
SENSITIVITY FOR SMOLUCHOWSKI EQUATIONI.F. BAILLEULAbstrat. This artile investigates the question of sensitivity of the solutions µλ
t of the Smolu-howski equation on R

∗

+ with respet to parameters λ in the interation kernel Kλ. It is provedthat µλ
t is a C

1 funtion of (t, λ) with values in a good spae of measures under the hypotheses
Kλ(x, y) 6 ϕ(x)ϕ(y), for some sub-linear funtion ϕ, and Z

ϕ
4+ε(x)µ0(dx) < ∞, and that thederivative is the unique solution of a related equation.1. Introdutiona) Smoluhowski equation. Many hemial reations, suh as soot formation [1℄ or �ame syn-thesis of organi or inorgani nanopartiles [2℄, have in ommon a mirosopi mehanism wherepartiles of di�erent masses evolve in a homogeneous medium. Eah of them performs a free thermalmotion, with di�usivity depending on its mass, until it approahes enough any other partile. Thesetwo partiles will then oagulate to reate a new one, whose stuture will be a ombination of thestruutres of eah of its anestors [3℄, [4℄.The experimentor has only aess to marosopi quantities suh as the onentration of thedi�erent masses along time. How an he desribe the evolution of these quantities from this mi-rosopi desription of the dynamis? Mathematially, we an desribe these onentrations asmeasures µt on the spae R

∗
+ := (0,+∞) of masses of speies. What omes out from experimentalmeasurements are quantities suh like the onentration of partiles with a mass between suh andsuh number, or, more generally, quantities of the form (f, µt) ≡

∫
f(x)µt(dx), for some funtions

f . Smoluhowski has proposed in [5℄ to desribe the evolution of the observations (f, µt) in a wellmixed system using some symmetri kernel K(x, y) desribing the rates at whih oagulations our:(1.1) d

ds

(
f, µs

)
=

1

2

∫ {
f(x + y) − f(x) − f(y)

}
K(x, y)µs(dx)µs(dy).Roughly speaking, a partile of mass x oagulates with a partile of mass y at rate K(x, y) toreate a partile of mass x + y. Numerous works have been devoted to this equation, both in thephysis/engeneering and mathematis litteratures, motivated by di�erent questions. The reviewsby Aldous [6℄ and Leyvraz [7℄ give a good overview of the state of the art a few years ago. Themain trends of mathematial researh are onerned with the well-posedness problem [8℄, [9℄ ofSmoluhowski equation (1.1), the gelation problem [10℄, [11℄, [12℄, [13℄, [14℄, [15℄, [16℄, the strutureof self-similar or asymptotially self-similar solutions [7℄, [17℄, [18℄, [19℄, [20℄, and the mean-�eldapproximation of Smoluhowski equation by random mirosopi dynamis [21℄, [22℄; simulationand numerial issues are also of great importane [23℄, [24℄, [25℄, for pratial purposes.b) Sensitivity. The parameters of an experiment are inorporated into the model dynamis (1.1)as parameters λ ∈ R

d in the interation kernel K = Kλ. Binder granulation a priori requiresfor instane around 10 parameters to desribe it, [26℄. Finding the relevant parameters, given theexperimental data (the so-alled �inverse problem�) is the fundamental step whih will allow futuresimulations to provide law ost preditions � see e.g. [27℄ for some theoretial bakground on thatDate: April 7, 2011.2000 Mathematis Subjet Classi�ation. Primary: 34A34, Seondary 34A12.Key words and phrases. Smoluhowski's oagulation equation, sensitivity.1



2 I.F. BAILLEULproblem, and [28℄ for a global approah of the inverse problem for general population balanes.From a di�erent and as important point of view, the fat that all experimental measurements areapproximate emphasizes the ruial need for a study of the dependene on parameters in pratialappliations.Let denote by λ a generi multi-dimensional parameter, Kλ the orresponding oagulation kerneland µλ
t the solution to Smoluhowksi equation assoiated with Kλ. A simple and largely usedmethod for tuning the parameter to data onsists in formally applying a method of steepest desentso as to minimize some distane between µλ

T and µobsT , in the typial ase where we are interestedin the value at time T of the system, [29℄. The measure µobsT is given by experiments. To bee�etive, the algorithm requires the knowledge of the di�erential σt
λ of µλ

t with respet to λ so asto hoose the steepest desent diretion at eah step. Note that σλ
t is a priori a signed measure.Engineers usually estimate it by a �nite di�erene orresponding to two lose values of λ. The mainapproah to do that onsists in approximating the di�erenes µ

λ+ǫei
t −µλ

t

ǫ (for a basis vetor ei of R
d)by the orresponding di�erene for the approximating partile systems � see [30℄ for a non-trivialand e�ient way of doing that, and refer to the bibliographies of the works [29℄, [30℄ or [31℄ formore referenes on the omputational analysis of dependene of µλ

t on λ. However, no justi�ationthat ∂λµλ
t is well-de�ned (in the mathematial sense) and well-behaved has ever been given up tonow, whih puts the previous investigations on a somewhat hazy mathematial framework.The aim of this artile is to prove that µλ

t is a C1 funtion of (t, λ) (under proper onditions andin a suitable sense) and that it is the unique solution to some equation (�sensitivity equation�). Notonly does this fat put the existing approahes on a �rm ground, but it also leads to a new partileapproximation [31℄ for sensitivity whih happens to be more aurate than any other method. In thesame way as one an assoiate some �nite interating partile systems to Smoluhowski equation, theso-alled Marus-Lushnikov proesses [32℄, one an assoiate a pair of oupled interating partilesystems to the equation assoiated with the sensitivity (�2.2.2), suh that their di�erene onvergesweakly to a solution of the sensitivity equation, as a onsequene of a kind of law of large numbers� a fat proved in [31℄. The well-posedness of the sensitivity equation obtained in the present workjusti�es theoretially the use of that partile system for simulating the sensitivity.Notation. Given a loally bounded non-negative kernel F (x, y) on R
∗
+ × R

∗
+ and Radon measures

µ, ν on R
∗
+, one de�nes a signed Radon measure F (µ, ν) setting(1.2) F (µ, ν) =

∫ {
δx+y − δx − δy

}
F (x, y)µ(dx) ν(dy).) Strategy for studying the sensitivity of Smoluhowski equation. We desribe in theremainder of this setion the approah we use to prove the above mentionned di�erentiability result.From a mathematial point of view, the main di�ulty in solving Smoluhowski equation omesfrom the fat that whilst the weak formulation (1.1) is always a well-de�ned problem (although itmay have no solution), it is not easy to �nd a Banah or a Fréhet spae of (signed) measures wherethe di�erential equation(1.3) µ̇s =

1

2
K(µs, µs)itself is meaningful. This di�ulty disappears for bounded kernels, where Smoluhowski equationan be solved in the Banah framework of Radon signed measures equipped with total variationnorm. The omputation of ∂λµλ

t is formally straightforward and leads to a representation formulainvolving essentially only {µλ
s}s6t. The map t → µλ

t solving equation (1.3), its derivative withrespet to λ solves formally the equation(1.4) σ̇λ
t = Kλ

(
µλ

t , σλ
t

)
+

1

2
∂λKλ

(
µλ

t , µλ
t

)



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 3obtained by di�erentiating equation (1.3) with respet to λ; we have written ∂λKλ(x, y) for thepartial derivative of Kλ(x, y) with respet to λ. This equation an be solved, onsidering �rst thelinearized problem(1.5) ρ̇λ
s = Kλ(µλ

s , ρλ
s )before using the variation of onstants method.(i) We introdue a dual evolution equation on funtions to study the linear equation (1.5). Tothat end, de�ne some time dependent operators Λλ

s on funtions setting(1.6) Λλ
sf(x) =

∫ {
f(x + y) − f(x) − f(y)

}
Kλ(x, y)µλ

s (dy).These operators satisfy the identity
(
Λλ

sf, ρ
)

=
(
f,K(µλ

s , ρ)
)
.Now, if one onsiders the bakward linear equation

ḟs = −Λλ
s fs, s ∈ [0, t] and ft = f,its solution {fs}06s6t depends linearly on f , so we an write it in the form Uλ

s,tf , for a linearoperator Uλ
s,t. This funtion Uλ

s,tf has two important properties. As a funtion of t it satis�es theidentity d
dtU

