h, g5 f) H
Using decomposition , we have

: dsdt
rlu ) ]é T T .
HQ o JJ <r+t ) st (G-7)

Lo = sup @ [Tu(é;°é§g,f) - (Pin(e) = Pin) (e).

eeM
Due to Remark we have a pointwise estimate of the kernel of the operator
Q%Tu(Qi'(-), f), so with the pointwise regularity estimate on h and (C.4]), we
deduce that

(C.6)

X
< (t+ s+ ple,e)?)? [hlen,

Lo(M)’

where

a+w+v

L < (s+1) 1939 o I Fllce 1Rl lullcr

< (s + 03 [ flew lgles 1ler lulr-
It follows from that estimate and the fact that |o| < a, that

[
O Tulhgi )], o S 78 Il lgles bl Juler
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uniformly in 7 € (0,1). A similar analysis of the low frequency of T, (h, g; f) can
be done and completes the proof of the Holder estimate.
>

Proposition 27. Let o, 3 € (0,1),v1 € (—3,3) and v5 € (—0, 3]. Assume that a+ 3 +
v1 < 3 with

di=a+p+v1+1rre(0,1), a+vi+rvy<0 and B+v +vy <O.
Then the iterated corrector C is a continuous trilinear map from C® x C? x C¥' x C*2 to
co.
Proof — Fix some functions f € C* and h € C*? and define the operator

C: ¢ C(f,0;:h),
so that
C(fia,b;h) = C(ﬁa(b)> —aT().

Using the same notation as previously, and omitting for convenience the indices
on the different collections Q and P, we write

E(ﬁa(m) - Llcé;(@sb - Psa) %
aT) = aC(h(5)) = a f: &:(3u-Pa) %.

Note that due to the conservation property of the heat semigroup associated
with L, the quantity Ps1 is either constant equal to 1 or to 0, depending on
whether Py encodes some cancellation or not. Thus, given e = (z,7) € M, and
setting

Fs,e = ésb : (7350, - Ps(l) ’ b(e))7
we have

C(f10:b,:h)(e) = C(THa(b) ) () — ale) Cb)(e) = j

0

c(@n)on.

As before, we can use that a € C?, with 8 € (0,1). We have for e, e’ € M and
s>0

la(e) — a(¢)] < ple, ')’ alcs,
and therefore, using the “Gaussian bounds” for Ps,
B
[(Pua) () = (Pu1)(€) ale)] < (s + ple.e)?) *alcs.

As done in the proof of Proposition f see also [I, Proposition 3.6], we intro-
duce an intermediate quantity of the form

S(f,b,h) := fol Pt((th- ch~7?tf> %,
and write
C((Q2Fe)(e) = (T4 (Q2Fy ), k) (6) = S (£, (Q2Fyes ) (€)

+ S(f, O°F,., h) (e) — f(e) - H(Q;Fs,e, h) (e)
s 11(8) + Ix(s). (C.8)



e We start with the estimate for I5. One can then write with generic notations
for the resonant term II

1 dt

P Qub- Qi (Puf = () ) (e) 5

(s(r.0.m) = £ 1) (0) = |

0

atv)+ry

and it is known that the integrand is pointwisely bounded by ¢~ 2 . Since this
argument only uses pointwise estimates, we can replace b by QfFy .. Therefore,
by writing

Ll I(s) % - Ll Ll Pt(Qté;Fs,e - Qih - (Ptf—f(e)))(e) -

and using

st

N 3/2
|9:3¢l o = (o) 1¥lumcany (c9)

with ¢ = F§ ., we obtain

f L(s) “

0 S

L®(M)
< [ [ lerPi@@ime e @) - Pp)E)
0 JO

S [bllem llales [ fllealPlcv2

i st % / "2 g atvy ds dt
(et 12 vp/2,2572 G5
Xfofo ((s+t)2> gt+5(e’e)(3+/7(€a€)> s¥1/% 3 -

1 p1 3
st 2 atve ds dt
< I leallalesBlew [hfess jo fo ( ) /25 4 1y 4t

(s +1t)? s t
S | flleallaleslibliee [Rllce,

dt ds
L t s

since o + 8+ 11 + o > 0.

o Let us now estimate the regularity of Io(s). Let e, e’ € M with p(e,e’) < 1. We
split the integral in ¢ into two parts, corresponding to t < p(e, e’)2 or t > p(e, e’)?.

In the first case, note that

/2
Jp((i?e) t(a+,8+yl+y2)/2 @ g
t
0

p(e7 e/)oz-‘rﬂ-‘rl/l +vo ’
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so that by repeating the arguments above, we get the desired estimate. In the
case t > p? with p := p(e, e’), write for s € (0,1)

LZ {Pt(Qté;ste - Qih - (fle) — Ptf)) (e)

- Pt(Qté;Fs,e/ - Qih - (f(e') - Ptf))(e')} %
= f {Pt(gté;Fs,e - Quh- (f(e) — Ptf))<e)

o2
~ dt
- P Qe Qb (£(e) = Puf) ) ()}
/ ! Ne A / ! dt
+ (ale) — a(e)) j Pt(Qthst -Qih - (f(e') - Ptf)) (€) +
p?
! ~ dt
~ (1@ = 1) [ Pi(QE - ) - (C.10)
P2
For the second and third term, we can assume s ~ ¢ by (C.9)). One obtains
/ ! Ne A / / dt
la(e) — ale )|f ‘Rs(Qthst' Q¢h - (f(€) — Ptf))(e) -
02
U agvitu dt
< Ilealales e hlep? | 5547

P
< | fleslalslblen [hler p™+5+1+,

since «a + v1 + v is negative, and

dt

£(e) - :

(2QF.. - Qi) (e)

1
B+vitvy dt
< Iflleallalicslblice |Allcv2 p* L t 2 —
o
< [ fllcallales [blen [hlcra p®toFritee,
since 8+ 11 + 12 is also negative. For the first term in ((C.10]), we now repeat the
arguments of the proof of Proposition [25] which rely on the Lipschitz regularity
of the heat kernel as well as the fact that « + 8+ v1 + 15 € (0,1). Summarising
the above, we have shown that for e, e’ € M with p(e,e’) < 1

[ ()~ Bo)) &

0

< p(e, @) TP flea al s [bllevs [ Rllevs

Let us now come to I1(s) as defined in (C.8]). We write with ¢ := Q;Fs,e
TI(Tif(6), ) — S(f.0.0)| f P (Ao, ) Q)|
with

Ao, 1) - ( f P02 (0,6 Prf) Y —PtfPtqb)
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Following the proof of Proposition and using ((C.9)), one obtains

HAt(é;Fsve’u)HLw(M)

1 = 2
rt sr nug at+p dr
< z t) 2z — o bl v,
L ((r +t)2> ((S +r)2> 577 (r+1) , | Flleellalics bl
hence
S [ fllexllalcsblce [ Alcve

1
f 11(8)§
0 iz
Sr 3/2
((s+r>2> ’

S L ()

and the triple integral is finite since a + 8 + v1 + v is positive.

N
Njw

vl
w‘,}

ats ve drdsdt
(r+t)z t2 ———

r s t’

o For the regularity estimate of I (s), consider

Ll {Pi(A(QtFer 1) - Qi) (€) = Pi(A(Qi e, ) - Q1) ()] %.

The estimate of this expression is similar, though simpler, compared to the one

of I5(s), as here e is frozen only in one spot. As before, one deals with this

terms using the heat kernel regularity of P; and the regularity estimate for a.
>
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