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Abstract. We prove the well-posed character of a regularity structure formulation of the quasi-
linear generalized (KPZ) equation and give an explicit form for a renormalized equation in the
full subcritical regime. Convergence results for the solution of the regularized renormalized
equation are obtained in regimes that cover the spacetime white noise case.

1 – Introduction

Denote by T the one dimensional torus. We consider the one dimensional space periodic
quasilinear generalized (KPZ) equation(

∂t − a(u)∂2
x

)
u = f(u)ξ + g(u)(∂xu)2, (1.1)

for regular enough functions a, f, g, where a takes values in a compact interval of (0,∞) and
ξ is a random spacetime distribution – with main example spacetime white noise. The initial
condition u0 ∈ C0+(T) :=

⋃
µ>0 C

µ(T) is given. Following [3, 5] set

La(v0) ··= a(v0)∂2
x

for a smooth function v0 on T and we rewrite equation (1.1) under the form(
∂t − La(v0) + c

)
u = f(u)ξ + g(u)(∂xu)2 + cu+

(
a(u)− a(v0)

)
∂2
xu (1.2)

for a large positive constant c. We consider (1.2) as a ‘perturbation’ of the non-translation
invariant generalized (KPZ) equation(

∂t − La(v0) + c
)
u = f(u)ξ + g(u)(∂xu)2 + cu.

Below we will set the scene to reformulate equation (1.2) in a regularity structure where it takes
the form

u = P<2

(
Qa(v0),cu0

)
+ Ka(v0),c,M

(
Q≤0

{
F (u) ζ +G(u)(Du)2 + cu +

{
A(u)−A(P<2(v0))

}
D2u

})
.

(1.3)

The operator P<2 stands for the canonical lift operator of a spacetime/spatial function to
the part of the polynomial regularity structure spanned by monomials of homogeneity less
than 2, and the operator Qa(v0),cu0 is the free propagation of the initial condition u0 under
the non-translation invariant operator (∂t − La(v0) + c). The operator Ka(v0),c,M is the model
dependent integration operator on modelled distributions intertwined to (∂t−La(v0) +c) via the
reconstruction operator. The operator Q≤0 projects on elements of nonpositive homogeneity,
and the operator D is a natural derivative operator on a space of modelled functions.

We will see in Theorem 15 that given any admissible model M on our regularity structure,
equation (1.3) has a unique solution over a model-dependent time interval (0, t0(M)), in an
appropriate class of modelled distributions. This analytical statement holds in the full sub-
critical range provided the model is part of the data. Such a statement was already proved
by Gerencsér & Hairer in [16] in a different setting. However their choice of formulation for
(1.1) did not allow them to write down in the full subcritical range the renormalized equation
satisfied by the reconstruction of the model dependent solution u of (1.3) when the noise is
smooth and one uses an appropriate admissible model. The spacetime white noise regime is in
particular out of range of their result. Working with an appropriate choice of model M that
is the natural analogue in our setting of the BHZ renormalized model from [8] we are able to
give in Theorem 1 below a renormalized equation in the full subcritical regime. Denote by ε
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a positive regularization parameter and by ξε ∈ C∞(R × T) an ε-regularized noise ξ. Denote
by Mε the BHZ renormalized model associated with ξε and the operator (∂t − La(v0) + c), and
denote by uε the Mε-reconstruction of the solution uε of equation (1.3) with Mε in place of
M. (The model Mε is described precisely in Section 4.3.2.) The function uε is defined on a
time interval [0, t0(Mε)). Our main results take a conditional form involving two assumptions.
Assumption 1 is stated in Section 4.3.2 and assumes the convergence of the natural BHZ model
associated with the non-translation invariant operator (∂t−La(v0) + c). There is no doubt that
it holds true but we refrain from describing here the modifications of Chandra & Hairer’s work
[11] needed to extend their result to our non translation-invariant setting.

1 – Theorem. Take v0 = et0∂
2
xu0. Under Assumption 1 there exist continuous functions Fa((τp)∗) ∈

C(R3) and
`εa(v0)(·, τ

p) ∈ C(R× T)

indexed by an infinite set of symbols
{
τp ∈ B−◦

}
, such that the solution uε to(

∂x0
−a(uε)∂2

x

)
uε = f(uε)ξε+ g(uε)(∂xu

ε)2 +
∑

τp∈B−◦

`εa(v0)(·, τ
p)

S(τp)
Fa
(
(τp)∗

)(
uε, ∂xu

ε, v0

)
(1.4)

starting from u0 ∈ C0+(T) converges in C([0, t0)×T) for a positive random time t0 in probability
as ε→ 0.

Let us emphasize that this conditional convergence result holds in the whole subcritical
regime α > 0 where α − 2 is the expected regularity of the noise ξ. The sum over τp in
(1.4) is called the ‘counterterm’ and the functions `εa(v0)(·, τ

p) are non-local functionals of the
function a(v0(·)). Note that the functions Fa((τp)∗) also depend on v0. One can give a simpler
representation of the counterterm when the functions `εa(v0)(·, τ

p) can be traded off for a local
functional of a(v0(·)) – meaning that `εa(v0)(z, τ

p) can be replaced by a function of a(v0(z)).
This is the content of Assumption 2 stated in Section 4.4.

2 – Theorem. Under Assumption 1 and 2 there exist continuous functions χaτ ∈ C(R), Fτ∗ ∈ C(R2)
and `ε(·)(τ) ∈ C(R) all three indexed by a finite set of symbols

{
τ ∈ B−0

◦
}

, such that the third
term of the right hand side of (1.4) is of the form∑

τ∈B−0
◦

`εa(uε)(τ)

S(τ)
χaτ (uε)Fτ∗(u

ε, ∂xu
ε) +O(1), (1.5)

for a term O(1) uniform in ε.

Above, the functions χaτ (·) are polynomial functions of a and its derivatives and the coef-
ficient S(τ) stands for a positive τ -dependent integer. Note that appart from the O(1) term
in (1.5), which we can discard in the renormalized equation, the counterterm is independent
of v0. Proposition 25 gives a fine description of the functions `εa(uε(·)) when the noise ξ is
Gaussian, centered and stationary, and the regularization procedure obtained by convolution
with a symmetric kernel. We show in Section 4.5 that Assumption 2 holds in particular for the
quasilinear generalized (KPZ) equation driven by a spacetime white noise.

The first works on quasilinear singular stochastic PDEs by Otto & Weber [23], Furlan &
Gubinelli [14] and Bailleul, Debussche, & Hofmanová [3] all three investigated the generalized
(PAM) equation in the regime where the noise is (α − 2) regular and α > 2/3. Interestingly
each of these works used a different method: A variant of regularity structures in [23], a variant
of paracontrolled calculus based on the use of the paracomposition operator for [14], and the
initial form of paracontrolled calculus in [3]. On the paracontrolled side Bailleul & Mouzard [5]
extended the high order paracontrolled calculs toolbox to deal with the paracontrolled equivalent
of equation (1.3) in the spacetime white noise regime α > 2/5. On the regularity structures side
Otto & Weber deepened their framework in their works [21, 22] with Sauer & Smith, dedicated
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to the study of the equation with linear additive forcing
∂tu− a(u)∂2

xu = ξ. (1.6)
They obtained in particular in [22] an explicit form of the renormalized equation for (1.6). Our
general formula for the counterterm in the renormalized equation generalizes theirs. The alge-
braic machinery behind their approach was further analysed by Linares, Otto & Tempelmayr
in [19]. This series of works culminated very recently with the construction in [20] of the ana-
logue in their framework of the BHZ renormalized models for equation (1.6), for a large class of
random noises in the full subcritical regime. Meanwhile Gerencsér & Hairer provided in [16] an
analysis of a regularity structure counterpart of equation (1.1), in the full subcritical regime.
Their method allowed for an analysis of the renormalized equation only in the regime α > 1/2.
By implementing some tricky integration by parts-type formulas Gerencsér was able in [15] to
obtain the renormalized equation for the special case of equation (1.6) from the analysis of [16]
in the spacetime white noise regime α > 2/5.

Theorem 1 extends these results and deals with the quasilinear generalized (KPZ) in the full
subcritical regime. The reader familiar with regularity structures will see that our arguments
extend immediately to coupled systems of generalized (KPZ) equations. Such a generalization
is left to the reader and we concentrate here on the renormalized equation.

Dealing with quasilinear singular SPDEs rather than semilinear singular SPDEs requires
a twist that appears in the form of an infinite dimensional ingredient. It is related in our
formulation (1.3) to the fact that our structure needs to be stable by the operator I(0,2) ··= D2I.
In the previous works using regularity structures this infinite dimensional feature appeared
under the form of a one parameter family of heat kernels or abstract integration operators. Our
regularity structure is different from the regularity structures used in these works. Its T -space
T =

⊕
β∈A Tβ will have infinite dimensional homogeneous spaces Tβ whose basis elements will

be the usual trees associated with the generalized (KPZ) equation, with an additional integer
decoration p on each edge accounting for how many times the operator I(0,2) is applied to this
edge. The same infinite dimensional ingredient appeared in Bailleul & Mouzard’s work [5] in a
paracontrolled setting.

We set the scene in Section 2, where the function spaces we work with are introduced
together with our regularity structure. We introduced in particular a non-classical spacetime
elliptic operator to define our parabolic spaces. For reader’s convenience some properties of its
heat kernel are proved in Appendix A. Section 3 is dedicated to proving that equation (1.3)
is locally well-posed in the full subcritical regime. The analysis of the renormalized equation
problem is done in Section 4, where we give in particular in Section 4.3 an explicit description
of the functions χaτ . We take profit all the way of the fact that a number of known results in
the usual setting of regularity structures have direct analogues in our setting. As in [16] this
explains the relatively short size of the present work.

Notations – We denote by R the set of real numbers and by N the set of integers. We denote
by z = (t, x) ∈ R2 a generic spacetime variable, for which we set

‖z‖s ··= |t|1/2 + |x|.
We also set for k = (k1, k2) ∈ N2

|k|s ··= 2k1 + k2,

and
∂kz ··= ∂k1t ∂

k2
x .

Given a function denoted by a lowercase letter we will use the corresponding capital letter for
its lift as a function on a space of modelled distributions. By convention the product

∏0
i=1 is

equal to 1.
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2 – The setting

We introduce in this section the functional setting and the regularity structure in which we
set the study of equation (1.3).

2.1 – Function spaces. The following basic facts are proved in Appendix A.2.

– The fundamental solution Qa(v0),0
t (x, y) of the operator ∂t−La(v0) satisfies the estimate∣∣∂nt ∂kxQa(v0),0

t (x, y)
∣∣ ≤ c0e

c0t

t(1+k+2n)/2
exp

(
− c1

|x− y|2

t

)
(2.1)

for any k+2n ≤ 2, for some positive constants c0, c1 depending only on inf a > 0, ‖a‖C1 ,
and ‖v0‖Cµ(T) for any fixed µ > 0.

– Define the spacetime elliptic operator
La(v0) ··=

(
∂t − La(v0)

)
(∂t + ∂2

x) = ∂2
t − a(v0)∂4

x −
(
a(v0)− 1

)
∂t∂

2
x.

We introduce the additional variable θ > 0 and consider the parabolic operator
∂θ − La(v0)

on functions of (θ, z) ∈ (0,∞)×R2. The fundamental solution Qa(v0),0
θ (·, ·) of ∂θ−La(v0)

satisfies the estimate∣∣∂kzQa(v0),0
θ

(
(t, x), (s, y)

)∣∣ ≤ C0e
C0θ

θ(3+|k|s)/4
exp

{
− C1

(
|t− s|2

θ
+
|x− y|4/3

θ1/3

)}
(2.2)

for any |k|s ≤ 4, for some positive constants C0, C1 depending only on inf a > 0, ‖a‖C1 ,
and ‖v0‖Cµ(T) for any fixed µ > 0.

Recall we denote by α−2 the spacetime Hölder regularity of the noise ξ in equation (1.1). We
will consider initial conditions u0 ∈ Cµ(T) with any µ ∈ (0, α) and choose later v0 = et0∂

2
xu0,

for some small t0 ∈ (0, 1]. Since the family of functions {et∂2
xu0}t∈(0,1] have t-uniform µ-

Hölder estimates depending only on ‖u0‖Cµ(T), the constants c0, c1, C0, C1 above can be chosen
to depend only on inf a > 0, ‖a‖C1 , and ‖u0‖Cµ . Therefore, all the proportional constants
appearing sometime implicitly in some inequalities below are independent of t0. We will choose
later t0 sufficiently small to prove the local well-posedness of equation (1.1). For a bounded
continuous functions f on R2 set for |k|s ≤ 4,(

∂kQa(v0),0
θ f

)
(z) ··=

∫
R2

∂kzQ
a(v0),0
θ (z, z′)f(z′)dz′.

We use the operators Qa(v0),0
θ to define the full scale of anisotropic parabolic Hölder spaces.

Definition – For β < 0, define Cβs (a(v0)) as the completion of the set of bounded continuous
functions f on R2 under the norm

‖f‖Cβs (a(v0))
··= sup

0<θ≤1
θ−β/4

∥∥Qa(v0),0
θ f

∥∥
L∞(R2)

.

For β > 0, define Cβs as the classical parabolic α-Hölder space, that is, f ∈ Cβs if ∂kz f exists
and is bounded for any k ∈ N2 with |k|s < β, and ∂kz f with |k|s = bβc is (β − bβc)-Hölder
continuous with respect to the parabolic norm ‖ · ‖s.

The following property is used in the proof of the reconstruction theorem, Theorem 8 below.
Its proof is given in Theorem 37 of Appendix A.

3 – Proposition. For any β′ < β < 0, the embedding Cβs (a(v0)) ⊂ Cβ
′

s (a(v0)) is compact.

Next we consider the Schauder estimate for the resolvent of ∂t−La(v0) in the space Cαs (a(v0)).
With an eye on the heat kernel estimates (2.1) and (2.2) pick a positive constant c > max{c0, C0}
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and write Qa(v0),c
t := e−ctQ

a(v0),0
t and Qa(v0),c

θ := e−cθQa(v0),0
θ . Then the operators c − La(v0)

and ∂t − La(v0) + c have inverses of the forms(
c− La(v0)

)−1
f =

∫ ∞
0

Qa(v0),c
θ f dθ =

∫ 1

0

Qa(v0),c
θ f dθ +Qa(v0),c

1 ◦ (c− La(v0))−1f

and (
(∂t − La(v0) + c)−1g

)
(t) =

∫ t

−∞
Q
a(v0),c
t−s g(s) ds.

