Rough flows

Ismael Bailleul, Univ. Rennes 1, France

ASC - IMS 2014 - Sydney

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It is easy to construct flows!

Deal with

- classical RDEs with infinite dimensional state space/signal
- stochastic mean field RDEs,
- a 'rough analogue' of stochastic flows

- 1. Flows and approximate flows
- 2. An illustration: From controlled ODEs to RDEs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

3. Rough flows

1. 'Approximate flows' and flows

▶ Definition. A C^1 -approximate flow is a family of C^2 maps $\mu_{ts} : E \to E$, continuous wrt (s, t) for uniform convergence, with $\|\mu_{ts} - I\|_{C^2} \le o_{t-s}(1)$, and

$$\left\| \mu_{tu} \circ \mu_{us} - \mu_{ts} \right\|_{\mathcal{C}^1} \leq c_1 \, |t-s|^a$$

for some positive constants c_1 and a > 1 and all $0 \le s \le u \le t \le T$. For a partition $\pi_{ts} = \{s < t_1 < \cdots < t_n < t\}$ of [s, t], set

$$\mu_{\pi_{ts}} := \bigcirc_{i=0}^{n-1} \mu_{t_{i+1}t_i}.$$

► Theorem [B, 12']. A C^1 -approximate flow μ defines a unique flow φ st. $\|\varphi_{ts} - \mu_{ts}\|_{\infty} \leq |t - s|^a$; moreover

$$\left\|\varphi_{ts}-\mu_{\pi_{ts}}\right\|_{\infty} \lesssim c_1^2 \left|\pi_{ts}\right|^{a-1}$$

Remark. Elementary and short proof.

Choice of μ_{ts} guided by local considerations on "Taylor expansions".

Given $h \in C^{\alpha}, \alpha > \frac{1}{2}$ and $\mathbf{F} = (V_1, \dots, V_{\ell})$ vector fields on E, of class C_b^2 $dz_t = \mathbf{F}(z_t) dh_t.$ (1)

▶ Definition. A solution flow to equation (1) is a flow φ with a "uniform Taylor expansion", at any time s and any point x, of the form

$$f(\varphi_{ts}(x)) = f(x) + h_{ts}^i(V_i f)(x) + O(|t-s|^{>1}), \qquad (2)$$

for all f regular enough.

• Method for constructing the solution flow to equation (1)

1. Candidate for a map μ_{ts} with good Taylor expansion

 $\mu_{ts}(x) = x + h_{ts}^i V_i(x).$

It satisfies (2) but is not a flow.

2. μ is a C^1 -approximate flow: $\|\mu_{tu} \circ \mu_{us} - \mu_{ts}\|_{C^1} \leq c_1 |t-s|^{2\alpha}$.

3. Its associated flow satisfies (2) since $\|\varphi_{ts} - \mu_{ts}\|_{\infty} \lesssim |t - s|^{2\alpha}$.

2. Flows generated by classical RDEs

 $F = (V_1, \dots, V_\ell)$: Lip₃ vector fields on E, X a weak geometric Hölder *p*-rough path over \mathbb{R}^ℓ ,

$$dz_t = F(z_t) X(dt).$$
(3)

▶ Definition. A solution flow to equation (3) is a flow φ with "uniform Taylor expansion", at any time s and any point x, of the form

$$f(\varphi_{ts}(x)) = f(x) + \sum_{1 \le |I| \le [p]} X'_{ts}(V_I f)(x) + O(|t-s|^{>1}),$$

with V_i identified with a first order diff. operator and

$$V_I f = V_{i_1} \cdots V_{i_k} f$$
, if $I = (i_1, \dots, i_k)$.

Set $V_{[I]} = \left[V_{i_1}, \left[\dots, \left[V_{i_{k-1}}, V_{i_k}\right], \dots\right]\right]$ and $\Lambda_{ts} := \log X_{ts}$. Define μ_{ts} as the time 1 map of the ODE

$$\dot{y}_u = (\Lambda_{ts}^l V_{[l]})(y_u), \quad 0 \leq u \leq 1.$$

▶ Proposition [B, 12']. We have

$$\left\|f\circ\mu_{ts}-\left(f+\sum_{1\leq |I|\leq [p]}X_{ts}^{I}(V_{I}f)\right)\right\|_{\infty}\leq c_{f}(\mathbf{X})|t-s|^{>1},$$

and μ is a C^1 -approximate flow.

