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Abstract. We provide in this work a tool-kit for the study of homogenisation of

random ordinary di↵erential equations, under the form of a friendly-user black box

based on the tehcnology of rough flows. We illustrate the use of this setting on the

example of stochastic turbulence.
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1 Introduction

The history of averaging and homogenization problems for dynamical systems is
fairly long and has its roots in classical perturbative problems in mechanics, in the
19th centery. It has evolved in an impressive body of methods and tools used to
analyse a whole range of multiscale systems, such as (possibly random) transport
equations with multiple time-scales [1, 2], or heat propagation in random media
[3, 4]. The latest developments of Otto, Gloria & co [5] and Armstrong & co [6, 7] on
homogenization for the solutions of Hamilton-Jacobi equations use and develop deep
results in partial di↵erential equations. The present work deals with the transport
side of the story, in the line of the classical works of Kesten and Papanicolaou on
homogenization for random stochastic di↵erential equations [8, 9, 10], and put them
in the flow of ideas and tools that have emerged in the early 2000’s with rough paths
theory. Kelly and Melbourne [11, 12] have for instance shown recently how one can
use rough paths methods to investigate a fast-slow system of the form

9x
✏

“ apx
✏

, y
✏

q ` 1

✏
bpx

✏

, y
✏

q,
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where the dynamics of the fast component y
✏

is autonomous and Anosov or axiom
A, or even non-uniformly hyperbolic. We would like to put this result and other
homogenization results in the newly introduced setting of rough flows [13], that
encompasses a large part of the theory of rough di↵erential equations, and unifies
it with the theory of stochastic flows. We provide for that purpose an easily usable
black box for the study of homogenisation of random ordinary di↵erential equations,
under the form of a result

Convergence of finite dimensional marginals ‘ Moment/tightness bounds

(for the driving vector fields)

ùñ Homogenisation

for which no knowledge of the mechanics of rough flows is required. See Theorem 4
in section 2.2. As an illustration of use of this method in homogenization problems,
we show in the present work how one can get back and extend in a clean and e�cient
way Kesten and Papanicolaou’ seminal result [8] on stochastic turbulence.

The theory of rough flows is based on the following paradigm. The kind of dynam-
ics we are about to consider are all generated by some kind of time-dependent vector
fields, or drivers, that generate flows by a deterministic continuous mechanism. Any
ordinary di↵erential equation is naturally recast in this setting. The benefits of this
picture for the study of averaging and homogenization problems are obvious. If the
drivers are random and depend on some parameters, it su�ces that they converge in
law in the space of drivers for their associated dynamics to converge in law, from the
continuity of the driver-to-flow map. Support theorems and large deviation results
are also automatically transported from the driver world to the flow world. The
rough flow setting somehow provides an optimized and friendly environment where
to apply ideas similar to those of rough paths theory, with the same benefits. As a
matter of fact, one can also study some homogenisation problems for random ordi-
nary di↵erential equations from the latter point of view, such as done by Kelly and
Melbourne in their works [11, 12] on fast-slow systems, to the expense of working
with tensor products of Banach spaces and the involved subtleties. No such high
level technology is required in the elementary setting of rough drivers and rough
flows, which may then be easier to use [13]. More importantly, it has a dual version
on function spaces that can be used to study some hyperbolic partial di↵erential
equations and seem beyond the scope of Lyons’ formulation of rough paths theory
[14].

Section 2.1 provides a very light presentation of rough drivers and their associated
flows; convergence problems for flows amount in this setting to convergence problems
for their drivers – a philosophy shared by the martingale problem formulation of
stochastic dynamics, with the noticeable di↵erence that we are here in a deterministic
setting. Section 2.2 contains the above generic homogenisation result; it is proved
in Appendix A. An elementary deterministic example is given in section 2.3 as an
illustration of the mechanics at play in the rough driver/flow setting. The case of
homogenisation for stochastic turbulence is treated in section 3.

Notations. We shall use the sign À for an inequality that holds up to a multiplica-
tive positive constant whose precise value is unimportant. The sign À

c

will be used
to indicate that this constant depends on a parameter c. Given a finite positive time
horizon T , we shall write D

T

for
 ps, tq P r0, T s2 ; s § t

(

. We shall use the | ¨ | sign
to denote any Euclidean norm on a finite dimensional space; its precise choice will
be unimportant.
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‚ Given a non-integer positive regularity index a, we shall denote by C

a the
usual space of a-Hölder functions. Given 0 † a

1

† 1, a 2-index map
pZ

ts

q
0§s§t§T

with values in some space C

a2
b

pRdq will be said to be a
1

-Hölder
if

›

›Z
›

›

Ca1
ts Ca2

b
:“ sup

0§s†t§T

›

›Z
ts

›

›

Ca2
b

|t ´ s|a1 † 8;

we write Z P C

a1
ts

C

a2
b

.

‚ An additive function of time pV
ts

q
0§s§t§T

is a vector space valued function
V of time such that V

ts

“ V
tu

` V
us

, for all 0 § s § u § t § T .

‚ Whenever convenient, we shall freely identify vector fields with first order
di↵erential operators, so that given two vector fields V

1

, V
2

, the notation
V
1

V
2

will stand for the second order di↵erential operator whose action on
smooth functions f is

V
1

V
2

f “ pDfq`

DV
2

pV
1

q˘ ` pD2fqpV
1

, V
2

q.

‚ Given f P L8pRd,Rdq and � in the unit ball of Rd, we define inductively a
sequence �m

�

of operators on L8pRd,Rdq setting
`

�
�

f
˘p¨q “ fp¨ ` �q ´ fpxq and �m`1

�

f “ �
�

p�m

�

fq.

‚ Implicit summation of repeated indices is used throughout, so aib
i

means
∞

i

aib
i

.

‚ We denote by Lkp⌦q the corresponding integrability spaces over some prob-
ability space p⌦,F ,Pq.

2 Tools for flows of random ODEs

The machinery of rough drivers and rough flows introduced in [13] provides a
very convenient setting for the study of convergence of flows and weak convergence
of random flows. Rather than giving the reader an account of the theory of rough
flows, we single out here part of it under the form of a friendly user black box that
requires no knowledge of the mechanics of rough flows. We refer the interested
reader to the work [13], and to Appendix A, for some more technical details.

2.1 The black box.

The starting point of this business is the elementary observation that if we are
given some smooth globally Lipschitz vector fields v

1

, . . . , , v
`

on Rd, and some
real-valued controls h1, . . . , h` on some time interval r0, T s, then the solution flow
p'

ts

q
0§s§t§T

of the controlled ordinary di↵erential equation

9z
t

“ 9hi
t

v
i

pz
t

q
enjoys the Taylor expansion property

f ˝ '
ts

“ f ` `

hi
t

´ hi
s

˘

V
i

f `
ˆ

ª

t

s

ª

u1

s

dhj
u2

dhk
u1

˙

V
j

V
k

f ` O
`|t ´ s|°2

˘

(2.1)



4

for all smooth functions f . The notion of rough driver captures the essence of the
di↵erent terms that appear in this local description of the dynamics.

Definition 1. Let 2 § p † 2`r † 3 be given. A rough driver, with regularity indices
p and p2`rq, is a family

`

V

ts

˘

0§s§t§T

, with V

ts

:“ `

V
ts

,V
ts

˘

, for some vector fields

V
ts

, and V
ts

some second order di↵erential operator, such that

(i) the vector field V
ts

is an additive function of time, with V P C

1{p
ts

C

2`r

b

,

(ii) the second order di↵erential operators

W
ts

:“ V
ts

´ 1

2
V
ts

V
ts

,

are actually vector fields, and W P C

2{p
ts

C

1`r

b

,

(iii) we have

V
ts

“ V
tu

` V
us

V
tu

` V
us

,

for any 0 § s § u § t § T .

We define the norm of V to be

}V} :“ max
´

›

›V
›

›

C1{p
ts C2`r

b
,

›

›W
›

›

C2{p
ts C1`r

b

¯

.

We simply talk of a rough driver when its regularity indices are clear from the
context. We typically use rough drivers to give a local description of the dynamics
of a flow ', under the form of a Taylor expansion formula

f ˝ '
ts

» f ` V
ts

f ` V
ts

f.

In the Taylor formula (2.1), the term
`

hi
t

´hi
s

˘

V
i

plays the role of V
ts

, while the term
´

≥

t

s

≥

r

s

dhj
u

dhk
r

¯

V
j

V
k

has the role of V
ts

; check that properties (i)-(iii) hold indeed

for these two terms. More generally, given any su�ciently regular time-dependent
vector field v

t

on Rd, on can check that setting

V
ts

:“
ª

t

s

v
u

du, V
ts

:“
ª

t

s

ª

u1

s

v
u2vu1 du2du1 (2.2)

defines a rough driver for which

W
ts

“
ª

t

s

ª

r

s

“

v
u2 , vu1

‰

du
2

du
1

,

with Lie brackets of vector fields used here. Formula (2.2) defines the canonical lift
of a possibly time-dependent vector field v. As we shall use it later, remark here
that if V “ `

V,W ` 1

2

V 2

˘

stands for a rough driver with regularity indices p and

p2`rq, and X stands for a 2

p

-Hölder function with values in the space of C1`r

b

vector

fields on Rd, then the formula
`

V
ts

,W
ts

` 1

2
V 2

ts

` X
t

´ X
s

˘

still defines a pp, 2 ` rq-rough driver.