For any given bounded continuous function f on R2, one can write the resolvent operator of the
parabolic operator ∂t−La(v0) + c in terms of the spacetime elliptic operator c−La(v0). Indeed,
setting g = (c− La(v0))−1f and h = (∂t + ∂2

x)g, we have
(∂t − La(v0) + c)h = La(v0)g + ch = −f + c(g + h),

thus (
∂t − La(v0) + c

)−1
f = −h+ c

(
∂t − La(v0) + c

)−1
(g + h)

= −(∂t + ∂2
x)(c− La(v0))−1f + c

(
∂t − La(v0) + c

)−1
(1 + ∂t + ∂2

x)(c− La(v0))−1f.

Set
Ka(v0),cf ··= −

∫ 1

0

(∂t + ∂2
x)Qa(v0),c

θ f dθ =··
∫ 1

0

K
a(v0),c
θ f dθ

and
Ra(v0),cf ··= K

a(v0),c
1 (c− La(v0))−1f + c

(
∂t − La(v0) + c

)−1
(1 + ∂t + ∂2

x)(c− La(v0))−1f,

so one has the decomposition(
∂t − La(v0) + c

)−1
f = Ka(v0),cf +Ra(v0),cf. (2.3)

The letter ‘R’ in Ra(v0),c is chosen for ‘remainder’, which is justified by the regularizing prop-
erties of this operator stated in the next statement.

4 – Theorem. Let β ∈ (−2, 0) \ {−1}. The map Ka(v0),c sends Cβs (a(v0)) into Cβ+2
s and the map

Ra(v0),c sends Cβs (a(v0)) into C2+
s
··=
⋃
µ>0 C

2+µ
s .

Proof – By the semigroup property and the Gaussian estimate (2.2) one has∥∥∂kzKa(v0),c
θ f

∥∥
L∞
≤ sup

z

∥∥∂kzKa(v0),c
θ/2 (z, ·)

∥∥
L1

∥∥Qa(v0),c
θ/2 f

∥∥
L∞

. θ−(2+|k|s)/4θβ/4 ‖f‖Cβs (v0)

for any |k|s ≤ 2 and any θ ∈ (0, 1]. Therefore,∥∥∂kzKa(v0),cf
∥∥
L∞

. ‖f‖Cβs (v0)

for any |k|s < β + 2. For |k|s = bβ + 2c, the Hölder estimate of ∂kKa(v0),cf follows from that
of ∂xKa(v0),c

θ/2 ((A.9) of Theorem 33). If ‖z − z′‖s < 1, for sufficiently small ε > 0,∣∣∂kzKa(v0),cf(z)− ∂kzKa(v0),cf(z′)
∣∣

≤
∫ 1

0

∥∥∂kzKa(v0),c
θ/2 (z, ·)− ∂kzK

a(v0),c
θ/2 (z′, ·)

∥∥
L1

∥∥Qa(v0),c
θ/2 f

∥∥
L∞

dθ

. ‖z − z′‖β+2−|k|s−ε
s

∫ ‖z−z′‖4s
0

θ−(4−ε)/4dθ + ‖z − z′‖β+2−|k|s+ε
s

∫ 1

‖z−z′‖4s
θ−(4+ε)/4dθ

. ‖z − z′‖β+2−|k|s
s .

The case ‖z − z′‖s ≥ 1 can be treated by a similar way. For Ra(v0),c note that (c − La(v0))−1

maps Cβs (v0) into C2+
s . Indeed one has as above∥∥∂kz (c− La(v0)
)−1

f
∥∥
L∞
≤
∫ 1

0

∥∥∂kzQa(v0),c
θ f

∥∥
L∞

dθ +

∫ ∞
0

∥∥∂kzQa(v0),c
θ Qa(v0),c

1 f
∥∥
L∞

dθ
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.
∫ 1

0

θ−(2+|k|s−β)/4‖f‖Cβs (v0) dθ +

∫ ∞
0

e−(c−C1)θ‖Qa(v0)
1 f‖L∞ dθ

. ‖f‖Cβs (a(v0))

for any |k|s ≤ 2. The Hölder estimate of ∂kz (c − La(v0))−1f is also obtained similarly. Since
K
a(v0)
1 maps C2+

s into itself, the first term of the definition of Ra(v0),cf is in C2+
s . For the second

term note that (1+∂t+∂
2
x)
(
c−La(v0)

)−1
f ∈ C0+

s . Since the inverse operator
(
∂t−La(v0) +c

)−1

maps C0+
s into C2+

s by the Schauder estimate – see e.g. Theorem 5 of [13, Chapter 3], we see
that the second term in the definitino of Ra(v0),cf is an element of C2+

s . �

We fix from now on a constant c > max{c0, C0} and omit the letter ‘c’ inQa(v0),Qa(v0),Ka(v0),
Ra(v0) unless it needs to be emphasized.

2.2 – The regularity structure. We construct in this section the regularity structure asso-
ciated with equation (1.3). It will be convenient, for notational purposes, to rewrite (1.3) under
the form
u = P<2

(
Q
a(v0)
t u0

)
+ Ka(v0),M

(
Q≤0

{
F (u) ζ1 +

{
G(u)(Du)2 + cu

}
ζ2 +

{
A(u)−A(P<2(v0))

}
(D2u) ζ3

})
(2.4)

with three ‘noise’ symbols ζ1, ζ2, ζ3 in the regularity structure. This will help us distinguish
three different types of terms.

We first define a ‘preparatory’ collection of rooted decorated trees
B = B• ∪ B◦

with node decorations {Xk}k∈N2 and {ζl}l∈{1,2,3} and edge decorations (In)n∈N2 . Write I ··= I0
and define B• and B◦ as the smallest sets such that

(a) B• = B
1

• ∪ B
2

• ∪ B
3

• with

B
1

• ··=
{
Xk

n∏
i=1

I(τi) ; k ∈ N2, n ∈ N, τ1, . . . , τn ∈ B◦
}
,

B
2

• ··=
{
Xk

n∏
i=1

Ini(τi) ; k ∈ N2, n ∈ N, τ1, . . . , τn ∈ B◦,

ni = 0 except at most two ni = (0, 1)

}
,

B
3

• ··=
{
Xk

n∏
i=1

Ini(τi) ; k ∈ N2, n ∈ N, τ1, . . . , τn ∈ B◦,

ni = 0 except at most one ni = (0, 2)

}
,

This definition ensures in particular that Xk ∈ B•. We assume that the product (called
tree product) between Ini(τi) is commutative, which means that we consider non-planar
trees.

(b) B◦ = B
1

◦ ∪ B
2

◦ ∪ B
3

◦ with

B
l

◦ ··=
{
ζl σ ; σ ∈ B

l

•
}
, l ∈ {1, 2, 3}.
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The set B• contains all trees necessary to describe F (u), G(u)(Du)2 + cu, and {A(u) −
A(P<2(v0))}(D2u) in (2.4). The set B◦ is a collection of trees in B• multiplied by noise symbols
ζl. As usual in a regularity structure setting we think of basis elements in B as decorated trees.
We define the homogeneity map | · | : B→ R setting

|Xk| ··= |k|s, |ζ1| ··= α− 2, |ζ2| = |ζ3| ··= 0,

|In(τ)| ··= |τ |+ 2− |n|s, |τ1 · · · τn| ··=
n∑
i=1

|τi|.

Since the operator I(0,2) does not change the homogeneity an infinite number of trees in B have
the same homogeneity. Modelled distributions we will treat will then involve infinite linear
combinations of trees. To deal with such infinite sums it will be convenient to introduce a new
set of symbols Ipn, for p ∈ N and n ∈ N2.

Let B̂ the collection of rooted decorated trees with node decorations {Xk}k∈N2 and
{ζl}l∈{1,2,3} and the edge decorations (Ipn)p∈N,n∈N2 . For example,

Xk1ζi1

Xk2ζi2Xk3ζi3

Xk4ζi4

(p1,n1)(p2,n2)

(p3,n3)

Define inductively the projection map
π : B→ B̂

by the identity
π
(
In(ζ3I(0,2))

p(τ)
)

= Ipn
(
π(τ)

)
,

at each branches of the tree τ , for τ ∈ B \ ζ3I(0,2)(B◦). Define B ··= π(B) as the image of π.

The letter B is chosen for ‘basis’. Each element of B is then a rooted decorated tree with a
further edge decoration p : Eτ → N, in addition to usual two decorations n : Nτ → N2 and
e : Eτ → N2 considered in Bruned, Hairer & Zambotti’s work [8]. The decoration p represents
the number of consecutive operators ζ3I(0,2).

Xkζ

ζ3

ζ3

In

I(0,2)

I(0,2)

π−→ Xkζ

(p,n)

We write τp for a generic element of B when we have to emphasize its p decoration. Since
|τp| = |τ0|, an infinite number of trees in B have the same homogeneity. We will use the
quantity

|p| ··=
∑
e∈Eτ

p(e)

to define the topology on the linear space spanned by B. Set
B◦ ··= π(B◦).

The following subfamilies of elements of B will be useful in this and next section.
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B−◦ ··=
{
τp ∈ B◦ ; |τp| < 0

}
,

B0 ··=
{
τ0 ; τp ∈ B

}
,

B−0
◦ ··= B−◦ ∩ B0,

U ··= {Xk}k∈N2 ∪ {I(τp)}τp∈B◦ .

The set B−0
◦ is the index set in formula (1.5) for the counterterm in the renormalized equation.

We denote by
Bβ ··=

{
τp ∈ B ; |τp| = β

}
the set of elements of B of homogeneity β. It is elementary to see that the set A ··=

{
|τp| ; τp ∈

B
}

is locally finite and minA = α− 2. Moreover the set Bβ ∩ B0 is finite for each β ∈ A.

To complete the construction of a regularity structure we consider the collection B+ of all
the elements

Xk
+

n∏
i=1

I+,qi
ni (τ

pi
i )

with k ∈ N2, n ∈ N, τpii ∈ B◦, qi ∈ N, and ni ∈ N2 such that |τi|+ 2− |ni| > 0 for each i. The
label ‘+’ is to distinguish elements of B+ with those of B•. We define the homogeneity map
| · | : B+ → R+ by setting∣∣∣Xk

+

n∏
i=1

I+,qi
ni (τ

pi
i )
∣∣∣ ··= |k|s +

n∑
i=1

(
|τi|+ 2− |ni|s

)
.

Pick a positive parameter m. For each β ∈ A define T (m)
β as the completion of the linear

space spanned by Bβ under the norm defined by∥∥∥∥∥ ∑
τp∈Bβ

cτpτp

∥∥∥∥∥
2

β,m

··=
∑
τp∈Bβ

|cτp |2m2|p|.

We define
T (m) ··=

⊕
β∈A

T
(m)
β

as the algebraic sum. Similarly, we define the space

T (m),+ ··=
⊕
β≥0

T
(m),+
β

from the set B+, using the same notation ‖ · ‖β,m for the norms on T (m) and T (m),+. By
definition T (m),+ is an algebra.

We define the two continuous linear operators
∆ : T (m) → T (m) ⊗ T (m),+

and
∆+ : T (m),+ → T (m),+ ⊗ T (m),+

by the identities
∆ζl = ζl ⊗X0

+,

∆(+)Xk
(+) =

∑
k′≤k

(
k

k′

)
Xk′

(+) ⊗X
k−k′
+ ,

∆(+)I(+)
n τ =

(
I(+)
n ⊗ Id

)
∆τ +

∑
|k|s<|τ |+2−|n|s

Xk
(+)

k!
⊗ I+

n+kτ
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and the multiplicativity ∆(+)(τ1 · · · τn) =
∏n
i=1 ∆(+)τi. If τ ∈ B−◦ one has similar identities for

the operators I(+),p
n

∆(+)I(+),p
n τ =

(
I(+),p
n ⊗ Id

)
∆τ +

∑
k

Xk
(+)

k!
⊗ I+,p

n+kτ

since ∆I(0,2)τ = (I(0,2) ⊗ Id)∆τ for τ with negative homogeneity. This definition of ∆(+)

turns it into an extension of the BHZ regularity structure for the semilinear generalized (KPZ)
equation. The pair

T (m) ··=
(
(T (m),∆), (T (m),+,∆+)

)
is a concrete regularity structure in the sense of [4]. Denote by G(m),+ the set of all continuous
algebra maps g : T (m),+ → R, that is, g is multiplicative with respect to the tree product and
with respect to the product with polynomials. Then G(m),+ is a topological group with respect
to the convolution product g ∗ h ··= (g ⊗ h)∆+.

2.3 – Models and modelled distributions. In what follows, we denote by Q<γ the canonical

projection from T (m) to the subspace T (m)
<γ ··=

⊕
β<γ T

(m)
β .

5 – Definition. Given a positive parameter m a pair M = (g,Π) made up of a map g : Rd → G(m),+

and a linear map Π : T (m) → C−2
s (a(v0)) is called a model on T (m) if one has∣∣gz′z(τp)
∣∣ . m|p|‖z′ − z‖|τ |s (gz′z ··= gz′ ∗ g−1

z ),

for all τp ∈ B+ and z, z′ ∈ R2, and∣∣Qa(v0)
θ

(
Πg
zσ

p
)
(z)
∣∣ . m|p| θ|σ|/4 (Πg

z
··= (Π⊗ g−1

z )∆),

for all σp ∈ B, z ∈ R2 and θ ∈ (0, 1]. The model M is said to be spatially periodic if

g(z′+(0,1)) (z+(0,1)) = gz′z, Qa(v0)
θ

(
Πg
z+(0,1)(·)

)
(z + (0, 1)) = Qa(v0)

θ

(
Πg
z(·)
)
(z)

for any z, z′ ∈ R2.

These conditions ensure that gz′z and Πg
z are continuous on the metric spaces T (m)

β and
T

+,(m)
β respectively under the norm ‖ · ‖β,m, so the same analytical arguments as in [4] work to

prove the results stated in this section. We record here for later use a straightforward adaptation
of Proposition 2 and Lemma 12 in [4]. Recall from (2.3) the decomposition

(
∂t−La(v0) +c

)−1
=

Ka(v0) +Ra(v0).

6 – Lemma. For any σp ∈ B, z ∈ R2, θ ∈ (0, 1], and k ∈ N2 such that |k|s ≤ 4,∣∣∣(∂kzQa(v0)
θ

)(
Πg
zσ

p
)
(z)
∣∣∣ . m|p| θ(|σ|−|k|s)/4.