λ
s,tf = Uλ

s,tΛ
λ
t f , and if {ρλ

s}s>0 denotes a solution of equation (1.5), then
d

ds

(
Uλ

s,tf, ρλ
s

)
=

(
−Λλ

sUλ
s,tf, ρλ

s

)
+

(
Uλ

s,tf, ρ̇λ
s

)

= −
(
Uλ

s,tf,K(µλ
s , ρλ

s )
)

+
(
Uλ

s,tf,K(µλ
s , ρλ

s )
)

= 0.So we see that the solution to the linear equation (1.5) needs to be given by the formula(1.7) (
f, ρλ

t

)
=

(
Uλ

0,tf, ρ0

)
.(ii) To implement the variation of onstants method and solve the a�ne equation (1.4), introdueas in equation (1.6) the operator

Λ∂λ
s f(x) =

∫ {
f(x + y) − f(x) − f(y)

}
∂λKλ(x, y)µλ

s (dy).Note the relations
(
Λλ

sf, µλ
s

)
=

(
f,Kλ

(
µλ

s , µλ
s

)) and (
Λ∂λ

s f, µλ
s

)
=

(
f, ∂λKλ

(
µλ

s , µλ
s

))
.De�ning the measures σλ

t by the formula(1.8) (
f, σλ

t

)
=

1

2

∫ t

0

(
Λ∂λ

s Uλ
s,tf, µλ

s

)
dsone an easily hek that it satis�es a weak form of equation (1.4):

d

dt

(
f, σλ

t

)
=

d

dt

(
1

2

∫ t

0
Uλ

0,sΛ
∂λ
s Uλ

s,tf ds , µ0

)

=

(
1

2

∫ t

0
U

0,s
λ Λ∂λ

s Uλ
s,tΛ

λ
t f ds, µ0

)
+

1

2

(
Uλ

0,tΛ
∂λ
t f, µ0

)

=
(
Λλ

t f, σλ
t

)
+

1

2

(
Λ∂λ

t f, µλ
t

)

=
(
f,Kλ

(
µλ

t , σλ
t

))
+

(
f,

1

2
K∂λ

(
µλ

t , µλ
t

))
.



4 I.F. BAILLEULd) Organisation of the artile. How far from full justi�ation is this argument? In the aseof uniformly bounded kernels Kλ, we shall see in setion 2 that everything is meaningful in theBanah framework of signed measures equipped with the total variation distane. Yet, no suhsatisfatory framework is available for unbounded kernels; we shall thus use an approximationproedure in setion 3 to extend the result; it relies ruially on the representation formula (1.8)for the sensitivity whih omes from equation (1.4). We explain in �2.2.2 how this equation anbe used in a pratial way to simulate the sensitivity. The main result (theorem 6) states that thefuntion (t, λ) 7→ µλ
t is a C1 funtion with values in a good spae of measures and that it is the onlysolution of a weak version of equation (1.4) under some proper onditions.The idea to investigate the linearized Smoluhowski equation was �rst used in Kolokoltsov's paper[33℄ to see how µt depends on its initial value � see also [34℄ where similar ideas are used in a di�erentontext. We use here the same tools (theorems 13, 15, 16) as in Kolokoltsov's paper. We omparein setion 4, a) the present work with the work [33℄. Note that the simpli�ed proof of a usefullemma of Kolokoltsov (theorem 13), given in setion 4, b) and used in setion 3.1, might be of someinterest for itself.Notations. All funtions and measures are de�ned on R

∗
+ throughout the text.

• We shall use the notation µ⊗2(dxdy) for the produt measure µ(dx)µ(dy).
• As the expression f(x+y)−f(x)−f(y) will appear numerous times in the text, it will be usefulto abbreviate it into {f}(x, y). In these terms, the weak version (1.1) of Smoluhowski equationmay be written

d

dt
(f, µt) =

1

2

∫
{f}(x, y)K(x, y)µt(dx)µt(dy).2. Sensitivity for bounded kernelsWe onsider in this setion Smoluhowski equation (1.1) for a family {Kλ}λ of interation kernels,bounded some onstant M . We reall in setion 2.1 why the strong version (1.3) of Smoluhowskiequation is well de�ned in a good Banah framework. The lassial tools of di�erential equationswill then give us for free existene, uniqueness and regularity results of the solutions {µλ

t }t>0 toequation (1.3). We shall then take pro�t in setion 2.2 of the fat that the derivative σλ
t = ∂λµλ

tsolves a time-non-homogeneous a�ne equation to get an expliit formula for it whih will be usefulin the sequel.2.1. Existene and uniqueness in the bounded ase: a quik overview. Denote by B0 theBanah spae of bounded measurable funtions, equipped with the supremum norm ‖.‖0. Denotealso by ‖ρ‖0 the total variation of a signed Radon measure ρ, and by
M0 = {µ Radon measure ; ‖ρ‖0 < ∞}.Note that ‖ρ‖0 = sup

{
(f, ρ) ; f ∈ B0, ‖f‖0 6 1

}, and that the spae (M0, ‖.‖0) is omplete sineit is the dual spae of the omplete spae (
Cb(R+, R), ‖.‖∞

). We shall denote by M+
0 the one ofnon-negative elements of M0.The main reason why everything works well in the bounded ase is that sine we have

∣∣(f,K(µ, µ)
)∣∣ 6 3‖f‖0M‖µ‖2

0for any f ∈ B0, the Radon measure K(µ, µ) belongs to M0 if µ does; so Smoluhowski equation(1.3): µ̇s = 1
2K(µs, µs), is a well-de�ned ordinary di�erential equation in the Banah spae M0.Proposition 1. Equation (1.3) has a well de�ned �ow of solutions in (

M0, ‖.‖0

), whih preservesthe one M+
0 . The solution µt is de�ned for all times if µ ∈ M+

0 .



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 5Proof � It su�es to see that the vetor �eld K is loally Lipshitz. But given µ and ν in M0,one an write
(
µ⊗2 − ν⊗2

)
(dxdy) = µ(dx)(µ − ν)(dy) + ν(dy)(µ − ν)(dx).Nothing more is needed to get, for any f ∈ B0, the inequality

∣∣(f,K(µ, µ)
)
−

(
f,K(ν, ν)

)∣∣ =
∣∣∣
∫

{f}(x, y)K(x, y)
(
µ⊗2 − ν⊗2

)
(dxdy)

∣∣∣

6 3‖f‖0M
(
‖µ‖0 + ‖ν‖0

)
‖µ − ν‖0,whih implies(2.1) ∥∥K(µ, µ) − K(ν, ν)

∥∥
0

6 3M
(
‖µ‖0 + ‖ν‖0

)
‖µ − ν‖0.To see that µt is non-negative if µ0 is non-negative we �nd a non-negative funtion θt on R

∗
+suh that the transformed measure ρt := θtµt solves a di�erential equation whih preserves M+
0in a obvious way1. See [8℄, proposition 2.2, for instane.Given an initial ondition µ0, denote by [

0, T (µ0)
) the maximal interval on whih the solutionstarted from µ0 is de�ned. If µ0 is non-negative, one has

d

dt
‖µt‖0 =

d

dt
(1, µt) = −

1

2

∫
K(x, y)µt(dx)µt(dy) 6 0and the path {µt}06t<T (µ0) stays in a ball where the vetor �eld K is (globally) Lipshitz. Thisexplains why the solution is atually de�ned on [0,∞). �2.2. Sensitivity. We prove in this setion that if the oagulation kernel depends niely on a pa-rameter λ then the solution to Smoluhowski equation is a C1 funtion of (t, λ). Its derivative withrespet to λ has a representation involving only (µs)s>0.2.2.1. Dependene on a parameter. Let now {Kλ(., .)}λ∈U be a family of symmetri non-negativekernels on R

+
∗ depending in a C2 way in a parameter λ belonging to some open set U of some

R
p. Denote by K∂λ(x, y) the derivative of Kλ(x, y) with respet to λ and de�ne the Radon signedmeasure K∂λ(µ, µ) setting

(
f,K∂λ(µ, µ)

)
=

∫
{f(x + y) − f(x) − f(y)}K∂λ(x, y)µ(dx)µ(dy).Denote by [

0, T λ(µ0)
) the maximal interval on whih the solution to Smoluhowski equation (1.3)with interation kernel Kλ(·, ·) started from µ0 is de�nedTheorem 2 (Sensitivity for bounded kernels). Suppose Kλ(·, ·) and its �rst two derviatives arebounded by a onstant M , uniformly in λ ∈ U . Then the map (t, λ) ∈

[
0, T λ(µ0)

)
× U 7→ µλ

t ∈

(M0, ‖.‖0) is di�erentiable with respet to λ and its derivatives σλ
t (alled �sensitivity�) is the uniquesolution of the equation(2.2) σ̇λ

t = Kλ
(
µλ

t , σλ
t

)
+

1

2
K∂λ

(
µλ

t , µλ
t

)
.Proof � As is lassially done in the study of ordinary di�erential equations in Banah spaes(e.g. onsult [35℄), the result is a onsequene the following four properties.(1) For eah µ ∈ M0, the map λ ∈ U 7→ Kλ(µ, µ) ∈ (M0, ‖.‖0) is di�erentiable, with aderivative K∂λ(µ, µ) ∈ (M0, ‖.‖0) depending ontinuously on µ ∈ (M0, ‖.‖0).(2) The map (s, λ) 7→ µλ

s ∈ (M0, ‖.‖0) is ontinuous on [0, T ] × U .(3) The linear map ν 7→ K(µs, ν) takes (M0, ‖.‖0) into itself and has a uniformly boundednorm for s ∈ [0, T ]. The same result holds for the map ν 7→ K∂λ(µs, ν).1Whih is not the ase of Smoluhowski equation. One uses the same method in the study of Boltzmann equation.



