SENSITIVITY FOR SMOLUCHOWSKI EQUATION
ILF. BAILLEUL

ABSTRACT. This article investigates the question of sensitivity of the solutions u; of the Smolu-
chowski equation on R%} with respect to parameters A in the interaction kernel K. Tt is proved
that 7 is a C' function of (t,)\) with values in a good space of measures under the hypotheses

K*(z,y) < @(x)p(y), for some sub-linear function ¢, and /@4+E(x) to(dz) < oo, and that the

derivative is the unique solution of a related equation.

1. INTRODUCTION

a) Smoluchowski equation. Many chemical reactions, such as soot formation [1] or flame syn-
thesis of organic or inorganic nanoparticles 2], have in common a microscopic mechanism where
particles of different masses evolve in a homogeneous medium. Each of them performs a free thermal
motion, with diffusivity depending on its mass, until it approaches enough any other particle. These
two particles will then coagulate to create a new one, whose stucture will be a combination of the
strucutres of each of its ancestors [3], [4].

The experimentor has only access to macroscopic quantities such as the concentration of the
different masses along time. How can he describe the evolution of these quantities from this mi-
croscopic description of the dynamics? Mathematically, we can describe these concentrations as
measures j; on the space R* := (0,400) of masses of species. What comes out from experimental
measurements are quantities such like the concentration of particles with a mass between such and
such number, or, more generally, quantities of the form (f, ) = [ f(z)u(dz), for some functions
f. Smoluchowski has proposed in [5]| to describe the evolution of the observatlons (f, ) in a well
mixed system using some symmetric kernel K (z,y) describing the rates at which coagulations occur:

(11) (o) = /{f:r+y F(@) = F() VI () s (d) ps(dy).

Roughly speaking7 a particle of mass x coagulates with a particle of mass y at rate K(x,y) to
create a particle of mass x + y. Numerous works have been devoted to this equation, both in the
physics/engeneering and mathematics litteratures, motivated by different questions. The reviews
by Aldous [6] and Leyvraz [7] give a good overview of the state of the art a few years ago. The
main trends of mathematical research are concerned with the well-posedness problem [8], [9] of
Smoluchowski equation (1.1), the gelation problem [10], [11], [12], [13], [14], [15], [16], the structure
of self-similar or asymptotically self-similar solutions [7], [17], [18], [19], [20], and the mean-field
approximation of Smoluchowski equation by random microscopic dynamics |21], [22]; simulation
and numerical issues are also of great importance [23], [24], [25], for practical purposes.

b) Sensitivity. The parameters of an experiment are incorporated into the model dynamics (1.1)
as parameters A € R? in the interaction kernel K = K*. Binder granulation a priori requires
for instance around 10 parameters to describe it, [26]. Finding the relevant parameters, given the
experimental data (the so-called “inverse problem”) is the fundamental step which will allow future
simulations to provide law cost predictions see e.g. [27] for some theoretical background on that
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problem, and [28| for a global approach of the inverse problem for general population balances.
From a different and as important point of view, the fact that all experimental measurements are
approximate emphasizes the crucial need for a study of the dependence on parameters in practical
applications.

Let denote by A a generic multi-dimensional parameter, K* the corresponding coagulation kernel
and ,uf‘ the solution to Smoluchowksi equation associated with K*. A simple and largely used
method for tuning the parameter to data consists in formally applying a method of steepest descent

S0 as to minimize some distance between ,u% and u%bs, in the typical case where we are interested

in the value at time T of the system, [29]. The measure /,LOTbS is given by experiments. To be
effective, the algorithm requires the knowledge of the differential o of py with respect to \ so as
to choose the steepest descent direction at each step. Note that O't)‘ is a priori a signed measure.
Engineers usually estimate it by a finite difference correspondin%teg tw;) close values of A. The main

approach to do that consists in approximating the differences u (for a basis vector e; of R%)

by the corresponding difference for the approximating particle systems see [30] for a non-trivial
and efficient way of doing that, and refer to the bibliographies of the works [29], [30] or [31] for
more references on the computational analysis of dependence of ,uf‘ on A. However, no justification
that Oyp; is well-defined (in the mathematical sense) and well-behaved has ever been given up to
now, which puts the previous investigations on a somewhat hazy mathematical framework.

The aim of this article is to prove that yu; is a C! function of (¢, \) (under proper conditions and
in a suitable sense) and that it is the unique solution to some equation (“sensitivity equation”). Not
only does this fact put the existing approaches on a firm ground, but it also leads to a new particle
approximation [31] for sensitivity which happens to be more accurate than any other method. In the
same way as one can associate some finite interacting particle systems to Smoluchowski equation, the
so-called Marcus-Lushnikov processes [32], one can associate a pair of coupled interacting particle
systems to the equation associated with the sensitivity (§2.2.2), such that their difference converges
weakly to a solution of the sensitivity equation, as a consequence of a kind of law of large numbers
— a fact proved in [31|. The well-posedness of the sensitivity equation obtained in the present work
justifies theoretically the use of that particle system for simulating the sensitivity.

Notation. Given a locally bounded non-negative kernel F'(z,y) on R} x R*% and Radon measures
i, v on R, one defines a signed Radon measure F'(u,v) setting

(12) F(uv) = [{Bry = 8 = 8} Fla.y) utde) vidy).

c) Strategy for studying the sensitivity of Smoluchowski equation. We describe in the
remainder of this section the approach we use to prove the above mentionned differentiability result.
From a mathematical point of view, the main difficulty in solving Smoluchowski equation comes
from the fact that whilst the weak formulation (1.1) is always a well-defined problem (although it
may have no solution), it is not easy to find a Banach or a Fréchet space of (signed) measures where
the differential equation

1

(1'3) s = iK(HSaHs)

itself is meaningful. This difficulty disappears for bounded kernels, where Smoluchowski equation
can be solved in the Banach framework of Radon signed measures equipped with total variation
norm. The computation of dyuy is formally straightforward and leads to a representation formula
involving essentially only {u}s<;. The map ¢ — p solving equation (1.3), its derivative with
respect to A solves formally the equation

. 1
(1.4) o7 = K (u?,a?) + OAK? (u?,u?>
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obtained by differentiating equation (1.3) with respect to \; we have written 9y\K*(z,y) for the
partial derivative of K*(x,y) with respect to A. This equation can be solved, considering first the
linearized problem

(15) pe =K ugp3)
before using the variation of constants method.