Definition 2. Let V
0

be a bounded Lipschitz vector field on Rd; let also V be a rough
driver with regularity indices p and p2 ` rq. A flow

`

'
ts

˘

0§s§t§T

is said to solve
the rough di↵erential equation

d' “ V
0

p'qdt ` Vp' ; dtq
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if there exists a possibly
`

V
0

,V
˘

-dependent positive constant � such that the inequality
›

›

›

f ˝ '
ts

´
!

f ` pt ´ sq`

V
0

f
˘ ` V

ts

f ` V
ts

f
)

›

›

›

8
À }f}C2`r |t ´ s| 3p

holds for all f P C

2`r

b

, and all 0 § s § t § T with t ´ s § �. Such flows are called
rough flows.

If V is the canonical lift of a C

2`r

b

time-dependent vector field v, its associated
rough flow coincides with the classical flow generated by v. A robust well-posedness
result is provided by the next result, proved in [13].

Theorem 3. Assume p

3

† r § 1. Then the di↵erential equation on flows

d' “ V
0

p'qdt ` Vp' ; dtq
has a unique solution flow; it takes values in the space of homeomorphisms of Rd,
and depends continuously on V

0

and V in the topology of uniform convergence.
Moreover, if r † 1, then the maps '

ts

and their inverse have uniformly bounded
C

r-norms; if r “ 1, they have uniformly bounded Lipschitz norms.

If B is an `-dimensional Brownian motion and v
1

, . . . , v
`

are C

3

b

vector fields on
Rd, one can prove that setting

V
ts

“ Bi

ts

v
i

, and V
ts

“
ˆ

ª

t

s

ª

u1

s

˝dBj

u2
˝ dBk

u1

˙

v
j

v
k

defines almost surely a rough driver with regularity indices p and p2 ` rq, for any
p † 2 ` r † 3 with p

3

† r, and that the solution flow of the equation

d' “ Vp' ; dtq
coincides almost surely with the flow generated by the Stratonovich stochastic dif-
ferential equation

dx
t

“ v
i

px
t

q ˝dBi

t

.

See e.g. Lyons’ seminal paper [15].

2.2 How to use it.

Let then assume we are given a random ordinary di↵erential equation

9x✏
t

“ v✏
t

`

x✏
t

˘

(2.3)

in Rd, driven by a random time-dependent globally Lipschitz vector field v✏
t

, depend-
ing on a parameter ✏, an element of p0, 1s say. One can think for instance of the slow
dynamics in a fast-slow system [12]

9x✏
t

“ f
`

x✏
t

, y✏
t

˘

,

9y✏
t

“ 1

✏
g

`

y✏
t

˘

,

driven by deterministic vector fields f, g, but where y✏
0

is random for instance, so we
have (2.3) with

v✏
t

p¨q “ f
`¨, y✏

t

˘

.

We shall also reformulate in section 3 the stochastic turbulence dynamics in those
terms. Fix a finite time horizon T and define, for 0 § s § t § T , the canonical lift
V

✏ of v✏ into a rough driver

V ✏

ts

:“
ª

t

s

v✏
u

du, V✏

ts

:“
ª

t

s

ª

u1

s

v✏
u2
v✏
u1

du
2

du
1

,
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and

W ✏

ts

:“
ª

t

s

ª

r

s

“

v✏
u2
, v✏

u1

‰

du
2

du
1

.

Denote by '✏ the random flow generated by equation (2.3), so '✏

ts

pxq is, for any
0 § s § t § T , the value at time t of the solution to equation (2.3) started from x
at time s. This flow is also the solution flow of the equation

d'✏ “ V

✏

`

'✏ ; dt
˘

.

Given 0 † r † 1, denote by C

r

p0q the space of r-Hölder continuous functions from

Rd to itself that are at finite C

r-distance from the identity, and write Di↵r

p0q for the
space of Cr-homeomorphisms with C

r-inverse, for which both the homeomorphism
and its inverse are at finite Cr-distance from the identity. The following convergence
result, proved in Appendix A, is an elementary

Convergence of finite dimensional marginals ‘ Moment/tightness bounds

(for the driving vector fields)

ùñ Homogenisation

result. The exponent a in the statement is to be thought of as a big positive constant.

Theorem 4. Let some positive finite exponents pp, r ; aq, with r † 1, be given such
that

0 † 1
1

p

´ 1

2a

´ 2 † r ´ d

a
.

‚ Assume that for each 0 § s § t § T , and each y P Rd, the random variables
V ✏

ts

pyq and W ✏

ts

pyq converge weakly as ✏ goes to 0.

‚ Assume further that there is an integer k
1

• 3 for which the positive quantity

ª

Rd

$

&

%

›

›

›

›

›

V ✏

ts

pyq
|t ´ s| 1

p

›

›

›

›

›

a

L

2a
p⌦q

`
›

›

›

›

›

W ✏

ts

pyq
|t ´ s| 2

p

›

›

›

›

›

a

L

a
p⌦q

,

.

-

dy `
º

Rd
ˆBp0,1q

›

›

›

›

›

�k1
�

V ✏

ts

pyq
|t ´ s| 1

p

›

›

›

›

›

a

L

2a
p⌦q

dy
d�

|�|p2`rqa`d

`
º

Rd
ˆBp0,1q

›

›

›

›

›

�k1´1
�

W ✏

ts

pyq
|t ´ s| 2

p

›

›

›

›

›

a

L

a
p⌦q

dy
d�

|�|p1`rqa`d

is bounded above by a finite constant independent of ✏.

Then for every pair of regularity indices pp1, 2 ` r1q, with p1 † 2 ` r1 † 3, and

r1 † r ´ d

a
, and

1

3
† 1

p1 † 1

p
´ 1

2a
,

there exists a random rough driver V, with regularity indices p1 and p2 ` r1q, whose
associated random flow

d' “ Vp' ; dtq
is the weak limit in C

´

r0, T s,Di↵r1
p0q

¯

of the random flows '✏ generated by the dy-

namics (2.3).

The above ✏-uniform moment bound is actually a su�cient condition for tight-
ness in the space of drivers with regularity indices p1 and p2 ` r1q. Note that the
convergence and moment assumptions are about the vector fields V ✏ and W ✏ that
generate the dynamics, while the conclusion is on the dynamics itself. The possibil-
ity to transfer a weak convergence result on the rough drivers to the dynamics comes
from the continuity of the solution map, given as a conclusions in Theorem 3. Note
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also that we work here with vector fields V,W that are in particular bounded, as
required by the definition of a C

↵ function, for a non-integer regularity exponent ↵.
In applications, one may have first to localize the dynamics in a big ball of radius R,
use Theorem 4, and remove the localization in a second step. This is what we shall
be doing in our study of stochastic turbulence in section 3. Let us note here that the
results proved by Kelly and Melbourne [11, 12] in their study of fast-slow systems
with a chaotic fast component can actually be rephrased exactly in the terms of
Theorem 4, so one can get back their conclusions from the point of view developed
here.

2.3 A toy example.

Before applying Theorem 4 in the setting of stochastic turbulence, we illustrate in
this section on an elementary and interesting toy example the fundamental continuity
property of the solution map to an equation

d' “ Vp' ; dtq,
in a deterministic setting. In this example, we construct a familyV

✏ of rough drivers,
obtained as the canonical lift of a smooth ✏-dependent vector field on the plane, such
that its first level V ✏ converges to 0 in a strong sense while the flow '✏ associated
with V

✏ does not converge to the identity. This shows the crucial influence of the
second level object V✏ on the dynamics generated by V

✏. We work in R2 » C ; set

v
t

pxq :“ ifpxq eifpxqt,

for some C

3

b

non-zero phase f , so that its canonical lift V “ `

V, 1
2

V 2 ` W
˘

as a
rough driver has first level

V
ts

pxq “ eifpxqt ´ eifpxqs.

Given 2 § p † 3, we define a space/time rescaled rough driver V

✏, with regularity
indices p and 1, setting

V ✏

ts

pxq :“ ✏V
t✏

´2
s✏

´2

`

✏2 x
˘

, W ✏

ts

pxq :“ ✏4
´

W
t✏

´2
s✏

´2

¯

`

✏2 x
˘

;

this is the canonical lift of the ✏-dependent vector field

v✏
t

pxq :“ 1

✏
vp✏2xq “ i fp✏2xq

✏
eifp✏2xqt.

Theorem 5. The rough driver V

✏ converges as a pp, 1q-rough drivers to the pure
second level rough driver

V

t,s

pxq :“
ˆ

0,´1

4

`

t2 ´ s2
˘

fp0q prfqp0q
˙

.

As a corollary, the solution flow '✏ to the equation

9x✏
t

“ v✏
t

px✏
t

q
converges to the elementary flow generated by the ordinary di↵erential equation

9x
t

“ ´1

2
fp0q prfqp0q

with constant vector field.
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Proof – We shall prove the claim as a direct consequence of the following elementary
estimate

›

›

›

D`

´

eifp¨qt ´ eifp¨qs
¯

›

›

›

8
§

f,�

T `

1

|t ´ s|� , (2.4)

that holds for all times 0 § s § t § T
1

† 8, every exponent 0 † � § 1, and any
derivative index 0 § ` § 3, as shown by interpolating two trivial bounds.

Working with T
1

“ T ✏´2, and since D`V ✏

t,s

pxq “ ✏2``1

´

D`V ✏

t✏

´2
,s✏

´2

¯

`

x✏2
˘

, it

already follows from (2.4) that
›

›

›

D`V ✏

ts

›

›

›

8
À T `✏1´2� |t ´ s|� ,

so, indeed, we have

sup
0§s§t§T

}V ✏

t,s

}
C

3

|t ´ s|� ›Ñ
✏Ñ0

0

if one chooses 0 † � † 1

2

.