6 I.F. BAILLEUL(4) Let C be a ompat set of (M0, ‖.‖0). There exists an (M0, ‖.‖0)-valued funtion O2(µ, µ′)suh that ‖O2(µ, µ′)‖0 6 m‖µ − µ′‖2
0 for some onstant m, and(2.3) ∀µ, µ′ ∈ C, Kλ0(µ′, µ′) − Kλ0(µ, µ) = 2Kλ0(µ, µ′ − µ) + O2(µ, µ′).

K∂λ0 has the same property.We prove points 1 and 2 and leave the elementary proofs of points 3 and 4 to the reader.1. Given f ∈ B0, apply Taylor formula in a small neighbourhood V of λ0 to get
∣∣∣
(
f,Kλ(µ, µ) − Kλ0(µ, µ) − (λ − λ0)K

∂λ(µ, µ)
)∣∣∣ =

∣∣∣∣
∫

{f}(x, y)
(
Kλ(x, y) − Kλ0(x, y) − (λ − λ0)K

∂λ(x, y)
)
µ(dx)µ(dy)

∣∣∣∣

6 3‖f‖0
|λ − λ0|

2

2
max
eλ∈V

∣∣∂2
eλ
K

eλ(x, y)
∣∣‖µ‖2

0.This proves the di�erentiability assertion. The map µ ∈ M0 → K∂λ(µ, µ) an be seen to beloally Lipshitz using the same reasonning as was used in the proof of proposition 1 to provethat the vetor �eld K is loally Lipshitz.2. It is a lassial fat in dynamis2 that it is su�ient to hek that the map (λ, µ) ∈ U×M0 →
Kλ(µ, µ) is loally Lipshitz to get the ontinuity of (s, λ) 7→ µλ

s ∈ (M0, ‖.‖0). Writing
Kλ(µ, µ) − Kλ′

(ν, ν) = Kλ(µ, µ) − Kλ(ν, ν) +
(
Kλ − Kλ′

)
(ν, ν),and using inequality (2.1), Taylor formula, and the fat that sup

x,y ; ℓ

∣∣K∂ℓ(x, y)
∣∣ 6 M , one obtains

‖Kλ(µ, µ) − Kλ′

(ν, ν)‖0 6 3M
(
‖µ‖0 + ‖ν‖0

)
‖µ − ν‖0 + 3M‖ν‖2

0|λ − λ′|.

�2.2.2. A representation formula for the sensitivity. We �x µ0 throughout this setion and work ona �xed time interval [0, T ] ⊂
[
0, T λ(µ0)

), for all λ ∈ U . As explained in the introdution, one ansolve expliitly the sensitivity equation (2.2) by solving �rst its linearized version before using thevariation of onstant method. The �rst step is made solving a dual problem to the homogeneousequation, on the spae B0.a) Dual linearized Smoluhowski equation. De�ne for eah λ ∈ U , a time-dependent linearvetor �eld Λλ
s on B0, setting for any f ∈ B0(2.4) Λλ

sf(x) =

∫ {
f(x + y) − f(x) − f(y)

}
Kλ(x, y)µλ

s (dy).As ‖Λλ
s‖0 6 3M(1, µλ

s ) 6 3M‖µ0‖0, and µλ
s depends ontinuously on s, the vetor �eld Λλ

s on B0is ontinuous with respet to f ∈ B0 and s. So, given some time t > 0, the bakward and forwarddi�erential equations(2.5) ḟs(x) = −Λλ
sfs (x), ft given,are meaningful in B0, and elementary results on linear di�erential equations on Banah spaes givethe following proposition3.2Consult Martin's book [35℄ for instane.3Consult Martin's book [35℄.



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 7Proposition 3. The di�erential bakwards and forwards equations (2.5) in (B0, ‖.‖0) have a uniquesolution, de�ned for all time. It is of the form fs = Uλ
s,tft, for a ontinuous linear operator Uλ

s,t on
B0, with norm 6 e3M‖µ0‖0|t−s|. We also have for any f ∈ B0(2.6) d

dt
Uλ

s,tf = Uλ
s,tΛ

λ
t f.This operator Uλ

s,t an be used to solve expliitly the linear equation on M0

ρ̇λ
s = Kλ(µλ

s , ρλ
s );this equation has a unique solution on the time interval [0, T ] as the time non-homogeneous vetor�eld Kλ(µλ

s , ·) is ontinuous and bounded. Indeed, one gets from Smoluhowski equation (1.3) andequation (2.5)
d

ds

(
Uλ

s,tf, ρs

)
= −

(
Λλ

sUλ
s,tf, ρs

)
+

(
Uλ

s,tf, ρ̇s

)

= −
(
Uλ

s,tf,K(µs, ρs)
)

+
(
Uλ

s,tf,K(µs, ρs)
)

= 0;so the identity (
Uλ

0,tf, ρ0

)
= (f, ρλ

t ) holds for any f ∈ B0; thus
ρλ

t =
(
Uλ

0,t

)∗
ρ0.b) A representation formula for σλ

t . The seond step to solve the a�ne equation (2.2) is touse the variation of onstant method as explained in the introdution. The following lemma will beused on the way.Lemma 4. The funtion t ∈ [0, T ] 7→ σλ
t ∈ M0 is the only solution in (

M0, ‖.‖0

) of the weakdi�erential equation
∀ f ∈ B0,

d

dt
(f, σt) =

(
f,Kλ

(
µλ

t , σt

))
+

1

2

(
f,Kλ(µλ

t , µλ
t

))
, σ0 given.Proof � Note �rst that sine the funtion t ∈ [0, T ] 7→ σλ

t ∈ M0 satis�es the strong equation (2.2)it also satis�es the above weak equation. Given two solutions σt and σt of the latter, one hasfor any f ∈ B0

(
f, σt − σt

)
=

∫ t

0

(
f,Kλ

(
µλ

s , σs − σs

))
ds =

∫ t

0

(
Λλ

sf, σs − σs

)
ds.But as the operator Λλ

s on (
B0, ‖.‖0

) has norm 6 3M‖µ0‖0, we must have
(
f, σt − σt

)
6 3M‖µ0‖0‖f‖0

∫ t

0
‖σt − σt‖0ds,and so

‖σt − σt‖0 6 3M‖µ0‖0

∫ t

0
‖σs − σs‖0 ds.One dedues from Gronwall's formula that σt = σt. �De�ne the map Λ∂λ

s on B0 by the formula
Λ∂λ

s f(x) =

∫ {
f(x + y) − f(x) − f(y)

}
K∂λ(x, y)µλ

s (dy);notie the identities
(
Λ∂λ

s f, µλ
s

)
=

(
f,K∂λ

s (µλ
s , µλ

s )
)
, and (

Λλ
s f, µλ

s

)
=

(
f,Kλ

s (µλ
s , µλ

s )
)
, f ∈ B0.