▶ Theorem [B, 12']. The RDE $dz_t = F(z_t) X(dt)$ has a unique solution flow φ . It satisfies

$$\left\|\varphi_{ts}-\mu_{\pi_{ts}}\right\|_{\infty}\lesssim c_{1}^{2}\left|\pi_{ts}\right|^{a-1},$$

where c_1 is polynomial in the norm of **X**.

► Remarks [B, 12'-13']. The approach can deal with 'Banach space-valued' rough paths and unbounded vector fields with linear growth, giving well-posedness results.

3. From stochastic flows to rough flows

 ▶ Ito setting • dz_t = V_i(z_t) • dBⁱ_t one can separate space (V_i) and noise (B)
 ▶ stochastic flow setting dy_t = F(y_t, • dB_t) one cannot separate space from noise
 Fundamental object vector field-valued Brownian motion, or semimartingale.

▶ Rough path setting lift B into a rough path B RDE dz_t = F(z_t)B(dt)
 ▶ Rough flow setting lift F(y_t, ∘dB_t) into ? ?!

3.1 Rough vector fields

Let $2 be given, and <math>V(\cdot, t)$ be a time-dependent velocity field on E. Set $V_{ts}(\cdot) = V(\cdot, t) - V(\cdot, s)$.

▶ Definition. A (weak geometric Hölder) *p*-rough vector field is a family $(\mathbf{V}_{ts})_{0 \le s \le t \le T}$, where $\mathbf{V}_{ts} = (V_{ts}, \mathbb{V}_{ts})$, and \mathbb{V}_{ts} is a second order differential operator s.t.

(i) the vector fields
$$V_{ts}$$
 are C_b^3 , with $\sup_{0 \le s \le t \le T} \frac{\|V_{ts}\|_{C^3}}{|t-s|^{\frac{1}{p}}} < \infty$,

(ii) the second order differential operators $W_{ts} := \mathbb{V}_{ts} - \frac{1}{2} V_{ts}^2$, are actually vector fields, and

$$\sup_{0\leq s\leq t\leq T} \frac{\left\|W_{ts}\right\|_{\mathcal{C}^2}}{\left|t-s\right|^{\frac{2}{p}}}<\infty,$$

(iii) we have $\mathbb{V}_{ts} = \mathbb{V}_{tu} + \mathbb{V}_{us} + V_{us}V_{tu}$, for all $0 \le s \le u \le t \le T$.

3.2 Rough flows

Let μ_{ts} be the time 1 map of the ODE

 $\dot{y}_u = (V_{ts} + W_{ts})(y_u), \quad 0 \leq u \leq 1.$

► Theorem [BR, 14']. We have

 $\left\|f \circ \mu_{ts} - \left(f + V_{ts}f + \mathbb{V}_{ts}f\right)\right\|_{\infty} \leq c_{f}(\mathbf{V}) |t - s|^{>1}$

and μ is a C^1 -approximate flow which depends continuously on V. The unique flow associated to μ is said to solve the RDE on flows

 $d\varphi_{s} = \mathbf{V}(\varphi, \circ dt),$

and called a rough flow; it is a continuous function of V.

▶ Remarks. Continuous semimartingale vector fields have rough lifts; their associated rough flows are the awaited stochastic flows. One can also lift Gaussian vector fields to rough vector fields, and study their associated flows: stable/unstable manifold theorems for such dynamics.

References

[B, 12'] Flows driven by rough paths (Submitted)

[B, 13'] Flows driven by Banach- space-valued rough paths (To appear in Séminaires de Probabilités, 2014)

[BR, 14'] **Rough flows,** with S. Riedel (T.U. Berlin), (To be submitted)