To deal with W ✏, note first that an integration by parts gives for W the decom-
position

W
t,s

pxq :“1

2

ª

t

s

´

D
x

v
r

V
rs

pxq ´ D
x

V
r,s

v
r

pxq
¯

dr “ 1

2
DV

ts

pxqV
t,s

pxq ´
ª

t

s

DV
rs

pxqv
r

pxq dr

“1

2
DV

ts

pxqV
t,s

pxq ´
ª

t

s

ifpxq
´

reifpxqr ´ seifpxqs

¯ 1

2

´

rfpxqieifpxqr ` rfpxqieifpxqr

¯

loooooooooooooooooooooomoooooooooooooooooooooon

xrfpxq,vrpxqy

dr;

so one can write

W
t,s

pxq “ ´1

4
pt2 ´ s2qfpxqrfpxq ` R

ts

pxq
with

R
t,s

pxq “1

2
DV

ts

pxqV
ts

pxq ` s

2
eifpxqsfpxq

ª

t

s

´

rfpxq ´ rfpxqe2ifpxqr
¯

dr

` fpxq ¯
rfpxq1

2

ª

t

s

re2ifpxqr dr.

Hence

W ✏

t,s

pxq “ ✏4W
t✏

´2
,s✏

´2px✏2q
“ ´1

4
pt2 ´ s2qbp✏2xqrbp✏2xq ` R✏

ts

pxq,
where

R✏

ts

pxq :“ ✏4R
t✏

´2
s✏

´2px✏2q.
The scaling in ✏ between space and time gives to convergence

sup
0§s§t§T

}R✏

t,s

}
C

2

|t ´ s|2� Ñ 0,

which is enough to conclude that W ✏ converges in the same space to

pt, s, xq Ñ ´1

4
pt2 ´ s2qfp0qrfp0q.

B
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3 A case study: Stochastic turbulence

We show in this section how one can use the black box provided by Theorem 4
to reprove and improve in a simple way Kesten and Papanicolaou’ seminal result
on stochastic turbulence [8]. The object of interest here is the dynamics of a par-
ticle subject to a random velocity field that is a small perturbation of a constant
deterministic velocity. Precisely, consider the random ordinary di↵erential equation

9x
t

“ v ` ✏F px
t

q,
with initial condition x

0

fixed, where v is a deterministic non-zero mean velocity and
F is a su�ciently regular centered, stationary, random field; precise assumptions are
given below. To investigate the fluctuations of x‚ around its typical value, one looks
at the dynamics of the recentered and time-rescaled process

x✏
t

:“ x
✏

´2
t

´ ✏´2t v,

and prove that the continuous random processes
`

x✏
t

˘

0§t§1

converge in law, as ✏
decreases to 0, to a Brownian motion with some constant drift b and some covariance
�˚�, both given explicitly in terms of the statistics of F . We actually use Theorem
4 to prove a similar result for flows directly.

As the process x✏ solves the random ordinary di↵erential equation

9x✏
t

“ ✏´1F
`

x✏
t

` ✏´2tv
˘

, (3.1)

the flow genetared by the latter dynamics is also associated with the ”rough driver”

V

✏ “
´

V ✏,W ✏ ` 1

2
pV ✏q2

¯

, (3.2)

where

V ✏

t,s

pxq :“ 1

✏

ª

t

s

F
´

x ` u

✏2
v
¯

du “:

ª

t

s

v✏
u

pxq du
and

W ✏

t,s

pxq :“ 1

2

ª

t

s

ª

u1

s

“

V ✏

du2
, V ✏

du1

‰ “ 1

2

ª

t

s

ª

u1

s

“

v✏
u2
, v✏

u1

‰

du
2

du
1

,

that is canonically associated with the space/time rescaled dynamics, equation (3.1).
We put here quotation marks around ”rough driver” as V and W only satisfy the
algebraic conditions defining a rough driver, and not all of the analytic conditions
since they are a priori unbounded. This is the very reason why we shall later
proceed in a two step process for the analysis of the homogenisation phenomenon,
by first localizing the dynamics in a ball of arbitrary radius, homogenising, and then
removing the localisation.

3.1 Setting and result

Let F be an almost surely continuous Rd-valued random field on Rd, defined on
some probability space p⌦,F ,Pq. Given a measurable subset ⇤ of Rd, define the
�-algebra generated by F on ⇤ by

G

⇤

:“ �
`

F pxq ;x P ⇤
˘ Ä F .

We define the correlation coe�cient of F on two measurable subsets ⇤
1

and ⇤
2

of
Rd by

↵
`

G

⇤1 ,G⇤2

˘

:“ sup
A1PG⇤1 ,A2PG⇤2

ˇ

ˇ

ˇ

PpA
1

X A
2

q ´ PpA
1

q PpA
2

q
ˇ

ˇ

ˇ

.
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The mixing rate of F is defined as the function

↵puq :“ sup
⇤1,⇤2PB

�p⇤1,⇤2q•u

↵
`

G

⇤1 ,G⇤2

˘

for any non-negative u, and where

�p⇤
1

,⇤
2

q :“ inf
�1P⇤1,�2P⇤2

|�
1

´ �
2

|.
We make the following Assumptions on the random field F .

(i) The random field F is centered and stationary.

(ii) It takes values in C

3

b

pRd,Rdq, and

E

«

3

ÿ

k“0

sup
|x|§1

ˇ

ˇDkF pxqˇ

ˇ

2a0

�

† 8

for some integrability exponent a
0

° p3 _ dq.
(iii) We also have

ª `8

0

↵puq du † `8
for some exponent  P `

0, 1
3

^ 1

d

´ 1

a0

˘

.

The parameters a
0

and  will be fixed throughout; we fix them once and for
all. One can find in the Appendix of the work [8] of Kesten and Papanicolaou two
interesting classes of examples of random fields satisfying the above assumptions,
some Gaussian vector fields, and vector fields constructed from some side Poisson
process.

A last piece of notation is needed to state our main result. For any two points
x, y of Rd, set

Cpx, yq :“
ª

R
E

”

F pxq b F py ` uvq
ı

du, (3.3)

and note that it is a function of py ´ xq, since F is stationary. This covariance
function is C

2`r, for any 0 † u § 1, under the above assumptions on F . One can
then define a Brownian motion V in the space of C

2`r vector fields on Rd, with
covariance C, and use the results of [13] to define a C

1`r time-dependent random

vector field W psq
ts

on Rd by the formula

W psq
t,s

pxq “
ª

t

s

ª

u1

s

”

V˝du2 , V˝du1

ı

pxq

at each point x of Rd; we use Stratonovich integration here. This can be done in
such a way that the formula

`

V,W psq ` 1

2

V 2

˘

defines almost surely a rough driver
with regularity indices p and p2 ` rq, for any 2 † p † 2 ` r † 3. Note that the
integral

b :“ 1

2

ª 8

0

E
”

`

D
uvF

˘

F p0q ´ `

D
0

F
˘

F puvq
ı

du

is also well-defined as a consequence of the decay assumption (iii) on F , and define
a rough driver V, with regularity indices p and p2 ` rq, setting

V

ts

:“
ˆ

V
ts

,W psq
ts

` 1

2
V 2

ts

` pt ´ sq b
˙

.
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Denote by ' its associated rough flow. It is proved in [13] that the rough flow '
actually coincides almost surely with the stochastic flow generated by the Kunita-
type stochastic di↵erential equation

dy
t

“ b dt ` V py
t

; ˝dtq.
We read directly on this expression the generator L p1q of the one point motion

L p1q “ b
i B

i

`
ª

R
E

”

F jp0qF kpuvq
ı

B2

jk

du,

with

b :“
ª 8

0

E
”

`

D
uvF

˘

F p0q
ı

du,

and the generator L p2q of the two point motion of the stochastic flow

L p2q “ L p1q
x

` L p1q
y

` L
xy

,

where L p1q
x

acts on the first variable and L p1q
y

on the second variable, while

L
xy

f :“
ª

R
E

”

F px ´ yq b F px ´ y ` uvq
ı

pB
x

, B
y

q du.

Here is how one can rephrase Kesten and Papanicolaou’s homogenisation for sto-
chastic turbulence in our flow setting.

Theorem 6. Let K be any compact subset of Rd. The restriction to K of '✏ converges
in law to the restriction to K of ' in C

`r0, T s ˆ K
˘

.

We prove Theorem 6 by

§3.2.1 localizing first the rough drivers V✏ into a big ball of size R,

§3.2.2 using Theorem 4 on the localized rough drivers V✏,R,

§3.2.3 removing the localization in the end to get Theorem 6.

