
SENSITIVITY FOR SMOLUCHOWSKI EQUATIONI.F. BAILLEULAbstra
t. This arti
le investigates the question of sensitivity of the solutions µλ
t of the Smolu-
howski equation on R

∗

+ with respe
t to parameters λ in the intera
tion kernel Kλ. It is provedthat µλ
t is a C

1 fun
tion of (t, λ) with values in a good spa
e of measures under the hypotheses
Kλ(x, y) 6 ϕ(x)ϕ(y), for some sub-linear fun
tion ϕ, and Z

ϕ
4+ε(x)µ0(dx) < ∞, and that thederivative is the unique solution of a related equation.1. Introdu
tiona) Smolu
howski equation. Many 
hemi
al rea
tions, su
h as soot formation [1℄ or �ame syn-thesis of organi
 or inorgani
 nanoparti
les [2℄, have in 
ommon a mi
ros
opi
 me
hanism whereparti
les of di�erent masses evolve in a homogeneous medium. Ea
h of them performs a free thermalmotion, with di�usivity depending on its mass, until it approa
hes enough any other parti
le. Thesetwo parti
les will then 
oagulate to 
reate a new one, whose stu
ture will be a 
ombination of thestru
utres of ea
h of its an
estors [3℄, [4℄.The experimentor has only a

ess to ma
ros
opi
 quantities su
h as the 
on
entration of thedi�erent masses along time. How 
an he des
ribe the evolution of these quantities from this mi-
ros
opi
 des
ription of the dynami
s? Mathemati
ally, we 
an des
ribe these 
on
entrations asmeasures µt on the spa
e R

∗
+ := (0,+∞) of masses of spe
ies. What 
omes out from experimentalmeasurements are quantities su
h like the 
on
entration of parti
les with a mass between su
h andsu
h number, or, more generally, quantities of the form (f, µt) ≡

∫
f(x)µt(dx), for some fun
tions

f . Smolu
howski has proposed in [5℄ to des
ribe the evolution of the observations (f, µt) in a wellmixed system using some symmetri
 kernel K(x, y) des
ribing the rates at whi
h 
oagulations o

ur:(1.1) d

ds

(
f, µs

)
=

1

2

∫ {
f(x + y) − f(x) − f(y)

}
K(x, y)µs(dx)µs(dy).Roughly speaking, a parti
le of mass x 
oagulates with a parti
le of mass y at rate K(x, y) to
reate a parti
le of mass x + y. Numerous works have been devoted to this equation, both in thephysi
s/engeneering and mathemati
s litteratures, motivated by di�erent questions. The reviewsby Aldous [6℄ and Leyvraz [7℄ give a good overview of the state of the art a few years ago. Themain trends of mathemati
al resear
h are 
on
erned with the well-posedness problem [8℄, [9℄ ofSmolu
howski equation (1.1), the gelation problem [10℄, [11℄, [12℄, [13℄, [14℄, [15℄, [16℄, the stru
tureof self-similar or asymptoti
ally self-similar solutions [7℄, [17℄, [18℄, [19℄, [20℄, and the mean-�eldapproximation of Smolu
howski equation by random mi
ros
opi
 dynami
s [21℄, [22℄; simulationand numeri
al issues are also of great importan
e [23℄, [24℄, [25℄, for pra
ti
al purposes.b) Sensitivity. The parameters of an experiment are in
orporated into the model dynami
s (1.1)as parameters λ ∈ R

d in the intera
tion kernel K = Kλ. Binder granulation a priori requiresfor instan
e around 10 parameters to des
ribe it, [26℄. Finding the relevant parameters, given theexperimental data (the so-
alled �inverse problem�) is the fundamental step whi
h will allow futuresimulations to provide law 
ost predi
tions � see e.g. [27℄ for some theoreti
al ba
kground on thatDate: April 7, 2011.2000 Mathemati
s Subje
t Classi�
ation. Primary: 34A34, Se
ondary 34A12.Key words and phrases. Smolu
howski's 
oagulation equation, sensitivity.1



2 I.F. BAILLEULproblem, and [28℄ for a global approa
h of the inverse problem for general population balan
es.From a di�erent and as important point of view, the fa
t that all experimental measurements areapproximate emphasizes the 
ru
ial need for a study of the dependen
e on parameters in pra
ti
alappli
ations.Let denote by λ a generi
 multi-dimensional parameter, Kλ the 
orresponding 
oagulation kerneland µλ
t the solution to Smolu
howksi equation asso
iated with Kλ. A simple and largely usedmethod for tuning the parameter to data 
onsists in formally applying a method of steepest des
entso as to minimize some distan
e between µλ

T and µobsT , in the typi
al 
ase where we are interestedin the value at time T of the system, [29℄. The measure µobsT is given by experiments. To bee�e
tive, the algorithm requires the knowledge of the di�erential σt
λ of µλ

t with respe
t to λ so asto 
hoose the steepest des
ent dire
tion at ea
h step. Note that σλ
t is a priori a signed measure.Engineers usually estimate it by a �nite di�eren
e 
orresponding to two 
lose values of λ. The mainapproa
h to do that 
onsists in approximating the di�eren
es µ

λ+ǫei
t −µλ

t

ǫ (for a basis ve
tor ei of R
d)by the 
orresponding di�eren
e for the approximating parti
le systems � see [30℄ for a non-trivialand e�
ient way of doing that, and refer to the bibliographies of the works [29℄, [30℄ or [31℄ formore referen
es on the 
omputational analysis of dependen
e of µλ

t on λ. However, no justi�
ationthat ∂λµλ
t is well-de�ned (in the mathemati
al sense) and well-behaved has ever been given up tonow, whi
h puts the previous investigations on a somewhat hazy mathemati
al framework.The aim of this arti
le is to prove that µλ

t is a C1 fun
tion of (t, λ) (under proper 
onditions andin a suitable sense) and that it is the unique solution to some equation (�sensitivity equation�). Notonly does this fa
t put the existing approa
hes on a �rm ground, but it also leads to a new parti
leapproximation [31℄ for sensitivity whi
h happens to be more a

urate than any other method. In thesame way as one 
an asso
iate some �nite intera
ting parti
le systems to Smolu
howski equation, theso-
alled Mar
us-Lushnikov pro
esses [32℄, one 
an asso
iate a pair of 
oupled intera
ting parti
lesystems to the equation asso
iated with the sensitivity (�2.2.2), su
h that their di�eren
e 
onvergesweakly to a solution of the sensitivity equation, as a 
onsequen
e of a kind of law of large numbers� a fa
t proved in [31℄. The well-posedness of the sensitivity equation obtained in the present workjusti�es theoreti
ally the use of that parti
le system for simulating the sensitivity.Notation. Given a lo
ally bounded non-negative kernel F (x, y) on R
∗
+ × R

∗
+ and Radon measures

µ, ν on R
∗
+, one de�nes a signed Radon measure F (µ, ν) setting(1.2) F (µ, ν) =

∫ {
δx+y − δx − δy

}
F (x, y)µ(dx) ν(dy).
) Strategy for studying the sensitivity of Smolu
howski equation. We des
ribe in theremainder of this se
tion the approa
h we use to prove the above mentionned di�erentiability result.From a mathemati
al point of view, the main di�
ulty in solving Smolu
howski equation 
omesfrom the fa
t that whilst the weak formulation (1.1) is always a well-de�ned problem (although itmay have no solution), it is not easy to �nd a Bana
h or a Fré
het spa
e of (signed) measures wherethe di�erential equation(1.3) µ̇s =

1

2
K(µs, µs)itself is meaningful. This di�
ulty disappears for bounded kernels, where Smolu
howski equation
an be solved in the Bana
h framework of Radon signed measures equipped with total variationnorm. The 
omputation of ∂λµλ

t is formally straightforward and leads to a representation formulainvolving essentially only {µλ
s}s6t. The map t → µλ

t solving equation (1.3), its derivative withrespe
t to λ solves formally the equation(1.4) σ̇λ
t = Kλ

(
µλ

t , σλ
t

)
+

1

2
∂λKλ

(
µλ

t , µλ
t

)



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 3obtained by di�erentiating equation (1.3) with respe
t to λ; we have written ∂λKλ(x, y) for thepartial derivative of Kλ(x, y) with respe
t to λ. This equation 
an be solved, 
onsidering �rst thelinearized problem(1.5) ρ̇λ
s = Kλ(µλ

s , ρλ
s )before using the variation of 
onstants method.(i) We introdu
e a dual evolution equation on fun
tions to study the linear equation (1.5). Tothat end, de�ne some time dependent operators Λλ

s on fun
tions setting(1.6) Λλ
sf(x) =

∫ {
f(x + y) − f(x) − f(y)

}
Kλ(x, y)µλ

s (dy).These operators satisfy the identity
(
Λλ

sf, ρ
)

