Small time fluctuations for bridges
of sub-Riemannian diffusions

Ismael Bailleul,
Univ. Rennes 1, France

Joint work with L. Mesnager and J. Norris

SPA 2014 — Buenos Aires



From diffusion operators to sub-Riemannian geometry

M compact manifold

L: second order differential operator on M, with £1 = 0, and
principal symbol o : T*M — TM, characterized by

(d)(0(d8)) = 3 (£(g) — FL(g) ~ ££(7)).

» Horizontal paths: . € o (T M).

» We have a well-defined positive-definite scalar product
on o( T M):
(P, P)c = e(a(e)),

for any p=o(e),p’ = o(€’), with e, e’ € TM, m € M.



Assume any two points of Ml are the end-points of a horizontal
path, so Hormander's conditions hold.

» Bridge law P> on

{we (0,1, M);w = x,w =y},

diffusion process associated with ¢£, conditionned on going
from x to y in a unit time.

» Aim. Describe the asymptotic behaviour of P as ¢
goes to 0, in terms of the geometry of horizontal paths.



Prototype results for Brownian motion

» Theorem [Hsu 90'] — LDP and first order asymptotics. Set
L2
J(w) = fol |cs|” ds — d(x, y)2.
The family (PX"),___, satisfies a LDP with good rate function J. If

further x and y are joined by a unique minimizing geodesic ~, then P
converges weakly to a Dirac mass on 7.



Prototype results for Brownian motion

» Theorem [Hsu 90'] — LDP and first order asymptotics.
Use coordinates { on a neighbourhood of ~, and set

Zi =2 (D) (/X)) () € T M.
Define
69{ = {scctions of TM over v with null Cnds},
1
~0 . 0.
J'y T {P. 6671 0 g(ps:Ps)d5<oc}7

and the second variation of the energy functional
1
2 s
Q(p°) :/ (‘vﬁ’sp5| - (R(ps:'ys)'\/s:l)s)> ds
0

» Theorem [Molchanov 75'] — Small time fluctuations for Brownian
bridges. If x and y are non-conjugate along ~y then the finite dimensional
laws of Z{ converge weakly to a Gaussian measure on 63, with
Cameron-Martin space (79,9).



Examples

1. When o is definite-positive, (-, ), defines a Riemannian metric,

and L=A+V.

2. Carnot groups. Lie groups G whose (finite dim.) Lie algebra g has
a stratification

9==®{_40, 8 =[o1.0i-1], [g1.0] =0.
Choose an adapted basis in g, and define o(ge*) = gey, forg € G
and e* =) e €g.

3. Intrinsic sub-Riemannian Laplacian. E sub-bundle of TM with

constant rank, gg(+,-) Riemannian metric on E, and
El=E~'@ [E,ET], with EA7! £ EY = TM. Set

Lf = diVE (VEf),

with horizontal gradient ge (Vef, g) = (Df)(q), for all
qeTl(E), f e C>®(M).



Sub-Riemannian pecularities

Riemannian geometry: minimizing paths are projections of
bicharacteristics in T*M, with Hamiltonian

H(m, p) = p(om(p)) = |p|%-

Sub-Riemannian geometry: situations where minimizing paths are not
projections of bicharacteristics (Martinet-type distributions).

Assumption A. The two end-points are joined by a unique minimizing
path ~, which is the projection of a bicharacteristic.



Sub-Riemannian pecularities

In a neigh. of v, write £ = %Z \/,»2 + V, and for a control g € H', set
= ViE) &l 1§ =x.
Riemannian geometry: With y = 7/, we always have

~8
dvy

dg ‘g:h

(Hl) = T,M. (1)

Sub-Riemannian geometry: no longer true. However, if 7" = ~ with h

drf 1
(H') depends only on o.

of minimal H'-norm the space s
g |g=h

Assumption B. ldentity (1) holds.

Equiv. to invertibility of some deterministic Malliavin covariance matrix.



Sub-Riemannian pecularities

Non-constant rank of o may cause troubles. Work in M = (—1,1),
with o(m, p) = m?p. For the horizontal path m; = t—; the relation
m, = o(my, p) imposes p; = 7, so fo ps(a(ps)) = 4, while

fo p2 ds = oo, so fo \ps|%,. ds = oo, for any continuous Riemannian
metric on M.

» Definition. A horizontal path (m)o<:<1 with finite energy is said to
be regular if there exists a section (p:)o<t<1 of T*M s.t. m; = o(p;),

1 ) . .
and [, |ps|?, ds < oo, for some (hence all) Riemannian metric on M.

Assumption C. The path + is regular. (Always holds if o has constant
rank.)



Non-conjugacy. Under assumptions A,B,C, v is the projection of a
unique bicharacteristic; let pg € T.M, p; € T,M be its initial and final
momenta. Let (¢;)o<;<1 stand for the Hamiltonian flow in T*M.
Define, for 0 < t < 1, the Jacobi operators

Jo: TiM = T,M, Ki_.: T;M— T,\M,

setting

_d
7%‘;):0

Kl—t(p/)

Je(p) (moe)(x,po +ap), peE TIM,

= ool B, BT

» Definition. The two end-points x and y of  are said to be
non-conjugate along ~ if J; is invertible.

Assumption D. The two points x and y are non-conjugate along .



Main results

» Theorem — LDP and first order asymptotics.

o Assume L[ = % S V2 + V, and set

Jw) = 5 (inf {llg]P: 75 =} — d(x ).

The family (PX)
J.

0<e<1 satisfies a LDP with good rate function

o Ifeither L = % > \/,-2 + V/, or v satisfies assumptions A,B,C,D,
then the measures P}Y converges weakly to a Dirac mass on 7.



Main results

Recall : .
Zi =2 (Dyf)  (i(X) —§(v) € T, M.

» Theorem — Small time fluctuations for bridges of degenerate
diffusions. Under assumptions A,B,C,D, then

1. the map
0<s<t<1:(s,t)— JsJy 'K, € L(T; M, T M)

is the covariance function of a unique zero-mean Gaussian measure
Q%Y on 63, with an explicit Cameron-Martin space;

2. the distribution of Z{ converges weakly to Q.



Tools for the proofs

» LDP. Follow Hsu's proof based on heat kernel estimates available in
our setting, after Ben-Arous, Léandre works.

> First order deterministic asymptotics. Follows from LDP when
L= % 3 \/,-2 + V/, and from the proof of the small time fluctuations
theorem under assumptions A,B,C,D.

» Small time fluctuations. Main piece of work: constructing the
Gaussian measure Q*¥ and characterizing its Cameron-Martin
space in terms of an analogue of the quadratic form in the second
variation of the energy functional. Difficulty: get expressions of
some geometric and probabilistic quantities in terms of ¢ only.

On the probabilistic side: use Malliavin calculus and the
stationnary phase method to get the Gaussian fluctuations.