3.2 Proof of homogenisation for stochastic turbulence

Recall the definition of V✏ given in equation (3.2), and let � be a smooth real-
valued function on Rd, identically equal to 1 in the open unit ball Bp0, 1q of Rd, with
support in Bp0, 2q. Set

�Rp¨q :“ �
´ ¨
R

¯

,

and

V ✏,R

ts

“ �RV ✏

ts

“:

ª

t

s

v✏,R
u

du and W ✏,R :“
ª

t

s

ª

u1

s

”

v✏,R
u2

, v✏,R
u1

ı

du
2

du
1

,

and define a rough driver V✏,R by the formula

V

✏,R :“
´

V ✏,R, W ✏,R ` 1

2

`

V ✏,R

˘

2

¯

.
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3.2.1 Tightness of localized drivers

Our main technical ingredient for proving the tightness of the family of rough
drivers V

✏,R is the following inequality due to Davydov [18]. If A and B are two
sub-�-algebras of the probability space p⌦,Fq, and if X and Y are two real-valued
random variables that are A, resp. B, measurable, then for all integrability expo-
nents p

1

, p
2

, p
3

• 1 such that 1

p1
` 1

p2
` 1

p3
“ 1, we have

ˇ

ˇ

ˇ

ErXY s ´ ErXs ErY s
ˇ

ˇ

ˇ

À ↵pA,Bq 1
p1 }X}

L

p2 }Y }
L

p3 . (3.4)

Given any pu, xq P R` ˆ Rd, define the set

⇤✏

r

pxq :“ x ` uv ` Bp0, ✏q
and recall the notation G

⇤

✏
u
for the �-algebra generated by F in an ✏-neighbourhood

of the point x ` uv

Lemma 7. ‚ Let G be a continuous real-valued centered random field on Rd,
such that Gpr, xq P G

⇤

✏
rpxq for all positive ✏, and for which there exists a

postive finite constant m such that we have

E

«

sup
uPrs,ts,
xPK

ˇ

ˇGpx ` uvqˇ

ˇ

2a0

�

§ m2a0 ,

for all 0 § s † t § T , and all compact subsets K of Rd. Then we have

E

»

–

ˇ

ˇ

ˇ

ˇ

ª

t

s

Gpx ` uvq�
R

pxq du
ˇ

ˇ

ˇ

ˇ

2a0
a0`1

fi

fl


2 ` 1

2a0

À �Rpxq
ˆ

ª `8

0

↵puq du
˙

1
2 m

|v|´ 1
2

|t ´ s| 12

for all 0 § s † t § T , all R ° 0 and all x P Rd.

‚ If furthermore H is another field with the same properties, and associated
constant rm, then

E

«

ˇ

ˇ

ˇ

ˇ

ª

t

s

ª

u1

s

G
`

x ` u
1

v
˘

H
`

x ` u
2

v
˘

�
R

pxq du
2

du
1

ˇ

ˇ

ˇ

ˇ

a0
a0`1

�

` 1
a0

À
ˆ

ª `8

0

↵puq du
˙

�Rpxq mrm

|v| |t ´ s|.
(3.5)

Proof – Set

q :“ a
0

a
0

 ` 1
, p

1

“ 1 ` 1

a
0


, p

2

“ pa
3

“ 2pa
0

 ` 1q,
and note that 1

p1
` 1

p2
` 1

p3
“ 1. Write first

E

«

ˇ

ˇ

ˇ

ˇ

ª

t

s

Gpx ` uvq�
R

pxq du
ˇ

ˇ

ˇ

ˇ

2q

�

1
2q

§
ˆ

2

ª

t

s

ª

u1

s

E
”

ˇ

ˇGpx ` u
1

vqGpx ` u
2

vq ⌘
R

pxq2ˇ

ˇ

q

ı

1
q
du

2

du
1

˙

1
2

À �Rpxq
"

ª

t

s

ª

r

s

E
”

ˇ

ˇGpx ` u
1

vq1
Bp0,2Rqpxq Gpx ` u

2

vq1
Bp0,2Rqpxqˇ

ˇ

q

ı

1
q
du

2

du
1

*

1
2

,
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and note that, for 0 § u
2

† u
1

, we have

Gpx ` u
1

vq P G

⇤

u1´u2
4

r1 pxq
, and Gpx ` u

2

vq and Hpx ` u
2

vq P G

⇤

u1´u2
3

r2 pxq
,

with

d
´

⇤
u1´u2

4
u2 pxq,⇤

u1´u2
4

u1 pxq
¯

“ u
1

´ u
2

2
|v|.

It follows from Davydov’s inequality (3.4) that we have

E

»

–

ˇ

ˇ

ˇ

ˇ

ª

t

s

Gpx ` uvq�Rpxq du
ˇ

ˇ

ˇ

ˇ

2a0
a0`1

fi

fl


2 `

1
2a0

À �Rpxq
ˆ

ª

t

s

ª

u1

s

↵

ˆ pu2 ´ u1q|v|
2

˙



m2 du2du1

˙

1
2

À �Rpxq
ˆ

ª

`8

0
↵puq du

˙

1
2 m

|v| 1
2

|t ´ s| 1
2 .

The proof of inequaltity (3.5) is similar, and left to the reader.
B

Note that the only property of � that we used is that it has support in the ball
Bp0, 2q; any derivative of � also has this property. It follows in particular from this
remark, and a change of variable, that we have

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

✏

ª

✏

´2
t

✏

´2
s

pDk

y

�qR b D3´k

y`uvF du

ˇ

ˇ

ˇ

ˇ

ˇ

2a
a`1

fi

fl


2 ` 1

2a

À ✏
ˇ

ˇ

ˇ

✏´2t ´ ✏´2s
ˇ

ˇ

ˇ

1
2 ˇ

ˇpDk

y

�qRˇ

ˇ

À |t ´ s| 12
ˇ

ˇ

ˇ

pDk

y

�qR
ˇ

ˇ

ˇ

,

for all 0 § k § 3, all y P Rd, for an implicit constant in the inequality that does not
depend on ✏.

Proposition 8. Given a fixed positive radius R, the family
`

V

✏,R

˘

0†✏§1

of localized

rough drivers satisfies the ✏-uniform moment bounds of Theorem 4, with p “ 2, any
r P p0, 1q, a “ a0

a0`1

, and for k
1

“ 3.

Proof – Starting from the representation

�3
�

V ✏

t,s

pxq

“
3

ÿ

k“0

ˆ

3

k

˙

1

Rk

ª

r0,1s

3

✏

ª

✏

´2
t

✏

´2
s

!

pDk

x`pu1`u2`u3q�

�qR b D3´k

x`pu1`u2`u3q�`uv

)

�b3 du1du2du3 du,

and setting

fR :“ ˇ

ˇ�R

ˇ

ˇ ` 1

R

ˇ

ˇ

ˇ

pD�qR
ˇ

ˇ

ˇ

` 1

R2

ˇ

ˇ

ˇ

pD2�qR
ˇ

ˇ

ˇ

` 1

R3

ˇ

ˇ

ˇ

pD3�qR
ˇ

ˇ

ˇ

,

we see that

E

«

ˇ

ˇ

ˇ

�3

�

V ✏,R

t,s

pxq
ˇ

ˇ

ˇ

2a0
a0`1

�


2 ` 1

2a0

À |t´s| 12 |�|3
ª

r0,1s3
fR

´

x`pu
1

`u
2

`u
3

q�q
¯

du
1

du
2

du
3

.

But since fR

`

x ` pu
1

` u
2

` u
3

q�˘ À 1

Bp0,R`4qpxq, for all u
i

P r0, 1s and � P
Bp0, 1q, we deduce from Lemma 7 the inequality

E

«

ˇ

ˇ

ˇ

�3

�

V ✏,R

t,s

pxq
ˇ

ˇ

ˇ

2a0
a0`1

�


2 ` 1

2a0

À |t ´ s| 12 |v|´ 1
2
1

Bp0,R`4qpxq |�|3.

ismael
manque un truc ici
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The very same reasoning shows that the following inequalities hold

E
„

ˇ

ˇ

ˇ

�2

�

W ✏,R

t,s

pxq
ˇ

ˇ

ˇ

a0
a0`1

⇢

` 1
a0 À |t ´ s||v|´1

1

Bp0,R`4qpxq |�|2,

E

«

ˇ

ˇ

ˇ

V ✏,R

t,s

pxq
ˇ

ˇ

ˇ

2a0
a0`1

�


2 ` 1

2a0

À |t ´ s| 12 |v|´ 1
2
1

Bp0,R`4qpxq,

E
„

ˇ

ˇ

ˇ

W ✏,R

t,s

pxq
ˇ

ˇ

ˇ

a0
a0`1

⇢

` 1
a0 À |t ´ s||v|´1

1

Bp0,R`4qpxq;

which provide the ✏-uniform moments bounds of Theorem 4 with p “ 2, any
r P p0, 1q, a “ a0

a0`1

, and for k
1

“ 3. B

3.2.2 Convergence of the finite dimensional marginals of the localized drivers

Fix a positive radius R. We know from the results of [13] on rough and stochastic
flows that the formula

Zpsq
ts

:“
ª

t

s

ª

u1

s

!

V˝du2 b V˝du1 ´ V˝du1 b V˝du2

)

,

defines almost surely a C

⇢

`

Rd; LpRdq˘

-valued process. Set

c :“ 1

2

ª 8

0

E
”

F puvq b F p0q ´ F p0q b F puvq
ı

du,

and

Z
ts

:“ Zpsq
ts

` pt ´ sq c.
Then the formula

V

R

t,s

:“
´

V R, p�Rq2W
t,s

` �R Z
t,s

pr�Rq
¯

(3.6)

defines almost surely a rough driver of regularity p and p2 ` rq, for any 2 † p †
2 ` r † 3. We show in this section that the finite dimensional marginals of V✏,R

converge to those of VR as ✏ decreases to 0. The introduction of a notation will
happen to somehow simplify our life.