8 I.F. BAILLEULProposition 5 (Representation formula for the sensitivity). One has(2.7) (f, σλ
t ) =

1

2

∫ t

0

(
Λ∂λ

s Uλ
s,tf, µλ

s

)
dsfor any f ∈ B0.Proof � Denote temporarily by σ̂λ

t the measure f ∈ B0 7→ 1
2

∫ t
0

(
Λ∂λ

s Uλ
s,tf, µλ

s

)
ds; it belongs to

M0. The following alulus is fully justi�ed in the Banah framework of (B0, ‖.‖0). For any
f ∈ B0, one has

d

dt

(
f, σ̂λ

t

)
=

d

dt

(
1

2

∫ t

0
Λ∂λ

s Uλ
s,tf ds , µλ

s

)
=

(
1

2

∫ t

0
Λ∂λ

s Uλ
s,tΛ

λ
t f ds, µλ

s

)
+

1

2

(
Λ∂λ

t f, µλ
t

)

=
(
Λλ

t f, σ̂λ
t

)
+

1

2

(
Λ∂λ

t f, µλ
t

)

=
(
f,Kλ

(
µλ

t , σ̂λ
t

))
+

(
f,

1

2
K∂λ

(
µλ

t , µλ
t

))
.Sine σ̂λ

t satis�es a weak version of equation (2.2) it oinides with σλ
t aording to lemma 4.

�Remark on the sensitivity equation (2.2). Sine solving expliitly equation (2.2) requiresthe expliit knowledge of (µλ
t )t>0, from whih an expliit formula for the sensitivity follows bydi�erentiation, the above representation formula is useful not in providing some expliit formulafor the sensitivity, but in so far as it enables to get some a priori information on σλ

t from somequantitative informations on (µλ
t )t>0. As Smoluhowski equation is solvable in only a few ases,this is the best kind of information one an hope to get in a general framework. We shall use itruially in the next setion where we extend the regularity result stated in theorem 2 to a lassof unbounded oagulation kernels by showing that the representation formula for the sensitivitystill makes sense and provides indeed the derivative of the solution to Smoluhowski equation withrespet to λ.Note, however, that equation (2.2) an be usefully used for simulation purposes. One an indeedassoiate to it some Marus-Lushnikov-like [32℄ interating partile system onverging to its uniquesolution as the number of partiles inreases inde�nitely; we brie�y desribe it here and refer thereader to the artile [31℄ for the mathematial details and a numerial study of the assoiatedalgorithm. We write for simpliity σt for σλ

t as λ is �xed here.The measure σt is a non-positive; denote by σ
+/−
t its positive and negative parts. Set also

K ′
+ = max{K ′, 0} and K ′

− = max{−K ′, 0}. The partile system we introdue is motivated by thefollowing formal re-writting of equation (2.2)
σ̇t = σ̇+

t − σ̇−
t =

(
K(µt, σ

+
t ) +

1

2
K ′

+(µt, µt)
)
−

(
K(µt, σ

−
t ) +

1

2
K ′

−(µt, µt)
)
.Three oupled systems of partiles ΘN

t =
(
µN

t , σ
+,N
t , σ

−,N
t

) simulate µt, σ
+
t and σ−

t respetively, the�rst being the usual Marus-Lushnikov partile system. Set
Θ0 =

1

N

( ∑

i=1..m

δyi
,

∑

k=1..p

δzk
,

∑

ℓ=1..q

δz′
ℓ

)
,and assoiate to eah pair

• 1 6 i < j 6 m, some exponential random variables Rij , Sij et Tij , with parameters K(yi, yj),
K ′

+(yi, yj) and K ′
−(yi, yj), respetively,

• (i, k) ∈ J1,mK × J1, pK, some exponential random variables Uik with parameters K(yi, zk),
• (i, ℓ) ∈ J1,mK × J1, qK, some exponential random variables Viℓ with parameters K(yi, z

′
ℓ).



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 9All these exponential times are independent. Let W be the �rst time where one of these loks ring.If
W = Rij , then ∆Θ =

(
δxi+xj

− δxi
− δxj

)
⊕ 0 ⊕ 0,

W = Sij , then ∆Θ = 0 ⊕ δxi+xj
⊕

(
δxi

+ δxj

)
,

W = Tij , then ∆Θ = 0 ⊕
(
δxi

+ δxj

)
⊕ δxi+xj

,

W = Uik, then ∆Θ = 0 ⊕
(
δxi+yk

− δyk

)
⊕ δxi

,

W = Viℓ, then ∆Θ = 0 ⊕ δxi
⊕

(
δxi+zℓ

− δzℓ

)
.The proess Θt is onstant over the time interval [0,W ) and has a jump 1

N ∆Θ at time W ; thedynamis is Markovian. Some lassial methods of weak onvergene of measure-valued proessesan be used to prove that this interating partile system onverges in some sense to the uniquesolution of the sensitivity equation (2.2) provided by theorem 2 and theorem 6 below � see [31℄.3. From bounded to unbounded kernelsWe show in this setion that one an extend the regularity result theorem 2 to some unboundedoagulation kernels under some onditions. Suppose for that purpose that one has(3.1) ∀λ ∈ U ,∀x, y ∈ R
∗
+, Kλ(x, y) 6 ϕ(x)ϕ(y) and ∣∣K∂λ(x, y)

∣∣ 6 ϕ(x)ϕ(y),for some sub-additive funtion ϕ(4), greater than 1. Suppose also that there exists a (small) ε > 0suh that(3.2) (ϕ4+ε, µ0) < ∞.In his paper [8℄, J. Norris proved that (ϕ2, µλ
t ) remains �nite on some time interval [

0, T (µ0)
)if (ϕ2, µ0) is �nite. The same argument shows that (ϕ4+ε, µλ

t ) also remains �nite (on a possiblydi�erent time interval, still denoted [
0, T (µ0)

)) if (ϕ4+ε, µ0) is �nite. Given some T < T (µ0) denoteby C(T ) a positive onstant suh that(3.3) ∀ t 6 T, (ϕ4+ε, µt) 6 C(T ).The funtion ϕ being greater than 1, the other moments (ϕp, µλ
t ), with 1 6 p 6 4 + ε, are alsobounded above by C(T ) on [0, T ].In order to estimate the tail behaviour of measures, we introdue the following spaes of measures,indexed by non-negative reals p:

Mp =
{
µ ; ‖µ‖p :=

(
ϕp, |µ|

)
< ∞

}
.Using this notation ondition (3.3) reads: µt ∈ M4+ε ⊂ M1, for all 0 6 t 6 T . To ompare thebehaviour of non-bounded funtions with the behaviour of ϕ, one de�nes the inreasing family offuntion spaes, indexed by non-negative reals p:

Bp =
{
f ; sup

|f |

ϕp
< ∞

}
;we shall write ‖f‖p for this supremum. Note that ‖µ‖p = sup{(f, µ) ; f ∈ Bp, ‖f‖p 6 1}. Thepurpose of this setion is to prove our main result.Theorem 6 (Sensitivity for unbounded kernels). Assume ondition (3.1) and the moment ondition(3.2). Then the map (t, λ) ∈ [0, T ] × U 7→ µλ

t ∈
(
M1, ‖.‖1

), is a C1 funtion and its derivative σλ
tsatis�es the following equation for any f ∈ B0.

(
f, σλ

t

)
=

(
f, σλ

0

)
+

∫ t

0

∫
{f}(x, y)Kλ(x, y)µλ

s (dx)σλ

s (dy)ds +
1

2

∫ t

0

∫
{f}(x, y)K∂λ(x, y)µλ

s (dx)µλ

s (dy)dsThe funtion σλ
· is the only (

M1, ‖.‖1

)-valued solution of this equation.4We have ϕ(x + y) 6 ϕ(x) + ϕ(y), for all x, y ∈ R
∗

+.