For any σp ∈ B and k ∈ N2 such that |k|s < |σ| ∧ 0 + 2,(
∂kzK

a(v0)
)(

Πg
zσ

p
)
(z) =

∫ 1

0

(
∂kzK

a(v0)
θ

)(
Πg
zσ

p
)
(z) dθ

converges for all z ∈ R2 and satisfies∣∣∣(∂kzKa(v0)
)(

Πg
zσ

p
)
(z)
∣∣∣ . m|p|.
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7 – Definition. Pick −2 < η ≤ γ. We denote by Dγ,ηm = Dγ,η(T (m); g) the set of functions u : R2 →
T<γ such that

Lu MDγ,ηm ··= max
β<γ

sup
s>0

{
s

(
β−η

2 ∨0
)

sup
|t|≥s
‖u(z)‖β,m

}
<∞,

‖u‖Dγ,ηm ··= max
β<γ

sup
s>0

{
s
γ−η
2 sup
|t|,|t′|≥s

∥∥u(z′)− ĝz′zu(z)
∥∥
β,m

‖z′ − z‖γ−βs

}
<∞,

where t and t′ represent the time variable part of z and z′ respectively. Equipped with the norm
|||u|||Dγ,ηm ··= Lu MDγ,ηm + ‖u‖Dγ,ηm ,

the space Dγ,ηm is a Banach space. Moreover u is said to be spatially periodic if
u(z + (0, 1)) = u(z)

for any z ∈ R2.

Since g and Π are bounded linear operators on the spaces T (m)
β and T

+,(m)
β respectively we

can prove the reconstruction theorem for Dγ,ηm similarly to [4, Theorem 20].

8 – Theorem. Let −2 < η ≤ γ and γ > 0. Let M be a model on T of growth factor m > 0. There
exists a unique continuous linear operator

RM : Dγ,η(T (m); g)→ Cη∧(α−2)
s (a(v0))

such that the bound ∣∣∣Qθ(RMv − Πg
zv(z)

)
(z)
∣∣∣ . (|t| ∨ θ1/4

)η∧(α−2)−γ
θγ/4

holds uniformly over for any v ∈ Dγ,ηm with unit norm and z = (t, x) ∈ R2. Moreover, if M and
v are spatially periodic, then RMv is also a spatially periodic distribution.

We say that a vector space S =
⊕

β∈A Sβ is a sector if each vector space Sβ is a closed
subspace of T (m)

β and ∆(S) ⊂ S ⊗ T (m),+. Then

β0 ··= min
{
β ∈ A ; Sβ 6= {0}

}
is called a regularity of S. We denote by Dγ,ηm (S) the set of the elements u ∈ Dγ,ηm taking values
in a sector S. In particular we use the sectors

U and T◦

spanned by U and B◦, respectively. Since the minimum of the set
{
|τp| ; τp ∈ U \ {Xk

}
k∈N2}

is α > 0, for −2 < η ≤ γ and γ > 0, for any u ∈ Dγ,ηm (U), the reconstruction RMu coincides
with the X0-component of u and belongs to Cαs on any compact set of (0,∞)× R.

The proper notion of admissible model in the present setting is captured by the following
definition.

9 – Definition. An admissible model on T (m) is a model (g,Π) such that
gz(X

k
+) = zk, Π(Xkτ)(z) = zk(Πτ)(z),

and one has for all τp ∈ B−◦ ,
Π(Iτp) = Ka(v0)(Πτp).

An admissible model satisfies the identity

g−1
z

(
I+
n τ
)

= −
∑

|k|s<|τ |+2−|n|s

(−z)k

k!

((
∂n+k
z Ka(v0)

)(
Πzτ

))
(z)

for any τ ∈ B−◦ – see e.g. Proposition 15 of [4]. The proof of the multi-level Schauder estimates
can be done along the same lines as in Hairer’s original statement, Theorem 5.12 of [17] – see
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also the short proof given in Theorem 17 of [4]. The fact that the quantity J a(v0)(z)τp below
is well-defined is a consequence of Lemma 6. (We stated it explicitly to make that point clear.)

10 – Theorem. Let M stand for an admissible model on T (m). For any τp ∈ B◦ set

J a(v0)(z)τp ··=
∑

|k|s<|τp|∧0+2

Xk

k!
∂kzK

a(v0)(Πg
zτ

p)(z).

For v ∈ Dγ,ηm (T◦, g) with γ > 0, set(
N a(v0)u

)
(z) ··=

∑
|k|s<γ+2

Xk

k!
∂kzK

a(v0)
(

RMu− Πg
zu(z)

)
(z).

For v ∈ Dγ,ηm (T◦, g) with γ > 0, set(
Ka(v0),Mu

)
(z) ··= Q<2

{(
I + J a(v0)(z)

)
u(z) +

(
N a(v0)u

)
(z)
}
.

If −2 < η, the map Ka(v0),M sends continuously Dγ,ηm (T◦) into D2,(η+2)∧α
m (U).

Define Dγ,ηm (0, t0) as the space of modelled distributions defined on (0, t0)× T. It is defined
as in Definition 7 with functions u only defined on (0, t0)×T. Recall that we denote by P<2 the
operator that lifts a smooth function on (0,∞)×T into the polynomial part of T of homogeneity
strictly smaller than 2, so (

P<2f
)
(z) =

∑
|k|s<2

(
∂kz f

)
(z)

Xk

k!
.

Define
Ra(v0),Mu ··= P<2

(
Ra(v0)(RMu)

)
and

Ka(v0),M ··= Ka(v0),M +Ra(v0),M.

11 – Theorem. Pick γ > 0 and −2 < η. Then for any κ > 0 we have∣∣∣∣∣∣Ka(v0),M(u)
∣∣∣∣∣∣
D2,(η+2)∧α−κ
m (0,t0)

. t
κ/2
0 |||u|||Dγ,ηm (0,t0).

We end this section by mentioning continuity results of some operations on modelled distri-
butions. Below, the product τσ between elements τ, σ of T is defined by the linear extension of
tree product, as long as it belongs to T . The following results are variants of [17, Propositions
6.12, 6.13, 6.15 and 6.16 ] so we omit the proofs here.

– Let S1 and S2 are sectors of regularities α1 and α2 respectively, and such that the
product S1 × S2 → T (m) is defined. Then for any ui ∈ Dγi,ηim (Si) (i = 1, 2), we have

Q<γ(u1 · u2) ∈ Dγ,ηm
with γ = (γ1 + α2)∧ (γ2 + α1) and η ∈ (η1 + α2)∧ (η2 + α1)∧ (η1 + η2). Moreover, the
mapping (u1,u2) 7→ Q<γ(u1 · u2) is locally Lipschitz continuous.

– For any u ∈ Dγ,ηm (U) and a function h ∈ Cκ(R) with κ ≥ max{γ/α, 1}, we define

H(u) ··= Q<γ

( ∞∑
n=0

h(n)(u0)

n!
(u− u0X

0)n

)
,

where u0 is an X0-component of u. Then H(u) ∈ Dγ,ηm , and the mapping u 7→ H(u) is
locally Lipschitz continuous.

– Define D as a linear operator on T such that
DX(k1,k2) ··= k2X

(k1,k2−1)1k2>0, D In(τ) ··= In+(0,1)(τ).

Let n ∈ {1, 2}. If γ > n, then Dγ,ηm (U) 3 u 7→Dnu ∈ Dγ−n,η−nm is continuous.
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3 – Local well-posedness

We prove in this section that the regularity structure formulation (1.3) of the quasilinear
equation (1.1) is locally well-posed in time. We emphasize some elementary facts before stating
and proving the well-posedness result in Theorem 15.

12 – Lemma. Let µ ∈ [0, 1] and u0 ∈ Cµ(T), v0 ∈ C0+(T). Denote by Pt either et∂2
x or Qa(v0),c

t ,
with c > 0. For any T > 0, there exists a constant C > 0 depending only on T , and inf a,
‖a‖C1 , ‖v0‖C0+(T) when Pt = Q

a(v0),c
t , such that
‖Ptu0‖L∞(T) ≤ C‖u0‖L∞(T) (3.1)

holds for any 0 < t ≤ T , ∥∥∂nt ∂kxPtu0

∥∥
L∞(T)

≤ Ct(µ−k−2n)/2‖u0‖Cµ(T) (3.2)

holds for any 1 ≤ k + 2n ≤ 2 and 0 < t ≤ T , and∥∥(Pt − Id)u0

∥∥
L∞(T)

≤ Ctµ/2‖u0‖Cµ(T) (3.3)

holds for any 0 < t ≤ T .

Proof – These are immediate consequences of (2.1). For (3.2) and (3.3), we have to decompose

∂nt ∂
k
xPtu0(x) =

∫
R

(∂nt ∂
k
xPt)(x, y)

(
u0(y)− u0(x)

)
dy + u0(x)

∫
R

∂nt ∂
k
xPt(x, y) dy,

and use the µ-Hölder continuity of u0 for the first term, and the fact that
∫
R Pt(x, y)dy = 1

when Pt = et∂
2
x and

∫
R Pt(x, y)dy = e−ct when Pt = Q

a(v0),c
t for the second term. �

13 – Lemma. Let µ ∈ [0, 1] and u0 ∈ Cµ(T). Denote by Pt either of et∂2
x or Qa(v0),c

t with c > 0
and v0 ∈ C0+(T). Then

P<2

(
Ptu0(x)

)
=
∑
|k|s<2

(
∂kz P

a(v0)
t u0

)
(x)

k!
Xk ∈ D2,µ

m (0,∞).

Proof – Write f(t, x) = Ptu0(x). By (3.1) and (3.2) of Lemma 12, for any 0 < s < t0,
sup

s≤|t|<t0
|f(t, x)| . ‖u0‖Cµ(T), sup

s≤|t|<t0
|∂xf(t, x)| . s(µ−1)/2‖u0‖Cµ(T).

These imply
L P<2f MD2,µ

m (0,t0) . ‖u0‖Cµ(T).

Next we consider ‖ · ‖D2,η
m

-bounds. Let z = (t, x) and z′ = (t′, x′) be generic elements of R2.
For the X0-component, by (3.2) of Lemma 12,

sup
s≤|t|,|t′|<t0

∣∣f(z′)−f(z)− ∂xf(z)(x′ − x)
∣∣

.
(

sup
s≤|t|<t0

|∂tf(z)|
)
|t′ − t|+

(
sup

s≤|t|<t0
|∂2
xf(z)|

)
|x′ − x|2

. s(µ−2)/2‖z′ − z‖2s‖u0‖Cµ(T).

For the estimate of the X(0,1)-component ∂xf(z′)− ∂xf(z), we consider the t-shift and x-shift
separately. For the x-shift, by (3.2) of Lemma 12,

sup
s≤|t′|<t0

∣∣∂xf(t′, x′)− ∂xf(t′, x)
∣∣ . ( sup

s≤|t|<t0
|∂2
xf(z)|

)
|x′ − x|

. s(µ−2)/2 |x′ − x| ‖u0‖Cµ(T).
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For the t-shift, we assume t < t′ without loss of generality. By (3.3) of Lemma 12,

sup
s≤t<t′<t0

∣∣∂xf(t′, x)− ∂xf(t, x)
∣∣

(t′ − t)1/2
= sup
s≤t<t′<t0

∣∣∂xPt/2(Pt′−t − Id)Pt/2u0(x)
∣∣

(t′ − t)1/2

= sup
s≤t<t′<t0

t−1/2

∥∥(Pt′−t − Id)Pt/2u0

∥∥
L∞(T)

(t′ − t)1/2

. sup
s≤t<t′<t0

t−1/2 ‖Pt/2u0‖C1(T)

. sup
s≤t<t′<t0

t(µ−2)/2 ‖u0‖Cµ(T) . s(µ−2)/2 ‖u0‖Cµ(T).

By the above estimates we have
‖P<2f‖D2,µ

m (0,t0) . ‖u0‖Cµ(T).

�

14 – Lemma. Let µ ∈ [0, 1] and t0 > 0. For any u0 ∈ Cµ(T), choose v0 = et0∂
2
xu0. Then for any

η < µ, ∣∣∣∣∣∣P<2

{
(Q

a(v0),c
t − et0∂

2
x)u0(x)

}∣∣∣∣∣∣
D2,η
m (0,t0)

. t
(µ−η)/2
0 ‖u0‖Cµ(T).

Proof – Write g(t, x) = (Q
a(v0),c
t − et0∂2

x)u0(x). As shown in the proof of Lemma 13, all terms
in Definition 7 – ‖g(z)‖β,m and ‖g(z′)− ĝz′zg(z)‖β,m/‖z′−z‖2−βs except ‖g(z)‖0,m are bounded
by s(µ−β)/2 in the region s ≤ |t|, |t′| < t0. Since

s(µ−β)/2 ≤ t(µ−η)/2
0 s(η−β)/2,

we can see that they have the required ||| · |||D2,η
m

-estimate. It remains to consider ‖g(z)‖0,m. By
(3.3) of Lemma 12, one has

‖g(t)‖L∞(T) ≤
∥∥(Q

a(v0),c
t − Id)u0

∥∥
L∞(T)

+
∥∥(et0∂

2
x − Id)u0

∥∥
L∞(T)

. t
µ/2
0 ‖u‖Cµ(T),

which completes the proof. �

15 – Theorem. Let µ ∈ (0, α) and t0 > 0. For any u0 ∈ Cµ(T), choose v0 = et0∂
2
xu0. Then for

sufficiently small t0 > 0, equation (2.4) has a unique solution u in the class D2,µ
m (0, t0). The

time t0 can be chosen to be a lower semicontinuous function of M and u0.

Proof – We find a solution by the Picard iteration. Let v0 = 0 and
un = P<2

(
Qa(v0)u0

)
+ Ka(v0),M(vn),

vn+1 = Q<α

{
F (un)ζ1 +

(
G(un)(Dun)2 + cu

)
ζ2 + ζ3

{
A(un)−A(P<2(v0))

}
D2un

}
.

(3.4)

We show that the sequence (un,vn) is well defined in the class
(un,vn) ∈ D2,µ

m (U)×Dα,2µ−2
m (T◦).

Before that, note that un is of the form
un − Ivn ∈ Span{Xk}|k|s<2.

Since D2 eliminates the polynomials of order less than 2, D2un is nothing but I(0,2)vn. Hence
it is convenient to rewrite the iteration as

vn+1 = Q<α

{
F (un)ζ1 +

(
G(un)(Dun)2 + cu

)
ζ2 + ζ3

{
A(un)−A(P<2(v0))

}
I(0,2)vn

}
.