Inspecting the explicit expressions of V ✏,R and W ✏,R, we see that it is su�cient
to prove the finite dimensional convergence of the process
ˆ

V ✏

‚0; DV ✏

‚0; D
2V ✏

‚0;

ª

‚

0

`

DV ✏

du

˘

V ✏

u0;

ª

‚

0
V ✏

du

b V ✏
u0;

ª

‚

0

`

D2V ✏

du

˘

V ✏

u0;

ª

‚

0

`

DV ✏

du

˘ `

DV ✏

u0

˘

˙

,

with values in

Rd ˆ pRdqb2 ˆ pRdqb3 ˆ Rd ˆ pRdqb2 ˆ pRdqb2 ˆ pRdqb3,

indexed by pt, xq P R` ˆ Rd, as V ✏,R and W ✏,R are the images of the above process
by some fixed linear maps. To make that point clear, and given A “ `

a1, a2, a3
˘

and

B “ `

b1, b2, b3
˘

in
À

3

i“1

pRdqbi, set

A ‹ B “
´

a2b1, a1 b b1, a3b1, a2b2
¯

P Rd ˆ pRdqb2 ˆ pRdqb2 ˆ pRdqb3;
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remark that if AbB P Rpd`2d

2`d

3q2 denotes the tensor product of A andB, then A‹B
is a linear function of A b B. If one defines the

À

3

i“1

pRdqbi-valued time-dependent
fields F and V✏ on Rd by

F
t

pxq :“
´

F px ` tvq, D
x`tvF,D

2

x`tvF
¯

,

V✏

t

pxq :“
´

V ✏

t0

pxq, D
x

V ✏

t0

, D2

x

V ✏

t0

¯

,

then we have
ˆ

ª

t

0

`

DV ✏

du

˘

V ✏

u0

,

ª

t

0

V ✏

du

b V ✏

u0

,

ª

t

0

`

D2V ✏

du

˘

V ✏

u0

,

ª

t

0

`

DV ✏

du

˘`

DV ✏

u0

˘

˙

“
ª

t

0

V✏

du

‹ V✏

u

“ ✏2
ª

0§u2§u1§✏

´2
t

F
u2 ‹ F

u1 du2du1.

We shall use a well-paved road to prove the above finite dimensional convergence
result, that can roughly be summarized as follows.

(a) Decompose V✏ as the sum of a martingale and small coboundary term, and
use a martingale central limit theorem for dealing with the convergence of
that process.

(b) Use a result of Kurtz and Protter on the joint convergence of pairs
ˆ

M‚,
ª ‚

0

M
u

´dM
u

˙

in Skorokhod space, for good martingales, to deal with the convergence of

the whole process
´

V✏,
≥‚
0

V✏

du

‹ V✏

u

¯

.

Given any positive integer m, any m-point x “ `

x
1

, . . . , x
m

˘ P pRdqm in Rd, and
any function H from Rd to a finite dimensional vector space, we set

Hpxq :“ `

Hpx
1

q, . . . , Hpx
m

q˘

.

We shall see in Appendix, Lemma 16, that the following two statements are equiv-

alent. Set ✏
n

“ n´ 1
2 .

‚ The finite dimensional marginals of some family of processes
´´

V✏

‚,
ª ‚

0

V✏

du

‹ V✏

u

¯

pxq
¯

0†✏§1

converge to the corresponding finite dimensional marginals of some limit
process

`

V‚,W‚
˘

.

‚ The same convergence happens for the sequence
´´

V✏n‚ ,

ª ‚

0

V✏n
du

‹ V✏n
u

¯

pxq
¯

n•1

.

We shall thus stick from now on to the study of the latter sequence. We first set
the study of the sequence V✏n in the setting of central limit theorems for sums of
mixing, stationnary, random variables, for which martingale methods are commonly
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used. A positive integer m, and an m-point x “ `

x
1

, . . . , x
m

˘ P pRdqm, are given.
Set

�
x

:“ 2max
i,j

|x
i

´ x
j

|.

Lemma 9. The process V1

‚pxq is centered, has stationary increments and is strongly
mixing, with mixing coe�cient � such that

�puq § ↵
`

u|v| ´ �
x

˘

, (3.7)

when u • �

x

|v| .

Proof – The spatial stationarity of the field F
0

(x) is inherited from the stationary
character of F , so

´

F py ` hq, D
y`h

F,D2

y`h

F
¯

L“
´

F pyq, D
y

F,D2

y

F
¯

.

It follows that

V1

t

pxq ´ V1

s

pxq “
ª

t

s

F
u

pxq du L“
ª

t

s

F
u`h

pxq du “ V1

t`h

pxq ´ V1

s`h

pxq,

so the process V1

‚pxq has stationary time-increments. As we also see on the first
equality that the random variable

`

V1

t

pxq´V1

s

pxq˘

is Grsv,tvs`Bp0,�
x

q-measurable,
bound (3.7) follows from the inequality

�
´

rs
1

v, t
1

vs ` Bp0,�
x

q , rs
2

v, t
2

vs ` Bp0,�
x

q
¯

• ps
2

´ t
1

q|v| ´ �
x

,

which holds for all s
1

§ t
1

§ s
2

§ t
2

, with ps
2

´ t
1

q|v| ° �
x

.
B

Define a stationary sequence of fields setting

X
k

:“
ª

k`1

k

F
u

du.

We shall analyse the asymptotic behaviour of
´

V✏n
t

,
≥

t

0

V✏n
dr

‹ V✏n
r

¯

pxq by first writing

it in terms of the X
k

, in the next lemma, and then by using a ”martingale plus
remainder” decomposition – see Lemma 11. This will then put us in a position to
use a well-known result of Kurtz and Protter about the convergence in law of pairs
of the form

`

M‚,
≥

‚ MdM
˘

, for good martingales M .

Lemma 10. Given any time t P r0, T s, any positive integer m, and any m-point x,
we have

ˆ

V✏n
t

,

ª

t

0

V✏n
dr

‹ V✏n
r

˙

pxq “
¨

˝

1?
n

rnts´1

ÿ

k“0

X
k

,
1

n

rnts´1

ÿ

k“0

k

ÿ

j“0

X
k

‹ X
j

˛

‚pxq

`
ˆ

0, t

ª

0§u2§u1§1

E
“

F
u1 ‹ F

u2

‰

du
2

du
1

˙

pxq ` Rn

t

pxq

with a remainder Rn

t

pxq that converges to 0 almost surely.

So Slutsky’s theorem brings back the study of the finite dimensional convergence
of the process in the left hand side of the above equality to the study of the finite
dimensional convergence of the first term in the right hand side.
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Proof – Let first pick an R bigger than all the |x
i

|, and note that V✏

‚ “ V✏,R

‚ “:
´

V ✏,R, DV ✏,R, D2V ✏,R

¯

, and
≥‚
0

V✏

du

‹V✏

u

du “ ≥‚
0

V✏,R

du

‹V✏,R

u

du, on Bp0, Rq. As it
follows from the tightness result stated in theorem 8 that there is almost surely
an exponent b † 1

2

such that the processes V✏,R

‚ “ V✏

‚ have finite b-Hölder norm
uniformly in ✏, and since

V✏n
nt

pxq ´ 1?
n

rnts
ÿ

k“1

X
k

pxq “
´

V✏n
nt

pxq ´ V✏n
rntspxq

¯

the first component of R
n

pxq converges indeed to 0 almost surely. To analyse
its second component, write

ª

t

0

V✏n
dr

‹ V✏n
r

pxq “ 1

n

ª

0§u2§u1§nt

F
u1 ‹ F

u2 du2du1

“ 1

n

ª

!

1

0§u2§u1§rnts ` 1

0§u1§rnts1ru1s§u2§u1

` 1rnts§u1§nt

1

0§u2§ru1s ` 1rnts§u1§nt

1ru1s§u2§u1

)

F
u1 ‹ F

u2 du2du1.

‚ The first term is equal to

1

n

rnts´1

ÿ

k“1

k´1

ÿ

j“0

X
k

‹ X
j

“ 1

n

rnts´1

ÿ

k“0

k´1

ÿ

j“0

X
k

‹ X
j

` 0
´ 1

n

¯

.

‚ Writing the second term as

1

n

rnts´1

ÿ

k“0

ˆ

ª

k§u2§u1§k`1

F
u1 ‹ F

u2pxq du
2

du
1

˙

,

it appears as the ergodic sum of the stationary mixing sequence given by
the integral term. The ergodic theorem gives its asymptotic behaviour.

‚ The third term decouples and writes
˜

ª

nt

rnts
F
u

du

¸

‹
˜

1

n

ª rnts

0

F
u

du

¸

pxq “ O
´ 1

n

¯ ´

tE
“

F
1

‰ ` o
n

p1q
¯

“ O
´ 1

n

¯

o
n

p1q,

by Lemma 9 and the ergodic theorem.

‚ The fourth term is almost surely of order 1

n

.
B

To set the scene of Gordin’s martingale decomposition fof stationary sequences,
define

F

k

pxq :“ �
´

X
j

pxq, j § k
¯

and

✓
k

pxq :“
ÿ

j•0

E
”

X
k`j

pxq
ˇ

ˇ

ˇ

F

k

ı

“
ª 8

k

E
”

F
u

pxq
ˇ

ˇ

ˇ

F

k

ı

du.

The fact that the sequence
`

X
k

pxq˘

k•0

is stationary and mixing, with mixing coef-

ficient �pkq, ensures that ✓
k

pxq P L2, so it is in particular almost surely finite. Note
the relation

X
k

pxq “ ✓
k

pxq ´ ✓
k`1

pxq `
´

✓
k`1

pxq ´ Er✓
k`1

pxq|F
k

s
¯

.



18

Denote by
`

M
k

pxq˘

k•0

the L2-martingale with increments ✓
k`1

pxq´E
“

✓
k`1

pxqˇ

ˇ

F

k

‰

;
so

M
k

pxq´M
0

pxq “
k´1

ÿ

j“0

X
j

pxq`✓
k

pxq´✓
0

pxq “
ª 8

0

!

E
“

F
u

pxqˇ

ˇ

F

k

‰´E
“

F
u

pxqˇ

ˇ

F

0

‰

)

du.