(i) We introduce a dual evolution equation on functions to study the linear equation (1.5). To
that end, define some time dependent operators A)‘ on functions setting

(16) W) = {7+ 9) = F@) = £ HO i),
These operators satisfy the identity

(A?fv ) (fv (:usv ))

Now, if one considers the backward linear equation

fs=—Afs, s€0,t]and f; = f,
its solution {fs}ogs<t depends linearly on f, so we can write it in the form U)‘tf for a linear
operator US’\’t This function U’\tf has two important properties. As a function of ¢ it satisfies the
identity %Us,tf = U} A}, and if {p}}s>0 denotes a solution of equation (1.5), then

d .
T (U5 f:02) = (=A3U ) + (U S 7)

= —(UMf K (12, 02)) + (UL f K (112, 02))
—0.

So we see that the solution to the linear equation (1.5) needs to be given by the formula

(ii) To implement the variation of constants method and solve the affine equation (1.4), introduce
as in equation (1.6) the operator

AP f(2) / [F@+y) — (@) — 1) oK, y)ed (dy).
Note the relations
(A2 d) = (£ BN o)) and (APf2) = (£ K (12, 12)).

Defining the measures o7 by the formula

(18) (f.0d) =5 /0 (APURf. 122 ds

one can easily check that it satisfies a weak form of equation (1.4):

d d (1
%(fao—?) dt< /UOsAaAU tfds /10)

s 1
( Uy Aa/\U/\tA?f ds M0> 3 (Uo AP, Mo)

(
(+

A,0?) + 5 (AP )
K

(o)) + (1K (o))
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d) Organisation of the article. How far from full justification is this argument? In the case
of uniformly bounded kernels K*, we shall see in section 2 that everything is meaningful in the
Banach framework of signed measures equipped with the total variation distance. Yet, no such
satisfactory framework is available for unbounded kernels; we shall thus use an approximation
procedure in section 3 to extend the result; it relies crucially on the representation formula (1.8)
for the sensitivity which comes from equation (1.4). We explain in §2.2.2 how this equation can
be used in a practical way to simulate the sensitivity. The main result (theorem 6) states that the
function (,\) = pp is a C' function with values in a good space of measures and that it is the only
solution of a weak version of equation (1.4) under some proper conditions.

The idea to investigate the linearized Smoluchowski equation was first used in Kolokoltsov’s paper
[33] to see how p; depends on its initial value — see also [34| where similar ideas are used in a different
context. We use here the same tools (theorems 13, 15, 16) as in Kolokoltsov’s paper. We compare
in section 4, a) the present work with the work [33]. Note that the simplified proof of a useful
lemma of Kolokoltsov (theorem 13), given in section 4, b) and used in section 3.1, might be of some
interest for itself.

Notations. All functions and measures are defined on R* throughout the text.

e We shall use the notation u®?(dxdy) for the product measure u(dz)u(dy).

e As the expression f(z+y)— f(x)— f(y) will appear numerous times in the text, it will be useful
to abbreviate it into {f}(z,y). In these terms, the weak version (1.1) of Smoluchowski equation
may be written

o) =5 [0 K(ow) (o) ).

2. SENSITIVITY FOR BOUNDED KERNELS

We consider in this section Smoluchowski equation (1.1) for a family { K*}, of interaction kernels,
bounded some constant M. We recall in section 2.1 why the strong version (1.3) of Smoluchowski
equation is well defined in a good Banach framework. The classical tools of differential equations
will then give us for free existence, uniqueness and regularity results of the solutions {7 };>0 to
equation (1.3). We shall then take profit in section 2.2 of the fact that the derivative o = Oyup
solves a time-non-homogeneous affine equation to get an explicit formula for it which will be useful
in the sequel.

2.1. Existence and uniqueness in the bounded case: a quick overview. Denote by By the
Banach space of bounded measurable functions, equipped with the supremum norm ||.||op. Denote
also by ||pllo the total variation of a signed Radon measure p, and by

My = {p Radon measure ;||p|lo < oco}.

Note that [|pllo = sup{(f,p); f € Bo, | fllo < 1}, and that the space (Mo, ||.|o) is complete since
it is the dual space of the complete space (Cy(R4,R),||.|s). We shall denote by M{ the cone of
non-negative elements of M.

The main reason why everything works well in the bounded case is that since we have

|(f K (1, 12)) | < 311 Fllo M| elf3

for any f € By, the Radon measure K (u,p) belongs to My if pu does; so Smoluchowski equation
(1.3): s = %K(us,us), is a well-defined ordinary differential equation in the Banach space M.

PROPOSITION 1. Equation (1.3) has a well defined flow of solutions in (Mo, ||.||0), which preserves
the cone ./\/18'. The solution py is defined for all times if p € /\/lg.
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Proor It suffices to see that the vector field K is locally Lipschitz. But given p and v in My,
one can write

(1% = v®?) (dedy) = p(de)(p — v)(dy) + v(dy)(p — v)(dz).
Nothing more is needed to get, for any f € By, the inequality

(7K ) = (£ K )| = | [} ) o) (15 - v52) (dnay)|

<3 F oM (lello + lIwllo) [l = vllo,
which implies

(2.1) K (s 1) = K (v, v)][ o < 3M (Ilello + llwllo) [l = vllo-

To see that p; is non-negative if p is non-negative we find a non-negative function 6; on R
such that the transformed measure p; := 6,1, solves a differential equation which preserves MSF
in a obvious way!. See [8], proposition 2.2, for instance.

Given an initial condition ug, denote by [O, T(,uo)) the maximal interval on which the solution
started from pg is defined. If pg is non-negative, one has

d d 1
_ — _ K <
—dt||ut||0 = _dt(l’ut) -3 / (w, y)pe(d) pae (dy) < 0

and the path {11 }ogt<7(uo) Stays in a ball where the vector field K is (globally) Lipschitz. This
explains why the solution is actually defined on [0, c0). >

2.2. Sensitivity. We prove in this section that if the coagulation kernel depends nicely on a pa-
rameter A then the solution to Smoluchowski equation is a C! function of (¢, ). Its derivative with
respect to A has a representation involving only (is)s>0.