10 I.F. BAILLEULWe prove this statement by an approximation proedure. Let {
Kλ ;N

}
N>0

be a sequene of boundedsymmetri kernels onverging towards K, and suh that ∂λKλ ;N and ∂2
λKλ ; N are also bounded,with ∣∣Kλ ;N (x, y)

∣∣ and ∣∣∂λKλ ;N (x, y)
∣∣ bounded above by ϕ(x)ϕ(y). Let µ

λ ;N
t and σ

λ ;N
t be themeasures assoiated with Kλ ; N and ∂λKλ ; N , onstruted in setion 2. Theorem 6 is proved byshowing that(1) the map (t, λ) ∈ [0, T ] × U 7→ µ

λ ;N
t ∈

(
M1, ‖.‖1

) is, for eah N , a C1 funtion, and
∂λ µ

λ ;N
t = σ

λ ;N
t in (

M1, ‖.‖1

).(2) the sequene {
µ

λ ;N
t

}
N>0

onverges towards µλ
t in (

M1, ‖.‖1

), uniformly with respet to
(t, λ) ∈ [0, T ] × U ;(3) the sequene {

σ
λ ;N
t

}
N>0

of its derivatives onverges in (
M1, ‖.‖1

) towards some σλ
t , uni-formly with respet to (t, λ) ∈ [0, T ] × U .Points 2 and 3 will be proved setions 3.1 and 3.2 respetively. We prove the �rst point here. Denoteby M an upper bound of Kλ ; N . Notie �rst that the inequality ∣∣{f}(x, y)

∣∣ 6 2‖f‖1

(
ϕ(x) + ϕ(y)

),gives for any µ ∈ M1

∣∣(f,Kλ ;N (µ, µ)
)∣∣ 6 2M‖f‖1

∫ (
ϕ(x) + ϕ(y)

)
µ(dx)µ(dy)

6 4M‖f‖1‖µ‖
2
1;

(3.4)so the Radon measure Kλ ; N (µ, µ) belongs to M1 if µ does. Now, the following inequalities enableus to see that the vetor �eld µ 7→ Kλ ;N (µ, µ) on (
M1, ‖.‖1

) is Lipshitz. The funtion f ∈ B1 hasnorm no greater than 1 and µ, ν ∈ M1.
∣∣∣
(
f,Kλ ;N (µ, µ)−Kλ ;N (ν, ν)

))∣∣∣ = 2M

∫ (
ϕ(x) + ϕ(y)

)(
|µ|(dx)|µ − ν|(dy) + |ν|(dy)|µ − ν|(dx)

)

6 2M
(
‖µ‖1‖µ − ν‖0 + ‖µ‖0‖µ − ν‖1 + ‖ν‖0‖µ − ν‖1 + ‖ν‖1‖µ − ν‖0

)

6 4M
(
‖µ‖1 + ‖ν‖1

)
‖µ − ν‖1.The di�erentiability of the map λ ∈ U 7→ µ

λ ;N
t ∈

(
M1, ‖.‖1

) an be proved in the same way aswas done in setion 2.2 in the framework of (
M0, ‖.‖0

). To prove the ontinuity of µ
λ ;N
t and σ

λ ; N
twith respet to (t, λ) ∈ [0, T ]×U , one heks that the vetor �elds appearing in equations (1.3) and(2.2) are Lipshitz in (λ, µ) ∈ U ×M1, mimiking what was done in the proof of theorm 2 in theframework of U ×M0. This ompletes the proof of the �rst point.Note that the operators Λλ ;N

s and Λ∂λ ;N
s are bounded in (

M1, ‖.‖1

), with norm no greater than
4M‖µλ

s‖1, so that the representation formula for σ
λ ; N
t given in (2.7) also holds in (

M1, ‖.‖1

). Theremainder of this setion is dediated to the proofs of points 2 and 3. After a preliminary resultin setion 3.1, we prove a stronger version of point 2, useful in the sequel. The proof of point 3 ismade in setion 3.2.As we shall prove these results for a �xed λ, we shall drop the λ in µλ
t and σλ

t in the sequel. Thefollowing elementary result will be used repeatedly; its proof is left to the reader.Lemma 7. For any p > 1 and any f ∈ Bp, ∣∣{f}(x, y)
∣∣ 6 2p‖f‖p

(
ϕp(x) + ϕp(y)

)
.As a last remark, note that the measures µN

t satisfy for any 0 6 t 6 T and N > 0 the same momentinequality (3.3) as µt.3.1. Convergene of µN
t to µt in (M2+ε, ‖.‖2+ε). Let {µt}06t<T (µ0) be the solution given byNorris' theorem; hoose T < T (µ0). It is worth noting that using dominated onvergene and themoment estimate (3.3), the measures {µt}06t6T satisfy the weak version (1.1) of Smoluhowskiequation for any f ∈ B3+ε. We start this setion showing that they depend regularly on t.



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 11Proposition 8. The path {µt}06t6T is a C1 path in (
M2+ε, ‖.‖2+ε

).Proof � One proves that the path {µt}06t6T is 1) Lipshitz in (
M3+ε, ‖.‖3+ε

), 2) C1 in (
M2+ε, ‖.‖2+ε

).1) Take a funtion f ∈ B3+ε. One establishes the following inequalities using the inequality
K(x, y) 6 ϕ(x)ϕ(y) and the sub-additivity of ϕ.

∣∣(f, µt − µs)
∣∣ 6

1

2

∫ t

s

∫ ∣∣{f}(x, y)
∣∣K(x, y)µr(dx)µr(dy) dr

6
cε‖f‖3+ε

2

∫ t

s

∫ {
ϕ3+ε(x) + ϕ3+ε(y)

}
ϕ(x)ϕ(y)µr(dx)µr(dy) dr

6 2cε‖f‖3+ε

∫ t

s

∫
ϕ4+ε(x)ϕ(y)µr(dx)µr(dy) dr

6 2cε‖f‖3+ε(ϕ, µ0) sup
s6r6t

‖µr‖4+ε |t − s|.Taking the supremum of the left hand side, with ‖f‖3+ε 6 1, this shows that the path {µt}06t6Tis Lipshitz in (
M3+ε, ‖.‖3+ε

), with Lipshitz onstant 6 2cεC(T )2.It follows from this fat that the formula
(f, νt) :=

1

2

∫
{f}(x, y)K(x, y)µt(dx)µt(dy)de�nes an element νt of (

M2+ε, ‖.‖2+ε

) whih is ontinuous with respet to t. Indeed, sineone has for any f ∈ B2+ε,
∣∣(f, νt − νs)

∣∣ =
1

2

∣∣∣∣
∫

{f}(x, y)K(x, y)
{
µt(dx)(µt − µs)(dy) + µs(dy)(µt − µs)(dx)

}∣∣∣∣

6
c′ε‖f‖2+ε

2

∫ (
ϕ2+ε(x) + ϕ2+ε(y)

)
ϕ(x)ϕ(y)

(
µt(dx)|µt − µs|(dy) + µs(dy)|µt − µs|(dx)

)

6 2c′ε‖f‖2+εC(T )‖µt − µs‖3+ε,we have ‖νt − νs‖2+ε 6 8cεc
′
εC(T )3 |t − s|.2) Finally, write for any f ∈ B2+ε

(
f, µt − µs − (t − s)νs

)
=

∫ t

s
(f, νr − νs)dr,and note that the integral is uniformly o(t − s), for ‖f‖2+ε 6 1; this proves that the path

{µt}06t6T is di�erentiable, as a path in (
M2+ε, ‖.‖2+ε

), with ontinuous derivative νt. �We shall use this result in the form: The path {ϕ2+εµt}06t6T is a C1 path in (
M0, ‖.‖0

). Thisenables us to apply a useful lemma of Kolokoltsov (see the appendix of [36℄) of whih we give alear and short proof in setion 4.Lemma 9 (Kolokoltsov [36℄). Let {ρs}06s6T be a C1 path in (M0, ‖.‖0), with derivative {ρ̇s}06s6T .There exists a {±1, 0}-valued measurable funtion (s, x) ∈ R+ × R
∗
+ 7→ εs(x) suh that we have

• ‖ρt‖0 = ‖ρ0‖0 +
∫ t
0 (εs, ρ̇s) ds, for any t ∈ [0, T ],

•
(
f, |ρt|

)
= (fεt, ρt), for all f ∈ B, t ∈ [0, T ].Proposition 10. The sequene of measures {µN

t }N>0 onverges to µt in (
M2+ε, ‖.‖2+ε

), uniformlywith respet to t ∈ [0, T ].