=
(
f,K(µλ

s , ρ)
)
.Now, if one 
onsiders the ba
kward linear equation

ḟs = −Λλ
s fs, s ∈ [0, t] and ft = f,its solution {fs}06s6t depends linearly on f , so we 
an write it in the form Uλ

s,tf , for a linearoperator Uλ
s,t. This fun
tion Uλ

s,tf has two important properties. As a fun
tion of t it satis�es theidentity d
dtU

λ
s,tf = Uλ

s,tΛ
λ
t f , and if {ρλ

s}s>0 denotes a solution of equation (1.5), then
d

ds

(
Uλ

s,tf, ρλ
s

)
=

(
−Λλ

sUλ
s,tf, ρλ

s

)
+

(
Uλ

s,tf, ρ̇λ
s

)

= −
(
Uλ

s,tf,K(µλ
s , ρλ

s )
)

+
(
Uλ

s,tf,K(µλ
s , ρλ

s )
)

= 0.So we see that the solution to the linear equation (1.5) needs to be given by the formula(1.7) (
f, ρλ

t

)
=

(
Uλ

0,tf, ρ0

)
.(ii) To implement the variation of 
onstants method and solve the a�ne equation (1.4), introdu
eas in equation (1.6) the operator

Λ∂λ
s f(x) =

∫ {
f(x + y) − f(x) − f(y)

}
∂λKλ(x, y)µλ

s (dy).Note the relations
(
Λλ

sf, µλ
s

)
=

(
f,Kλ

(
µλ

s , µλ
s

)) and (
Λ∂λ

s f, µλ
s

)
=

(
f, ∂λKλ

(
µλ

s , µλ
s

))
.De�ning the measures σλ

t by the formula(1.8) (
f, σλ

t

)
=

1

2

∫ t

0

(
Λ∂λ

s Uλ
s,tf, µλ

s

)
dsone 
an easily 
he
k that it satis�es a weak form of equation (1.4):

d

dt

(
f, σλ

t

)
=

d

dt

(
1

2

∫ t

0
Uλ

0,sΛ
∂λ
s Uλ

s,tf ds , µ0

)

=

(
1

2

∫ t

0
U

0,s
λ Λ∂λ

s Uλ
s,tΛ

λ
t f ds, µ0

)
+

1

2

(
Uλ

0,tΛ
∂λ
t f, µ0

)

=
(
Λλ

t f, σλ
t

)
+

1

2

(
Λ∂λ

t f, µλ
t

)

=
(
f,Kλ

(
µλ

t , σλ
t

))
+

(
f,

1

2
K∂λ

(
µλ

t , µλ
t

))
.



4 I.F. BAILLEULd) Organisation of the arti
le. How far from full justi�
ation is this argument? In the 
aseof uniformly bounded kernels Kλ, we shall see in se
tion 2 that everything is meaningful in theBana
h framework of signed measures equipped with the total variation distan
e. Yet, no su
hsatisfa
tory framework is available for unbounded kernels; we shall thus use an approximationpro
edure in se
tion 3 to extend the result; it relies 
ru
ially on the representation formula (1.8)for the sensitivity whi
h 
omes from equation (1.4). We explain in �2.2.2 how this equation 
anbe used in a pra
ti
al way to simulate the sensitivity. The main result (theorem 6) states that thefun
tion (t, λ) 7→ µλ
t is a C1 fun
tion with values in a good spa
e of measures and that it is the onlysolution of a weak version of equation (1.4) under some proper 
onditions.The idea to investigate the linearized Smolu
howski equation was �rst used in Kolokoltsov's paper[33℄ to see how µt depends on its initial value � see also [34℄ where similar ideas are used in a di�erent
ontext. We use here the same tools (theorems 13, 15, 16) as in Kolokoltsov's paper. We 
omparein se
tion 4, a) the present work with the work [33℄. Note that the simpli�ed proof of a usefullemma of Kolokoltsov (theorem 13), given in se
tion 4, b) and used in se
tion 3.1, might be of someinterest for itself.Notations. All fun
tions and measures are de�ned on R

∗
+ throughout the text.

• We shall use the notation µ⊗2(dxdy) for the produ
t measure µ(dx)µ(dy).
• As the expression f(x+y)−f(x)−f(y) will appear numerous times in the text, it will be usefulto abbreviate it into {f}(x, y). In these terms, the weak version (1.1) of Smolu
howski equationmay be written

d

dt
(f, µt) =

1

2

∫
{f}(x, y)K(x, y)µt(dx)µt(dy).2. Sensitivity for bounded kernelsWe 
onsider in this se
tion Smolu
howski equation (1.1) for a family {Kλ}λ of intera
tion kernels,bounded some 
onstant M . We re
all in se
tion 2.1 why the strong version (1.3) of Smolu
howskiequation is well de�ned in a good Bana
h framework. The 
lassi
al tools of di�erential equationswill then give us for free existen
e, uniqueness and regularity results of the solutions {µλ

t }t>0 toequation (1.3). We shall then take pro�t in se
tion 2.2 of the fa
t that the derivative σλ
t = ∂λµλ

tsolves a time-non-homogeneous a�ne equation to get an expli
it formula for it whi
h will be usefulin the sequel.2.1. Existen
e and uniqueness in the bounded 
ase: a qui
k overview. Denote by B0 theBana
h spa
e of bounded measurable fun
tions, equipped with the supremum norm ‖.‖0. Denotealso by ‖ρ‖0 the total variation of a signed Radon measure ρ, and by
M0 = {µ Radon measure ; ‖ρ‖0 < ∞}.Note that ‖ρ‖0 = sup

{
(f, ρ) ; f ∈ B0, ‖f‖0 6 1

}, and that the spa
e (M0, ‖.‖0) is 
omplete sin
eit is the dual spa
e of the 
omplete spa
e (
Cb(R+, R), ‖.‖∞

). We shall denote by M+
0 the 
one ofnon-negative elements of M0.The main reason why everything works well in the bounded 
ase is that sin
e we have

∣∣(f,K(µ, µ)
)∣∣ 6 3‖f‖0M‖µ‖2

0for any f ∈ B0, the Radon measure K(µ, µ) belongs to M0 if µ does; so Smolu
howski equation(1.3): µ̇s = 1
2K(µs, µs), is a well-de�ned ordinary di�erential equation in the Bana
h spa
e M0.Proposition 1. Equation (1.3) has a well de�ned �ow of solutions in (

M0, ‖.‖0

), whi
h preservesthe 
one M+
0 . The solution µt is de�ned for all times if µ ∈ M+

0 .



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 5Proof � It su�
es to see that the ve
tor �eld K is lo
ally Lips
hitz. But given µ and ν in M0,one 
an write
(
µ⊗2 − ν⊗2

)
(dxdy) = µ(dx)(µ − ν)(dy) + ν(dy)(µ − ν)(dx).Nothing more is needed to get, for any f ∈ B0, the inequality

∣∣(f,K(µ, µ)
)
−

(
f,K(ν, ν)

)∣∣ =
∣∣∣
∫

{f}(x, y)K(x, y)
(
µ⊗2 − ν⊗2

)
(dxdy)

∣∣∣

6 3‖f‖0M
(
‖µ‖0 + ‖ν‖0

)
‖µ − ν‖0,whi
h implies(2.1) ∥∥K(µ, µ) − K(ν, ν)

∥∥
0

6 3M
(
‖µ‖0 + ‖ν‖0

)
‖µ − ν‖0.To see that µt is non-negative if µ0 is non-negative we �nd a non-negative fun
tion θt on R

∗
+su
h that the transformed measure ρt := θtµt solves a di�erential equation whi
h preserves M+
0in a obvious way1. See [8℄, proposition 2.2, for instan
e.Given an initial 
ondition µ0, denote by [

0, T (µ0)
) the maximal interval on whi
h the solutionstarted from µ0 is de�ned. If µ0 is non-negative, one has

d

dt
‖µt‖0 =

d

dt
(1, µt) = −

1

2

∫
K(x, y)µt(dx)µt(dy) 6 0and the path {µt}06t<T (µ0) stays in a ball where the ve
tor �eld K is (globally) Lips
hitz. Thisexplains why the solution is a
tually de�ned on [0,∞). �2.2. Sensitivity. We prove in this se
tion that if the 
oagulation kernel depends ni
ely on a pa-rameter λ then the solution to Smolu
howski equation is a C1 fun
tion of (t, λ). Its derivative withrespe
t to λ has a representation involving only (µs)s>0.2.2.1. Dependen
e on a parameter. Let now {Kλ(., .)}λ∈U be a family of symmetri
 non-negativekernels on R

+
∗ depending in a C2 way in a parameter λ belonging to some open set U of some

R
p. Denote by K∂λ(x, y) the derivative of Kλ(x, y) with respe
t to λ and de�ne the Radon signedmeasure K∂λ(µ, µ) setting

(
f,K∂λ(µ, µ)