2.2.1. Dependence on a parameter. Let now {K*(.,.)}acys be a family of symmetric non-negative
kernels on R} depending in a C? way in a parameter \ belonging to some open set I of some
RP. Denote by K9 (x,y) the derivative of K*(z,%) with respect to A and define the Radon signed
measure K9 (p, i) setting

(f. K1, ) = / (@ +9) — (@) — F)}E @, y) pldo)uldy).

Denote by [0,7*(uo)) the maximal interval on which the solution to Smoluchowski equation (1.3)
with interaction kernel K*(-,-) started from pyg is defined

THEOREM 2 (Sensitivity for bounded kernels). Suppose K*(-,-) and its first two derviatives are
bounded by a constant M, uniformly in X\ € U. Then the map (t,\) € [0, T (o)) x U — pp €

(Mo, |I-lo) is differentiable with respect to X and its derivatives o} (called “sensitivity”) is the unique
solution of the equation

. 1
22) 7t = K (o) + 3K ().

PROOF — As is classically done in the study of ordinary differential equations in Banach spaces
(e.g. consult [35]), the result is a consequence the following four properties.
(1) For each p € My, the map A € U +— K u,p) € (Mo, ||.]lo) is differentiable, with a
derivative K (p, 1) € (Mo, ||.]lo) depending continuously on u € (Mo, ||.||o)-
(2) The map (s, ) — pd € (Mo, ||.lo) is continuous on [0,T] x U.
(3) The linear map v +— K(us,v) takes (My,|.]|o) into itself and has a uniformly bounded
norm for s € [0,7]. The same result holds for the map v+ K% (ug, v).

"Which is not the case of Smoluchowski equation. One uses the same method in the study of Boltzmann equation.
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(4) Let C be a compact set of (Mo, ||.|[o). There exists an (Mo, ||.]|o)-valued function Oz (pu, 1)
such that [|Oa(p, /)]0 < m|lp — 1|3 for some constant m, and

(2.3) Vi, € C, KN i) = K20 (p, i) = 2K (1 — 1) + Oa(, 1)

K9 has the same property.
We prove points 1 and 2 and leave the elementary proofs of points 3 and 4 to the reader.
1. Given f € By, apply Taylor formula in a small neighbourhood V of Ay to get

‘(f, KM, ) = K2 (i, 1) = (A = Ao)Kw(Hyﬂ))‘ =

‘/{f}(ax ) (KN z,y) — K2(2,9) — (A — 2) K (2, ) u(dz) u(dy)

<3 A = ol 2K 2
<3l fllo———— max|aLK (2, )] lIull5-

A€V
This proves the differentiability assertion. The map u € Mg — K% (i, 1) can be seen to be
locally Lipschitz using the same reasonning as was used in the proof of proposition 1 to prove
that the vector field K is locally Lipschitz.
2. Tt is a classical fact in dynamics® that it is sufficient to check that the map (\, u) € U x Mgy —
K, i) is locally Lipschitz to get the continuity of (s, \) — ud € (Mo, ||.]lo). Writing

K1) = K (v,0) = K, ) = KMwv) + (KX = KY) (v,0),

and using inequality (2.1), Taylor formula, and the fact that sup !K‘%(aj, y)! < M, one obtains
zyy; L

1R (1) = KX (v, ) lo < 3M (Jlallo + vl0) 1 — wllo + 3Mw[3IA - X

>

2.2.2. A representation formula for the sensitivity. We fix pg throughout this section and work on
a fixed time interval [0,T] C [O,T)‘(uo)), for all A € U. As explained in the introduction, one can
solve explicitly the sensitivity equation (2.2) by solving first its linearized version before using the
variation of constant method. The first step is made solving a dual problem to the homogeneous
equation, on the space By.

a) Dual linearized Smoluchowski equation. Define for each A € U, a time-dependent linear
vector field A2 on By, setting for any f € By

(2.4) A f(2) = /{f(w +y) = fx) = f(y) K (2, y)us (dy).

As [|[A]Jo < 3M(1, 1) < 3M||uollo, and 2 depends continuously on s, the vector field A2 on By
is continuous with respect to f € By and s. So, given some time t > 0, the backward and forward
differential equations

(2.5) folw) = Al fo (@), fi given,
are meaningful in By, and elementary results on linear differential equations on Banach spaces give

the following proposition?.

2Consult Martin’s book [35] for instance.
3Consult Martin’s book [35].
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PROPOSITION 3. The differential backwards and forwards equations (2.5) in (Bo,||.||o) have a unique

solution, defined for all time. It is of the form f, = s)\,tft: for a continuous linear operator Us):t on
By, with norm < e3Mlrollolt=sl  We also have for any f € By

d A A AA
(2'6) Us,tf = Us,tAt I

dt
This operator Us):t can be used to solve explicitly the linear equation on My
A A, A A

ps = K2 (s, p5);

this equation has a unique solution on the time interval [0, 7] as the time non-homogeneous vector

field K*(u2,-) is continuous and bounded. Indeed, one gets from Smoluchowski equation (1.3) and
equation (2.5)

d )
% (Us):tfa /08) = - (A?Uétfv pS) + (U;:tfv Ps)

= _(Us):tf7K(H57ps)) + (Us,):tf7K(H57ps))

so the identity (U&tf, po) = (f,p) holds for any f € By; thus
P = (Uoy) po.

b) A representation formula for o). The second step to solve the affine equation (2.2) is to

use the variation of constant method as explained in the introduction. The following lemma will be
used on the way.

LEMMA 4. The function t € [0,T] — o} € My is the only solution in (Mo, |.|lo) of the weak
differential equation

d 1 .
VfGB(), %(f)o—t): (va)\(Mi\vat)> +§(f¢K)\(,u??,u?))a 0o grven.
PrROOF  Note first that since the function ¢ € [0,T] — o7 € M satisfies the strong equation (2.2)

it also satisfies the above weak equation. Given two solutions o; and @; of the latter, one has
for any f € By

(fyo't —5t) = /(:(f,K)‘(H?,Es - Us)>d5 = /(:(Aé‘f,ﬁs —as)ds.

But as the operator A2 on (B, |.|[o) has norm < 3M||uol|o, we must have

t
(.00 — ) < 3M]ollollfllo / ot — Trllods,
0
and so
t
e — 4llo < 3M|ollo / s — Tallo ds.
0

One deduces from Gronwall’s formula that o; = o. >
Define the map A‘Q)‘ on By by the formula

AP (@) = [ ) = 1)~ S} o)
notice the identities

(AP fo) = (F K0, 1)), and  (AYf,u2) = (f, K2(ud,113)), f € Bo.
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PROPOSITION 5 (Representation formula for the sensitivity). One has

1
(27) =3 [ (\02) s
for any f € By.

PrOOF  Denote temporarily by &7 the measure f € By %fo (Aa)‘U)‘tf, ,us) ds; it belongs to
M. The following calculus is fully justified in the Banach framework of (Bj, HHO) For any
f € By, one has

;i(f o7) = i(l/ AU f ds us> = (2/ APUXANM ds, us> %(Aa’\f, )
- (stnat) 5 (a000)
= (£ (30)) + (5™ (o).

Since 07 satisfies a weak version of equation (2.2) it coincides with o7 according to lemma 4.
>

REMARK ON THE SENSITIVITY EQUATION (2.2). Since solving explicitly equation (2.2) requires
the explicit knowledge of (H?)t>07 from which an explicit formula for the sensitivity follows by
differentiation, the above representation formula is useful not in providing some explicit formula
for the sensitivity, but in so far as it enables to get some a priori information on ¢ from some
quantitative informations on (1);>0. As Smoluchowski equation is solvable in only a few cases,
this is the best kind of information one can hope to get in a general framework. We shall use it
crucially in the next section where we extend the regularity result stated in theorem 2 to a class
of unbounded coagulation kernels by showing that the representation formula for the sensitivity
still makes sense and provides indeed the derivative of the solution to Smoluchowski equation with
respect to A.

Note, however, that equation (2.2) can be usefully used for simulation purposes. One can indeed
associate to it some Marcus-Lushnikov-like [32] interacting particle system converging to its unique
solution as the number of particles increases indefinitely; we briefly describe it here and refer the
reader to the article [31] for the mathematical details and a numerical study of the associated
algorithm. We write for simplicity o; for o7 as A is fixed here.

The measure o, is a non-positive; denote by 0:/_ its positive and negative parts. Set also
K, = max{K’,0} and K’ = max{—K',0}. The particle system we introduce is motivated by the

following formal re-writting of equation (2.2)

) ) . 1 _ 1
61 = of = o7 = (Ko, o) + 5K (e i) ) = (K ey 07) + 5K (e ).

Three coupled systems of particles @N (,uiv, oj N, ot_’N) simulate g, oj and o, respectively, the

first being the usual Marcus-Lushnikov particle system. Set

1
_N< S Gy Y G Y 5z2>7

i=1..m k=1..p l=1..q

and associate to each pair

e 1 < i< j < m,some exponential random variables R;;, S;; et Tj;, with parameters K (y;,y;),
K’ (yi,y;) and K’ (y;,y;), respectively,

e (i,k) € [1,m] x [1, p], some exponential random variables Uy, with parameters K (y;, 1),

e (i,0) € [1,m] x [1,¢], some exponential random variables V;, with parameters K (y;, z;).
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All these exponential times are independent. Let W be the first time where one of these clocks ring.
If

W = Riju then A© = ((sxierj - 6x1 - 6x]) ®0d O,

W =S;;, then AO =0® 0p4a, ® (0a, +0s,),

W =T, then AO =06 (0 + 0z;) B O,4a;5

W =Usy, then AO =0® (0p,4y, — Oy,) D 0oy,

W =V, then AO =0® 0, & (p42 — 0z)-
The process O, is constant over the time interval [0, W) and has a jump %A@ at time W; the
dynamics is Markovian. Some classical methods of weak convergence of measure-valued processes
can be used to prove that this interacting particle system converges in some sense to the unique
solution of the sensitivity equation (2.2) provided by theorem 2 and theorem 6 below see [31].

3. FROM BOUNDED TO UNBOUNDED KERNELS

We show in this section that one can extend the regularity result theorem 2 to some unbounded
coagulation kernels under some conditions. Suppose for that purpose that one has

(31)  VAeUVazyeR}, EMzy) <e@)ely) and |[Kz,y)| <o) o),

for some sub-additive function (%), greater than 1. Suppose also that there exists a (small) € > 0
such that

(3.2) ("%, o) < oo

In his paper [8], J. Norris proved that (%, 4') remains finite on some time interval [0,7 (1))

if (%, o) is finite. The same argument shows that (¢, u') also remains finite (on a possibly

different time interval, still denoted [0,T(10))) if (¢*7<, po) is finite. Given some T' < T'(p19) denote
by C(T) a positive constant such that

(3.3) VST, (9" m) < C(D).

The function ¢ being greater than 1, the other moments (¢?, '), with 1 < p < 4 + ¢, are also
bounded above by C(7") on [0, T].

In order to estimate the tail behaviour of measures, we introduce the following spaces of measures,
indexed by non-negative reals p:

My = {u; |lullp = (7 ul) < oo}
Using this notation condition (3.3) reads: u; € My C My, for all 0 < ¢t < T. To compare the

behaviour of non-bounded functions with the behaviour of ¢, one defines the increasing family of
function spaces, indexed by non-negative reals p:

Bp:{f;supﬁ<oo};

we shall write ||f||, for this supremum. Note that |||/, = sup{(f,n); f € By, ||fll[p < 1}. The
purpose of this section is to prove our main result.

THEOREM 6 (Sensitivity for unbounded kernels). Assume condition (3.1) and the moment condition
(3.2). Then the map (t,\) € [0,T] x U — p € (M, ||.|l1), is a C* function and its derivative o}
satisfies the following equation for any f € By.

t 1 t
(r.od) = (o) + [ [N en& e+ [ [ sy o d)is
The function o is the only (Ml; H.Hl)—valued solution of this equation.

4We have o(z + y) < o(z) + ¢(y), for all z,y € R%.
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We prove this statement by an approximation procedure. Let {K)‘ i N}N>0 be a sequence of bounded
symmetric kernels converging towards K, and such that 0yK* and 8/2\K)‘?N are also bounded,
with |K* N (z,y)| and |9\K*i¥ (z,y)| bounded above by ¢(z) p(y). Let pp Y and 7Y be the
measures associated with K* ™ and 9yK*' ", constructed in section 2. Theorem 6 is proved by
showing that

(1) the map (t,\) € [0,T] x U ,ui‘;N € (My,]l.|lh) is, for each N, a C' function, and
AN AN .
a)\,ut = 0y m (Ml?Hul)

(2) the sequence {,u;\;N}N>O converges towards g in (Ml’ HHl), uniformly with respect to
(t,\) €10, T xU;
(3) the sequence {O't)\;N}N>0 of its derivatives converges in (Mg, ||.|1) towards some o7, uni-

formly with respect to (t,\) € [0,T] x U.

Points 2 and 3 will be proved sections 3.1 and 3.2 respectively. We prove the first point here. Denote
by M an upper bound of K*¥. Notice first that the inequality [{f}(z,y)| < 2| fll (¢(z) + ¢ (y))
gives for any p € My

Y

(£, K ()| < 2M £ / () + 9(v)) u(da)(dy)
< AM| 1l

so the Radon measure KV (1, 1) belongs to M if p does. Now, the following inequalities enable
us to see that the vector field y — K*V(p, p) on (My, |.|[1) is Lipschitz. The function f € By has
norm no greater than 1 and p, v € M.

(7252 ) =K ¥ () )| =201 [ (o) + 0(0) (o)l = v(dy) + o]y vl ()

<2M ([l = vilo + lleelloll = vl + [Wllollie = wllx + vl = vilo)
<AM ([l + vl e = vlla-

The differentiability of the map A € U — u?;N € (Mh ||||1) can be proved in the same way as
was done in section 2.2 in the framework of (Mo, ||.]lo). To prove the continuity of ,ui‘;N and U;‘;N
with respect to (¢, \) € [0,T] xU, one checks that the vector fields appearing in equations (1.3) and
(2.2) are Lipschitz in (A, u) € U x My, mimicking what was done in the proof of theorm 2 in the

framework of U x My. This completes the proof of the first point.
Note that the operators A2 and A2 " are bounded in (M, ].l1). with norm no greater than

4M |1, so that the representation formula for Ut)\;N given in (2.7) also holds in (My,][.]l1). The
remainder of this section is dedicated to the proofs of points 2 and 3. After a preliminary result
in section 3.1, we prove a stronger version of point 2, useful in the sequel. The proof of point 3 is
made in section 3.2.

(3.4)

As we shall prove these results for a fixed A, we shall drop the X in uf‘ and O't)‘ in the sequel. The
following elementary result will be used repeatedly; its proof is left to the reader.

{FHa, )| < 220 fllp(¢7 (@) + " (y))-

As a last remark, note that the measures /,LI{V satisfy for any 0 <t < T and N > 0 the same moment
inequality (3.3) as fu.

LEMMA 7. For any p > 1 and any f € By,

3.1. Convergence of p¥ to p; in (May.,|.|lore)- Let {#t}o<t<T(uo) be the solution given by
Norris’ theorem; choose T' < T'(pp). It is worth noting that using dominated convergence and the
moment estimate (3.3), the measures {ju}o<i<r satisfy the weak version (1.1) of Smoluchowski

equation for any f € Bsy.. We start this section showing that they depend regularly on ¢.
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PROPOSITION 8. The path {pto<i<r is a C' path in (Mase, || [|l21)-

PROOF  One proves that the path {1 fo<t<r is 1) Lipschitz in (Mg, [|.[|34<), 2) Ctin (Moje, || [l24¢)-

1) Take a function f € Bsy.. One establishes the following inequalities using the inequality
K(z,y) < p(z)¢(y) and the sub-additivity of .

o =) <5 [ [HrH )|y dr

< % / / {7 (2) + ¥ (1) Yoo (@) (v i (dav) o (dy)

< 26|13+ / / o (@) () () 1 (dy) i

< 2¢c[|fll3+= (s p0) sup [lprllase [t = sl-

ST

Taking the supremum of the left hand side, with || f||31- < 1, this shows that the path {s}o<t<r
is Lipschitz in (M3+5, ||.||3+5)7 with Lipschitz constant < 2¢.C(T)2.

It follows from this fact that the formula
1
(fon) = 5 [ UK ) K g)pdn)pelay)

defines an element 1; of (M2+5, ||.||2+5) which is continuous with respect to ¢. Indeed, since
one has for any f € Boy,,

o —v)| =5

/ () K () L () (e — 1) () + sy e — ) ()}

< Sl [0 + 02 () o)l (e — sl ) + sl — sl )
< 2| fll2+eC (D)l e — psll34,

we have ||y — vs|laye < 8cclC(T)? |t — s|.

2) Finally, write for any f € Ba,.

t
(fa,ut_,us_(t_s)ys) :/ (fsvr — vs)dr,

and note that the integral is uniformly o(t — s), for [|f]24« < 1; this proves that the path
{1 }ose<r is differentiable, as a path in (M2+5, ||.||2+5)7 with continuous derivative v;. >

We shall use this result in the form: The path {©*™pitoi<r is a C* path in (Mo, |.]lo). This
enables us to apply a useful lemma of Kolokoltsov (see the appendix of [36]) of which we give a
clear and short proof in section 4.

LeMMA 9 (Kolokoltsov [36]). Let {ps}ocs<r be a Ct path in (Mo, ||-|lo), with derivative {ps}o<s<r-
There exists a {£1,0}-valued measurable function (s,x) € Ry x R — e4(x) such that we have

® ||pt||0 = ||p0||0 + fot(gs’ps) ds, fOT any t € [O’T]:
° (fv ‘pt|) = (f5t’Pt); fmn all f € B?t € [O?T]

PROPOSITION 10. The sequence of measures {Hf}N}O converges to [ in (M2+5, \|.H2+5), uniformly
with respect to t € [0,T].
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N _

PrROOF  Applying Kolokoltsov’s lemma to the C' path {©?¢ (4] n (Mo, ||.]lo), and

}0<t<T
denoting by 55 the function given by theorem 13, we can write

t
1 = tllase = / @) il — pul(d) = / (N> i — ) ds

= / {eNp* Y (z,y) (KN(x,y)MiVm — K(x,y)M?Q) (dx ® dy)
/ / (N P @, ) KN () (12 — 122) (de @ dy) ds
+ / / (NG ) (K — K) (2, y)p (de © dy) ds.

The second term converges to 0 by dominated convergence and the fact that ||us||34¢ is bounded;
call it on(1). To handle the first term, write it as

[ [ Y ¥ ) (= ) i) + ) = 1))
/ SNy @ e @l = o) (e + ) () = (4

we have used the symmetry of the expressions with respect to  and y. Now, using the fact
that !s-:é\f! < 1, one can find some constant C; such that

(@ el (@) < D@+ ) — ¢ (@) — Y )N @) ()
<@ (@ +y) — P (2) — Y (el (@) ().

To deal with the upper bound, note that there exists a constant C. such that the inequality
(a+b)* —a® < Cq (a® b +0%).

holds for any a,b > 0. It follows that

(=N Y (@, y)el (2) < Co(9* 5 (y) + ¢ e (2)p(y)),

SO
t
() < e / / (2 () + 0 (@) () KV (2, 9) (s + 1) (dg) 1Y — el () ds
<e / (20rtalee v 1 e s = el + 2 sl V s ) s = el ) i

t
ACCT) [ =l ds

Putting the pieces together, we have obtained

t
16 = pellase < on(1) + 4C.C(T) / 1Y = igllone ds,
0

where oy (1) is uniform in ¢ € [0,T]; Gronwall’s lemma enables to conclude. >

All the estimates above do not depend on the implicit parameter \; this proposition proves (a
stronger version of) point 2 in our strategy of proof.
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3.2. Convergence of o} to o; in (My,||.[1). We prove the third point of our strategy in this
section. For that purpose, we rely crucially on the representation formula (2.7) for o, for bounded
kernels, as it brings back the problem of proving the (’onvergence of o} to a convergence problem
for (12 )o<s<t and its functionals UL, Given ¢ > 0, denote by By the set of real-valued functions f

Ty

on R, such tha of is bounded and converges to 0 at infinity.

PROPOSITION 11. (1) There ezists a uniformly bounded family of operators {Us}tocs<i<r on
(BS,||.ls) such that the functions s,t — Us,f are differentiable in (BY,|.|[o), when f €
Biye, with derivatives =AU f and Ug Ay f, respectively.
(2) These operators Usy preserve BY, ., and are bounded in (BY, ., ||.|1+)-

PrROOF — This proposition is a direct application of theorems 15 and 16 on propagators, in section
1
5; we apply them to the two pairs (goHE, g03) and (gpi,glerE). We adopt the notations

z) = /{f<x+y>—f<x>}K<z,y>us<dy>, M., f(z / F) K () s (dy)

used in section 5.

1. Applying theorems 15 and 16, we only need to check that the inequalities
o Joo” < C(a)||ps a1,
i ‘Ms(ﬁoa)‘ < [psllat1e,
o forany f € By, Jof <277 (0P (@) sl + (@) |slp1)-

hold for any « and 8 > 1, which is done by elementary algebra.

c(T)

2. To apply theorems 15 and 16 to the pair (goé ) g01+5) one needs to verify that Jsgoé Tgp

N[

This can be done by writing

J1et+0) - @K < [ {(o0)+ o) - ot} Kyl

>
Theorem 16 provides us with an additional information: Us; and all its approximations U + have a
norm on BY,_ controlled by the right hand side of equation (5.7), which is independent of N.

Since U sends B?JFE in itself, and Ag)‘ is easily verified to be a bounded operator from Bj,.
into Bote, with a uniformly bounded norm for 0 < s < ¢t < 7', the formula

(3.5) (f,00) = %/Ot (ADU. of ) ds

defines a measure o; belonging to M. By proposition 11, the quantities (f, J,;N) and (f, O’t) are
bounded uniformly in ¢ € [0,7], N > 0 and A\ € U, given any f € By.

THEOREM 12. The sequence {o}" converges to oy in (My, ||.[[1), uniformly for t € [0,T].

}N>O
PROOF — We need to prove that the limit

(o) =3 [ 0NN s — 3 [ [ Was K ) ds = (1)

holds uniformly for || f|l1 <1 and 0 < ¢ < T. If one can prove that s,tf converges to U+ f in
Biie, uniformly in 0 < s <t < 7, then
e the inequality ‘Ka)‘ N‘ z,y) < o(x)e(y),
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e and the fact that ul’ converges to pis in (Maye, ||.[|242), uniformly in s € 0,77,
will enable us to apply dominated convergence to get the result. We are thus led to prove that
there exists a decreasing sequence {ay }n>0, converging to 0, such that one has

|Ustf = Ui f e < anl| £l

forany 0 < s <t < 7T and any f € Bj.
Since f € By C B4 one can use the differentiability property of Us; as a function of s and ¢
to write

t d t
Us,tf—U;th:/s @(US,UUﬁt)fdu:/s (Usu(Ay — ATYUD,) f du.

As UJV,f belongs to BY,_, with a norm uniformly controlled for ||f|l; < 1, and as Uy, is a
unlformly bounded operator on By, it suffices to prove that there exists a decreasing sequence
{an}N>0 converging to O such that one has

H(Au )gHZJrs an,
for any g € By4e, with ||g|l1+e < 1. To prove this fact, write

02 = )90 = | [0 o) (K o) - KV G )|

N

co [ (@142 (@) + o) (K e = n21(d0) + 1K = Ko ) (dy) + 260000 — ()
22 @) 11l = sl + oo (@) N = i e + e () (1K = KV (@, ), o)

e (P OV K = KN, ), 15) + e (@) 1 = pall + cpl) [ = sl

This formula makes it clear that we shall get the exiqtence of these ay’s if we can prove that the
sequence of functions x — ( Ie( ‘K KN| ,us) converges to 0 in Bay. as N — +o0.
This fact is clearly seen on the following 1n9quahty where M is an arbitrary positive constant.