We define a pure jump càdlàg martingale by the formula

Mn

t

pxq “ 1?
n
Mrntspxq;

it satisfies the relation
ª

t

0

Mn

du

‹ Mn

u

“ 1

n

rnts´1

ÿ

k“0

pM
k`1

´ M
k

q ‹ M
k

,

with an Itô integral used in the left hand side.

Lemma 11. We have
¨

˝

1?
n

rnts´1

ÿ

k“0

X
k

,
1

n

rnts´1

ÿ

k“0

k

ÿ

j“0

X
k

‹ X
j

˛

‚pxq “
ˆ

Mn

t

,

ª

t

0

Mn

dr

‹ Mn

r

˙

pxq

`
˜

0, t

ª

r1,8qˆr0,1s
E

“

F
u1 ‹ F

u2pxq‰

du
2

du
1

¸

` R
n

t

,

for a remainder R
n

t

that converges in probability to 0.

Proof – (1) We start giving a uniform bound on ✓
k

pxq. Define for that purpose an
exponent q by the relation  ` a`1

2a

` 1

q

“ 1, and let Q P Lq X F

k

pxq have unit
Lq-norm. We have the k-uniform bound

ˇ

ˇ

ˇ

E
“

Q✓
k

pxq‰

ˇ

ˇ

ˇ

À
ª 8

k

ˇ

ˇ

ˇ

E
“

QF
u

pxq‰

ˇ

ˇ

ˇ

du

À
ª 8

k

↵
´

ˇ

ˇu ´ pk ` 1qˇ

ˇv|ˇˇ
¯



du

À
↵

1,

so ✓
k

pxq have a finite L
2a0

3a0`1 -norm, uniformly bounded as k varies.

(2) ‚ The case of

1?
n

rnts´1

ÿ

k“0

X
k

pxq ´ Mn

t

pxq “ 1?
n

`

✓
0

pxq ´ ✓rntspxq˘ ` 1?
n
M

0

pxq.

is trivially dealt with using the above k-uniform boundon ✓
k

pxq.
‚ For the second component, start with the decomposition

1

n

rnts´1
ÿ

k“1

k

ÿ

j“0

X
k

‹ X
j

pxq ´ 1

n

rnts´1
ÿ

k“0

pM
k`1 ´ M

k

q ‹ M
k

pxq

“ 1

n

rnts´1
ÿ

k“1

X
k

‹ pM
k

´ ✓
k

` ✓0 ´ M0qpxq ´ 1

n

rnts´1
ÿ

k“0

pX
k

` ✓
k`1 ´ ✓

k

q ‹ M
k

pxq

“ ´ 1

n

rnts´1
ÿ

k“0

X
k

‹ ✓
k

pxq ´ 1

n

rnts´1
ÿ

k“0

p✓
k`1 ´ ✓

k

q ‹ M
k

pxq `
´ 1

n

rnts´1
ÿ

k“1

X
k

¯

‹ p✓0 ´ M0qpxq.
(3.8)
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Since the centered sequence
`

X
k

pxq˘

k•0

is stationary and mixing,the last term

above converges to 0, by the ergodic theorem. The sequence
``

X
k

‹ ✓
k

˘pxq˘

k•0

is also stationary and ergodic, so ´ 1

n

∞rnts´1

k“0

X
k

‹ ✓
k

pxq converges almost surely
to ´E

“

X
0

‹✓
0

pxq‰

. To analyse the second term in the right hand side of equation
(3.8), write it as

´ 1

n

rnts´1

ÿ

k“0

k´1

ÿ

j“0

p✓
k`1

´ ✓
k

q ‹ pM
j`1

´ M
j

qpxq ` 1

n
p✓rnts ´ ✓

0

q ‹ M
0

pxq.

The second term converges to zero in probability, by point (1). Remark that

´ 1

n

rnts´1

ÿ

k“0

k´1

ÿ

j“0

`

✓
k`1

´ ✓
k

˘ ‹ `

M
j`1

´ M
j

˘pxq “ 1

n

rnts´2

ÿ

j“0

✓
j`1

‹ `

M
j`1

´ M
j

˘pxq

´ ✓rnts´1

‹
¨

˝

1

n

rnts´2

ÿ

k“0

M
k`1

´ M
k

˛

‚pxq.

Here again, thanks to the ergodic theorem the second term in the right hand
side converges to zero in probability. Furthermore, by construction, the sequence
`

✓
j`1

‹ pM
j`1

´ M
j

qpxq˘

j•0

is stationary and ergodic, so the first term of the

right hand side converges almost surely to Er✓
1

‹ pM
1

´ M
0

qpxqs. All these
elementary remarks together prove that

1

n

rnts´1

ÿ

k“1

k

ÿ

j“0

X
k

‹ X
j

pxq ´ 1

n

rnts´1

ÿ

k“0

`

M
k`1

´ M
k

˘ ‹ M
k

pxq

converges in probability to

´E
”

X
0

‹ ✓
0

pxq
ı

` E
”

✓
1

‹ pM
1

´ M
0

qpxq
ı

.

(3) In order to prove the lemma, it remains to find a good expression for the
limit. For all j • 1, we have

X
j

‹X
0

pxq´`

M
j`1

´M
j

˘‹`

M
1

´M
0

˘ “ X
j

‹`

✓
0

´✓
1

˘pxq``

✓
j

´✓
j`1

˘‹`

M
1

´M
0

˘pxq,

with

E
”

`

M
j`1

´ M
j

˘ ‹ `

M
1

´ M
0

˘

ı

“ 0,

since Mpxq is an
`

F

k

pxq˘

k•0

-martingale. One can then use the fact that

E
”

X
j

‹ `

✓
0

´ ✓
1

˘pxq
ı

“ E
”

X
j``

‹ `

✓
`

´ ✓
``1

˘pxq
ı
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for all j, ` • 1, to see that

N

ÿ

j“1

E
”

X
j

‹ X0pxq
ı

“
N

ÿ

j“1

E
”

X
j

‹ X0pxq
ı

´ E
”

`

M
j`1 ´ M

j

˘ ‹ `

M1 ´ M0

˘

ı

“
N

ÿ

j“1

E
”

X
j

‹ `

✓0 ´ ✓1
˘pxq ` `

✓
j

´ ✓
j`1

˘ ‹ `

M1 ´ M0

˘pxq
ı

“
N

ÿ

j“1

E
”

X
N

‹ `

✓
N´j

´ ✓
N´j`1

˘pxq ` `

✓
j

´ ✓
j`1

˘ ‹ `

M1 ´ M0

˘pxq
ı

“ ´E
”

X
N

‹ ✓
N

pxq
ı

` E
”

✓1 ‹ `

M1 ´ M0

˘pxq
ı

` RN

“ ´E
”

X0 ‹ ✓0pxq
ı

` E
”

✓1 ‹ `

M1 ´ M0

˘pxq
ı

` RN ,

where

RN :“ E
”

X
N

‹ ✓
0

´ ✓
N`1

‹ `

M
1

´ M
0

˘pxq
ı

converges to zero as N goes to infinity, thanks to the mixing properties of X
and ✓. It follows that

1

n

rnts´1

ÿ

k“1

k

ÿ

j“0

X
k

‹ X
j

pxq ´ 1

n

rnts´1

ÿ

k“0

`

M
k`1

´ M
k

˘ ‹ M
k

pxq

converges in probability to

8
ÿ

j“1

E
“

X
j

‹ X
0

pxq‰ “
8
ÿ

j“1

ª

j`1

j

ª

1

0

E
”

F

u1 ‹ F

u2pxq
ı

du
2

du
1

“
ª 8

1

ª

1

0

E
”

F

u1 ‹ F

u2pxq
ı

du
2

du
1

.

B

We are now ready to prove the finite dimensional convergence of the sequence

of processes
´

V✏n‚ ,
≥‚
0

V✏n
du

‹ V✏n
u

¯

to the process
´

V‚,
≥‚
0

V
du

‹ V
u

¯

, where V is a

Brownian motion on the space
´

Rd ‘ pRdqb2 ‘ pRdqb3

¯

m

, with covariance Cpxq
given, for all �, µ P

´

Rd ‘ pRdqb2 ‘ pRdqb3

¯

m

, by the formula

`

Cpxq�˘

µ “
ÿ

kPZ

E
”

`

X
0

pxq ¨ �˘`

X
k

pxq ¨ µ˘

ı

“
ª

1

0

ª

R
E

”

`

F
u1pxq ¨ �˘`

F
u2pxq ¨ µ˘

ı

du
1

du
2

“
ª

R
E

”

`

F
0

pxq ¨ �˘`

F
r

pxq ¨ µ˘

ı

du.

(We used the time-stationarity of F in the last line.) We shall use for our purposes
a useful result proved by Kurtz and Protter in [20], that says that if pMnq

n•1

is a
sequence of vector-valued martingales, with E

“

Mn

1

‰ “ 0 for all n • 0, and if
`

Mn

t

˘

n•0

is bounded in L2 for each time t P r0, T s, then the convergence in law of Mn

‚ to M‚
in Skorokhod space implies the convergence in law of the pair

`

Mn

‚ ,
≥‚
0

Mn

u

´ dMn

u

˘

to
`

M‚,
≥‚
0

M
u

´ dM
u

˘

, in the Skorokhod space – the integrals are understood as Itô
integrals.
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Indeed, since Lemma 9 ensures that we can use for the sequence of processes
1?
n

∞rn‚s
k“1

X
k

well-known invariance principles, Lemma 11 shows that the process

Mn

‚ pxq converges to the process V‚ in Skorokhod space. As moreover the sequence
`

✓
k

pxq˘

k•0

is bounded in L
2a0

3a0`1 , and  † 1

3

´ 1

a0
, that sequence is also bounded in

L2. So we have

E
”

ˇ

ˇ

ˇ

Mn

t

pxq
ˇ

ˇ

ˇ

2

ı

À 1

n
E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rnts´1

ÿ

k“0

X
k

pxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl ` 1

n
E

“|✓
0

|2‰ ` 1

n
E

“|✓
nt

|2‰

À t ` O
´ 1

n

¯

,

which implis that the random variables Mn

t

are uniformly bounded in L2, for all
t P r0, T s and n • 1. This fact finally puts us in a position to use the above
mentioned result of Kurtz and Protter.

Putting all pieces together, we have proved that the finite dimensional laws of the
family of processes

´

V✏,R

‚ pxq,
ª ‚

0

V✏,R

du

‹ V✏,R

u

pxq
¯

converge weakly to the finite dimensional laws of the process
´

V‚pxq,
ª ‚

0

V
du

‹ V
u

pxq ` ‚bpxq
¯

,

where

bpxq :“
ª

1

0

ª

u1

0

E
”

F
u1 ‹ F

u2pxq
ı

du
2

du
1

`
ª 8

1

ª

1

0

E
”

F
u1 ‹ F

u2pxq
ı

du
2

du
1

“
ª 8

0

E
”

F
u

‹ F
0

pxq
ı

du “
ª 8

0

E
”

F
u

‹ F
0

ı

du “: b

is independent of x, by stationarity of F. Explicitly, one can write

b “ bpxq “ `

b1, b2, b3, b4, ¨ ¨ ¨ , b1, b2, b3, b4
loooooooooooooooooomoooooooooooooooooon

m times

˘

,

with

b1 :“
ª 8

0

E
”

`

D
uvF

˘

F p0q
ı

du, b2 :“
ª 8

0

E
”

F puvq b F p0q
ı

du

b3 :“
ª 8

0

E
”

`

D2

uvF
˘

F p0q
ı

du, b4 :“
ª 8

0

E
”

D
uvF D

0

F
ı

du.

Write V for the first component of V. If one recalls now that V

✏,R is obtained

from
´

V✏,R

‚ pxq, ≥‚
0

V✏,R

du

‹ V✏,R

u

pxq
¯

by a fixed linear map, it follows that the finite

dimensional laws of V✏,R converge to the finite dimensional laws of the rough driver

p

V

R

ts

pxq :“
ˆ

�RpxqV
t,s

pxq , �Rpxq2
"

ª

t

s

`

D
x

V
du

˘

V
us

pxq ´ 1

2

`

D
x

V
ts

˘

V
ts

pxq ` pt ´ sq b1
*

` �Rpxq
"

ª

t

s

V
du

pxq b V
us

pxq ´ 1

2
V
t,s

pxq b V
t,s

pxq ` pt ´ sq b2
*

r�Rpxq
˙

.
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In its Stratonovich form, and with the notations introduced before theorem ??, this
gives

r

V

R

ts

pxq “
ˆ

�RpxqV
t,s

pxq , �Rpxq2
!

W psq
ts

pxq ` pt ´ sq`

b1 ´ B
1

Cp0, 0q˘

)

` �Rpxq
!

Zpsq
ts

pxq ` pt ´ sq`

b2 ´ Cp0, 0q˘

)

r�Rpxq
˙

,

where B
1

Cp0, 0q “ B
x

Cpx, yq|x“y“0

. Since

b1 ´ B
1

Cp0, 0q “ 1

2

ª 8

0

E
“`

D
uvF

˘

F p0q ´ `

D
0

F
˘

F puvq‰

du “ b,

and

b2 ´ Cp0, 0q “ 1

2

ª 8

0

E
“

F puvq b F p0q ´ D
0

F b F puvq‰

du “ c,

we finally see that
p

V

R “ V

R.

This fact finishes the proof of the convergence of the finite dimensional laws of V✏,R

to those of VR.

3.2.3 End of proof of Theorem 6

The results of sections 3.2.1 and 3.2.2 together put us in a position to use Theorem
4 and show that the family of rough driversV✏,R, with regularity indices p and p2`rq,
converges as a pp1, 2`r1q-rough driver to the rough driver VR with regularity indices
p1 and p2 ` r1q, introduced in (3.6). One finally uses the following elementary fact
to remove the localisation.

Proposition 12. Assume that the quantities

E
”

sup
0§s§t§T

sup
xPK

ˇ

ˇ'✏,Rpxqˇ

ˇ

ı

are uniformly bounded above by a constant independent of R, for each compact subset
K of Rd. Then, the restriction '✏

|K of '✏ to K converges in law in CpD
T

ˆ Kq to

the restriction '|K of ' to K.

Proof – Given a compact subset K of Rd, set

M :“ E
”

sup
0§s§t§T

sup
xPK

ˇ

ˇ'✏,Rpxqˇ

ˇ

ı

† 8.

Given any closed set F of Cp�
T

ˆ Kq, we have

P
´

'✏

|K P F
¯

§ P
´

'✏,R

|K P F
¯

` P
´

'✏pKq X Bp0, Rqc ‰ H
¯

§ P
´

'✏,R

|K P F
¯

` P
´

'✏,RpKq X Bp0, Rqc ‰ H
¯

,

with
lim sup

"

P
´

'✏,R

|K P F
¯

§ P
´

'R

|K P F
¯

by the convergence assumption on the rough driver V✏,R and the continuity of
the Itô map, while the second term can be bounded above by M

R

. The conclusion
follows by letting R tend to 8.

B
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A Compactness results for rough drivers

We prove in this section a Lamperti-type compactness criterion for random rough
drivers that implis Theorem 4 in a straightforward way. We shall use for that purpose
an elementary result on Besov spaces which we recall first.

Given f P L8pRd,Rdq and � in the unit ball of Rd, we define inductively a sequence
�m

�

of operators on L8pRd,Rdq setting
`

�
�

f
˘p¨q “ fp¨ ` �q ´ fpxq and �m`1

�

f “ �
�

p�m

�

fq.
Given positive parameters a, b § 8, and two exponents 0 † ↵ § m, the Besov space
B↵

ab

pRdq “: B↵

ab

is defined as

$

&

%

f P LppRdq : }f}
B

↵
ab

:“ }f}
L

apRdq `
˜

ª

Bp0,1q
|�|´b↵}�m

�

f}b
L

apRdq
d�

|�|d
¸

1
b

† `8
,

.

-

.

Two di↵erent choices of constants mp• ↵q define the same space, with equivalent
norms; so we do not keep track of that parameter in the notation for the space.
These spaces provide refinements of the Hölder spaces, in so far as B↵8,8 “ C

↵,
for non-integer ↵’s. The most useful property of this scale of spaces will be for us
Besov’s embedding properties, according to which, if one is given 1 § p

1

† p
2

§ 8
and ↵ ° 0, then B

↵`d

`

1
p1

´ 1
p2

˘

p1,p1 is continuously embedded into B↵

p2,p2
. The following

elementary continuity result was also used above.

Proposition 13. Let 0 † ↵
1

§ ↵
2

the multiplication is a continuous bilinear operator
from C

↵1 ˆ C

↵2 to C

↵1.

From a probabilistic point of view, the interest of working with Besov spaces comes
from the fact that it is usually hard to get estimates on the expectation of some
supremum, while making computions on integral quantities is usually much easier,
as the proof of the next proposition will make it clear. We use in this statement the
notations

⌫
V

pd�q :“ µ´pp2`rqa`dq d�, ⌫
W

pd�q :“ µ´ppr`1qa`dq d�,

for two measures on the unit ball Bp0, 1q of Rd, absolutely continuous with respect to
Lebesgue measure d�, and for a range of parameters pa, rq specified in the statement.
Recall D

T

stands for the 2-dimensional simplex
 ps, tq P r0, T s2 ; s § t

(

.

Proposition 14. Assume we are given a family
`

V
ts

,W
ts

˘

0§s§t§T

of random vector

fields on Rd, with V almost surely additive as a function of time, of class C

2, and
with W satisfying almost surely the identity

W
ts

“ W
tu

` W
us

` 1

2

“

V
us

, V
tu

‰

, (A.1)

for every 0 § s § t § T . Let a, p and r be positive parameters, with a • 1 and

0 † 1
1

p

´ 1

2a

´ 2 † r ´ d

a
† 1.

ismael


ismael
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Assume that there exists two non-negative functions CV

0

P LapRdq and CW

0

P LapRdq
such that we have

›

›

›

›

›

V
t,s

pyq
|t ´ s| 1p

›

›

›

›

›

L

2a

§ CV

0

pyq, and

›

›

›

›

›

W
t,s

pyq
|t ´ s| 2p

›

›

›

›

›

L

a

§ CW

0

pyq (A.2)

for all py, ps, tqq P Rd ˆ D
T

. Assume also that there exists an integer k
1

• 3, and
two functions

CV

1

P La

´

`

Bp0, 1q, µ
V

˘

;LapRdq
¯

,

and

CW

1

P La

´

`

Bp0, 1q, µ
W

˘

;LapRdq
¯

,

such that we have
›

›

›

›

›

�k1
�

V
t,s

pyq
|t ´ s| 1p

›

›

›

›

›

L

2a

§ CV

1

p� ; yq, and

›

›

›

›

›

�k1´1

�

W
t,s

pyq
|t ´ s| 2p

›

›

›

›

›

L

a

§ CW

1

p� ; yq, (A.3)

for all p�, y, ps, tqq P Bp0, 1q ˆ Rd ˆ D
T

. Then, for any pp1, 2 ` r1q with p1 † 2 ` r1

and

r1 † r ´ d

a
, and

1

3
† 1

p1 † 1

p
´ 1

2a
,

there exists a modification r

V of V :“ `

V, 1
2

V 2 ` W
˘

that is almost surely a rough
driver with regularity indices p1 and p2 ` r1q, for which

E
”

›

› r

V

›

›

2p

pp1
,2`r

1q
ı

À ›

›CV

0

›

› ` ›

›CW

0

›

› ` ›

›CV

1

›

› ` ›

›CW

1

›

›,

with each norm taken in its natural space.

We shall set in the proof

D
n

:“  

rn
k

“ k2´nT ; k “ 0 . . . 2n
(

,

for any n • 1, and talk about an element in one of the sets D
n

as a dyadic times.
Let insist here on the convention that La stands for the integrability class of random
variables, whereas we shall always write LapRdq for integrable functions on Rd.

Proof – We first show that V has a modification that is almost surely 1

p

1 -Hölder,

with values in C

2`r´ d
a pRd,Rdq. This is done in an elementary way using Besov

embedding theorem to write

E
”

}V
t,s

}2a
C2`r´ d

a

ı

1
2a § E

”

›

›V
ts

›

›

2a

B

r`2
a,a

ı

1
2a

À E
”

}V
ts

}2a
L

apRdq
ı

1
2a ` E

»

–

˜

ª

Bp0,1q

›

›�k1
�

V
ts

›

›

a

L

apRdq
d�

|�|p2`rqa`d

¸

2

fi

fl

1
2a

À
ˆ

ª

Rd
E

“|V
ts

pyq|2a‰

1
2 dy

˙

1
a `

˜

ª

Rd

ª

Bp0,1q
E

”

ˇ

ˇ�k1
�

V
ts

pyqˇ

ˇ

2a

ı

1
2 d�

|�|p2`rqa`d

dy

¸

1
a

À |t ´ s| 1p ,
with a multiplicative constant in the inequality proportional to

›

›CV

0

›

› ` ›

›CV

1

›

›.
The result for V follows then from the usual Kolmogorov regularity theorem,

here for a process with values in C

2`r´ d
a pRd,Rdq; write rV for its modification

with values in C

1
p1 `

D
T

; C2`r´ d
a pRd,Rdq˘

.
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Note, for s § u § t, the elementary inequality
›

›

›

“

V
us

, V
tu

‰

›

›

›

C1`r´ d
a

À ›

›DV
tu

›

›

C1`r´ d
a

}V
us

}
C2`r´ d

a
` }DV

u,s

}
C1`r´ d

a
}V

t,u

}
C2`r´ d

a

À |t ´ u| 1
p1 |u ´ s| 1

p1
›

›rV
›

›

2

,
(A.4)

where }rV
›

› stands for the norm rV as an element of C
1
p1 `

D
T

; C2`r´ d
a pRd,Rdq˘

,
and is in La – Proposition 13 is used to justify the first inequality.

Given two dyadic times s † t, with s “ k
s

2´n0 and t “ k
t

2´n0 , the interval rs, tq
can uniquely be written as a finite disjoint union of intervals ru, vq with ends in
D
n

, for n • n
0

` 1, and where no three intervals have the same length. Write
s “ s

0

† s
1

† ¨ ¨ ¨ † s
N

† s
N`1

“ t, for the induced partition of rs, tq, and note
that

N

ÿ

n“0

`

s
n`1

´ s
n

˘

1
p1 `

s
n

´ s
0

˘

1
p1 À c |t ´ s| 2

p1 , (A.5)

for an absolute positive constant c. Using repeatedly the decomposition

W
sns0 “ W

snsn´1 ` W
sn´1s0 ` 1

2

”

V
sn´1s0 , Vsnsn´1

ı

,

together with estimate (A.4) and (A.5), we see that
›

›W
ts

›

›

C1`r1´ d
a

À
´

}rV
›

› ` M
¯

|t ´ s| 2
p1 ,

where

M :“
ÿ

n•0

2´n

`

1` 2a
p

˘

pn ` 1q2
2

n´1

ÿ

k“0

›

›

›

W
r

n
k`1r

n
k

›

›

›

C1`r´ d
a

is an integrale random variable, so is almost surely finite, as a consequence of
Besov embedding and assumptions (A.2) and (A.3) on the vector field W . An
obvious extension procedure, such as classically done in the proof of Kolmogorov
regularity theorem, finishes the proof of the statement. B

Theorem 15 (Kolmogorov-Lamperti-type tightness criterion for rough drivers). Let
`

V ✏,W ✏

˘

be a family of vector fields satisfying the assumptions of theorem 14, with
›

›

›

CV

✏

0

›

›

›

`
›

›

›

CW

✏

0

›

›

›

`
›

›

›

CV

✏

1

›

›

›

`
›

›

›

CW

✏

1

›

›

›

uniformly bounded above as ✏ ranges in p0, 1s. Then, for every positive p1, r1 with
p1 † 2 ` r1, and

r1 † r ´ d

a
, and

1

3
† 1

p1 † 1

p
´ 1

2a
,

the family rV ✏ is tight in the space of rough drivers with regularity indices p1 and
p2 ` r1q.
Proof – The proof is elementary and consists in using first theorem 14 with p2 ° p1

and r2 ° r1 satisfying the conditions, and seeing that the quantities

E
”

›

› r

V

›

›

2p

pp1
,2`r

1q
ı

are bounded uniformly in 0 † ✏ § 1. So the probability that rV ✏ is outside a
fixed ball in the space of pp2, 2`r2q-rough drivers can be made arbitrarily small
by choosing a large enough radius for that ball. The claim follows from the
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fact that such a ball is compact in the space of pp1, 2 ` r1q-rough drivers, by a
standard Ascoli-Arzela-type argument.

B

Note that one can find in [13] other regularization and compactness results for
rough drivers – Theorem 28. The present Lamperti-type compactness criterion hap-
pens to be particularly easy to use in our study of stochastic turbulence, in section
3.

B An elementary lemma

We state and prove here the following elementary lemma that was used in section
3.2.2 to bring back the study of the convergence problem for a continuous family of
processes to the convergence problem for a sequence of processes. We adopt here
the notations of that section.

Lemma 16. If the finite dimensional laws of the sequence of processes
´

V✏n‚ ,

ª ‚

0

V✏n
du

‹ V✏n
u

¯

pxq
converge to some limit process then the finite dimensional laws of the continuous
family

´

V✏

‚,
ª ‚

0

V✏

du

‹ V✏

u

¯

pxq,
indexed by 0 † ✏ § 1, also converge to the same limit.

Proof – We use for the first component the same argument as in the proof of propo-
sition 10, and use the fact that there is almost surely an exponent b † 1 such
that the processes V✏

‚ have finite b-Hölder norm, uniformly in ✏. So, taking
n “ “

✏´2

‰

, we have the almost surely estimate

ˇ

ˇ

ˇ

V✏

t

pxq ´ V
1
n
t

pxq
ˇ

ˇ

ˇ

§
ˇ

ˇ

ˇ

ˇ

ˇ

✏

ª

✏

´2
t

nt

F
r

pxq
ˇ

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

p✏ ´ n´ 1
2 q
ª

nt

0

F
r

pxq
ˇ

ˇ

ˇ

ˇ

§ ˇ

ˇV✏

t

pxq ´ V✏

tn✏

2pxqˇ

ˇ `
ˇ

ˇ

ˇ

ˇ

p✏n 1
2 ´ 1qV 1

n
t

pxq
ˇ

ˇ

ˇ

ˇ

À t�
`|1 ´ n✏2|� ` |✏n 1

2 ´ 1|˘ À `

✏2� ` ✏2
˘

.

The proof for the second component is similar. Write
ˇ

ˇ

ˇ

ˇ

ª

t

0

V✏

du

‹V✏

u

pxq ´
ª

t

0

V
1
n
du

‹ V
1
n
u

pxq
ˇ

ˇ

ˇ

ˇ

§
ˇ

ˇ

ˇ

ˇ

ˇ

p1 ´ ✏´2n´1q
ª

n✏

2
t

0

V✏

du

‹ V✏

u

pxq
ˇ

ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

ˇ

✏2
ª

✏

´2
t

nt

ª

u1

nt

F
u1 ‹ F

u2pxq du
2

du
1

ˇ

ˇ

ˇ

ˇ

ˇ

` ✏2n

ˇ

ˇ

ˇ

ˇ

ˇ

´

ª

✏

2
t

nt

F
u

du
¯

‹
´

n´1

ª

nt

0

F
u

du
¯

ˇ

ˇ

ˇ

ˇ

ˇ

.

Again, by Theorem 8 and by the definition of n, the first term of the right hand
side is bounded by an almost surely finite constant multiple of ✏2. Since, F

u

is
almost surely bounded, the second term of the right hand side is of order ✏2.
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Since ✏2n
≥

✏

2
t

nt

F
u

pxq du is almost surely bounded by a constant independent of ✏,
we eventually have the estimate

ˇ

ˇ

ˇ

ª

t

0

V✏

du

‹ V✏

u

pxq ´
ª

t

0

V✏n
du

‹ V✏n
u

pxq
ˇ

ˇ

ˇ

À ✏2 `
ˇ

ˇ

ˇ

ˇ

1

n

ª

nt

0

F
u

pxq du
ˇ

ˇ

ˇ

ˇ

.

The conclusion follows from the fact that F‚pxq is centered, stationary and
mixing, from which the ergodic theorem implies that 1

n

≥

nt

0

F
u

pxq du tends to 0.
B
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