)
=

∫
{f(x + y) − f(x) − f(y)}K∂λ(x, y)µ(dx)µ(dy).Denote by [

0, T λ(µ0)
) the maximal interval on whi
h the solution to Smolu
howski equation (1.3)with intera
tion kernel Kλ(·, ·) started from µ0 is de�nedTheorem 2 (Sensitivity for bounded kernels). Suppose Kλ(·, ·) and its �rst two derviatives arebounded by a 
onstant M , uniformly in λ ∈ U . Then the map (t, λ) ∈

[
0, T λ(µ0)

)
× U 7→ µλ

t ∈

(M0, ‖.‖0) is di�erentiable with respe
t to λ and its derivatives σλ
t (
alled �sensitivity�) is the uniquesolution of the equation(2.2) σ̇λ

t = Kλ
(
µλ

t , σλ
t

)
+

1

2
K∂λ

(
µλ

t , µλ
t

)
.Proof � As is 
lassi
ally done in the study of ordinary di�erential equations in Bana
h spa
es(e.g. 
onsult [35℄), the result is a 
onsequen
e the following four properties.(1) For ea
h µ ∈ M0, the map λ ∈ U 7→ Kλ(µ, µ) ∈ (M0, ‖.‖0) is di�erentiable, with aderivative K∂λ(µ, µ) ∈ (M0, ‖.‖0) depending 
ontinuously on µ ∈ (M0, ‖.‖0).(2) The map (s, λ) 7→ µλ

s ∈ (M0, ‖.‖0) is 
ontinuous on [0, T ] × U .(3) The linear map ν 7→ K(µs, ν) takes (M0, ‖.‖0) into itself and has a uniformly boundednorm for s ∈ [0, T ]. The same result holds for the map ν 7→ K∂λ(µs, ν).1Whi
h is not the 
ase of Smolu
howski equation. One uses the same method in the study of Boltzmann equation.



6 I.F. BAILLEUL(4) Let C be a 
ompa
t set of (M0, ‖.‖0). There exists an (M0, ‖.‖0)-valued fun
tion O2(µ, µ′)su
h that ‖O2(µ, µ′)‖0 6 m‖µ − µ′‖2
0 for some 
onstant m, and(2.3) ∀µ, µ′ ∈ C, Kλ0(µ′, µ′) − Kλ0(µ, µ) = 2Kλ0(µ, µ′ − µ) + O2(µ, µ′).

K∂λ0 has the same property.We prove points 1 and 2 and leave the elementary proofs of points 3 and 4 to the reader.1. Given f ∈ B0, apply Taylor formula in a small neighbourhood V of λ0 to get
∣∣∣
(
f,Kλ(µ, µ) − Kλ0(µ, µ) − (λ − λ0)K

∂λ(µ, µ)
)∣∣∣ =

∣∣∣∣
∫

{f}(x, y)
(
Kλ(x, y) − Kλ0(x, y) − (λ − λ0)K

∂λ(x, y)
)
µ(dx)µ(dy)

∣∣∣∣

6 3‖f‖0
|λ − λ0|

2

2
max
eλ∈V

∣∣∂2
eλ
K

eλ(x, y)
∣∣‖µ‖2

0.This proves the di�erentiability assertion. The map µ ∈ M0 → K∂λ(µ, µ) 
an be seen to belo
ally Lips
hitz using the same reasonning as was used in the proof of proposition 1 to provethat the ve
tor �eld K is lo
ally Lips
hitz.2. It is a 
lassi
al fa
t in dynami
s2 that it is su�
ient to 
he
k that the map (λ, µ) ∈ U×M0 →
Kλ(µ, µ) is lo
ally Lips
hitz to get the 
ontinuity of (s, λ) 7→ µλ

s ∈ (M0, ‖.‖0). Writing
Kλ(µ, µ) − Kλ′

(ν, ν) = Kλ(µ, µ) − Kλ(ν, ν) +
(
Kλ − Kλ′

)
(ν, ν),and using inequality (2.1), Taylor formula, and the fa
t that sup

x,y ; ℓ

∣∣K∂ℓ(x, y)
∣∣ 6 M , one obtains

‖Kλ(µ, µ) − Kλ′

(ν, ν)‖0 6 3M
(
‖µ‖0 + ‖ν‖0

)
‖µ − ν‖0 + 3M‖ν‖2

0|λ − λ′|.

�2.2.2. A representation formula for the sensitivity. We �x µ0 throughout this se
tion and work ona �xed time interval [0, T ] ⊂
[
0, T λ(µ0)

), for all λ ∈ U . As explained in the introdu
tion, one 
ansolve expli
itly the sensitivity equation (2.2) by solving �rst its linearized version before using thevariation of 
onstant method. The �rst step is made solving a dual problem to the homogeneousequation, on the spa
e B0.a) Dual linearized Smolu
howski equation. De�ne for ea
h λ ∈ U , a time-dependent linearve
tor �eld Λλ
s on B0, setting for any f ∈ B0(2.4) Λλ

sf(x) =

∫ {
f(x + y) − f(x) − f(y)

}
Kλ(x, y)µλ

s (dy).As ‖Λλ
s‖0 6 3M(1, µλ

s ) 6 3M‖µ0‖0, and µλ
s depends 
ontinuously on s, the ve
tor �eld Λλ

s on B0is 
ontinuous with respe
t to f ∈ B0 and s. So, given some time t > 0, the ba
kward and forwarddi�erential equations(2.5) ḟs(x) = −Λλ
sfs (x), ft given,are meaningful in B0, and elementary results on linear di�erential equations on Bana
h spa
es givethe following proposition3.2Consult Martin's book [35℄ for instan
e.3Consult Martin's book [35℄.



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 7Proposition 3. The di�erential ba
kwards and forwards equations (2.5) in (B0, ‖.‖0) have a uniquesolution, de�ned for all time. It is of the form fs = Uλ
s,tft, for a 
ontinuous linear operator Uλ

s,t on
B0, with norm 6 e3M‖µ0‖0|t−s|. We also have for any f ∈ B0(2.6) d

dt
Uλ

s,tf = Uλ
s,tΛ

λ
t f.This operator Uλ

s,t 
an be used to solve expli
itly the linear equation on M0

ρ̇λ
s = Kλ(µλ

s , ρλ
s );this equation has a unique solution on the time interval [0, T ] as the time non-homogeneous ve
tor�eld Kλ(µλ

s , ·) is 
ontinuous and bounded. Indeed, one gets from Smolu
howski equation (1.3) andequation (2.5)
d

ds

(
Uλ

s,tf, ρs

)
= −

(
Λλ

sUλ
s,tf, ρs

)
+

(
Uλ

s,tf, ρ̇s

)

= −
(
Uλ

s,tf,K(µs, ρs)
)

+
(
Uλ

s,tf,K(µs, ρs)
)

= 0;so the identity (
Uλ

0,tf, ρ0

)
= (f, ρλ

t ) holds for any f ∈ B0; thus
ρλ

t =
(
Uλ

0,t

)∗
ρ0.b) A representation formula for σλ

t . The se
ond step to solve the a�ne equation (2.2) is touse the variation of 
onstant method as explained in the introdu
tion. The following lemma will beused on the way.Lemma 4. The fun
tion t ∈ [0, T ] 7→ σλ
t ∈ M0 is the only solution in (

M0, ‖.‖0

) of the weakdi�erential equation
∀ f ∈ B0,

d

dt
(f, σt) =

(
f,Kλ

(
µλ

t , σt

))
+

1

2

(
f,Kλ(µλ

t , µλ
t

))
, σ0 given.Proof � Note �rst that sin
e the fun
tion t ∈ [0, T ] 7→ σλ

t ∈ M0 satis�es the strong equation (2.2)it also satis�es the above weak equation. Given two solutions σt and σt of the latter, one hasfor any f ∈ B0

(
f, σt − σt

)
=

∫ t

0

(
f,Kλ

(
µλ

s , σs − σs

))
ds =

∫ t

0

(
Λλ

sf, σs − σs

)
ds.But as the operator Λλ

s on (
B0, ‖.‖0

) has norm 6 3M‖µ0‖0, we must have
(
f, σt − σt

)
6 3M‖µ0‖0‖f‖0

∫ t

0
‖σt − σt‖0ds,and so

‖σt − σt‖0 6 3M‖µ0‖0

∫ t

0
‖σs − σs‖0 ds.One dedu
es from Gronwall's formula that σt = σt. �De�ne the map Λ∂λ

s on B0 by the formula
Λ∂λ

s f(x) =

∫ {
f(x + y) − f(x) − f(y)

}
K∂λ(x, y)µλ

s (dy);noti
e the identities
(
Λ∂λ

s f, µλ
s

)
=

(
f,K∂λ

s (µλ
s , µλ

s )
)
, and (

Λλ
s f, µλ

s

)
=

(
f,Kλ

s (µλ
s , µλ

s )
)
, f ∈ B0.



8 I.F. BAILLEULProposition 5 (Representation formula for the sensitivity). One has(2.7) (f, σλ
t ) =

1

2

∫ t

0

(
Λ∂λ

s Uλ
s,tf, µλ

s

)
dsfor any f ∈ B0.Proof � Denote temporarily by σ̂λ

t the measure f ∈ B0 7→ 1
2

∫ t
0

(
Λ∂λ

s Uλ
s,tf, µλ

s

)
ds; it belongs to

M0. The following 
al
ulus is fully justi�ed in the Bana
h framework of (B0, ‖.‖0). For any
f ∈ B0, one has

d

dt

(
f, σ̂λ

t

)
=

d

dt

(
1

2

∫ t

0
Λ∂λ

s Uλ
s,tf ds , µλ

s

)
=

(
1

2

∫ t

0
Λ∂λ

s Uλ
s,tΛ

λ
t f ds, µλ

s

)
+

1

2

(
Λ∂λ

t f, µλ
t

)

=
(
Λλ

t f, σ̂λ
t

)
+

1

2

(
Λ∂λ

t f, µλ
t

)

=
(
f,Kλ

(
µλ

t , σ̂λ
t

))
+

(
f,

1

2
K∂λ

(
µλ

t , µλ
t

))
.Sin
e σ̂λ

t satis�es a weak version of equation (2.2) it 
oin
ides with σλ
t a

ording to lemma 4.

�Remark on the sensitivity equation (2.2). Sin
e solving expli
itly equation (2.2) requiresthe expli
it knowledge of (µλ
t )t>0, from whi
h an expli
it formula for the sensitivity follows bydi�erentiation, the above representation formula is useful not in providing some expli
it formulafor the sensitivity, but in so far as it enables to get some a priori information on σλ

t from somequantitative informations on (µλ
t )t>0. As Smolu
howski equation is solvable in only a few 
ases,this is the best kind of information one 
an hope to get in a general framework. We shall use it
ru
ially in the next se
tion where we extend the regularity result stated in theorem 2 to a 
lassof unbounded 
oagulation kernels by showing that the representation formula for the sensitivitystill makes sense and provides indeed the derivative of the solution to Smolu
howski equation withrespe
t to λ.Note, however, that equation (2.2) 
an be usefully used for simulation purposes. One 
an indeedasso
iate to it some Mar
us-Lushnikov-like [32℄ intera
ting parti
le system 
onverging to its uniquesolution as the number of parti
les in
reases inde�nitely; we brie�y des
ribe it here and refer thereader to the arti
le [31℄ for the mathemati
al details and a numeri
al study of the asso
iatedalgorithm. We write for simpli
ity σt for σλ

t as λ is �xed here.The measure σt is a non-positive; denote by σ
+/−
t its positive and negative parts. Set also

K ′
+ = max{K ′, 0} and K ′

− = max{−K ′, 0}. The parti
le system we introdu
e is motivated by thefollowing formal re-writting of equation (2.2)
σ̇t = σ̇+

t − σ̇−
t =

(
K(µt, σ

+
t ) +

1

2
K ′

+(µt, µt)
)
−

(
K(µt, σ

−
t ) +

1

2
K ′

−(µt, µt)
)
.Three 
oupled systems of parti
les ΘN

t =
(
µN

t , σ
+,N
t , σ

−,N
t

) simulate µt, σ
+
t and σ−

t respe
tively, the�rst being the usual Mar
us-Lushnikov parti
le system. Set
Θ0 =

1

N

( ∑

i=1..m

δyi
,

∑

k=1..p

δzk
,

∑

ℓ=1..q

δz′
ℓ

)
,and asso
iate to ea
h pair

• 1 6 i < j 6 m, some exponential random variables Rij , Sij et Tij , with parameters K(yi, yj),
K ′

+(yi, yj) and K ′
−(yi, yj), respe
tively,

• (i, k) ∈ J1,mK × J1, pK, some exponential random variables Uik with parameters K(yi, zk),
• (i, ℓ) ∈ J1,mK × J1, qK, some exponential random variables Viℓ with parameters K(yi, z

′
ℓ).



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 9All these exponential times are independent. Let W be the �rst time where one of these 
lo
ks ring.If
W = Rij , then ∆Θ =

(
δxi+xj

− δxi
− δxj

)
⊕ 0 ⊕ 0,

W = Sij , then ∆Θ = 0 ⊕ δxi+xj
⊕

(
δxi

+ δxj

)
,

W = Tij , then ∆Θ = 0 ⊕
(
δxi

+ δxj

)
⊕ δxi+xj

,

W = Uik, then ∆Θ = 0 ⊕
(
δxi+yk

− δyk

)
⊕ δxi

,

W = Viℓ, then ∆Θ = 0 ⊕ δxi
⊕

(
δxi+zℓ

− δzℓ

)
.The pro
ess Θt is 
onstant over the time interval [0,W ) and has a jump 1

N ∆Θ at time W ; thedynami
s is Markovian. Some 
lassi
al methods of weak 
onvergen
e of measure-valued pro
esses
an be used to prove that this intera
ting parti
le system 
onverges in some sense to the uniquesolution of the sensitivity equation (2.2) provided by theorem 2 and theorem 6 below � see [31℄.3. From bounded to unbounded kernelsWe show in this se
tion that one 
an extend the regularity result theorem 2 to some unbounded
oagulation kernels under some 
onditions. Suppose for that purpose that one has(3.1) ∀λ ∈ U ,∀x, y ∈ R
∗
+, Kλ(x, y) 6 ϕ(x)ϕ(y) and ∣∣K∂λ(x, y)

∣∣ 6 ϕ(x)ϕ(y),for some sub-additive fun
tion ϕ(4), greater than 1. Suppose also that there exists a (small) ε > 0su
h that(3.2) (ϕ4+ε, µ0) < ∞.In his paper [8℄, J. Norris proved that (ϕ2, µλ
t ) remains �nite on some time interval [

0, T (µ0)
)if (ϕ2, µ0) is �nite. The same argument shows that (ϕ4+ε, µλ

t ) also remains �nite (on a possiblydi�erent time interval, still denoted [
0, T (µ0)

)) if (ϕ4+ε, µ0) is �nite. Given some T < T (µ0) denoteby C(T ) a positive 
onstant su
h that(3.3) ∀ t 6 T, (ϕ4+ε, µt) 6 C(T ).The fun
tion ϕ being greater than 1, the other moments (ϕp, µλ
t ), with 1 6 p 6 4 + ε, are alsobounded above by C(T ) on [0, T ].In order to estimate the tail behaviour of measures, we introdu
e the following spa
es of measures,indexed by non-negative reals p:

Mp =
{
µ ; ‖µ‖p :=

(
ϕp, |µ|

)
< ∞

}
.Using this notation 
ondition (3.3) reads: µt ∈ M4+ε ⊂ M1, for all 0 6 t 6 T . To 
ompare thebehaviour of non-bounded fun
tions with the behaviour of ϕ, one de�nes the in
reasing family offun
tion spa
es, indexed by non-negative reals p:

Bp =
{
f ; sup

|f |

ϕp
< ∞

}
;we shall write ‖f‖p for this supremum. Note that ‖µ‖p = sup{(f, µ) ; f ∈ Bp, ‖f‖p 6 1}. Thepurpose of this se
tion is to prove our main result.Theorem 6 (Sensitivity for unbounded kernels). Assume 
ondition (3.1) and the moment 
ondition(3.2). Then the map (t, λ) ∈ [0, T ] × U 7→ µλ

t ∈
(
M1, ‖.‖1

), is a C1 fun
tion and its derivative σλ
tsatis�es the following equation for any f ∈ B0.

(
f, σλ

t

)
=

(
f, σλ

0

)
+

∫ t

0

∫
{f}(x, y)Kλ(x, y)µλ

s (dx)σλ

s (dy)ds +
1

2

∫ t

0

∫
{f}(x, y)K∂λ(x, y)µλ

s (dx)µλ

s (dy)dsThe fun
tion σλ
· is the only (

M1, ‖.‖1

)-valued solution of this equation.4We have ϕ(x + y) 6 ϕ(x) + ϕ(y), for all x, y ∈ R
∗

+.



10 I.F. BAILLEULWe prove this statement by an approximation pro
edure. Let {
Kλ ;N

}
N>0

be a sequen
e of boundedsymmetri
 kernels 
onverging towards K, and su
h that ∂λKλ ;N and ∂2
λKλ ; N are also bounded,with ∣∣Kλ ;N (x, y)

∣∣ and ∣∣∂λKλ ;N (x, y)
∣∣ bounded above by ϕ(x)ϕ(y). Let µ

λ ;N
t and σ

λ ;N
t be themeasures asso
iated with Kλ ; N and ∂λKλ ; N , 
onstru
ted in se
tion 2. Theorem 6 is proved byshowing that(1) the map (t, λ) ∈ [0, T ] × U 7→ µ

λ ;N
t ∈

(
M1, ‖.‖1

) is, for ea
h N , a C1 fun
tion, and
∂λ µ

λ ;N
t = σ

λ ;N
t in (

M1, ‖.‖1

).(2) the sequen
e {
µ

λ ;N
t

}
N>0


onverges towards µλ
t in (

M1, ‖.‖1

), uniformly with respe
t to
(t, λ) ∈ [0, T ] × U ;(3) the sequen
e {

σ
λ ;N
t

}
N>0

of its derivatives 
onverges in (
M1, ‖.‖1

) towards some σλ
t , uni-formly with respe
t to (t, λ) ∈ [0, T ] × U .Points 2 and 3 will be proved se
tions 3.1 and 3.2 respe
tively. We prove the �rst point here. Denoteby M an upper bound of Kλ ; N . Noti
e �rst that the inequality ∣∣{f}(x, y)

∣∣ 6 2‖f‖1

(
ϕ(x) + ϕ(y)

),gives for any µ ∈ M1

∣∣(f,Kλ ;N (µ, µ)
)∣∣ 6 2M‖f‖1

∫ (
ϕ(x) + ϕ(y)

)
µ(dx)µ(dy)

6 4M‖f‖1‖µ‖
2
1;

(3.4)so the Radon measure Kλ ; N (µ, µ) belongs to M1 if µ does. Now, the following inequalities enableus to see that the ve
tor �eld µ 7→ Kλ ;N (µ, µ) on (
M1, ‖.‖1

) is Lips
hitz. The fun
tion f ∈ B1 hasnorm no greater than 1 and µ, ν ∈ M1.
∣∣∣
(
f,Kλ ;N (µ, µ)−Kλ ;N (ν, ν)

))∣∣∣ = 2M

∫ (
ϕ(x) + ϕ(y)

)(
|µ|(dx)|µ − ν|(dy) + |ν|(dy)|µ − ν|(dx)

)

6 2M
(
‖µ‖1‖µ − ν‖0 + ‖µ‖0‖µ − ν‖1 + ‖ν‖0‖µ − ν‖1 + ‖ν‖1‖µ − ν‖0

)

6 4M
(
‖µ‖1 + ‖ν‖1

)
‖µ − ν‖1.The di�erentiability of the map λ ∈ U 7→ µ

λ ;N
t ∈

(
M1, ‖.‖1

) 
an be proved in the same way aswas done in se
tion 2.2 in the framework of (
M0, ‖.‖0

). To prove the 
ontinuity of µ
λ ;N
t and σ

λ ; N
twith respe
t to (t, λ) ∈ [0, T ]×U , one 
he
ks that the ve
tor �elds appearing in equations (1.3) and(2.2) are Lips
hitz in (λ, µ) ∈ U ×M1, mimi
king what was done in the proof of theorm 2 in theframework of U ×M0. This 
ompletes the proof of the �rst point.Note that the operators Λλ ;N

s and Λ∂λ ;N
s are bounded in (

M1, ‖.‖1

), with norm no greater than
4M‖µλ

s‖1, so that the representation formula for σ
λ ; N
t given in (2.7) also holds in (

M1, ‖.‖1

). Theremainder of this se
tion is dedi
ated to the proofs of points 2 and 3. After a preliminary resultin se
tion 3.1, we prove a stronger version of point 2, useful in the sequel. The proof of point 3 ismade in se
tion 3.2.As we shall prove these results for a �xed λ, we shall drop the λ in µλ
t and σλ

t in the sequel. Thefollowing elementary result will be used repeatedly; its proof is left to the reader.Lemma 7. For any p > 1 and any f ∈ Bp, ∣∣{f}(x, y)
∣∣ 6 2p‖f‖p

(
ϕp(x) + ϕp(y)

)
.As a last remark, note that the measures µN

t satisfy for any 0 6 t 6 T and N > 0 the same momentinequality (3.3) as µt.3.1. Convergen
e of µN
t to µt in (M2+ε, ‖.‖2+ε). Let {µt}06t<T (µ0) be the solution given byNorris' theorem; 
hoose T < T (µ0). It is worth noting that using dominated 
onvergen
e and themoment estimate (3.3), the measures {µt}06t6T satisfy the weak version (1.1) of Smolu
howskiequation for any f ∈ B3+ε. We start this se
tion showing that they depend regularly on t.



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 11Proposition 8. The path {µt}06t6T is a C1 path in (
M2+ε, ‖.‖2+ε

).Proof � One proves that the path {µt}06t6T is 1) Lips
hitz in (
M3+ε, ‖.‖3+ε

), 2) C1 in (
M2+ε, ‖.‖2+ε

).1) Take a fun
tion f ∈ B3+ε. One establishes the following inequalities using the inequality
K(x, y) 6 ϕ(x)ϕ(y) and the sub-additivity of ϕ.

∣∣(f, µt − µs)
∣∣ 6

1

2

∫ t

s

∫ ∣∣{f}(x, y)
∣∣K(x, y)µr(dx)µr(dy) dr

6
cε‖f‖3+ε

2

∫ t

s

∫ {
ϕ3+ε(x) + ϕ3+ε(y)

}
ϕ(x)ϕ(y)µr(dx)µr(dy) dr

6 2cε‖f‖3+ε

∫ t

s

∫
ϕ4+ε(x)ϕ(y)µr(dx)µr(dy) dr

6 2cε‖f‖3+ε(ϕ, µ0) sup
s6r6t

‖µr‖4+ε |t − s|.Taking the supremum of the left hand side, with ‖f‖3+ε 6 1, this shows that the path {µt}06t6Tis Lips
hitz in (
M3+ε, ‖.‖3+ε

), with Lips
hitz 
onstant 6 2cεC(T )2.It follows from this fa
t that the formula
(f, νt) :=

1

2

∫
{f}(x, y)K(x, y)µt(dx)µt(dy)de�nes an element νt of (

M2+ε, ‖.‖2+ε

) whi
h is 
ontinuous with respe
t to t. Indeed, sin
eone has for any f ∈ B2+ε,
∣∣(f, νt − νs)

∣∣ =
1

2

∣∣∣∣
∫

{f}(x, y)K(x, y)
{
µt(dx)(µt − µs)(dy) + µs(dy)(µt − µs)(dx)

}∣∣∣∣

6
c′ε‖f‖2+ε

2

∫ (
ϕ2+ε(x) + ϕ2+ε(y)

)
ϕ(x)ϕ(y)

(
µt(dx)|µt − µs|(dy) + µs(dy)|µt − µs|(dx)

)

6 2c′ε‖f‖2+εC(T )‖µt − µs‖3+ε,we have ‖νt − νs‖2+ε 6 8cεc
′
εC(T )3 |t − s|.2) Finally, write for any f ∈ B2+ε

(
f, µt − µs − (t − s)νs

)
=

∫ t

s
(f, νr − νs)dr,and note that the integral is uniformly o(t − s), for ‖f‖2+ε 6 1; this proves that the path

{µt}06t6T is di�erentiable, as a path in (
M2+ε, ‖.‖2+ε

), with 
ontinuous derivative νt. �We shall use this result in the form: The path {ϕ2+εµt}06t6T is a C1 path in (
M0, ‖.‖0

). Thisenables us to apply a useful lemma of Kolokoltsov (see the appendix of [36℄) of whi
h we give a
lear and short proof in se
tion 4.Lemma 9 (Kolokoltsov [36℄). Let {ρs}06s6T be a C1 path in (M0, ‖.‖0), with derivative {ρ̇s}06s6T .There exists a {±1, 0}-valued measurable fun
tion (s, x) ∈ R+ × R
∗
+ 7→ εs(x) su
h that we have

• ‖ρt‖0 = ‖ρ0‖0 +
∫ t
0 (εs, ρ̇s) ds, for any t ∈ [0, T ],

•
(
f, |ρt|

)
= (fεt, ρt), for all f ∈ B, t ∈ [0, T ].Proposition 10. The sequen
e of measures {µN

t }N>0 
onverges to µt in (
M2+ε, ‖.‖2+ε

), uniformlywith respe
t to t ∈ [0, T ].