12 I.F. BAILLEULProof � Applying Kolokoltsov's lemma to the C1 path {
ϕ2+ε(µN

t − µt)
}

06t6T
in (

M0, ‖.‖0

), anddenoting by εN
s the funtion given by theorem 13, we an write

‖µN
t − µt‖2+ε =

∫
ϕ2+ε(x)|µN

t − µt|(dx) =

∫ t

0

(
εN
s ϕ2+ε, µ̇N

s − µ̇s

)
ds

=

∫ t

0
{εN

s ϕ2+ε}(x, y)
(
KN (x, y)µN

s
⊗2

− K(x, y)µ⊗2
s

)
(dx ⊗ dy)

=

∫ t

0

∫
{εN

s ϕ2+ε}(x, y)KN (x, y)
(
µN

s
⊗2

− µ⊗2
s

)
(dx ⊗ dy) ds

+

∫ t

0

∫
{εN

s ϕ2+ε}(x, y)
(
KN − K

)
(x, y)µ⊗2

s (dx ⊗ dy) ds.The seond term onverges to 0 by dominated onvergene and the fat that ‖µs‖3+ε is bounded;all it oN (1). To handle the �rst term, write it as
∫ t

0

∫
{εN

s ϕ2+ε}(x, y)KN (x, y)
(
(µN

s − µs)(dx)µN
s (dy) + µs(dx)(µN

s − µs)(dy)
)

=

∫ t

0

∫
{εN

s ϕ2+ε}(x, y)KN (x, y)εN
s (x)|µN

s − µs|(dx)
(
µs + µN

s

)
(dy) =: (∗);we have used the symmetry of the expressions with respet to x and y. Now, using the fatthat ∣∣εN

s

∣∣ 6 1, one an �nd some onstant Cε suh that
{εN

s ϕ2+ε}(x, y)εN
s (x) 6 εN

s (x)ϕ2+ε(x + y) − ϕ2+ε(x) − εN
s (y)εN

s (x)ϕ2+ε(y)

6 ϕ2+ε(x + y) − ϕ2+ε(x) − εN
s (y)εN

s (x)ϕ2+ε(y).To deal with the upper bound, note that there exists a onstant Cε suh that the inequality
(a + b)α − aα

6 Cα

(
aα−1b + bα

)
.holds for any a, b > 0. It follows that

{εN
s ϕ2+ε}(x, y)εN

s (x) 6 Cε

(
ϕ2+ε(y) + ϕ1+ε(x)ϕ(y)

)
,so

(∗) 6 cε

∫ t

0

∫ (
ϕ2+ε(y) + ϕ1+ε(x)ϕ(y)

)
KN (x, y)

(
µs + µN

s

)
(dy)|µN

s − µs|(dx) ds

6 cε

∫ t

0

(
2
(
‖µs‖3+ε ∨ ‖µN

s ‖3+ε

)
‖µN

s − µs‖1 + 2
(
‖µs‖2 ∨ ‖µN

s ‖2

)
‖µN

s − µs‖2+ε

)
ds

6 4CεC(T )

∫ t

0
‖µN

s − µs‖2+ε ds.Putting the piees together, we have obtained
‖µN

t − µt‖2+ε 6 oN (1) + 4CεC(T )

∫ t

0
‖µN

s − µs‖2+ε ds,where oN (1) is uniform in t ∈ [0, T ]; Gronwall's lemma enables to onlude. �All the estimates above do not depend on the impliit parameter λ; this proposition proves (astronger version of) point 2 in our strategy of proof.



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 133.2. Convergene of σN
t to σt in (

M1, ‖.‖1

). We prove the third point of our strategy in thissetion. For that purpose, we rely ruially on the representation formula (2.7) for σt for boundedkernels, as it brings bak the problem of proving the onvergene of σN
t to a onvergene problemfor (µN

s )06s6t and its funtionals UN
s,t. Given ℓ > 0, denote by B0

ℓ the set of real-valued funtions fon R+ suh that |f |
ϕℓ is bounded and onverges to 0 at in�nity.Proposition 11. (1) There exists a uniformly bounded family of operators {Us,t}06s6t6T on(

B0
3 , ‖.‖3

) suh that the funtions s, t 7→ Us,tf are di�erentiable in (
B0

3 , ‖.‖0

), when f ∈
B1+ε, with derivatives −ΛsUs,tf and Us,tΛtf , respetively.(2) These operators Us,t preserve B0

1+ε, and are bounded in (
B0

1+ε, ‖.‖1+ε

).Proof � This proposition is a diret appliation of theorems 15 and 16 on propagators, in setion5; we apply them to the two pairs (
ϕ1+ε, ϕ3

) and (
ϕ

1

2 , ϕ1+ε
). We adopt the notationsJsf(x) ≡

∫ {
f(x + y) − f(x)

}
K(x, y)µs(dy), Msf(x) ≡

∫
f(y)K(x, y)µs(dy)used in setion 5.1. Applying theorems 15 and 16, we only need to hek that the inequalities

• Jsϕ
α 6 C(α)‖µs‖α+1ϕ

α,
•

∣∣Ms

(
ϕα

)∣∣ 6 ‖µs‖α+1ϕ,
• for any f ∈ Bβ, Jsf 6 2β+1

(
ϕβ+1(x)‖µs‖1 + ϕ(x)‖µs‖β+1

).hold for any α and β > 1, whih is done by elementary algebra.2. To apply theorems 15 and 16 to the pair (
ϕ

1

2 , ϕ1+ε
), one needs to verify that Jsϕ

1

2 6
C(T )

2
ϕ

1

2 .This an be done by writing∫ {
ϕ

1

2 (x + y) − ϕ
1

2 (x)
}
K(x, y)µs(dy) 6

∫ {(
ϕ(x) + ϕ(y)

) 1

2 − ϕ
1

2 (x)
}

K(x, y)µs(dy)

6

∫
ϕ(y)

2ϕ
1

2 (x)
ϕ(x)ϕ(y)µs(dy) =

‖µs‖2

2
ϕ

1

2 (x)

6
C(T )

2
ϕ

1

2 (x).

�Theorem 16 provides us with an additional information: Us,t and all its approximations UN
s,t have anorm on B0

1+ε ontrolled by the right hand side of equation (5.7), whih is independent of N .Sine Us,t sends B0
1+ε in itself, and Λ∂λ

s is easily veri�ed to be a bounded operator from B1+εinto B2+ε, with a uniformly bounded norm for 0 6 s 6 t 6 T , the formula(3.5) (f, σt) =
1

2

∫ t

0

(
Λ∂λ

s Us,tf, µs

)
dsde�nes a measure σt belonging to M1. By proposition 11, the quantities (

f, σN
t

) and (
f, σt

) arebounded uniformly in t ∈ [0, T ], N > 0 and λ ∈ U , given any f ∈ B1.Theorem 12. The sequene {
σN

t

}
N>0

onverges to σt in (M1, ‖.‖1), uniformly for t ∈ [0, T ].Proof � We need to prove that the limit
(
f, σN

t

)
=

1

2

∫ t

0

∫ {
UN

s,tf
}

K∂λ ; N
(
µN

s , µN
s

)
ds −→

N,+∞

1

2

∫ t

0

∫
{Us,tf}K∂λ

(
µs, µs

)
ds = (f, σt)holds uniformly for ‖f‖1 6 1 and 0 6 t 6 T . If one an prove that UN

s,tf onverges to Us,tf in
B1+ε, uniformly in 0 6 s 6 t 6 T , then

• the inequality ∣∣K∂λ ;N
∣∣(x, y) 6 ϕ(x)ϕ(y),
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• and the fat that µN

s onverges to µs in (
M2+ε, ‖.‖2+ε

), uniformly in s ∈ [0, T ],will enable us to apply dominated onvergene to get the result. We are thus led to prove thatthere exists a dereasing sequene {aN}N>0, onverging to 0, suh that one has
∥∥Us,tf − UN

s,tf‖1+ε 6 aN

∥∥f‖1,for any 0 6 s 6 t 6 T and any f ∈ B1.Sine f ∈ B1 ⊂ B1+ε one an use the di�erentiability property of Us,t as a funtion of s and tto write
Us,tf − UN

s,tf =

∫ t

s

d

du

(
Us,uUN

u,t

)
f du =

∫ t

s

(
Us,u

(
Λu − ΛN

u

)
UN

u,t

)
f du.As UN

u,tf belongs to B0
1+ε, with a norm uniformly ontrolled for ‖f‖1 6 1, and as Us,u is auniformly bounded operator on B2+ε, it su�es to prove that there exists a dereasing sequene

{aN}N>0 onverging to 0 suh that one has
∥∥(

Λu − ΛN
u

)
g
∥∥

2+ε
6 aN ,for any g ∈ B1+ε, with ‖g‖1+ε 6 1. To prove this fat, write

∣∣∣
(
Λλ

u − Λλ ;N
u

)
g(x)

∣∣∣ =

∣∣∣∣
∫

{g}(x, y)
(
K(x, y)µs(dy) − KN (x, y)µN

s (dy)
)∣∣∣∣

6 cε

∫ (
ϕ1+ε(x) + ϕ(y)

)(
K(x, y)|µs − µN

s |(dy) + |K − KN |(x, y)µs(dy) + 2ϕ(x)ϕ(y)|µN
s − µs|(dy)

)