In what follows, C means the constant which is independent to t0, u0, and (un,vn), and whose
value may change from one occurrence to the other. By the multi-level Schauder estimate from
Theorem 11 we have
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|||un+1|||D2,µ
m (0,t0) ≤

∣∣∣∣∣∣P<2

(
Qa(v0)u0

)∣∣∣∣∣∣
D2,µ
m (0,t0)

+ Ct
κ/2
0 |||vn|||Dα,2µ−2

m (0,t0)

≤ C
(
‖u0‖Cµ(T) + t

κ/2
0 |||vn|||Dα,2µ−2

m (0,t0)

)
,

(3.5)

where κ = µ ∧ (α− µ) > 0.
Next we consider vn+1. Since un takes values in the sector U , all F (un), G(un), A(un) are
well-defined elements of D2,µ

m . Since ζ has a homogeneity α− 2,
F (un)ζ ∈ D2+α−2,µ+α−2

m (T◦) ⊂ Dα,2µ−2
m (T◦).

Since Dun ∈ D1,µ−1
m (T, g) is in the sector of regularity α− 1,

(Dun)2 ∈ Dα,2µ−2
m (T◦),

and thus
G(un)(Dun)2 ∈ Dα,2µ−2

m (T◦).

Moreover, since I(0,2) maps Dα,2µ−2
m (T◦) into Dα,2µ−2

m isometrically, one has
|||vn+1|||Dα,2µ−2

m (0,t0) ≤ P
(
|||un|||D2,µ

m (0,t0)

)
+ C

∣∣∣∣∣∣A(un)−A(P<2(v0))
∣∣∣∣∣∣
D2,η
m (0,t0)

|||vn|||Dα,2µ−2
m (0,t0),

where P is a polynomial whose coefficients are independent to t0 and (un,vn), and η is a
positive constant such that η ∈ [2µ − α, µ). To obtain a small factor from the second term of
the right hand side, we decompose

A(un)−A
(
P<2(v0)

)
= A(un)−A

(
P<2(Qa(v0)u0)

)
+A

(
P<2(Qa(v0)u0)

)
−A

(
P<2(v0)

)
.

Since A is locally Lipschitz as a mapping from D2,η
m to itself∣∣∣∣∣∣A(un)−A

(
P<2(Qa(v0)u0)

)∣∣∣∣∣∣
D2,η
m (0,t0)

≤ C
∣∣∣∣∣∣un − P<2(Qa(v0)u0)

∣∣∣∣∣∣
D2,η
m (0,t0)

≤ C|||Ka(v0),Mvn|||D2,η
m (0,t0)

≤ Ctκ
′/2

0 |||vn|||Dα,2µ−2
m (0,t0),

where κ′ = (2µ)∧α−η > 0, and C = C
(
‖u0‖Cµ(T), |||un|||D2,µ

m (0,t0)

)
is a locally bounded function

of ‖u0‖Cµ(T) and |||un|||D2,µ
m (0,t0). Moreover we have from Lemma 14 the estimate∣∣∣∣∣∣A(P<2(Qa(v0)u0)
)
−A

(
P<2(v0)

)∣∣∣∣∣∣
D2,η
m (0,t0)

≤ C
∣∣∣∣∣∣P<2

(
Qa(v0)u0 − v0

)∣∣∣∣∣∣
D2,η
m (0,t0)

≤ Ct(µ−η)/2
0 ‖u0‖Cµ(T).

Therefore we have
|||vn+1|||Dα,2µ−2

m (0,t0) ≤ P
(
|||un|||D2,µ

m (0,t0)

)
+ C

(
‖u0‖Cµ(T), |||un|||D2,µ

m (0,t0), |||vn|||Dα,2µ−2
m (0,t0)

)
tδ0 |||vn|||Dα,2µ−2

m (0,t0)

(3.6)

for small δ > 0 and a some locally bounded function C
(
‖u0‖Cµ(T), |||un|||D2,µ

m (0,t0), |||vn|||Dα,2µ−2
m (0,t0)

)
.

By (3.5) and (3.6) we can find a small time t0 > 0 and a large constant M > 0 such that
|||un|||D2,µ

m (0,t0) + |||vn|||Dα,2µ−2
m (0,t0) ≤M

for any n ∈ N. By the local Lipschitz estimates of the operations in (3.4) (product, composition
with smooth function, differentiation, and integration) we have the similar estimate

|||un+1 − un|||D2,µ
m (0,t0) + |||vn+1 − vn|||Dα,2µ−2

m (0,t0)

≤ C(M) tδ0

(
|||un − un−1|||D2,µ

m (0,t0) + |||vn − vn−1|||Dα,2µ−2
m (0,t0)

)
for some positive constant C(M) and a small exponent δ > 0. Hence we can choose t0 smaller
such that (un,vn) is a Cauchy sequence. The limit solves equation (2.4). Uniqueness also holds
because of the local Lipschitz estimates. �
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Otto, Sauer, Smith & Weber [22] and Linares, Otto & Tempelmayr [19] set up an analytic
and an algebraic framework to deal with the quasilinear equation (1.6) with additive forcing.
They use in particular a greedy index set for their local expansions and prove a local in time
well-posedness result for that equation in the full sub-critical regime. The analysis of the present
section shows that one can run this analysis within the variant of the usual regularity structure
for the generalized (KPZ) equation described in Section 2. The present section can also be seen
as a simple alternative to the somewhat convoluted approach of Gerencsér & Hairer [16].

4 – Renormalization matters

This section is dedicated to the analysis of the equation satisfied by the reconstruction of the
solution u obtained in Theorem 15 – the so called renormalized equation. The first systematic
treatment of this question in a semilinear setting was done by Bruned, Chandra, Chevyrev &
Hairer in [7]. They relied on a morphism property satisfied by the coefficients uτ of generic
solutions to semilinear singular SPDEs, for some multi-pre-Lie structures. A deeper structure
on the elements of BHZ regularity structures was unveiled by Bruned & Manchon in [9] and
used by Bailleul & Bruned in [2] to simplify a lot the analysis of the renormalized equation. This
structure is encoded in the ? product introduced in Section 4.2. Its importance in the analysis
of equation (1.3) is emphasized by Proposition 20; it provides a basic morphism property –
the counterpart here of the multi-pre-Lie morphism property used in [7]. We introduce in
Section 4.3 the class of preparation maps – special linear maps from T (m) into itself, and their
associated admissible models. A preliminary form of Theorem 1 follows from their properties
in Proposition 22. A special class of preparation maps is associated with the set of characters
on B−◦ . We show in Section 4.4 that working with the preparation map associated with the
analogue in our setting of the BHZ character leads to Theorem 1.

4.1 – Notations. We first fix some notations. In this section, we consider the set of all
decorated trees

T = T• ∪ T◦
since the operators we define below may not be closed in the smaller set B. The sets T• and T◦
are the smallest ones such that

T• ··=
{
Xk

n∏
i=1

Ini(τi) ; k ∈ N2, n ∈ N, ni ∈ N2, τi ∈ T◦
}

and
T◦ ··=

{
ζl σ ; l ∈ {1, 2, 3}, σ ∈ T•

}
.

Similarly to Section 2.2 we assume that the tree product is commutative. For convenience we
denote a generic element of T by

Xkζl

n∏
i=1

Ini(τi)

for l ∈ {1, 2, 3, 4} with the convention
ζ4 ··= X0.

The combinatorial symmetry factor S(τ) of the tree

τ = Xkζl

n∏
i=1

Ini(τi)βi

with (ni, τi) 6= (nj , τj) for any i 6= j is inductively defined by

S(τ) := k!

( n∏
i=1

S(τi)
βiβi!

)
.
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We also define the map π similarly to what was done in Section 2.2 to introduce a further
edge decoration p and set

T ··= π(T).

The p decoration is used to deal with infinite sums. However it will also be convenient to use
the set T to deal with some operators defined similarly as in [7, 1]. The following identity will
be useful later.

16 – Lemma. Let S be a finite set of T such that τ0 ∈ S if τp ∈ S and let {cτp}τp∈S be a family
of real numbers. Then one has the identity∑

τp∈S

cτp

S(τp)
τp =

∑
τ0∈S

1

S(τ0)

∑
p∈NEτ

cτpτp.

Note that S(τp) is smaller than or equal to S(τ0) in general. The above identity comes from
the order of the sums for trees and decorations. In the left hand side, each τp is considered as
a non-planar tree. In the right hand side, however, we fix a tree τ first and put a decoration p
later, so τp is rather considered as a planar tree. For example, the tree τp,q ··= Ip(ζ1)Iq(ζ1) is
considered as the same as τ q,p in the set T, we have∑

τp,q=Ip(ζ1)Iq(ζ1)∈T

cτp,q

S(τp,q)
τp,q =

∑
p∈N

cτp,p

2
τp,p +

∑
p<q∈N

cτp,qτ
p,q =

1

S(τ0,0)

∑
p,q∈N

cτp,qτ
p,q.

We denote by T the linear space spanned by T and by T∗ its algebraic dual. For a fixed m > 0

and any τ0 ∈ T we define T
(m)
τ as the completion of the linear space spanned by non-planar

trees {τp}p under the norm ∥∥∥∥∥∑
p

cpτ
p

∥∥∥∥∥
2

m

··=
∑
p

∣∣cp∣∣2m2|p|.

We define
T(m) =

⊕
τ0∈T

T(m)
τ

as the algebraic sum. Setting 〈
τp, (σq)∗

〉 ··= S(τp)1τp=σq

for τp ∈ T and the dual element (σq)∗ of σq ∈ T, we can extend the duality relation between
T(m) and T∗,(1/m) to the completion of T∗ under the norm ‖ · ‖1/m.

4.2 – Coherence and morphism property for the ? product. We write τ̄ to mean a
generic element of T. We denote by T(·) the linear space spanned by T(·) with (·) ∈ {∅, ◦, •},
and by T

∗
(·) its algebraic dual.

4.2.1 – Coherence property. Let c = (ck)k∈N2 and c′ = (c′k)k∈N2 be abstract variables. We
introduce the operators D′n ··= ∂c′n , for n ∈ N2, and set, for k0 ∈

{
(1, 0), (0, 1)

}
in the canonical

basis of N2,
∂k0 ··=

∑
n∈N2

(
cn+k0

Dn + c′n+k0
D′n

)
.

The vector fields ∂(1,0) and ∂(0,1) commute so one defines unambiguously for k = (k1, k2) ∈ N2

a |k|-th order differential operator on functions of finitely many components of c and c′ setting
∂k ··= (∂(1,0))k1(∂(0,1))k2 .

The following elementary relation is of crucial use in the proof of Proposition 20 below; its
elementary proof is left to the reader.
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17 – Lemma. For any (k1, . . . ,kn) ∈ (N2)n and m ∈ N2 one has∑
(l1,...,ln)∈(N2)n,
l1+···+ln≤m

(
m

l1, . . . , ln

) n∏
j=1

∂m−ljDkj−lj =
( n∏
j=1

Dkj

)
∂m, (4.1)

where (
m

l1, . . . , ln

)
··=

m!

l1! · · · ln!
.

For any τ̄ ∈ T we define the function Fa(τ̄∗) of the variables (c, c′) as follows. Set
h(c0, c

′
0) ··= a(c0)− a(c′0)

and
Fa(ζ∗1 )(c, c′) ··= f(c0),

Fa(ζ∗2 )(c, c′) ··= g(c0) c2
(0,1) + c c0,

Fa(ζ∗3 )(c, c′) ··= h(c0, c
′
0) c(0,2),

Fa(ζ∗4 )(c, c′) ··= 0,

(4.2)

and for τ̄ = Xkζl
∏n
i=1 Ini(τ̄i) ∈ T set

Fa(τ̄∗)(c, c′) ··=
({

∂kDk1 . . . DknF
a(ζ∗l )

} n∏
i=1

Fa(τ̄∗i )

)
(c, c′). (4.3)

With
τ1 ··= I(ζ1)I(0,1)(ζ)2ζ2, τ2 ··= I(ζ1)2I(0,2)(ζ)ζ3

one has for instance
Fa(τ∗1 )(c, c′) =

{
D0D

2
(0,1)F

a(ζ∗2 )
}
Fa(ζ∗1 )3 = 2g′(c0)f(c0)3,

Fa(τ∗2 )(c, c′) =
{
D2

0D(0,2)F
a(ζ∗3 )

}
Fa(ζ∗1 )3 = a(2)(c0)f(c0)3.

We see on these definitions that c0 and c′0 are placeholders for u and v0 in equation (1.2). The
function Fa vanishes outside B. Actually, if τ ∈ T \ B then it has a node v ∈ Nτ such that a
collection of all edges leaving from v contains either an edge Ik with k 6= (0, 0), (0, 1), (0, 2),
or more than two edges I(0,1), or more than one edges I(0,2), then Fa(τ∗) vanishes at v. By
a similar argument, it is easy to check that Fa

(
(τp)∗

)
(c, c′) with τp ∈ B−◦ are functions of

(c0, c(0,1)) and (c′0, c
′
(0,1)) only. Furthermore since

Fa
(
(τp)∗

)
= h|p| Fa

(
(τ0)∗

)
from the definition, we have that∥∥∥∥∥Fa

(∑
p

cp(τp)∗
)∥∥∥∥∥

L∞(O×R2)

≤
∥∥Fa((τ0)∗

)∥∥
L∞(O×R2)

∑
p

‖h‖|p|L∞(O) |cp|

for any domain O of R2. This means that Fa maps T∗,(m
′) into Cb(O × R2) if ‖h‖L∞(O) < m′.

18 – Proposition. The solution u =
∑
ukX

k +
∑
uτpI(τp) ∈ D2,µ

m (0, t0) to equation (2.4) satisfies

uτp =
1

S(τp)
Fa
(
(τp)∗

)(
u0, u(0,1), v0, ∂xv0

)
(4.4)

for all τp ∈ B−◦ .

Proof – Given the definitions of the nonlinearities of u and P<2(v0), identity (4.4) is a direct
encoding of the fixed point relation

u ∈ I
(

Q<0

{
F (u) ζ1 +

{
G(u)(Du)2 + cu

}
ζ2 +

{
A(u)−A(P<2(v0))

}
(D2u) ζ3

})
+ TX
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satisfied by u, where TX ··= span{Xk}. �

The analogue of identity (4.4) in the usual regularity structure setting was named ‘coherence’
in [7].

4.2.2 – Star product. Following [1, Section 2], we introduce bilinear operators on T. Let ↑nv τ̄
add n to the polynomial decoration of the vertex v of τ̄ . For σ̄ ∈ T◦, τ̄ ∈ T, and n ∈ N2, set

σ̄ yn τ̄ ··=
∑
v∈Nτ

∑
m∈N2

(
nv
m

)
σ̄ yv

n−m (↑−mv τ̄),

where nv is the polynomial decoration at the node v, and yv
n−m grafts σ̄ onto τ̄ at the node v

with an edge of type In−m. One has the following analogue of the Chapoton-Livernet univer-
sality result.

19 – Proposition. The space T◦ is freely generated by the symbols
(
Xkζl

)
k∈N2,1≤l≤3

and the family
of operations (yn)n∈N2 .

We define the ? product as in [1, Section 2], defining first for τ̄ ∈ T and B ⊂ Nτ̄ , the
derivation map ↑kB by

↑kB τ̄ =
∑

∑
v∈B kv=k

∏
v∈B
↑kvv τ̄ ,

then
In(σ̄) y τ̄ ··= σ̄ yn τ̄ ,

and (∏
i

Ini(σ̄i)
)
y τ̄

by grafting each tree σ̄i on τ̄ along the grafting operator corresponding to ni, independently of
the others. Set finally for all σ̄ = Xk

∏
Ini(σ̄i) ∈ T• and τ ∈ T

σ̄ ? τ̄ ··= ↑kNτ

(∏
i

Ini(σ̄i) y τ̄

)
.

One has for instance

Xk ζl

n∏
i=1

Ini(σ̄i) =

(
Xk

n∏
i=1

Ini(σ̄i)

)
? ζl. (4.5)

One proves as in Section 3.3 of [9] that the ? product is associative in the sense that
τ̄ ? (σ̄ ? η̄) = (τ̄ ? σ̄) ? η̄

for any τ̄ , σ̄ ∈ T• and η̄ ∈ T. We also define the ? operation on T
∗
• × T

∗ setting
σ̄∗ ? τ̄∗ ··= (σ̄ ? τ̄)∗.

The following morphism property of Fa with respect to the ? product is crucial and plays the
role played by pre-Lie morphisms in the original approach of Bruned, Chandra, Chevyrev &
Hairer [7]. Its proof is a copy and paste of the proof of Proposition 2 in [1] based on identity
(4.1).

20 – Proposition. One has

Fa
({

Xk
n∏
i=1

Ini(σ̄i)
}∗

? τ̄∗
)

(c, c′) =

({
∂kDn1 ...DnnF

a(τ̄∗)
} n∏
i=1

Fa
(
σ̄∗i
))

(c, c′). (4.6)

Note that the expansion formula (4.4) in our case only involves the k ∈ {0, (0, 1)} case of the
general formula (4.6). We see on (4.5) that formula (4.6) is a generalization of the defining
identity (4.3). The interest of formula (4.6) will appear below in Proposition 21 when we will
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look for a recursive formula for some quantities of the form Fa
(
R(z)∗(τp)∗

)
, for a (spacetime

dependent) linear map R∗ on T
∗.

4.3 – Strong preparation maps and their associated models. The objects introduced
in this section are the building blocks of an inductive construction of a renormalization process.

4.3.1 – Preparation maps. For τp ∈ T denote by |τ |ζ1 the number of noise symbols ζ1 that
appear in τ . Recall from Bruned’s work [6] that a preparation map is a linear map R : T→ T
such that for each basis vector τp ∈ T one has

R(ζl) = ζl, R(Xkτp) = XkR(τp) for all k ∈ N2,

R(Iqn(τp)) = Iqn(τp) for all n ∈ N2 and q ∈ N,
(4.7)

and there exist finitely many τpii ∈ T and constants λi such that

Rτp = τp +
∑
i

λiτ
pi
i , with |τpii | ≥ |τ

p| and |τpii |ζ1 < |τ
p|ζ1 ,

and R is closed in B and satisfies the ‘commutation’ relation
(R⊗ Id) ∆ = ∆R. (4.8)

The role of R is to provide a definition of the product of two trees that have already been
renormalized. Its use in Section 4.3.2 in the recursive definition of the actual analytical objects
associated with decorated trees will make that point clear; see in particular (4.13). Accordingly
the second and third identities of (4.7) account for the fact that there is no need, in the
induction process that builds an admissible model, to ‘renormalize’ elements of the form Xkτp

and Iqn(τp) if the element τp has already been renormalized. We can think of a preparation
map as generating a renormalization process in the same way as a vector fields generates a flow.

Denote by R∗ the algebraic dual of the map R; it is defined by the identity〈
Rσq, (τp)∗

〉
=
〈
σq, R∗(τp)∗

〉
.

It is elementary to see that identity (4.8) is equivalent to having the right derivation identity
R∗ ((σq)∗ ? (τp)∗) = (σq)∗ ? (R∗(τp)∗) (4.9)

for all σq ∈ B+ (B+ is regarded as a subset of T•) and τp ∈ B – see e.g. Proposition 3 in [1].
A strong preparation map is a preparation map satisfying identity (4.9) for all σq ∈ T• and
τp ∈ T – and not only for σp ∈ B+ and τp ∈ B.

Definition – (a) A spacetime dependent strong preparation map on T(m) is a continuous
map

R :
(
R+ × T

)
× T(m) → T(m)

satisfying the following properties for any fixed z ∈ R+ × T.
– The map R(z, ·) : T(m) → T(m) is linear, closed in T (m), and satisfies (4.7).
– For any τ0 ∈ T there exist finitely many σ0

1 , . . . , σ
0
n ∈ T such that |σi| > |τ |, |σi|ζ1 <

|τ |ζ1 , and (
R(z, ·)− Id

)
T(m)
τ ⊂

n⊕
i=1

T(m)
σi .

– The map R(z, ·)∗ satisfies (4.9) for any σq ∈ T• and τp ∈ T.
(b) A spacetime dependent renormalization character on B−◦ , of growth factor

m′ > 0, is a map
` :
(
R+ × T

)
× B−◦ → R

which is continuous in R+ × T and vanishes on the elements of the form
Xkτp (k 6= 0), Iqn(τp),
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and such that for any τ0 ∈ B−0
◦ there exists a constant C(τ) such that∣∣`(z, τp)

∣∣ ≤ C(τ)(m′)|p| (4.10)

for any p ∈ NEτ and z ∈ R+ × T.

One associates to a spacetime dependent character `(z, ·) of growth factor m′ the linear map

R`(z)
∗((τp)∗

) ··= (τp)∗ +
∑

σq∈B−◦

`(z, σq)

S(σq)
(τp)∗ ? (σq)∗ (4.11)

for any τp ∈ T• and R(z)∗((τp)∗) = (τp)∗ for any τp ∈ T◦. It can be easily checked that R` is
a strong preparation map on T (m) with m > m′. The above definition corresponds to the usual
definition of its dual described by the contraction of trees as in Corollary 4.5 of [6], so R`(z) is
closed in B. For the commutation relation (4.9) we use the associativity of the ? product as in
Proposition 4 of [1]. It remains to show that R` is bounded in T(m). Actually since∥∥∥∥∥(R`(z)∗ − Id

)(∑
p

cp(τp)∗
)∥∥∥∥∥

1/m

≤
∑
p,q,σ

|`(z, σq)|
S(σq)

|cp|
∥∥τp ? σq

∥∥
1/m

.
∑
p,q,σ

|`(z, σq)|
S(σq)

|cp| |q|m−|p|−|q| ≤
(∑

q,σ

|`(z, σq)|2

S(σq)2
|q|2m−2|q|

)1/2
∥∥∥∥∥∑

p

cpτ
p

∥∥∥∥∥
1/m

,

the map R`(z)
∗ : T∗,(1/m) → T∗,(1/m) is continuous because of (4.10), so R`(z) sends continu-

ously T(m) into itself. The next statement is a direct corollary of Proposition 20 and identity
(4.11).

21 – Proposition. Let O be a domain of R2 and let ‖h‖L∞(O) < 1/m. Let R be a spacetime dependent
strong preparation map on T(m). For every z ∈ R+ × T and (c0, c

′
0, c(0,1), c

′
(0,1)) ∈ O × R2 one

has

Fa
(
R(z)∗

(
Xkζl

n∏
i=1

Ini(τ
pi
i )
)∗)

(c, c′)

=

({
∂kDn1 ...DnnF

a
(
R(z)∗ζ∗l

)} n∏
i=1

Fa
(
(τ

pi
i )∗

))
(c, c′).

Proof – Writing

Xkζl

n∏
i=1

Ini(τ
pi
i ) =

(
Xk

n∏
i=1

Ini(τ
pi
i )
)
? ζl

and using the right derivation property (4.9) – this is where we use the fact that the preparation
map is ‘strong’, one gets

R∗(z)

((
Xk

n∏
i=1

Ini(τ
pi
i )
)
? ζl

)∗
=
(
Xk

n∏
i=1

Ini(τ
pi
i )
)∗
?
(
R(z)∗ζ∗l

)
. (4.12)

Identity (4.6) in Proposition 20 then yields the identity of the statement. �

4.3.2 – Admissible model associated with a preparation map. Fix a regularization parameter
ε and denote by

ξε =·· ξ1 ∈ C∞(R× T)

a regularized version of the spacetime white noise ξ and set
ξ2 = ξ3 = 1.
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For any spacetime dependent strong preparation map R on T(m) we define inductively the maps
ΠR,a(v0) and ΠR,a(v0),× as follows. For 1 ≤ l ≤ 3, set

ΠR,a(v0)ζl = ΠR,a(v0),×ζl ··= ξl,

and define
ΠR,a(v0) = ΠR,a(v0),× ◦R, ΠR,a(v0),×(τ1τ2) =

(
ΠR,a(v0),×τ1

)(
ΠR,a(v0),×τ2

)
,

ΠR,a(v0),×(Iqnτ) = ∂nz
(
Ka(v0) ◦

(
∂2
xK

a(v0))◦q
)
(ΠR,a(v0)τ

)
.

(4.13)

(The symbol ◦ stands here for the composition operator.) Here the operator ∂2
xK

a(v0) makes
sense because ΠR,a(v0)τ constructed as above belongs to C0+

s . Note that Ka(v0) maps C0+
s into

C2+
s . As R is spacetime dependent the first identity in (4.13) reads(

ΠR,a(v0)τ
)
(z) = ΠR,a(v0),×(R(z)τ

)
(z),

for all z and all τ . It follows from this definition and the fact that we work with preparation
maps R leaving fixed the elements of T of the form Iqn(τ) that the map ΠR,a(v0) satisfies the
admissibility condition

ΠR,a(v0)(Iqnτ) = ∂nz

(
Ka(v0) ◦ (∂2

xK
a(v0))◦q

)
(ΠR,a(v0)τ).

(The notation A◦q stands for the q-fold iterate of an operator A.) Define as well gR,a(v0)

inductively from the identity

(gR,a(v0)
z )−1

(
I+,q
n τ

)
= −

∑
|k|s<|τ |+2−|n|s

(−z)k

k!

(
∂n+k
z

(
Ka(v0) ◦ (∂2

xK
a(v0))◦q

)
(ΠR,a(v0)

z τ)
)

(z).

One can follow verbatim Section 7.1 of [2] and see that
(
ΠR,a(v0), gR,a(v0)

)
is a smooth admissible

model on T (m) with a constant m coming from the operator norm of ∂2
xK

a(v0).

Among the renormalization characters, we are interested in the one `εa(v0)(z, τ
p) defined by

the similar way to Section 6.3 of [8]. We denote by Rεa(v0) the strong preparation map defined
by (4.11) with ` replaced by `εa(v0). The associated model Mε

a(v0) is called the BPHZ model.
Note that, when `εa(v0) has a growth factor m′ < m, the BPHZ model Mε

a(v0) is a model on
T (m).

1 – Assumption. There exists a character `εa(v0) of growth factor m′ ∈ (0,m) for each ε (so the
constant C(τ) in (4.10) may be ε-dependent) and the BPHZ renormalized model Mε

a(v0) is
convergent as ε→ 0.

We skip the proof of Assumption 1 in this paper but rather give some comments on what
is involved in this assumption to end this section. This assumption essentially seems to be a
consequence of Theorem 2.31 in [11] except that the integration operatorKa(v0) is not stationary
in the space variable and ∂2

xK
a(v0) is too singular to be integrable around origin – the latter

part would be solved by Lemma 28 below. The former part is not a serious problem but we
need a slight modification of the ‘negative twisted antipode’ in [8]. When dealing with a kernel
Kλ(z, z′) that depends only on z−z′, the character `ελ(τp) is spacetime-independent and defined
by the formula

`ελ(τp) = hελ(S′−τ
p),

where hελ : B→ R is the non-renormalized expectation
hελ(τp) ··= E

[
ΠId,λτp(0)

]
,

and S′− : R[B−◦ ]→ R[B] is the negative twisted antipode – see Proposition 6.6 in [8] or Section
7 of [4] for its definition. Roughly speaking, the map S′− is defined by the inductive relation

S′−τ
p = −τp −

∑
σq

(S′−σ
q)(τp/σq),
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where σq runs over subgraphs with negative homogeneity and τp/σq is a quotient graph ob-
tained by identifying all the nodes of σq with its root, and hence `ελ(τp) can be written as a
sum of products of the form

`ελ(τp) = −hελ(τp)−
∑
σq

`ελ(σq)hελ(τp/σq). (4.14)

Behind the above splitting formula, the renormalization operator R acting on kernels plays an
important role – see Definition 10.15 of [17]. Let us take the example of a family {Liε}ε>0,i∈{1,2,3}
of kernels given for each i as limits of nice kernels Li = limε→0 L

i
ε, in the uniform norm weighted

at the origin, and such that L1 and L3 are integrable but L2 is not. Since we cannot expect
the convolution L1

ε ∗ L2
ε ∗ L3

ε converges, instead we replace L2
ε by the distribution RL2

ε(z) =
L2
ε(z)− (

∫
L2
ε(w)dw)δ(z) and prove the convergence of the convolution

L1
ε ∗RL2

ε ∗ L3
ε(z) =

∫
L1
ε(z − z1)L2

ε(z1 − z2)
(
L3
ε(z2)− L3

ε(z1)
)
dz1dz2

= L1
ε ∗ L2

ε ∗ L3
ε(z)−

(∫
L2
ε(z
′)dz′

)
L1
ε ∗ L3

ε(z)

with the help of Lipschitz continuity of L3
ε. In the last equality, the multiplication of the integral

of L2 and the convolution L1 ∗ L3 corresponds to the second term of the right hand side of
(4.14). However, if {Liε}ε>0,i∈{1,2} actually depends both on z and z′, we have to consider the
renormalization

L1
ε ∗RL2

ε ∗ L3
ε(z, z

′) =

∫
L1
ε(z, z1)L2

ε(z1, z2)
(
L3
ε(z2, z

′)− L3
ε(z1, z

′)
)
dz1dz2.