12 I.F. BAILLEULProof � Applying Kolokoltsov's lemma to the C1 path {
ϕ2+ε(µN

t − µt)
}

06t6T
in (

M0, ‖.‖0

), anddenoting by εN
s the fun
tion given by theorem 13, we 
an write

‖µN
t − µt‖2+ε =

∫
ϕ2+ε(x)|µN

t − µt|(dx) =

∫ t

0

(
εN
s ϕ2+ε, µ̇N

s − µ̇s

)
ds

=

∫ t

0
{εN

s ϕ2+ε}(x, y)
(
KN (x, y)µN

s
⊗2

− K(x, y)µ⊗2
s

)
(dx ⊗ dy)

=

∫ t

0

∫
{εN

s ϕ2+ε}(x, y)KN (x, y)
(
µN

s
⊗2

− µ⊗2
s

)
(dx ⊗ dy) ds

+

∫ t

0

∫
{εN

s ϕ2+ε}(x, y)
(
KN − K

)
(x, y)µ⊗2

s (dx ⊗ dy) ds.The se
ond term 
onverges to 0 by dominated 
onvergen
e and the fa
t that ‖µs‖3+ε is bounded;
all it oN (1). To handle the �rst term, write it as
∫ t

0

∫
{εN

s ϕ2+ε}(x, y)KN (x, y)
(
(µN

s − µs)(dx)µN
s (dy) + µs(dx)(µN

s − µs)(dy)
)

=

∫ t

0

∫
{εN

s ϕ2+ε}(x, y)KN (x, y)εN
s (x)|µN

s − µs|(dx)
(
µs + µN

s

)
(dy) =: (∗);we have used the symmetry of the expressions with respe
t to x and y. Now, using the fa
tthat ∣∣εN

s

∣∣ 6 1, one 
an �nd some 
onstant Cε su
h that
{εN

s ϕ2+ε}(x, y)εN
s (x) 6 εN

s (x)ϕ2+ε(x + y) − ϕ2+ε(x) − εN
s (y)εN

s (x)ϕ2+ε(y)

6 ϕ2+ε(x + y) − ϕ2+ε(x) − εN
s (y)εN

s (x)ϕ2+ε(y).To deal with the upper bound, note that there exists a 
onstant Cε su
h that the inequality
(a + b)α − aα

6 Cα

(
aα−1b + bα

)
.holds for any a, b > 0. It follows that

{εN
s ϕ2+ε}(x, y)εN

s (x) 6 Cε

(
ϕ2+ε(y) + ϕ1+ε(x)ϕ(y)

)
,so

(∗) 6 cε

∫ t

0

∫ (
ϕ2+ε(y) + ϕ1+ε(x)ϕ(y)

)
KN (x, y)

(
µs + µN

s

)
(dy)|µN

s − µs|(dx) ds

6 cε

∫ t

0

(
2
(
‖µs‖3+ε ∨ ‖µN

s ‖3+ε

)
‖µN

s − µs‖1 + 2
(
‖µs‖2 ∨ ‖µN

s ‖2

)
‖µN

s − µs‖2+ε

)
ds

6 4CεC(T )

∫ t

0
‖µN

s − µs‖2+ε ds.Putting the pie
es together, we have obtained
‖µN

t − µt‖2+ε 6 oN (1) + 4CεC(T )

∫ t

0
‖µN

s − µs‖2+ε ds,where oN (1) is uniform in t ∈ [0, T ]; Gronwall's lemma enables to 
on
lude. �All the estimates above do not depend on the impli
it parameter λ; this proposition proves (astronger version of) point 2 in our strategy of proof.



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 133.2. Convergen
e of σN
t to σt in (

M1, ‖.‖1

). We prove the third point of our strategy in thisse
tion. For that purpose, we rely 
ru
ially on the representation formula (2.7) for σt for boundedkernels, as it brings ba
k the problem of proving the 
onvergen
e of σN
t to a 
onvergen
e problemfor (µN

s )06s6t and its fun
tionals UN
s,t. Given ℓ > 0, denote by B0

ℓ the set of real-valued fun
tions fon R+ su
h that |f |
ϕℓ is bounded and 
onverges to 0 at in�nity.Proposition 11. (1) There exists a uniformly bounded family of operators {Us,t}06s6t6T on(

B0
3 , ‖.‖3

) su
h that the fun
tions s, t 7→ Us,tf are di�erentiable in (
B0

3 , ‖.‖0

), when f ∈
B1+ε, with derivatives −ΛsUs,tf and Us,tΛtf , respe
tively.(2) These operators Us,t preserve B0

1+ε, and are bounded in (
B0

1+ε, ‖.‖1+ε

).Proof � This proposition is a dire
t appli
ation of theorems 15 and 16 on propagators, in se
tion5; we apply them to the two pairs (
ϕ1+ε, ϕ3

) and (
ϕ

1

2 , ϕ1+ε
). We adopt the notationsJsf(x) ≡

∫ {
f(x + y) − f(x)

}
K(x, y)µs(dy), Msf(x) ≡

∫
f(y)K(x, y)µs(dy)used in se
tion 5.1. Applying theorems 15 and 16, we only need to 
he
k that the inequalities

• Jsϕ
α 6 C(α)‖µs‖α+1ϕ

α,
•

∣∣Ms

(
ϕα

)∣∣ 6 ‖µs‖α+1ϕ,
• for any f ∈ Bβ, Jsf 6 2β+1

(
ϕβ+1(x)‖µs‖1 + ϕ(x)‖µs‖β+1

).hold for any α and β > 1, whi
h is done by elementary algebra.2. To apply theorems 15 and 16 to the pair (
ϕ

1

2 , ϕ1+ε
), one needs to verify that Jsϕ

1

2 6
C(T )

2
ϕ

1

2 .This 
an be done by writing∫ {
ϕ

1

2 (x + y) − ϕ
1

2 (x)
}
K(x, y)µs(dy) 6

∫ {(
ϕ(x) + ϕ(y)

) 1

2 − ϕ
1

2 (x)
}

K(x, y)µs(dy)

6

∫
ϕ(y)

2ϕ
1

2 (x)
ϕ(x)ϕ(y)µs(dy) =

‖µs‖2

2
ϕ

1

2 (x)

6
C(T )

2
ϕ

1

2 (x).

�Theorem 16 provides us with an additional information: Us,t and all its approximations UN
s,t have anorm on B0

1+ε 
ontrolled by the right hand side of equation (5.7), whi
h is independent of N .Sin
e Us,t sends B0
1+ε in itself, and Λ∂λ

s is easily veri�ed to be a bounded operator from B1+εinto B2+ε, with a uniformly bounded norm for 0 6 s 6 t 6 T , the formula(3.5) (f, σt) =
1

2

∫ t

0

(
Λ∂λ

s Us,tf, µs

)
dsde�nes a measure σt belonging to M1. By proposition 11, the quantities (

f, σN
t

) and (
f, σt

) arebounded uniformly in t ∈ [0, T ], N > 0 and λ ∈ U , given any f ∈ B1.Theorem 12. The sequen
e {
σN

t

}
N>0


onverges to σt in (M1, ‖.‖1), uniformly for t ∈ [0, T ].Proof � We need to prove that the limit
(
f, σN

t

)
=

1

2

∫ t

0

∫ {
UN

s,tf
}

K∂λ ; N
(
µN

s , µN
s

)
ds −→

N,+∞

1

2

∫ t

0

∫
{Us,tf}K∂λ

(
µs, µs

)
ds = (f, σt)holds uniformly for ‖f‖1 6 1 and 0 6 t 6 T . If one 
an prove that UN

s,tf 
onverges to Us,tf in
B1+ε, uniformly in 0 6 s 6 t 6 T , then

• the inequality ∣∣K∂λ ;N
∣∣(x, y) 6 ϕ(x)ϕ(y),
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• and the fa
t that µN

s 
onverges to µs in (
M2+ε, ‖.‖2+ε

), uniformly in s ∈ [0, T ],will enable us to apply dominated 
onvergen
e to get the result. We are thus led to prove thatthere exists a de
reasing sequen
e {aN}N>0, 
onverging to 0, su
h that one has
∥∥Us,tf − UN

s,tf‖1+ε 6 aN

∥∥f‖1,for any 0 6 s 6 t 6 T and any f ∈ B1.Sin
e f ∈ B1 ⊂ B1+ε one 
an use the di�erentiability property of Us,t as a fun
tion of s and tto write
Us,tf − UN

s,tf =

∫ t

s

d

du

(
Us,uUN

u,t

)
f du =

∫ t

s

(
Us,u

(
Λu − ΛN

u

)
UN

u,t

)
f du.As UN

u,tf belongs to B0
1+ε, with a norm uniformly 
ontrolled for ‖f‖1 6 1, and as Us,u is auniformly bounded operator on B2+ε, it su�
es to prove that there exists a de
reasing sequen
e

{aN}N>0 
onverging to 0 su
h that one has
∥∥(

Λu − ΛN
u

)
g
∥∥

2+ε
6 aN ,for any g ∈ B1+ε, with ‖g‖1+ε 6 1. To prove this fa
t, write

∣∣∣
(
Λλ

u − Λλ ;N
u

)
g(x)

∣∣∣ =

∣∣∣∣
∫

{g}(x, y)
(
K(x, y)µs(dy) − KN (x, y)µN

s (dy)
)∣∣∣∣

6 cε

∫ (
ϕ1+ε(x) + ϕ(y)

)(
K(x, y)|µs − µN

s |(dy) + |K − KN |(x, y)µs(dy) + 2ϕ(x)ϕ(y)|µN
s − µs|(dy)

)

6 cεϕ
2+ε(x) ‖µN

s − µs‖1 + cεϕ(x) ‖µs − µN
s ‖2+ε + cεϕ

1+ε(x)
(
|K − KN |(x, .), µs

)

+ cε

(
ϕ1+ε(·)

∣∣K − KN
∣∣(x, ·), µs

)
+ cεϕ

2+ε(x) ‖µN
s − µs‖1 + cεϕ(x) ‖µN

s − µs‖2+ε.This formula makes it 
lear that we shall get the existen
e of these aN 's if we 
an prove that thesequen
e of fun
tions x 7→
(
ϕ1+ε(·)

∣∣K − KN
∣∣(x, ·), µs

) 
onverges to 0 in B2+ε as N → +∞.This fa
t is 
learly seen on the following inequality where M is an arbitrary positive 
onstant.
1

ϕ2+ε(x)

∫
ϕ1+ε(y)|K − KN |(x, y)µs(dy) 6

1

ϕ2+ε(x)

∫
ϕ2+ε(y)ϕ(x)1ϕ(x)ϕ(y)>N µs(dy)

6
1

ϕ1+ε(x)

∫
ϕ2+ε(y)1ϕ(x)ϕ(y)>N µs(dy)

ϕ>1
6

‖µs‖2+ε

M1+ε
1ϕ(x)>M +

(∫
ϕ2+ε(y)1ϕ(y)> N

M
µs(dy)

) 1ϕ(x)6M

�Proposition 10 and theorem 12 together prove point (2) and (3) of our strategy of proof for theorem6, showing that µλ
t is a C1 fun
tion of its arguments. To 
omplete the proof of theorem 6, it remainsto prove that σλ

t is the unique solution in M1 of the equation(3.6)
(
f, σλ

t

)
=

(
f, σλ

0

)
+

∫ t

0

∫
{f}(x, y)Kλ(x, y)µλ

s (dx)σλ

s (dy)ds +
1

2

∫ t

0

∫
{f}(x, y)K∂λ(x, y)µλ

s (dx)µλ

s (dy)dswhere f is any bounded fun
tion.We have seen in se
tion 2.2 that this identity holds if one repla
es σλ
t and µλ

t by σ
λ ; N
t and µ

λ ; N
tresspe
tively. Use then the above 
onvergen
e results σ

λ ; N
t → σλ

t , in M1, and µ
λ ;N
t → µλ

t , in
M2+ε, together with the inequalities
∣∣∣
(
f,Kλ(µλ

t , σλ
t )

)
−

(
f,Kλ(µλ ;N

t , σ
λ ;N
t )

)∣∣∣ 6 3‖f‖∞

(
‖µλ

t − µ
λ ; N
t ‖1 ‖σ

λ
t ‖1 + ‖µλ ;N

t ‖1 ‖σ
λ
t − σ

λ ;N
t ‖1

)
,

∣∣∣
(
f,K∂λ(µλ

t , µλ
t )

)
−

(
f,K∂λ(µλ ;N

t , µ
λ ; N
t )

)∣∣∣ 6 3C(T ) ‖f‖∞

(
‖µλ

t − µ
λ ;N
t ‖1 + ‖σλ

t − σ
λ ;N
t ‖1

)
,



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 15to pass to the limit properly.To prove uniqueness of the solution to equation (3.6) in (
M1, ‖ · ‖1

) it su�
es to show that theequation
∀ f ∈ Bc, (f, γt) =

∫ t

0

∫ {
f(x + y) − f(x) − f(y)

}
K(x, y)µs(dx)γs(dy)dshas at most one solution in (

M1, ‖ · ‖1

). We have written here Bc for the set of bounded Borelfun
tions with 
ompa
t support. Rewrite this equation under the form
(f, γt) =

∫ t

0

(
Λsf, γs

)
ds.Repeating the proof of 
orollary 11, it is seen that there exists bounded propagators Us,t on (

B0
1 , ‖ ·

‖1

) su
h that the fun
tion s ∈ [0, t] 7→ Us,tf solves the equation d
dsUs,tf = −ΛsUs,tf for any

f ∈ Bc(⊂ B0
1) and t ∈ [0, T ]. It follows that the expression (Us,tf, γs) is well de�ned and that

d

ds
(Us,tf, γs) =

(
−ΛsUs,tf, γs

)
+

(
ΛsUs,tf, γs

)
= 0;so (f, γt) = (U0,tf, γ0), implying the uniqueness of γt. This ends the proof of theorem 6.4. Comments4.1. Related works. One 
an see the main roots of theorem 6 in se
tion 4 of Kolokoltsov's pio-neering arti
le [33℄ on the 
entral limit theorem for the Mar
us-Lushnikov dynami
s. He develops inthis se
tion tools for the analysis of the rate of 
onvergen
e of the semi-group of Mar
us-Lushnikovpro
ess to the semi-group of solutions of Smolu
howski equation. Re
all the Mar
us-Lushnikovpro
ess {

Xn
t

}
t>0

is a strong Markov jump pro
ess on the spa
e of dis
rete measures whose jumpsare as follows. If its state at time t is 1

n

∑
δxi(t), for i in a �nite set It depending on t, de�ne, for

i < j in It, independent exponential random times Tij with parameter K
(
xi(t), xj(t)

)

n
and set

T = min{Tij ; i < j}.The pro
ess remains 
onstant on the time interval [t, t+T [ and has a jump 1

n

(
δxp(t)+xq(t) − δxp(t) − δxq(t)

)at time t + T , if T = Tpq. The dynami
s then starts afresh. The 
onvergen
e of this sequen
e
{Xn}n>0 of pro
esses to the deterministi
 solution of Smolu
howski equation was �rst proved un-der general 
onditions in [8℄. Yet, no �ne analysis of the 
onvergen
e of the 
orresponding semi-groupwas done before [33℄. We explain roughly his idea to see how similar equations to the 'variation'equations (1.3), (1.4) appear in his 
ontext.Suppose we are in a situation where existen
e and uniqueness of solutions to Smolu
howskiequation hold into a proper sense, and denote by {Tt} and {T n

t } the semi-groups of Smolu
howskiand Mar
us-Lushnikov dynami
s. Also, denote by L and Ln their generators. Then, given any(good) fun
tion F and a measure µ

(
Tt − T n

t

)
F (µ) =

∫ t

0

(
T n

t−s

(
Ln − L

)
TsF

)
(µ) ds.The 
hoi
e of a fun
tion F of the form F (µ) =

∫
g(x)µ⊗k(dx), for some symmetri
 fun
tion g of kvariables, provides a 'measure' of the moments of µ. One has TsF (µ) = F (µs), where µ0 = µ.Introdu
ing some derivation operation δ on fun
tions on measures:

δF (µ ; x) = lim
ε→0

F (µ + εδx) − F (µ)

ε
,
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an write for any fun
tion G(4.1) (
Ln − L

)
G (µ) = −

1

2n

∫ (
δG(µ ; 2x) − 2δG(µ ; x)

)
K(x, x)µ(dx) + O

(
n−3/2

)
.One thus sees that taking G = TsF , with the above F , leads to 
onsider the quantity

δ
(
(g, µ⊗k

t )
)

= k
(
(g, µ⊗k−1

t ⊗ δµt)
)
,where

δµt = lim
ε→0

µt(µ + εδx) − µt(µ)

εis 'the' derivative of µt with respe
t to its initial 
ondition. Terms of the form δ(δµt) arise inthe O
(
n−3/2

) term of equation (4.1). This analysis brings ba
k the estimate of (
Tt − T n

t

)
F (µ) toestimates on µs, δµs and δ2µs. To do so, Kolokoltsov shows that δµs is a solution of the linearequation

d

ds
δµs = K

(
µs, δµs

)in some sense, and that δ2µs is a solution of the a�ne equation
d

ds
δ2µs = K

(
µs, δ

2µs

)
+ K

(
δµs, δµs

)in some sense. The tools used to solve these equations are essentially the same as those used above;the reader may will �nd the details given here helpful to unzip the se
tion 4 of [33℄. We have used yeta slightly di�erent approa
h in the implementation of the variation of 
onstant method. Note alsothat we have been able to go from the framework of 'sub-linear' kernels of [33℄: K(x, y) 6 C(1+x+y),to the framework of an essentially 'sub-multipli
ative' kernel: K(x, y) 6 ϕ(x)ϕ(y), an improvementwhi
h is of some pra
ti
al interest.4.2. Kolokoltsov's lemma. This paragraph 
ontains a simple proof of Kolokoltsov's lemma, whi
hwas used in a 
ru
ial way to prove a uniqueness result in the original arti
le [36℄ where it was �rstintrodu
ed. We prove it here in a slightly less general framework than in [36℄, su�
ient for ourpurposes as well as for its use in [36℄; the gain in 
larity and volume of the proof is substantial.Let (Ω,F) be a measurable spa
e with a σ-algebra F generated by a �ltration {Fn}n>0 madeup of �nite σ-algebras. We shall denote by {Ap
n}p the atoms of Fn. We shall write (M, ‖.‖) forthe spa
e of �nite signed-measures on (Ω,F), equipped with the total variation distan
e. We shallde�ne, for ea
h n > 1, the total variation of a measure with respe
t to Fn:

∀µ ∈ M, ‖µ‖(n) = sup
{
(f, µ) ; f ∈ Fn, |f | 6 1

}
.These quantities have the property(4.2) ∀µ ∈ M, ‖µ‖(n) −→

n+∞
‖µ‖.Re
all that the topologi
al dual spa
e of (M, ‖.‖) is the spa
e (B, |.|) of bounded measurable fun
-tions on (Ω,F), equipped with the supremum norm. We shall write B̂ for the set of bounded fun
-tions g on [0, T ] × Ω, with norm ‖̂g‖ = sup

{
gs(x) ; s ∈ [0, T ], x ∈ Ω

}, and shall de�ne (
M̂, ‖.‖TV

)as the spa
e of �nite signed measures on [0, T ] × Ω, equipped with the total variation norm.Theorem 13 (Kolokoltsov's lemma [36℄, Appendix). Let {ρs}06s6T be a C1 path in (M, ‖.‖), withderivative {ρ̇s}06s6T . There exists a {±1, 0}-valued measurable fun
tion εs(x) su
h that we have
• ‖ρt‖ = ‖ρ0‖ +

∫ t
0 (εs, ρ̇s) ds, for any t ∈ [0, T ],

• ∀ f ∈ B,∀ t ∈ [0, T ],
(
f, |ρt|

)
= (fεt, ρt).We shall make use of the following elementary lemma in the 
ourse of the proof of theorem 13.
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onvention, sgn(0) = 0. We have for any C1 fun
tion g : R+ → R

∣∣g(t)
∣∣ =

∣∣g(0)
∣∣ +

∫ t

0
sgn(

g(s)
)
g′(s)ds.Proof � Using lemma 14 in ea
h set A

p
n, we 
an de�ne a {±1, 0}-valued fun
tion s 7→ ε

n; p
s su
hthat

∣∣ρt(A
p
n)

∣∣ =
∣∣ρ0(A

p
n)

∣∣ +

∫ t

0
εn; p
s ρ̇s(A

p
n) ds.De�ne then the fun
tion εn

s (x) as being equal to ε
n; p
s on A

p
n; the pre
eding identity yields(4.3) ‖ρt‖(n) = ‖ρ0‖(n) +

∫ t

0
(εn

s , ρ̇s) ds.The fun
tions εn belong to the set B̂ of bounded fun
tions on [0, T ] × Ω, and have supremumnorm no greater than 1. Using the duality between M̂ and B̂ provided by integration, equation(4.3) 
an be written(4.4) ‖ρt‖(n) = ‖ρ0‖(n) +
(
εn, ρ̇s ⊗ ds

)
.Now, sin
e (

B̂, ‖̂.‖
) is the topologi
al dual spa
e of (

M̂, ‖.‖TV

), its unit sphere is weakly-∗
ompa
t. We 
an thus �nd a sub-sequen
e {εnk}k>1 and an element ε of B̂, with norm lessthan 1, su
h that
∀µ ∈ M̂, (εnk , µ) −→

k+∞
(ε, µ).Together with formulas (4.2) and (4.4), this 
onvergen
e result, applied to the measures ρ̇s(dx)⊗

1[0,t](s)ds, gives(4.5) ∀ t ∈ [0, T ], ‖ρt‖ = ‖ρ0‖ +

∫ t

0
(εs, ρ̇s) ds.To prove the se
ond point of theorem 13, remark that sin
e

∫ T

0
‖ρs‖(n)ds =

∫ T

0
(εn

s , ρs)ds = (εn, ρs ⊗ 1[0,T ]ds),we have
‖|ρs| ⊗ ds‖TV = (ε, ρs ⊗ 1[0,T ]ds).It follows that

εsρs = |ρs|for almost all s. De�ne εs to be equal to dρs

d|ρs|
on the ex
eptional set. This modi�
ation of εspreserves identity (4.5) and proves the se
ond point of theorem 13. �5. Appendix on propagatorsWe 
olle
t in this appendix the material on propagators needed in se
tion 3.2 to prove the
onvergen
e of σN

t to σt in (
M1, ‖ ·‖1

). Re
all that a propagator is a family {Us,t}s6t of operatorssu
h that Utt = Id and one has UstUtr = Usr for all s 6 t 6 r. De�ne an (a priori) unboundedoperator on fun
tions setting
Λsf(x) =

∫
{f}(x, y)K(x, y)µs(dy).Theorem 16 below states 
onditions under whi
h the ba
kward/forward di�erential equation(5.1) u̇s = −Λsus, 0 6 s 6 t 6 T, ut given,
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an be solved in some Bana
h spa
e of fun
tions. Some notations are needed. SetJsf(x) ≡

∫ {
f(x + y) − f(x)

}
K(x, y)µs(dy) =

∫
f(x + y)K(x, y)µs(dy) −

(∫
K(x, y)µs(dy)

)
f(x)

≡ Lsf(x) − τs(x)f(x),

(5.2)
and(5.3) Msf(x) ≡

∫
f(y)K(x, y)µs(dy), Ts(x) ≡

∫ s

0
τr(x)dr.Considering the ba
kward/forward di�erential equation(5.4) ḟs = −Jsfs, 0 6 s 6 t 6 T, ft given,as a perturbation of the integrable equation ḟs = τsfs, one sees that equation (5.4) is formallyequivalent to the integral equation(5.5) fs = eTs−Ttft +

∫ t

s
eTs−TrLrfr dr.Given some positive fun
tion h, set Bh =

{
f ; sup |f |

h < ∞
}, and de�ne ‖f‖h = sup |f |

h , for
f ∈ Bh. The spa
e (

Bh, ‖.‖h

) is a Bana
h spa
e. De�ne also B0
h as the set of fun
tions f ∈ Bh su
hthat f

h goes to 0 as h goes to in�nity. The following two theorems are part of the folkore; they arestated under this form in the appendix of Kolokoltsov's arti
le [33℄.Theorem 15 (Existen
e of propagators, �rst part). 1) Suppose that there exists two 
ontinuouspositive fun
tions h and h′, and positive 
onstants c and c′ su
h thata. 0 < h′ 6 h, h′ ∈ Bh,
∀ s ∈ [0, T ], Jsh

′ 6 c′h′, Jsh 6 ch.Then, given t ∈ [0, T ] and some fun
tion ut ∈ Bh, the minimal solution of the ba
kwards/forwardsintegral problem (5.5) with �nal/initial 
ondition ut is of the form {Ss,tut}s for some boundedoperators Ss,t on (B0
h, ‖.‖h) depending 
ontinuously on s and t, with norm no greater than ec|t−s|.If now one 
onsiders the ba
kward/forward di�erential equation

ḟs = −Λsfs = −
(Js −Ms

)
fs, 0 6 s 6 t 6 T, ft = f given,as a perturbation of equation (5.4), the pre
eding di�erential equation is formally equivalent to theintegral equation(5.6) fs = Ss,tf −

∫ t

s
Ss,rMrfr dr.Theorem 16 (Existen
e of propagators, se
ond part). 2) Suppose, in addition to the hypothesisof theorem 15, that the following hypothesis on the perturbations Ms hold.b. The family {Ms}06s6T is a bounded family of linear transforms of (Bh, ‖.‖h).Denote by ‖Ms‖h the norm operator of Ms. Then the series

Us,tf = Ss,tf −

∫ t

s
Ss,rMrSr,tf dr +

∫

s6r16r26t
Ss,r1

Mr1
Sr1,r2

Mr2
Sr2,tf dr1dr2 + · · · ,
onverges in (Bh, ‖.‖h) for any f ∈ Bh. It de�nes a propagator on (

B0
h, ‖.‖h

) depending 
ontinuouslyon s and t, and with norm(5.7) 6 e

(
c+ sup

s6r6t

‖Mr‖h

)
|t−s|



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 19The map s 7→ Us,tf is the minimal solution of the ba
kwards/forwards integral problem (5.6) with�nal/initial 
ondition f .3) If �nally
. • for any f ∈ Bh′, the fun
tion s 7→ Jsf ∈ (B0
h, ‖.‖h) is well de�ned and 
ontinuous,

• ea
h Ms sends 
ontinuously (Bh, ‖.‖h) in (Bh′ , ‖.‖h′),then for any f ∈ Bh′, the fun
tion s 7→ Us,tf ∈
(
B0

h, ‖.‖h

) is di�erentiable, with derivative −ΛsU
s,tf .It is also di�erentiable as a fun
tion of t, with derivative Us,tΛtf .A
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