6 cεϕ
2+ε(x) ‖µN

s − µs‖1 + cεϕ(x) ‖µs − µN
s ‖2+ε + cεϕ

1+ε(x)
(
|K − KN |(x, .), µs

)

+ cε

(
ϕ1+ε(·)

∣∣K − KN
∣∣(x, ·), µs

)
+ cεϕ

2+ε(x) ‖µN
s − µs‖1 + cεϕ(x) ‖µN

s − µs‖2+ε.This formula makes it lear that we shall get the existene of these aN 's if we an prove that thesequene of funtions x 7→
(
ϕ1+ε(·)

∣∣K − KN
∣∣(x, ·), µs

) onverges to 0 in B2+ε as N → +∞.This fat is learly seen on the following inequality where M is an arbitrary positive onstant.
1

ϕ2+ε(x)

∫
ϕ1+ε(y)|K − KN |(x, y)µs(dy) 6

1

ϕ2+ε(x)

∫
ϕ2+ε(y)ϕ(x)1ϕ(x)ϕ(y)>N µs(dy)

6
1

ϕ1+ε(x)

∫
ϕ2+ε(y)1ϕ(x)ϕ(y)>N µs(dy)

ϕ>1
6

‖µs‖2+ε

M1+ε
1ϕ(x)>M +

(∫
ϕ2+ε(y)1ϕ(y)> N

M
µs(dy)

) 1ϕ(x)6M

�Proposition 10 and theorem 12 together prove point (2) and (3) of our strategy of proof for theorem6, showing that µλ
t is a C1 funtion of its arguments. To omplete the proof of theorem 6, it remainsto prove that σλ

t is the unique solution in M1 of the equation(3.6)
(
f, σλ

t

)
=

(
f, σλ

0

)
+

∫ t

0

∫
{f}(x, y)Kλ(x, y)µλ

s (dx)σλ

s (dy)ds +
1

2

∫ t

0

∫
{f}(x, y)K∂λ(x, y)µλ

s (dx)µλ

s (dy)dswhere f is any bounded funtion.We have seen in setion 2.2 that this identity holds if one replaes σλ
t and µλ

t by σ
λ ; N
t and µ

λ ; N
tresspetively. Use then the above onvergene results σ

λ ; N
t → σλ

t , in M1, and µ
λ ;N
t → µλ

t , in
M2+ε, together with the inequalities
∣∣∣
(
f,Kλ(µλ

t , σλ
t )

)
−

(
f,Kλ(µλ ;N

t , σ
λ ;N
t )

)∣∣∣ 6 3‖f‖∞

(
‖µλ

t − µ
λ ; N
t ‖1 ‖σ

λ
t ‖1 + ‖µλ ;N

t ‖1 ‖σ
λ
t − σ

λ ;N
t ‖1

)
,

∣∣∣
(
f,K∂λ(µλ

t , µλ
t )

)
−

(
f,K∂λ(µλ ;N

t , µ
λ ; N
t )

)∣∣∣ 6 3C(T ) ‖f‖∞

(
‖µλ

t − µ
λ ;N
t ‖1 + ‖σλ

t − σ
λ ;N
t ‖1

)
,



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 15to pass to the limit properly.To prove uniqueness of the solution to equation (3.6) in (
M1, ‖ · ‖1

) it su�es to show that theequation
∀ f ∈ Bc, (f, γt) =

∫ t

0

∫ {
f(x + y) − f(x) − f(y)

}
K(x, y)µs(dx)γs(dy)dshas at most one solution in (

M1, ‖ · ‖1

). We have written here Bc for the set of bounded Borelfuntions with ompat support. Rewrite this equation under the form
(f, γt) =

∫ t

0

(
Λsf, γs

)
ds.Repeating the proof of orollary 11, it is seen that there exists bounded propagators Us,t on (

B0
1 , ‖ ·

‖1

) suh that the funtion s ∈ [0, t] 7→ Us,tf solves the equation d
dsUs,tf = −ΛsUs,tf for any

f ∈ Bc(⊂ B0
1) and t ∈ [0, T ]. It follows that the expression (Us,tf, γs) is well de�ned and that

d

ds
(Us,tf, γs) =

(
−ΛsUs,tf, γs

)
+

(
ΛsUs,tf, γs

)
= 0;so (f, γt) = (U0,tf, γ0), implying the uniqueness of γt. This ends the proof of theorem 6.4. Comments4.1. Related works. One an see the main roots of theorem 6 in setion 4 of Kolokoltsov's pio-neering artile [33℄ on the entral limit theorem for the Marus-Lushnikov dynamis. He develops inthis setion tools for the analysis of the rate of onvergene of the semi-group of Marus-Lushnikovproess to the semi-group of solutions of Smoluhowski equation. Reall the Marus-Lushnikovproess {

Xn
t

}
t>0

is a strong Markov jump proess on the spae of disrete measures whose jumpsare as follows. If its state at time t is 1

n

∑
δxi(t), for i in a �nite set It depending on t, de�ne, for

i < j in It, independent exponential random times Tij with parameter K
(
xi(t), xj(t)

)

n
and set

T = min{Tij ; i < j}.The proess remains onstant on the time interval [t, t+T [ and has a jump 1

n

(
δxp(t)+xq(t) − δxp(t) − δxq(t)

)at time t + T , if T = Tpq. The dynamis then starts afresh. The onvergene of this sequene
{Xn}n>0 of proesses to the deterministi solution of Smoluhowski equation was �rst proved un-der general onditions in [8℄. Yet, no �ne analysis of the onvergene of the orresponding semi-groupwas done before [33℄. We explain roughly his idea to see how similar equations to the 'variation'equations (1.3), (1.4) appear in his ontext.Suppose we are in a situation where existene and uniqueness of solutions to Smoluhowskiequation hold into a proper sense, and denote by {Tt} and {T n

t } the semi-groups of Smoluhowskiand Marus-Lushnikov dynamis. Also, denote by L and Ln their generators. Then, given any(good) funtion F and a measure µ

(
Tt − T n

t

)
F (µ) =

∫ t

0

(
T n

t−s

(
Ln − L

)
TsF

)
(µ) ds.The hoie of a funtion F of the form F (µ) =

∫
g(x)µ⊗k(dx), for some symmetri funtion g of kvariables, provides a 'measure' of the moments of µ. One has TsF (µ) = F (µs), where µ0 = µ.Introduing some derivation operation δ on funtions on measures:

δF (µ ; x) = lim
ε→0

F (µ + εδx) − F (µ)

ε
,



16 I.F. BAILLEULone an write for any funtion G(4.1) (
Ln − L

)
G (µ) = −

1

2n

∫ (
δG(µ ; 2x) − 2δG(µ ; x)

)
K(x, x)µ(dx) + O

(
n−3/2

)
.One thus sees that taking G = TsF , with the above F , leads to onsider the quantity

δ
(
(g, µ⊗k

t )
)

= k
(
(g, µ⊗k−1

t ⊗ δµt)
)
,where

δµt = lim
ε→0

µt(µ + εδx) − µt(µ)

εis 'the' derivative of µt with respet to its initial ondition. Terms of the form δ(δµt) arise inthe O
(
n−3/2

) term of equation (4.1). This analysis brings bak the estimate of (
Tt − T n

t

)
F (µ) toestimates on µs, δµs and δ2µs. To do so, Kolokoltsov shows that δµs is a solution of the linearequation

d

ds
δµs = K

(
µs, δµs

)in some sense, and that δ2µs is a solution of the a�ne equation
d

ds
δ2µs = K

(
µs, δ

2µs

)
+ K

(
δµs, δµs

)in some sense. The tools used to solve these equations are essentially the same as those used above;the reader may will �nd the details given here helpful to unzip the setion 4 of [33℄. We have used yeta slightly di�erent approah in the implementation of the variation of onstant method. Note alsothat we have been able to go from the framework of 'sub-linear' kernels of [33℄: K(x, y) 6 C(1+x+y),to the framework of an essentially 'sub-multipliative' kernel: K(x, y) 6 ϕ(x)ϕ(y), an improvementwhih is of some pratial interest.4.2. Kolokoltsov's lemma. This paragraph ontains a simple proof of Kolokoltsov's lemma, whihwas used in a ruial way to prove a uniqueness result in the original artile [36℄ where it was �rstintrodued. We prove it here in a slightly less general framework than in [36℄, su�ient for ourpurposes as well as for its use in [36℄; the gain in larity and volume of the proof is substantial.Let (Ω,F) be a measurable spae with a σ-algebra F generated by a �ltration {Fn}n>0 madeup of �nite σ-algebras. We shall denote by {Ap
n}p the atoms of Fn. We shall write (M, ‖.‖) forthe spae of �nite signed-measures on (Ω,F), equipped with the total variation distane. We shallde�ne, for eah n > 1, the total variation of a measure with respet to Fn:

∀µ ∈ M, ‖µ‖(n) = sup
{
(f, µ) ; f ∈ Fn, |f | 6 1

}
.These quantities have the property(4.2) ∀µ ∈ M, ‖µ‖(n) −→

n+∞
‖µ‖.Reall that the topologial dual spae of (M, ‖.‖) is the spae (B, |.|) of bounded measurable fun-tions on (Ω,F), equipped with the supremum norm. We shall write B̂ for the set of bounded fun-tions g on [0, T ] × Ω, with norm ‖̂g‖ = sup

{
gs(x) ; s ∈ [0, T ], x ∈ Ω

}, and shall de�ne (
M̂, ‖.‖TV

)as the spae of �nite signed measures on [0, T ] × Ω, equipped with the total variation norm.Theorem 13 (Kolokoltsov's lemma [36℄, Appendix). Let {ρs}06s6T be a C1 path in (M, ‖.‖), withderivative {ρ̇s}06s6T . There exists a {±1, 0}-valued measurable funtion εs(x) suh that we have
• ‖ρt‖ = ‖ρ0‖ +

∫ t
0 (εs, ρ̇s) ds, for any t ∈ [0, T ],

• ∀ f ∈ B,∀ t ∈ [0, T ],
(
f, |ρt|

)
= (fεt, ρt).We shall make use of the following elementary lemma in the ourse of the proof of theorem 13.



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 17Lemma 14. By onvention, sgn(0) = 0. We have for any C1 funtion g : R+ → R

∣∣g(t)
∣∣ =

∣∣g(0)
∣∣ +

∫ t

0
sgn(

g(s)
)
g′(s)ds.Proof � Using lemma 14 in eah set A

p
n, we an de�ne a {±1, 0}-valued funtion s 7→ ε

n; p
s suhthat

∣∣ρt(A
p
n)

∣∣ =
∣∣ρ0(A

p
n)

∣∣ +

∫ t

0
εn; p
s ρ̇s(A

p
n) ds.De�ne then the funtion εn

s (x) as being equal to ε
n; p
s on A

p
n; the preeding identity yields(4.3) ‖ρt‖(n) = ‖ρ0‖(n) +

∫ t

0
(εn

s , ρ̇s) ds.The funtions εn belong to the set B̂ of bounded funtions on [0, T ] × Ω, and have supremumnorm no greater than 1. Using the duality between M̂ and B̂ provided by integration, equation(4.3) an be written(4.4) ‖ρt‖(n) = ‖ρ0‖(n) +
(
εn, ρ̇s ⊗ ds

)
.Now, sine (

B̂, ‖̂.‖
) is the topologial dual spae of (

M̂, ‖.‖TV

), its unit sphere is weakly-∗ompat. We an thus �nd a sub-sequene {εnk}k>1 and an element ε of B̂, with norm lessthan 1, suh that
∀µ ∈ M̂, (εnk , µ) −→

k+∞
(ε, µ).Together with formulas (4.2) and (4.4), this onvergene result, applied to the measures ρ̇s(dx)⊗

1[0,t](s)ds, gives(4.5) ∀ t ∈ [0, T ], ‖ρt‖ = ‖ρ0‖ +

∫ t

0
(εs, ρ̇s) ds.To prove the seond point of theorem 13, remark that sine

∫ T

0
‖ρs‖(n)ds =

∫ T

0
(εn

s , ρs)ds = (εn, ρs ⊗ 1[0,T ]ds),we have
‖|ρs| ⊗ ds‖TV = (ε, ρs ⊗ 1[0,T ]ds).It follows that

εsρs = |ρs|for almost all s. De�ne εs to be equal to dρs

d|ρs|
on the exeptional set. This modi�ation of εspreserves identity (4.5) and proves the seond point of theorem 13. �5. Appendix on propagatorsWe ollet in this appendix the material on propagators needed in setion 3.2 to prove theonvergene of σN

t to σt in (
M1, ‖ ·‖1

). Reall that a propagator is a family {Us,t}s6t of operatorssuh that Utt = Id and one has UstUtr = Usr for all s 6 t 6 r. De�ne an (a priori) unboundedoperator on funtions setting
Λsf(x) =

∫
{f}(x, y)K(x, y)µs(dy).Theorem 16 below states onditions under whih the bakward/forward di�erential equation(5.1) u̇s = −Λsus, 0 6 s 6 t 6 T, ut given,



18 I.F. BAILLEULan be solved in some Banah spae of funtions. Some notations are needed. SetJsf(x) ≡

∫ {
f(x + y) − f(x)

}
K(x, y)µs(dy) =

∫
f(x + y)K(x, y)µs(dy) −

(∫
K(x, y)µs(dy)

)
f(x)

≡ Lsf(x) − τs(x)f(x),

(5.2)
and(5.3) Msf(x) ≡

∫
f(y)K(x, y)µs(dy), Ts(x) ≡

∫ s

0
τr(x)dr.Considering the bakward/forward di�erential equation(5.4) ḟs = −Jsfs, 0 6 s 6 t 6 T, ft given,as a perturbation of the integrable equation ḟs = τsfs, one sees that equation (5.4) is formallyequivalent to the integral equation(5.5) fs = eTs−Ttft +

∫ t

s
eTs−TrLrfr dr.Given some positive funtion h, set Bh =

{
f ; sup |f |

h < ∞
}, and de�ne ‖f‖h = sup |f |

h , for
f ∈ Bh. The spae (

Bh, ‖.‖h

) is a Banah spae. De�ne also B0
h as the set of funtions f ∈ Bh suhthat f

h goes to 0 as h goes to in�nity. The following two theorems are part of the folkore; they arestated under this form in the appendix of Kolokoltsov's artile [33℄.Theorem 15 (Existene of propagators, �rst part). 1) Suppose that there exists two ontinuouspositive funtions h and h′, and positive onstants c and c′ suh thata. 0 < h′ 6 h, h′ ∈ Bh,
∀ s ∈ [0, T ], Jsh

′ 6 c′h′, Jsh 6 ch.Then, given t ∈ [0, T ] and some funtion ut ∈ Bh, the minimal solution of the bakwards/forwardsintegral problem (5.5) with �nal/initial ondition ut is of the form {Ss,tut}s for some boundedoperators Ss,t on (B0
h, ‖.‖h) depending ontinuously on s and t, with norm no greater than ec|t−s|.If now one onsiders the bakward/forward di�erential equation

ḟs = −Λsfs = −
(Js −Ms

)
fs, 0 6 s 6 t 6 T, ft = f given,as a perturbation of equation (5.4), the preeding di�erential equation is formally equivalent to theintegral equation(5.6) fs = Ss,tf −

∫ t

s
Ss,rMrfr dr.Theorem 16 (Existene of propagators, seond part). 2) Suppose, in addition to the hypothesisof theorem 15, that the following hypothesis on the perturbations Ms hold.b. The family {Ms}06s6T is a bounded family of linear transforms of (Bh, ‖.‖h).Denote by ‖Ms‖h the norm operator of Ms. Then the series

Us,tf = Ss,tf −

∫ t

s
Ss,rMrSr,tf dr +

∫

s6r16r26t
Ss,r1

Mr1
Sr1,r2

Mr2
Sr2,tf dr1dr2 + · · · ,onverges in (Bh, ‖.‖h) for any f ∈ Bh. It de�nes a propagator on (

B0
h, ‖.‖h

) depending ontinuouslyon s and t, and with norm(5.7) 6 e

(
c+ sup

s6r6t

‖Mr‖h

)
|t−s|



SENSITIVITY FOR SMOLUCHOWSKI EQUATION 19The map s 7→ Us,tf is the minimal solution of the bakwards/forwards integral problem (5.6) with�nal/initial ondition f .3) If �nally. • for any f ∈ Bh′, the funtion s 7→ Jsf ∈ (B0
h, ‖.‖h) is well de�ned and ontinuous,

• eah Ms sends ontinuously (Bh, ‖.‖h) in (Bh′ , ‖.‖h′),then for any f ∈ Bh′, the funtion s 7→ Us,tf ∈
(
B0

h, ‖.‖h

) is di�erentiable, with derivative −ΛsU
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