1 1
s [ ¢TI = KV @ inldn) < s [0 s ()

1 1
<o [ 55 WL srpmsn neldy

$21 || s+
S ]\;1+5519"(x)>M+ /¢2+E(y)1<ﬁ(y)>%“5(dy) Lo@<m

< cep

>
Proposition 10 and theorem 12 together prove point (2) and (3) of our strategy of proof for theorem
6, showing that ,ug\ is a C! function of its arguments. To complete the proof of theorem 6, it remains

to prove that at)‘ is the unique solution in My of the equation
(3.6)

(rod) = (o) + [ [ (D& e+ [ [ s @) i s

where f is any bounded function.
We have seen in section 2.2 that this identity holds if one replaces o and pp by at and ui‘;N

resspectively. Use then the above convergence results O't)\ N O't in My, and ut — uf‘, in
Moy, together with the 1nequahtles

A A A A )\;N
| 5 o) = (£ N0 )| <81 loo (st = 0 ot + D Vi o = oV )

(£ ) = (£, K N,ut )| < 3@ 1l (I = 1Vl + 1o = 0} V),
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to pass to the limit properly.

To prove uniqueness of the solution to equation (3.6) in (My, | - [|1) it suffices to show that the
equation

Vi€ B (fim) = / /{fx+y F(@) = F) VK (2 y) s () (dy)ds

has at most one solution in (My, || - [|1). We have written here B, for the set of bounded Borel
functions with compact support. Rewrite this equation under the form

t
(o) = /0 (Auf ) ds

Repeating the proof of corollary 11, it is seen that there exists bounded propagators U ; on (B(f, Il -
||1) such that the function s € [0,¢] — Usf solves the equation %U&tf = —AUs . f for any
f € Bo(C BY) and t € [0,T]. It follows that the expression (Us+f,vs) is well defined and that

d
d_(Us,tfy ’Ys) = (_AsUs,tfy ’Ys) + (AsUs,tfy ’Ys) = 0;

o (f,1) = (Uosf,70), implying the uniqueness of 7. This ends the proof of theorem 6.

4. COMMENTS

4.1. Related works. One can see the main roots of theorem 6 in section 4 of Kolokoltsov’s pio-

neering article [33] on the central limit theorem for the Marcus-Lushnikov dynamics. He develops in

this section tools for the analysis of the rate of convergence of the semi-group of Marcus-Lushnikov

process to the semi-group of solutions of Smoluchowski equation. Recall the Marcus-Lushnikov

process {th}t>0 is a strong Markov jump process on the space of discrete measures whose jumps
- 1

are as follows. If its state at time ¢ is — Zémi(t), for ¢ in a finite set I; depending on t, define, for
n

K (@i(t), ;(t))

n

t < j in I;, independent exponential random times T;; with parameter and set

T =min{Tj;; i < j}.

. . . 1
The process remains constant on the time interval [t,¢+7"[ and has a jump - (5:cp(t)+:cq () ~ Oap(t) — (5%(0)

at time ¢t + 1", if T' = T,,,. The dynamics then starts afresh. The convergence of this sequence
{X™},>0 of processes to the deterministic solution of Smoluchowski equation was first proved un-
der general conditions in [8]. Yet, no fine analysis of the convergence of the corresponding semi-group
was done before [33]. We explain roughly his idea to see how similar equations to the ’variation’
equations (1.3), (1.4) appear in his context.

Suppose we are in a situation where existence and uniqueness of solutions to Smoluchowski
equation hold into a proper sense, and denote by {7;} and {T}"} the semi-groups of Smoluchowski
and Marcus-Lushnikov dynamics. Also, denote by L and L" their generators. Then, given any
(good) function F' and a measure p

(T, — T F () = / (1, - DT.F) (1w ds.

The choice of a function F of the form F(u) = [ g(x) pk(dx), for some symmetric function g of k
variables, provides a 'measure’ of the momentq of . One haq T F () = F(ps), where pug = p.
Introducing some derivation operation § on functions on measures:
Flu+<8,) — F(u)

OF (p; x) = lim . :
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one can write for any function G

1

(4.1) (L" = L)G (n) = 5 /(5G(u; 22) — 260G (p; 2)) K (z,z)p(dz) + O(n*3/2).
n

One thus sees that taking G = T, F, with the above F', leads to consider the quantity
3((g, 1)) = k (9, 1851 @ bpur)),

where
pre(p + €62) — pua (1)

€
is 'the’ derivative of p; with respect to its initial condition. Terms of the form §(du;) arise in
the O(n_3/2) term of equation (4.1). This analysis brings back the estimate of (Tt — Tt")F (1) to
estimates on g, 6jus and 6%, To do so, Kolokoltsov shows that du, is a solution of the linear
equation

Opy = li
b =l

d
Eéus = K(HSa 5#5)

in some sense, and that §2u is a solution of the affine equation

d

%521% = K(H& 52”8) + K(5H5u 5/1’8)

in some sense. The tools used to solve these equations are essentially the same as those used above;
the reader may will find the details given here helpful to unzip the section 4 of [33]. We have used yet
a slightly different approach in the implementation of the variation of constant method. Note also
that we have been able to go from the framework of ’sub-linear’ kernels of [33]: K(z,y) < C(1+z+y),
to the framework of an essentially ’sub-multiplicative’ kernel: K (z,y) < ¢(x) ¢(y), an improvement
which is of some practical interest.

4.2. Kolokoltsov’s lemma. This paragraph contains a simple proof of Kolokoltsov’s lemma, which
was used in a crucial way to prove a uniqueness result in the original article [36] where it was first
introduced. We prove it here in a slightly less general framework than in [36], sufficient for our
purposes as well as for its use in [36]; the gain in clarity and volume of the proof is substantial.

Let (2, F) be a measurable space with a o-algebra F generated by a filtration {F;,},>0 made
up of finite o-algebras. We shall denote by {A}}, the atoms of F,. We shall write (M, |.||) for
the space of finite signed-measures on (€2, F), equipped with the total variation distance. We shall
define, for each n > 1, the total variation of a measure with respect to F,:

YueM, |l =sup{(f,n); f € Fn |fl <1}
These quantities have the property

(4.2) VueM, ullmy — Il

Recall that the topological dual space of (M, ||.]|) is the space (B, |.|) of bounded measurable func-

o~

tions on (€, F), equipped with the supremum norm. We shall write B for the set of bounded func-
tions g on [0, 7] x Q, with norm ||g|| = sup{gs(z); s € [0,T], z € Q}, and shall define (M\, HHTV>

as the space of finite signed measures on [0,7] x 2, equipped with the total variation norm.

THEOREM 13 (Kolokoltsov’s lemma [36], Appendix). Let {ps}ocs<r be a Ct path in (M, |].|]), with
derivative {ps}to<s<r. There exists a {£1,0}-valued measurable function es(x) such that we have

o llpdll = llpoll + fy (€5, p5) ds,  for any t € 0,7,
hd Vf € 87Vt € [OvT]? (fv‘pt‘) = (fEt’Pt)-

We shall make use of the following elementary lemma in the course of the proof of theorem 13.
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LEMMA 14. By convention, sgn(0) = 0. We have for any C' function g : R, — R

t
l9(t)] = [9(0)] + /0 sen(g(s)) g (s)ds.

PROOF — Using lemma 14 in each set A}, we can define a {£1,0}-valued function s — e5'? such
that

t
e (AD)] = | po(AD)] + /0 £nP (AP ds.

Define then the function €”(z) as being equal to €5'” on A}; the preceding identity yields

t
(4.3) el = llooll + /0 (€7 pu) ds.

The functions €” belong to the set B of bounded functions on [0,7] x Q, and have supremum

norm no greater than 1. Using the duality between M and B provided by integration, equation
(4.3) can be written

(4.4) oy = lpollny + (€7, ps @ ds).
Now, since (B\’ m) is the topological dual space of (M\, ”-”TV>7 its unit sphere is weakly-*

compact. We can thus find a sub-sequence {e"#},>; and an element € of g, with norm less
than 1, such that
VpeM, (€%, p) — (& n).
k400

Together with formulas (4.2) and (4.4), this convergence result, applied to the measures ps(dz)®
1jo,¢(8)ds, gives

t
(4.5) vee 0,7, llpell = llooll + / (a1 ) ds.

To prove the second point of theorem 13, remark that since

T T
/0 sl uy s = /0 (7 po)ds = (", ps ® L 1yds),

we have
[lps| ® ds|lrv = (g, ps ® 1[0,T}d3)-
It follows that
esps = |ps|
dps

d|ps|
preserves identity (4.5) and proves the second point of theorem 13. >

for almost all s. Define €4 to be equal to

on the exceptional set. This modification of e

5. APPENDIX ON PROPAGATORS

We collect in this appendix the material on propagators needed in section 3.2 to prove the
convergence of o}V to oy in (./\/ll, || - ||1) Recall that a propagator is a family {Us;}s<; of operators
such that Uy = Id and one has Ug Uy, = U, for all s < t < r. Define an (a priori) unbounded
operator on functions setting

Af@) = [ATHa ) K gy,
Theorem 16 below states conditions under which the backward/forward differential equation

(5.1) Us = —Agug, 0 < s <t <T, wuy given,
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can be solved in some Banach space of functions. Some notations are needed. Set
(5 2)

/{f x+y) — f() K (z,y)ps(dy) = /f x +y) K (z,y)ps(dy) — (/K .y us(dy)> f(x)
= Ly f(2) — 75(2) f(2),

and
(5.3) /f (z,y)us(dy), Ts(z)= /05 Tr(z)dr.

Considering the backward /forward differential equation

(5.4) fo=—3fs, 0<s<t<T, f given,

as a perturbation of the integrable equation fs = 7sfs, one sees that equation (5.4) is formally
equivalent to the integral equation

t
(5.5) fo=elTf 4 / eI L, f, dr.
S

Given some positive function h, set B, = {f; sup % LIRS oo}, and define ||f||, = supm for

f € By. The space (Bh, Il Hh) is a Banach space. Define al@o BO as the set of functions f € By, such

that £ 5 goes to 0 as h goes to infinity. The following two theorems are part of the folkore; they are
Stated under this form in the appendix of Kolokoltsov’s article [33].

THEOREM 15 (Existence of propagators, first part). 1) Suppose that there exists two continuous
positive functions h and h', and positive constants ¢ and ¢’ such that

a. 0<h,<h, hIEBh,
Vsel0,T], Jsh' <R, Jsh <ch.
Then, given t € [0,T] and some function uy € By, the minimal solution of the backwards/forwards
integral problem (5.5) with final/initial condition w; is of the form {Ssiui}s for some bounded
operators Ssy on (BY,|.||ln) depending continuously on s and t, with norm no greater than e“l*=*!.

If now one considers the backward/forward differential equation

fS:_ASfS:_(‘]S_MS)fsa 0<s <T, fi=f given,

as a perturbation of equation (5.4), the preceding differential equation is formally equivalent to the
integral equation

t
(5'6) fs :Ss,tf_/ Ss,erfr dr.

THEOREM 16 (Existence of propagators, second part). 2) Suppose, in addition to the hypothesis
of theorem 15, that the following hypothesis on the perturbations Mg hold.

b. The family {M;}ocs<r is a bounded family of linear transforms of (B, ||.||n)-
Denote by ||Mg||n the norm operator of Ms. Then the series

t
Us,tf = Ssﬂgf — / SS,TMTST,tf dr + / Ss,ranSrl,rngQSrg,tf dridry + - -+,
s s<ri<ra<t

converges in (Bp, ||.||n) for any f € By. It defines a propagator on (B,?, HHh) depending continuously
on s and t, and with norm

(c+ sup M1y )[¢—s]
(5.7) <e ssrst
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The map s — Ug+f is the minimal solution of the backwards/forwards integral problem (5.6) with
final/initial condition f.

3) If finally

c. o for any f € By, the function s — Jsf € (B, ||.|[n) is well defined and continuous,
e cach My sends continuously (Bp,||.||n) in (Bw, ||-||n),

then for any f € By, the function s — Usf € (Bg, ””h) is differentiable, with derivative —A U f.
It is also differentiable as a function of t, with derivative U Aif.
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