Since the integral of L2 depends on z1, it cannot be separated from L1 and L3 unlike the
stationary case. So, when dealing with the kernel Ka(v0)(z, z′) rather than with Kλ(z − z′),
instead of (4.14) we have to subtract integrals of the form∫

R2

`εa(v0)(z, z1, σ
q)hεa(v0)(z, z1, τ

p/σq)dz1,

where z1 is a spacetime variable associated with the root of σq, and hεa(v0)(z, z1, τ
p/σq) is

defined by the same way as hεa(v0)(z, τ
p/σq) without taking an integral with respect to z1.

4.4 – Renormalized equation. Denote by Rεa(v0) the reconstruction map associated with
Mε
a(v0). The proof of Theorem 20 in [2] works verbatim and gives in our setting the following

result.

22 – Proposition. Let uε ∈ D2,µ
m (0, t0) stand for the modelled distribution solution of (2.4) with

respect to the model Mε
a(v0). One can choose t′0 < t0 small enough for

uε ··= Rεa(v0)(u
ε)

to satisfy the bound
sup

ε∈(0,1)

sup
t∈(0,t′0)

∥∥a(uε)− a(v0)
∥∥
C(T)

<
1

m

and solve the ‘renormalized’ equation(
∂x0−a(uε)∂2

x

)
uε = f(uε)ξε+g(uε)(∂xu

ε)2+
∑

τp∈B−◦

`εa(v0)(·, τ
p)

S(τp)
Fa
(
(τp)∗

)(
uε, ∂xu

ε, v0

)
(4.15)

on (0, t′0) × T, with initial condition u0. The last term of (4.15) has a growth that is at most
linear with respect to ∂xuε.
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Proof – Denote by Rε,∗a(v0) the dual of Rεa(v0). Theorem 9 of [1] yields that uε solves the equation(
∂x0
− La(v0)

)
uε = f(u)ξε + g(u)(∂xu

ε)2 +
(
a(uε)− a(v0)

)
∂2
xu

ε

+

4∑
l=1

Fa
(

(Rε,∗a(v0) − Id)ζ∗l

)(
uε, ∂xu

ε, v0, ∂xv0

)
.

Since Rε,∗a(v0)ζ
∗
l ∈ T∗,(1/m) by duality the term Fa

(
(Rε,∗a(v0) − Id)ζ∗l

)
is actually convergent in

Cb((0, t
′
0)×T) by the remark before Proposition 18. We have the right hand side of (4.15) from

the definition of Rε,∗a(v0).
It remains to check the last statement. Note that the BHZ characters satisfy

`λ
(
X(0,1)σp

)
= 0 (4.16)

for all λ. Since the only functions Fa
(
(τp)∗

)
(c, c′) that depend on c′(0,1) correspond to τp of the

form X(0,1)σp, the corresponding counterterms are null. Moreover no functions Fa
(
(τp)∗

)
(c, c′)

is of degree greater than 1 with respect to c(0,1). Otherwise some τp would have at least two
ζ2-type nodes from where exactly one edge I(0,1) leaves. Since the minimal homogeneity among
the trees

Xkζ2I(0,1)(σ)

n∏
i=1

I(σi)

is
∣∣ζ2I(ζ1)I(0,1)(ζ1)

∣∣ = 2α− 1 > −1, such τp cannot have negative homogeneity. �

We finally consider the v0-dependence of the counterterm of (4.16). Define inductively the
function χa(τp)(c0) by the relations

χa
(
ζ3 I(0,2)(τ

p)
)

= χa(τp),

χa
(
ζ3 I(0,2)(τ

p)

n∏
i=1

I(τ
pi
i )
)

(c0) = a(n)(c0)

n∏
i=1

χa
(
τ
pi
i

)
(c0), for n ≥ 1,

(4.17)

and for l ∈ {1, 2}

χa
(
ζl

n∏
i=1

Ini(τ
pi
i )
)

(c0) =

n∏
i=1

χa
(
τ
pi
i

)
(c0). (4.18)

We see on this definition that χa is a polynomial function of a and its derivatives. It is important
to note that χa(τp) does not depend on the p-decoration of τ – rather it depends on the location
of the ζ3 vertices within τp. We denote by τ the non-p-decorated tree associated with τr, so
the symbols τ and τ0 are used here interchangeably. As a shorthand notation we write

χaτ ··= χa(τ).

With
τ1 ··= I(ζ1)I(0,1)(ζ)2ζ2, τ2 ··= I(ζ1)2I(0,2)(ζ)ζ3

one has for instance
χa(τ1)(c0) = 1, χa(τ2)(c0) = a(2)(c0)χa(ζ1)2(c0) = a(2)(c0)

We also define the functions Fτ∗ for τ ∈ B0 by the same inductive relations as the functions
Fa(τ∗) by replacing c0-derivatives of h(c0, c

′
0) of any order by the constant function equal to 1.

Then the functions Fτ∗ depend only on c0. It is elementary to obtain the following identity by
induction.

23 – Lemma. One has
Fa
(
(τp)∗

)(
c0, c(0,1), c

′
0

)
= χaτ (c0)

(
a(c0)− a(c′0)

)|p|
Fτ∗(c0). (4.19)
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The notion of admissible model on T (m) is relative to an integration operator – Ka(v0) in
Definition 9 for instance. For a positive parameter λ denote by

Zλt (x) = Zλ(t, x) = 1t>0
e−ct√
4πλt

exp

(
− |x|

2

4λt

)
the fundamental solution built from the constant coefficient parabolic operator ∂t − λ∂2

x − c.
The naive admissible model on T associated with Zλ and the smooth noise ξε is the unique
multiplicative model such that

Πελζ1 = ξε, Πελζl = 1 (l ∈ {2, 3}),
(
ΠελX

k
)
(z) = zk,

and
Πελ
(
Ipn(τp)

)
=
(
∂nz Z

λ ◦ (∂2
xZ

λ)p
)

Πελτ
p.

The BHZ character `ελ(·) on B−◦ is defined in that setting as
`ελ(τp) ··= hελ(S′−τ

p), hελ(τp) ··= E
[
Πελτ

p(0)
]
,

where S′− : T− → R[T ] is the natural extension to our setting of the negative twisted antipode
– see Proposition 6.6 in [8] or Section 7 of [4]for its definition in the usual BHZ setting.

2 – Assumption. For any τ0 ∈ B−0
◦ there exist a constant m > 0 and an ε-independent constant

C(τ) such that ∣∣`εa(v0)(z, τ
p)− `εa(v0(z))(τ

p)
∣∣ ≤ C(τ)m|p|

for any p ∈ NEτ and z ∈ R+ × T.

We check that the above assumption holds for some examples in the next section. Although
elementary the next statement is the core fact to get the renormalized equation under the form
(1.5) stated in Theorem 1.

24 – Lemma. For τ0 ∈ B−0
◦ the function

λ 7→ `ελ(τ0)

is analytic in any given bounded interval of R whose closure does not contain the point 0 and
1

n!
∂nλ `

ε
λ(τ0) =

∑
p∈NEτ , |p|=n

`λ(τp).

Proof – By an elementary computation we have

∂λZ
λ(t, x) = t∆Z1(λt, x) =

∫ t

0

∫
R

Zλ(t− s, x− y)∆Zλ(s, y) dy ds. (4.20)

Therefore once ∂λ applies to one edge ∂kZλ then this edge turns into a spacetime convolution
∂kZλ ∗∆Zλ. �

Proof of Theorem 2 – It follows from Lemma 16, Lemma 24 and (4.19) that, up to an ε-uniform
O(1) term, the counterterm in the renormalized equation (4.15) takes the simple form

∑
τp∈B−◦

`εa(v0(·))(τ
p)

S(τp)
Fa
(
(τp)∗

)(
uε, ∂xu

ε, v0

)
=

∑
τ0∈B−0

◦

1

S(τ0)

∑
p∈NEτ

`εa(v0(·))(τ
p)Fa

(
(τp)∗

)(
uε, ∂xu

ε, v0

)
=

∑
τ0∈B−0

◦

1

S(τ0)
χaτ (uε)Fτ∗

(
uε, ∂xu

ε
) ∞∑
n=0

(
a(uε)− a(v0)

)n ∑
|p|=n

`εa(v0(·))(τ
p)
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=
∑

τ0∈B−0
◦

1

S(τ0)
χaτ (uε)Fτ∗

(
uε, ∂xu

ε
)
`εa(uε(·))(τ

0).

�

Note that Theorem 2 holds for any noise satisfying assumption 1 – that is any noise to which
Chandra & Hairer’s result [11] applies. We finish that section by showing that the a priori
diverging term `εa(uε(·)) in the counterterm takes a particularly nice form when the noise is
Gaussian and the regularization operation appropriate. Recall that |τ |ζ1 denotes the number
of ζ1-type nodes that appear in τ . If we consider only the spatial regularization of the noise we
have further simpler form by change of variables.

25 – Proposition. Assume that ξ is a stationary centered Gaussian noise and define
ξε(t, x) =

(
ξ(t, ·) ∗ ρε

)
(x)

with even mollifier ρε. Then `ελ(τ0) = 0 if |τ |ζ1 is odd. Otherwise,

`ελ(τ0) =

{
λ−]Nτ+1`ε1(τ0) (if ξ(x) depends on only space),

λ|τ |ζ1/2−]Nτ+1`ε1(τ0) (if ξ(t, x) is white in time).

Proof – Let N◦ and N• be the collection of ζ1-type nodes and ζ2, ζ3-type nodes respectively,
and denote by 2a = ]N◦ and b = ]N•. If N• contains the root, the expectation of

(
Πελτ

)
(0) is

represented as the integral of the form∫
Cε(z

1 − z2) · · ·Cε(z2a−1 − z2a)(z1)n1 · · · (z2a)n2aGλ
(
z1, . . . , z2a

)
dz1 · · · dz2a,

where Cε(z) = E
[
ξε(z)ξε(0)

]
and

Gλ(z1, . . . , z2a) =

∫
G̃λ
(
z1, . . . , z2a, w1, . . . , wb−1

)
dw1 · · · dwb−1

with G̃ the product of polynomials (wi)mi and kernels ∂eijKλ. Note that the n-decorations
mi and e-decorations eij are 0 or (0, 1), so they are independent of the change of variables
z 7→ zλ ··= (λt, x). Hence

Gλ
(
z1, . . . , z2a

)
= λ−b+1G1

(
z1
λ, . . . , z

2a
λ

)
by a scaling argument. If ξ(x) depends only on the space argument then we have(

Πελτ
)
(0) = λ−2a−b+1

(
Πε1τ

)
(0),

since Cε(x) does not depend on time. If ξ(t, x) is white in time one has Cε(z) = δ(t)ρ∗2ε (x),
which reduces the number of time components t1, . . . , t2a of z1, . . . , z2a in half and yields(

Πελτ
)
(0) = λ−a−b+1

(
Πε1τ

)
(0).

We can perform similar computations when N◦ contains the root. �

In the setting of Lemma 25 the counterterm is of the form∑
τ∈B−0

◦

`ε1(τ)

S(τ)

χaτ (uε)

a(uε)θτ
Fτ∗(u

ε, ∂xu
ε) (4.21)

with an exponent θτ given in the statement of Proposition 25. This situation applies in the
example of equation (1.6) with a linear additive forcing.

4.5 – Examples. We consider in this section some examples satisfying Assumption 2. A
couple of statements are needed before we can analyse in some details some examples in the
next three subsections. Recall that the integration operator Ka(v0) is equal to the operator(

∂t − La(v0) + c
)−1

(·) =

∫ t

−∞
Q
a(v0)
t−s (·)ds
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modulo an operator R sending C−2+
s into C2+

s . Hence it is sufficient to consider the renormal-
ization characters `εa(v0)(τ

p) by replacing the kernels Ka(v0)((t, x), (s, y)) with Q
a(v0)
t−s (x, y).

We again replace each Q
a(v0)
t−s (x, y) with the heat kernel Za(v0(•))(x− y) whose coefficient is

frozen at the root and define the spacetime character `εa(v0(•))(τ
p). As performed in Hairer’s

works [17, 18], we can associate each character `εa(v0)(τ
p) and `εa(v0(•))(τ

p) with a directed graph
called Feynman diagram whose edges are related with kernels Qa(v0) and Za(v0) respectively
and estimate it by using the singularity of each kernel around origin. To estimate the difference
between `εa(v0)(τ

p) and `εa(v0(•))(τ
p), we show that the difference between Qa(v0) and Za(v0) is

less singular than Qa(v0) by the regularity of v0 – see Proposition 26 below.

We use the notations from Section A.1 where we consider some properties of Gaussian-like
kernels. This type of kernels appear in the construction of the fundamental solution Qa(v0) of
the operator ∂t−La(v0) + c or more general operators, as described in Section A.2. Recall from
Appendix A.1 the definition of the Gaussian kernel G

(c,ζ)
t (x) with d = 1, s = 1, and N = 2.

Recall that Zλ is the fundamental solution built from the operator ∂t − λ∂2
x − c.

26 – Lemma. Let K be a compact subset of (0,∞). For any µ, λ ∈ K and M,k ∈ N, there exists
c > 0 such that ∣∣∣∣∂kxZµt (x)−

∑
n<M

(µ− λ)n

n!
tn∂2n+k

x Zλt (x)

∣∣∣∣ . |µ− λ|M G
(c,−k)
t (x).

Proof – By (4.20), ∂nλ∂kxZλt (x) = tn∂2n+k
x Zλt (x) is in the class G(−k). �

The following result is essential in the proof of Assumption 2; we defer its proof to the end
of Appendix A.2. For simplicity we write

b = a(v0)

and we write G
(ζ)
β1,β2

(t, x, y) to mean a value of a function belonging to the class G
(ζ)
β1,β2

in the
sense of Definition 30 with negative γ to guarantee its spacetime integrability.

27 – Proposition. If v0 ∈ Cα with α ∈ (0, 1], for any k ∈ {0, 1, 2} one has
∂kxQ

b
t(x, y) = (∂kZt)

b(y)(x− y) + G(α−k)
α,α (t, x, y) (4.22)

= (∂kZt)
b(x)(x− y) + G(α−k)

α,α (t, x, y). (4.23)

If v0 is a C2 function, for any k ∈ {0, 1, 2} one has

∂kxQ
b
t(x, y) = (∂kZt)

b(x)(x− y) + b′(x)Y
k,b(x)
t (x− y) + G

(2−k)
1,1 (t, x, y), (4.24)

where {Y k,λt }t>0,k∈{0,1,2},λ>0 belongs to G
(1−k)
1,1 locally uniformly over λ. When k is even,

respectively odd, the function Y kt (·) is odd, respectively even.

The iteration of ∂2Ka(v0) can be estimated properly by the following lemma.

28 – Lemma. For any n ∈ N,

(∂2
1Q

b)∗n(x, y) =
1

(n− 1)!
(t∂2

x)n−1Zλt (x− y)|λ=b(x) + G(α)
α,α(t, x, y),

Proof – We only consider n = 1. The general case is an easy extension. By the decompositions
(4.22) and (4.23) of ∂2

1Q
b and by Lemma 31, it is sufficient to consider the integral∫
(0,t)×R

(∂2Zt−s)
b(x)(x− z)(∂2Zs)

b(y)(z − y)dz.
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By the semigroup property of Zλt = e−cteλt∆, the above integral is equal to∫ t

0

(∂t∂
2
xZ)b(x)(t−s)+b(y)s(x− y) ds =

∂2Z
b(y)
t − ∂2Z

b(x)
t

b(y)− b(x)
= ∂λ∂

2Zλt |λ=b(x) + G(α)
α,α

= t∂2
xZ

λ
t |λ=b(x) + G(α)

α,α.

�

Equipped with the previous three statements we can now look at three examples where
Assumption 2 can be proved to hold.

4.5.1 – Two dimensional parabolic Anderson model. In the slightly singular setting of the
quasilinear parabolic Anderson model equation

∂tu− a(u)∆u = f(u)ξ

on a two dimensional torus, with space white noise ξ, one has 2/3 < α < 1, the only elements
τ ∈ B−0

◦ with an even number of ζ1 noises are the trees

τ1 = ζ1I(ζ1) = , τ2 = ζ3I(ζ1)I(0,2)(ζ1) = .

Here the thick line denotes the operator I and the double line denotes I(0,2). The noise symbol
ζ1 is denoted by a white circle, while ζ3 is denoted by a circled dot. The corresponding characters
are

`εa(v0)((t, x), τ1) =

∫
(−∞,t)×R

Q
a(v0)
t−s (x, y)Cε(x− y) dsdy,

`εa(v0)((t, x), τ2) =

∫
{(−∞,t)×R}2

Q
a(v0)
t−s (x, y) ∂2

xQ
a(v0)
t−s′ (x, y′)Cε(y − y′) dsds′dydy′.

By (4.23) of Proposition 26 we can replace Qa(v0)(x, y) above by Za(v0(x))(x−y) up to integrable
kernels. One has for instance∫

(−∞,t)×R
G

(0+)
0,0 (t− s, x, y)Cε(x− y) dsdy ∼

∫ t

−∞
G

(0+)
0,0 (t− s, x, x) ds ∼

∫ t

−∞

eγ(t−s)

(t− s)1− ds <∞;

a similar estimate holds for `εa(v0)((t, x), τ2). Recall that γ is negative in this section. One thus
has

`ελ(τ1) =

∫
(−∞,t)×R

Zλt−s(x− y)Cε(x− y) dsdy,

∼ − 1

2πλ

∫
R

log |y|Cε(y) dy

`ελ(τ2) =

∫
{(−∞,t)×R}2

Zλt−s(x− y) ∂2
xZ

λ
t−s′(x− y′)Cε(y − y′) dsds′dydy′

= − 1

λ

∫
(−∞,t)×R×R

Zλt−s(x− y) δ0(x− y′)Cε(y − y′) dsdydy′

∼ 1

2πλ2

∫
R

log |y|Cε(y) dy.

The action of the characters acting on trees with nonzero p-decorations can be estimated
similarly using Lemma 28, showing that Assumption 2 holds in that case. Then formula (1.5)
takes the form (

`εa(·)(τ1)f ′f + `εa(·)(τ2)a′f2
)

(uε) = cε
(
f ′f

a
− a′f2

a2

)
(uε)

with a constant cε = − 1
2π

∫
R log |y|Cε(y)dy. This matches with the previous works on the

subject by Bailleul, Debussche & Hofmanová [3], Furlan & Gubinelli [14] and Otto & Weber
[23].
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4.5.2 – Quasilinear generalized (KPZ) equation with regularized noise. We work in this
paragraph in the one dimensional space torus. Let ξ be the mildly singular case of a spacetime
Gaussian noise of parabolic regularity α − 2 with 1

2 < α < 2
3 and consider the quasilinear

equation
∂tu− a(u)∂2

xu = f(u)ξ + g(u)(∂2
xu).

Then the only elements τ ∈ B−0
◦ with an even number of noise symbols ζ1 are the trees

τ1 = ζ1 I(ζ1) = , τ2 = ζ3 I(ζ1)I(0,2)(ζ1) = , τ3 = ζ2 I(0,1)(ζ1)2 = , (4.25)
where the thin line denotes the operator I(0,1) and the black dot denotes the symbol ζ2. Since
all of them have homogeneity 2α − 2 > −1, we can replace the kernel Qa(v0) by Za(v0) up to
integrable kernel G(α) by (4.23) of Proposition 26. Thus they satisfy Assumption 2 and the
counterterm takes the form(

`εa(·)(τ1) f ′f + `εa(·)(τ2) gf2 + `εa(·)(τ3) a′f
)

(uε).

As mentioned in Gerencsér & Hairer’s work [16], the renormalization constants are cancelled
as follows. Actually

`ελ(τ1) = −
∫
R2

Cε(z)Zλ(z) dz,

`ελ(τ2) = −
∫

(R2)2
Cε(z − z′) ∂xZλ(z)∂xZ

λ(z′) dzdz′ = −
∫
R2

Cε(z) ∂xZλ ∗ ∂xZλ(z) dz,

`ελ(τ3) = −
∫

(R2)2
Cε(z − z′)Zλ(z) ∂2

xZ
λ(z′) dzdz′ = −

∫
R2

Cε(z)Zλ ∗ ∂2
xZ

λ(z) dz,

where f(z) ··= f(−z) for any function f and we assume that the function
Cε(z) ··= E

[
ξε(z)ξε(0)

]
is even. As we see from the identity

∂xZλ ∗ ∂xZλ(z) = −Zλ ∗ ∂2
xZ

λ(z) =
1

2λ
Zλ(|t|, x) +O(1),

that we have
λ`ελ(τ2) = −λ`ελ(τ3) = `ελ(τ1) +O(1),

our formula matches with Gerencsér & Hairer’s formula [16]

`εa(uε)(τ1)

(
f ′f +

gf2

a
− a′f

a

)
(uε).

4.5.3 – Quasilinear generalized (KPZ) equation with space-time white noise. Let ξ be a
spacetime Gaussian noise of parabolic regularity α−2 with 2

5 < α < 1
2 and consider the equation

∂tu− a(u)∂2
xu = ξ.

Then the only elements τ ∈ B−0
◦ with an even number of noise symbols ζ1 are the trees τ2 from

(4.25) together with the trees

, , (4.26)

Since the last two trees have homogeneity (4α − 2) we can replace the kernel Qa(v0) by Za(v0)

as before. Note that Assumption 2 is not ensured at this stage since on the edge e whose lower
node, respectively upper node, is associated with the spacetime variable (s, y), respectively
(s′, y′), the kernel Qa(v0)

s−s′ (y−y′) is replaced by Za(v0(y))
s−s′ (y−y′) rahter than Za(v0(x))

s−s′ (y−y′). To
show Assumption 2 we have to replace Za(v0(y))

s−s′ (y − y′) with Z
a(v0(x))
s−s′ (y − y′) up to a term of

size |x− y|, which also smears the singularity of the Feynman diagram by α. Thus Assumption
2 holds for the trees in (4.26).
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It turns out that the first tree of (4.26) is not involved in equation (1.5) because ξ is a
centered Gaussian. Indeed, as we can here decompose

`εa(v0)

(
·,

)
= −hεa(v0)

(
·,

)
+ 3hεa(v0)

(
·,

)
hεa(v0)

(
·,

)
we see that the right hand side is zero because of Wick theorem for Gaussian random variables.

It remains to consider the tree τ1. Since it has a homogeneity 2α−2 < −1, it is not sufficient
to replace Qa(v0) by Za(v0). One sees however from (4.24) of Proposition 26 that we have

`εa(v0)

(
(t, x),

)
=

∫
(R2)2

{
Z
a(v0(x))
t−s (x− y)(∂2Zt−s′)

a(v0(x))(x− y′)

+ a′(v0(x))v′0(x)Y
a(v0(x))
t−s (x− y)(∂2Zt−s′)

a(v0(x))(x− y′)

+ a′(v0(x))v′0(x)Z
a(v0(x))
t−s (x− y)Y

2,a(v0(x))
t−s′ (x− y′)

+
∑

γ1+γ2≥0

G
(γ1)
0,0 (t− s, x, y)G

(γ2)
0,0 (t− s′, x, y′)

}
Cε(s− s′, y − y′) dsds′dydy′.

(4.27)
The last term in (4.27) does not matter as one has the ε-uniform estimate∫

(R2)2
G

(γ1)
0,0 (t− s, x, y)G

(γ2)
0,0 (t− s′, x, y′)Cε(s− s′, y − y′) dsds′dydy′

.
∫
R2

G
(γ1+γ2−1)
0,0 (t− s, x, y) dsdy .

∫ t

−∞

eγ(t−s)

(t− s)(1−(γ1+γ2))/2
ds <∞.

Recall from Proposition 26 the parity of the functions Y . Although the second and third terms
in (4.27) are not estimated as above, if we assume that the mollifier ρε is an even function then
Cε is also an even function of its space argument, so the second and third terms in the right
hand side of (4.27) vanish. In the end only the first term of (4.27) survives and Assumption 2
is satisfied with

`ελ
( )

=

∫
(R2)2

Zλt−s(x− y) (∂2Zt−s′)
λ(x− y′)Cε(s− s′, y − y′) dsds′dydy′.

Eventually the counterterm takes the form

{
`εa(·)

( )
a′ + `εa(·)

( )
a′a′′ + `εa(·)

( )
(a′)3

}
(uε),

which matches Gerencsér’s formula in Theorem 1.1 of [15]. We see on this formula the rule
(4.17)-(4.18) in action.

In the case of the quasilinear generalized (KPZ) equation (1.1)
∂tu− a(u)∂2

xu = f(u)ξ + g(u)(∂xu)2

driven by a one dimensional space time white noise ξ on the torus, the list of trees τ ∈ B−0
◦ with

an even number of noise symbols ζ1 contains, in addition to the previous trees, the trees τ1, τ3
from (4.25) and a number of other trees of homogeneity 4α− 2. That Assumption 2 holds true
for all the trees of homogeneity 4α− 2 can be seen as for the trees of (4.26). The counterterms
corresponding to τ1 and τ3 can be seen to satisfy Assumption 2 by a similar computation as in
(4.27).

We note that the present analysis of equation (1.1) holds for a large classe of Gaussian
spacetime noises of parabolic regularity α − 2, up to α > 1/3, as there are no other trees of
homogeneity strictly smaller than −1 than those considered in the spacetime white noise case
in that regularity range.
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A – Appendix

We give in Appendix A.1 some elementary results on kernels that can be bounded by
Gaussian-like kernels that were used in Section 4.5. In Appendix A.2 we prove some prop-
erties of the fundamental solutions of anisotropic parabolic operators following the arguments
in [13, 12]. We believe that the results in this appendix are known but we could not find
any suitable references. For the sake of generality for them we work on the space Rd and an
anisotropic scaling s = (sj)

d
j=1 ∈ Nd. Set

|s| ··=
∑d
j=1 sj ,

|k|s ··=
∑d
j=1 sjkj for k = (kj)

d
j=1 ∈ Nd

>0,
‖x‖s ··=

∑d
j=1 |xj |1/sj for x = (xj)

d
j=1 ∈ Rd,

∂kx ··=
∏d
j=1 ∂

kj
xj for k = (kj)

d
j=1 ∈ Nd.

We consider the parabolic operator with time-independent coefficients

∂t − P (x, ∂x) ··= ∂t −
∑
|k|s≤N

ak(x)∂kx , (A.1)

where N is an integer satisfying N > maxj sj .

A.1 – Gaussian kernels. For c > 0 and ζ ∈ R, we write

G
(c,ζ)
t (x) ··= t(ζ−|s|)/N exp

{
− c

d∑
j=1

(
|xj |N/sj

t

)sj/(N−sj)}
.

29 – Lemma. Let ζ1, ζ2 ∈ R and c, c1, c2 > 0.

(i) For any α ≤ min1≤i≤d
Nsi
N−si , one has

‖x− y‖αs G
(c,ζ1)
t (x, y) . G

(c′,ζ1+α)
t (x, y)

for some c′ ∈ (0, c).

(ii) One has G
(c,ζ1)
t (x, y) G

(c,ζ2)
t (x, y) = G

(2c,ζ1+ζ2−1)
t (x, y).

(iii) If c1 < c2 and ζ1, ζ2 > −N , one has∫ t

0

∫
Rd

G
(c2,ζ1)
t−s (x− y) G(c2,ζ2)

s (y) dyds ≤ C G
(c1,ζ1+ζ2+N)
t (x).

(iv) If c1 < c2, ζ1 > −N + |s|, and ζ2 > −N ,∫ t

0

∫
Rd

G
(c1,ζ1)
t−s (x− y) G(c2,ζ2)

s (y) dyds ≤ C
Γ( ζ1−|s|+NN )Γ( ζ2+N

N )

Γ( ζ1+ζ2−|s|+N
N )

G
(c1,ζ1+ζ2+N)
t (x).

The constant C in items (iii) and (iv) is an absolute constant whose precise value has no
importance.

Proof – The proof of the statements (i) and (ii) is elementary and left to the readers. For (iii)
and (iv) we use the elementary inequality

G
(c,0)
t−s (x− y)G(c,0)

s (y) ≤ t|s|/N (t− s)−|s|/Ns−|s|/NG
(c,0)
t (x).

For (iii) we have
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∫ t

0

∫
Rd

G
(c2,ζ1)
t−s (x− y)G(c2,ζ2)

s (y)

=

∫ t

0

(t− s)(ζ1+|s|)/Ns(ζ2+|s|)/N
∫
Rd

G
(c1,0)
t−s (x− y)G

(c2−c1,0)
t−s (x− y)G(c1,0)

s (y)G(c2−c1,0)
s (y)dyds

≤ t|s|/N
∫ t

0

(t− s)ζ1/Nsζ2/NG
(c1,0)
t (x)

∫
Rd

G
(c2−c1,0)
t−s (x− y)G(c2−c1,0)

s (y)dyds.

Since the last integral with respect to y is bounded by

min{(t− s)−|s|/N , s−|s|/N}
∫
Rd

G
(c2−c1,0)
1 (y)dy ≤ Cc2−c1(t/2)−|s|/N

with
Cc :=

∫
Rd

G
(c,0)
1 (x)dx,

we have∫ t

0

∫
Rd

G
(c2,ζ1)
t−s (x− y)G(c2,ζ2)

s (y) ≤ Cc2−c12|s|/N
∫ t

0

(t− s)ζ1/Nsζ2/NdsG
(c1,0)
t (x)

≤ Cc2−c1t(ζ1+ζ2+N)/N Γ( ζ1+N
N )Γ( ζ2+N

N )

Γ( ζ1+ζ2+N
N )

G
(c1,0)
t (x).

For (iv) we have∫ t

0

∫
Rd

G
(c1,ζ1)
t−s (x− y)G(c2,ζ2)

s (y) dsdy

=

∫ t

0

(t− s)ζ1/Ns(ζ2+|s|)/N
∫
Rd

G
(c1,0)
t−s (x− y)G(c1,0)

s (y)G(c2−c1,0)
s (y)dyds

≤ t|s|/N
∫ t

0

(t− s)(ζ1−|s|)/Nsζ2/NG
(c1,0)
t (x)

∫
Rd

G(c2−c1,0)
s (y)dyds

≤ Cc2−c1t(ζ1+ζ2+N)/N Γ( ζ1−|s|+NN )Γ( ζ2+N
N )

Γ( ζ1+ζ2−|s|+N
N )

G
(c1,0)
t (x).

�

30 – Definition. For ζ ∈ R, denote by G(ζ) the class of families of function A = {At}t>0 ⊂
C(Rd × Rd) satisfying

|At(x, y)| ≤ Ceγt G
(c,ζ)
t (x− y)

for some positive constants C, γ, c. For β1, β2 ∈ [0, 1], denote by G
(ζ)
β1,β2

the class of families
A = {At}t>0 ∈ G(ζ) satisfying∣∣At(x, y)−At(x′, y)

∣∣ ≤ Ceγt |x− x′|κ1

{
G

(c,ζ−κ1)
t (x− y) + G

(c,ζ−κ1)
t (x′ − y)

}
,∣∣At(x, y)−At(x, y′)

∣∣ ≤ Ceγt |y − y′|κ2

{
G

(c,ζ−κ2)
t (x− y) + G

(c,ζ−κ2)
t (x− y′)

}
for any κ1 ∈ [0, β1) and κ2 ∈ [0, β2).

For any families A = {At}t>0, B = {Bt}t>0 ⊂ C(Rd × Rd), we define the spacetime convo-
lution

(A ∗B)t(x, y) ··=
∫

(0,t)×R
At−s(x, z)Bs(z, y) dsdz.

31 – Lemma. Let ζ1, ζ2 ∈ R, β1, β2 ∈ [0, 1], A = {At}t>0 ∈ G
(ζ1)
β1,0

, B = {Bt}t>0 ∈ G
(ζ2)
0,β2

.
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(i) If ζ1, ζ2 > −N , then A ∗B ∈ G
(ζ1+ζ2+N)
γ1,γ2 with γi = min{βi, ζi +N} for i ∈ {1, 2}.

(ii) Let ζ1 = −N , ζ2 > −N , and B ∈ G
(ζ2)
δ,β2

with some δ > 0. If∣∣∣∣ ∫
R

At(x, y)dy

∣∣∣∣ . t−1+δ/N (A.2)

then A ∗ B ∈ G
(ζ2)
0,γ2

. If in addition to (A.2), At is first differentiable with respect to the
first variable, ∂xiA = {∂xiAt}t>0 ∈ G(−N−si) and∣∣∣∣ ∫

R

∂xiAt(x, y)dy

∣∣∣∣ . t−1−si/N+δ/N , (1 ≤ i ≤ d) (A.3)

then A ∗B ∈ G
(ζ2)
min{γ1,δ},γ2 .

(iii) Let ζ1 > −N , ζ2 = −N , and A ∈ G
(ζ1)
β1,δ

with some δ > 0. Then A ∗ B ∈ G
(ζ1)
γ1,0

,
respectively G

(ζ1)
γ1,γ2 , if a similar condition to (A.2), respectively (A.2) and (A.3), holds

with the roles of first and second variables reversed.

Proof – Item (i) follows from Lemma 29. To show item (ii) we decompose

(A ∗B)t(x, y) =

∫ t

t/2

ds

∫
Rd
At−s(x, z)Bs(z, y) dz +

∫ t/2

0

ds

∫
Rd
At−s(x, z)Bs(z, y) dz.

Since the second term of the right hand side can be treated in the same way as (i), we consider
the first term. If (A.2) holds we can decompose the first term into∣∣∣∣ ∫ t

t/2

ds

∫
Rd
At−s(x, z)Bs(x, y) dz

∣∣∣∣+

∣∣∣∣ ∫ t

t/2

ds

∫
Rd
At−s(x, z)

(
Bs(z, y)−Bs(x, y)

)
dz

∣∣∣∣
. eγt

∫ t

t/2

∣∣∣∣ ∫
R

At−s(x, z)dz

∣∣∣∣G(c,ζ2)
s (x− y) ds

+ eγt
∫ t

t/2

ds

∫
Rd

G
(c,−N)
t−s (x− z)‖z − x‖εs

(
G(c,ζ2−ε)
s (z − y) + G(c,ζ2−ε)

s (x− y)
)
dz

. G
(c,ζ2)
t (x− y) eγt

∫ t

t/2

(t− s)−1+δ/N ds

+ eγt
∫ t

t/2

∫
Rd

G
(c,ε−N)
t−s (x− z)

(
G(c,ζ2−ε)
s (z − y) + G(c,ζ2−ε)

s (x− y)
)
dzds

. eγt G
(c′,ζ2)
t (x− y)

for any ε ∈ (0, δ) and c′ < c. To show the Hölder estimate of A ∗ B for the first variable, it
is sufficient to consider the difference between x and xh = x + (h, 0, . . . , 0). Let Ct,s(x, y) ··=∫
Rd At−s(x, z)Bs(z, y)dz and we decompose

Ct,s(xh, y)− Ct,s(x, y) = h

∫ 1

0

∫
Rd
∂x1At−s(xθh, z)Bs(z, y)dzdθ

We decompose the right hand side as above and have

|Ct,s(xh, y)− Ct,s(x, y)| . eγt|h|
∫ 1

0

dθ

{
(t− s)−1−s1/N+δ/NG

(c,ζ2)
t (xθh − y)

+

∫
Rd

G
(c,ε−N−s1)
t−s (xθh − z)G(c,ζ2−ε)

s (z − y)dz

}
.

By interpolation between the above Gaussian estimate we have that |Ct,s(xh, y)−Ct,s(x, y)| is
bounded above by eγt|h|τ times
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∫ 1

0

{
(t− s)−1−τs1/N+δ/NG

(c,ζ2)
t (xθh − y) +

∫
Rd

G
(c,ε−N−τs1)
t−s (xθh − z)G(c,ζ2−ε)

s (z − y)dz

}
dθ,

for any τ ∈ [0, 1]. If τ < ε/s1, the s-integral is finite and we have

|(A ∗B)t(xh, y)− (A ∗B)t(x, y)| . eγt‖xh − x‖τs1s

∫ 1

0

G
(c′,ζ2−τs1)
t (xθ − y)dθ

. eγt‖xh − x‖τs1s

(
G

(c′,ζ2−τs1)
t (xh − y) + G

(c′,ζ2−τs1)
t (x− y)

)
.

This gives the required estimate since ε < δ is arbitrary. �

A.2 – Fundamental solution. First we consider the parabolic operator (A.1) when the
coefficients ak are x-independent constants. Then we write P (∂x) =

∑
|k|s≤N ak∂

k
x .

32 – Lemma. Assume there exists a constant δ > 0 such that the inequality

ReP (iξ) = Re
∑
|k|s≤N

ak(iξ)k ≤ −δ‖ξ‖Ns (A.4)

holds for any ξ ∈ Rd. Then for any ε > 0, k ∈ Nd, and n ∈ N, there exist positive constants
C and c which depend only on s, N,A ··= maxk |ak|, δ, ε, k, n such that the fundamental solution
Zt(x) of ∂t − P (∂x) satisfies ∣∣∂nt ∂kxZt(x)

∣∣ ≤ CeεtG(c,−|k|s−Nn)
t (x) (A.5)

for any t > 0 and x ∈ Rd. When k = 0 and n = 0, the constant C depends only on δ.

Proof – By definition Zt(x) is obtained as the Fourier inverse transform of the function etP (iξ)

of ξ ∈ Rd. Following the arguments in [13, Chapter 9, Section 2] we consider the bound of
etP (iξ−η) for η, ξ ∈ Rd. By the binomial theorem, we can expand

P (iξ − η) = P (iξ) +R(ξ, η),

where R(ξ, η) is a linear combination of monomials ξ`ηm with |` + m|s ≤ N and m 6= 0, and
with coefficients depending only on {ak}. For any ε > 0, by Young’s inequality we have

|R(ξ, η)| ≤ A
∑

α∈N>0, β∈N, α+β≤N

‖ξ‖αs ‖η‖βs

≤ ε+
δ

2
‖ξ‖Ns + c′‖η‖Ns ≤ ε+

δ

2
‖ξ‖Ns + c

d∑
j=1

|ηj |N/sj ,

where c′ and c are positive constants depending only on A, ε, δ. By the condition (A.4), we
have

|etP (iξ−η)| ≤ etReP (iξ)et|R(ξ,η)| ≤ exp

{
t

(
ε− δ

2
‖ξ‖Ns + c

d∑
j=1

|ηj |N/sj
)}

.

By using the Cauchy’s theorem we have

|Zt(x)| =
∣∣∣∣ 1

(2π)d

∫
Rd
eix·ξetP (iξ)dξ

∣∣∣∣ =

∣∣∣∣ 1

(2π)d

∫
Rd
eix·(ξ+iη)etP (iξ−η)dξ

∣∣∣∣
≤ eεt

(2π)d
exp

(
− x · η + ct

d∑
j=1

|ηj |N/sj
)∫

Rd
exp

(
− δt

2
‖ξ‖Ns

)
dξ

for any η ∈ Rd. If we choose ηj as
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ηj = (sgnxj)
(
|xj |
cpjt

)1/(pj−1)

, (A.6)

where pj = N/sj , then

−xjηj + ct|ηj |pj = −pj − 1

pj

(
|xj |pj
cpjt

)1/(pj−1)

,

which becomes the argument of the exponential in (A.5). The integral over ξ becomes Ct−|s|/N
with some constant C depending only on δ.
For the derivatives ∂kxZt(x) we can derive the required estimate by a similar way from the
identity

∂kxZt(x) =
1

(2π)d

∫
Rd
eix·ξ(iξ)ketP (iξ)dξ =

1

(2π)d

∫
Rd
eix·(ξ+iη)(iξ − η)ketP (iξ−η)dξ.

We decompose (iξ − η)k into the linear combination of monomials ξ`ηm with ` + m = k. The
integral of |ξ`| exp(− δt2 ‖ξ‖

N
s ) over ξ becomes the factor Ct−(|s|+|`|s)/N . For the choice of η as

in (A.6) we have

|ηm| = t−|m|s/N
d∏
j=1

(
|xj |

cpjt1/pj

)mj/(pj−1)

.

Since any powers of |xj |/t1/pj are absorbed in the exponential part of (A.5) and the factor
t−|m|s/N remains, we have the required estimate for ∂kxZt(x). We have similar estimates for the
time derivatives because ∂nt Zt(x) = (P (∂x))nZt(x). �

Next we consider the x-dependent coefficients ak(x). We call a function Qt(x, y) defined on
t > 0 and x, y ∈ Rd a fundamental solution of ∂t − P (x, ∂x) if it satisfies

• for fixed y, the function (t, x) 7→ Qt(x, y) is C1 in t and CNs in x, and satisfies
(
∂t −

P (x, ∂x)
)
Qt(x, y) = 0,

• for every f ∈ Cb(Rd),

lim
t↓0

∫
Rd
Qt(x, y)f(y)dy = f(x).

There exists a unique fundamental solution under the assumptions of the following theorem –
see e.g. Theorem 6 of [24], where only isotropic metric is considered but it is easy to modify
the argument to anistropic case. See also Theorem 16 of [13, Chapter 1] for the case that all
coefficients ak(x) are sufficiently regular.

33 – Theorem. Assume the following conditions for the functions ak(x).

– There exists a constant constant δ > 0 such that the inequality
ReP (x, iξ) ≤ −δ‖ξ‖Ns (A.7)

holds for any x, ξ ∈ Rd.
– The functions ak are in Cα for some α ∈ (0, 1) and

A ··= max
|k|s≤N

sup
x∈Rd

|ak(x)| <∞, H ··= max
|k|s≤N

sup
x,y∈Rd

|ak(x)− ak(y)|
‖x− y‖αs

<∞.

Then for any k ∈ Nd and n ∈ N with |k|s +Nn ≤ N , there exist positive constants C, c, γ which
depend only on s, N, δ, A,H, k, n such that the fundamental solution Qt(x, y) of ∂t − P (x, ∂x)
satisfies ∣∣∂nt ∂kxQt(x, y)

∣∣ ≤ CeγtG(c,−|k|s−Nn)
t (x− y) (A.8)
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for any t > 0 and x, y ∈ Rd. Furthermore, for any k ∈ Nd with |k|s ≤ N and β ∈ (0, 1), there
exist positive constants C, c, γ which depend only on s, N, δ, A,H, k, β such that, the Hölder
estimate for the first variable∣∣∂kxQt(x, y)− ∂kxQt(x′, y)

∣∣ ≤ Ceγt‖x− x′‖βs (G(c,−|k|s−Nn)
t (x− y) + G

(c,−|k|s−Nn)
t (x′ − y)

)
(A.9)

holds for any t > 0 and x, x′, y ∈ Rd.

We prove this theorem following [13, Chapter 9]. Let Lt(x, y) ··= Zyt (x) be the fundamental
solution of ∂t − P (y, ