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1. Kinetic Brownian motion in Rd

⌘ Definition. Kinetic Brownian motion (xt , ẋt ) in Rd is the hypoelliptic diffusion with
state space Rd ⇥ Sd�1

dxt = ẋt dt ,
ẋt = B�2t ,

with B Brownian motion on Sd�1, with parameter � 2 [0,1).
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1. Kinetic Brownian motion in Rd

⌘ Theorem – Homogenization. The time-rescaled position process (x�2t )0t1
converges weakly to a Euclidean Brownian motion with generator 4

d(d�1) �, as � " 1.

Idea of proof. The dynamics is given by the SDE

dxi
t = ẋ i

t dt ,

dẋ i
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2
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Use ergodic theorem and functional CLT to conclude. �
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2. Manifold-valued Kinetic Brownian motion
Let (M ,g) be a d-dimensional Riemannian manifold.

⌘ Cartan development: a useful way to construct Brownian motion on M. Let
⇡ : OM ! M, stand for the orthonormal frame bundle over M; generic point
z = (m,e), with e orthonormal basis of TmM. For z 2 OM, let H(z) 2 L(Rd ,TzOM)
stand for the (metric-dependent) horizontal form at z.

dzt = H(zt ) �dWt , in OM, wt := ⇡(zt ), in M.

⌘ Definition. Kinetic Brownian motion m�t in M via Cartan development. For X�t
time rescaled kinetic Brownian motion in Rd , set

dz�t = H(z�t )dX�t , in OM, m�t := ⇡(z�t ), in M.
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2. Manifold-valued Kinetic Brownian motion

⌘ Theorem – Homogenization. Assume (M ,g) is complete and stochastically
complete. Then the process

⇣

m�t
⌘

0t1
converges weakly to a Brownian motion with

generator 4
d(d�1)�, as � " 1.

Idea of proof. Back in Rd with time rescaled kinetic Brownian motion X�t . Prove that
the canonical rough path lift X� of (X�t )0t1 converges weakly in a rough path sense
to the Stratonovich Brownian rough path.

• Prove first weak convergence in uniform norm of X� to the Stratonovich
Brownian rough path, using weak convergence results on stochastic integrals.

• Prove �-uniform moment bounds on X�ts and
R t
s X�us ⌦ dX�u , and use

Lamperti-type tightness result.

Use the continuity of the Itô-Lyons solution map for the equation

dz�t = H(z�t ) dX�t = H(z�t )dX�t , z�t 2 OM ,

to transport weak convergence of X� from the rough paths side to the dynamics on OM
and M. �



3. Anisotropic Kinetic Brownian motion in Rd

Let ⌃ be a positive-definite symmetric matrix – no loss in assuming ⌃ = diag(↵2
i ).

⌘ Definition. Anisotropic Kinetic Brownian motion (xt , ẋt ) in Rd , with anisotropy ⌃,
is the hypoelliptic diffusion with state space Rd ⇥ Sd�1

dxt = ẋt dt ,
dẋt = �Pẋt �dWt ,

where W is an Rd -valued Brownian motion with covariance ⌃, and Pẋ : Rd ! hẋi?, the
orthogonal projection. (Note hẋi? = TẋS

d�1.)



3. Anisotropic Kinetic Brownian motion on Rd

⌘ Theorem – Homogenization.
• The invariant measure µ of the velocity process ẋ on the sphere is the image by

the radial projection on the sphere of the measure on Rd with density |x |�1 wrt
the Gaussian measure with covariance ⌃.

• The time-rescaled process (x�2t )0t1 converges weakly as � " 1 to a Euclidean
Brownian motion with covariance matrix diag(�i ), with

�i := 2
Z 1

0
Eµ
h

ẋ i
0 ẋ i

t

i

dt , 1  i  d .

• We have weak convergence of the associated rough path X� to the
corresponding Stratonovich Brownian rough path, as � " 1.

Idea of proof. The dynamics of velocity ẋt is given by the SDE
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t = �
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�ẋ `t
�

�

�

2
1

C

C

C

C

C

C

A

ẋ i
t dt + �

0

B

B

B

B

B

B

@

↵i dW i
t � ẋ i
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↵`ẋ `t dW `

t

1

C

C

C

C

C

C

A

No clear description of X�t = x�2t , when ⌃ different from a constant multiple of identity.

Give up the analysis of the SDE and use ergodic properties of ẋ .



3. Anisotropic Kinetic Brownian motion on Rd

1. We have for any probability measure � on Sd�1

�

�

�P⇤t � � µ
�

�

�TV . e�ct ,

for some positive constant c. This implies �-uniform moment estimates

sup
��0

�

�

�X�t � X�s
�

�

�Lp . |t � s|p/2,

sup
��0

�

�

�X�ts

�

�

�Lp . |t � s|p ,

where X�ts :=
R t
s X�us ⌦ dX�u , implying tightness for the laws of the canonical rough

paths X� associated with anisotropic kinetic Brownian motion.

2. We prove that any limit law turns the canonical process on the rough paths space
into a continuous Lévy process. We identify its generator using the invariance of the
invariant measure µ by the symmetries

(✓1, . . . , ✓d ) 2 Sd�1 7! (✓1, . . . , ✓i�1,�✓i , ✓i+1, . . . , ✓d ) 2 Sd�1. �



4. Geometry of the diffeomorphism group
⌘ (M ,g) a Riemannian manifold = domain of the fluid flow,

D :=
n

Diffeo of M
o

or Hs(M ,M): a Fréchet/Hilbert manifold,

T'D =
n

smooth/Hs
’vector fields’ at '

o

=
n

m 2 M ! u(m) 2 T'(m)M
o

.

(Variant with volume preserving diffeomorphism group and divergence-free vector
fields on M.)

⌘ Weak Riemannian metric on D

hu, vi :=
Z

M
g'(m)

⇣

u(m), v(m)
⌘

VOLg(dm).

Induced topology on D weaker than smooth or Hs topology. There may be no good
notion of parallel transport... But Ebin-Marsden (69’) prove there is one! It is a smooth
map, and its exponential map is well-defined and smooth in a neighbourhood of the
zero section of TD .
Geodesics on the ’submanifold’ of volume preserving diffeomorphisms are solution of
Euler’s equation for incompressible fluids

@t u + uru + rp = 0,

for a pressure field p : M ! R. (V.I. Arnol’d, 66’)



4. Geometry of the diffeomorphism group

On the 2-dimensional torus, for the group of volume preserving diffeomorphisms.

I Orthonormal basis of LIE(D), k 2 Z\{0}

Ak = |k |�1
⇣

k2 cos(k · ✓)@1 � k1 cos(k · ✓)@2
⌘

,

Bk = |k |�1
⇣

k2 sin(k · ✓)@1 � k1 sin(k · ✓)@2
⌘

.

I Geodesic equation u := @t' � '�1

@t u + �(u,u) = 0,

with explicit Christoffel symbols �, e.g.

�(Ak ,A`) = [k , `]
⇣

↵k ,`Bk+` + �k ,`Bk�`
⌘

.

�(Ak , ·),�(Bk , ·) unbounded antisymmetric operators that do not induce nice
evolutions on the ”orthonormal group” in LIE(D).



4. Geometry of the diffeomorphism group

• Time 1 flow with � = 0, for different initial momentum in volume preserving
diffeomorphism group.

• Evolution of an area element along geodesic motion in volume preserving
diffeomorphism group.
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5. Kinetic Brownian motion in the diffeomorphism
group

1. On LIE(D) ' Hs(TM). Write S for unit sphere of Hs(TM),

dut = u̇t dt ,
du̇t = �Pu̇t �dWt ,

with W an Hs(TM)-valued (anisotropic!) Brownian motion – with trace-class
covariance operator ⌃.

2. Follow Ebin-Marsden’ strategy, showing one can formulate Cartan’s
development operation as solving nice ODE on the infinite-dimensional
configuration space (= a substitue for the orthonormal frame bundle above D)

THs(FM) ⇥ L(Hs(TM)),

driven by a smooth vector field. Set 't := projection of dynamics on the
diffeomorphism space D .

(Variant for volume preserving diffeomorphism group and divergence-free vector fields

on M.)



5. Kinetic Brownian motion in the diffeomorphism
group

• Examples of flows with time, for noise parameter � = 1.

• Time 1 snapshots for increasing noise parameter �, with same initial
momentum.
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5. Kinetic Brownian motion in the diffeomorphism
group

Set U�t := u�2t 2 LIE(D). Wlog ⌃ = diag(↵2
i ), non-increasing eigenvalues ↵i .

⌘ Theorem – Homogenization in LIE(D). Assume 3↵2
1 < tr(⌃).

• The invariant measure µ of the velocity process u̇ on the sphere is the image by
the radial projection on the sphere of the measure on H with density |u|�1 wrt the
Gaussian measure with covariance ⌃.

• The time-rescaled process (U�t )0t1 converges weakly as � " 1 to a Brownian
motion B in LIE(D) with covariance

⇥(f ) := 2
Z 1

0
Eµ
h

f (u0) f (ut )
i

dt , f 2 H0

• The rough path lift U� of (U�t )0t1 converges to the Stratonovich Brownian
rough path associated with B.

Using the above mentioned version of Cartan’s development machinery, one can
define kinetic Brownian motion in D in a small time interval. (Warning! D may not be
geodesically complete and may have finite diameter.)

⌘ Theorem – Homogenization in D . Kinetic Brownian motion in D provides an
interpolation between the dynamics of a(n incompressible) fluid and the projection on
the diffeomorphism group of a Brownian flow on a larger space.



Thank you!
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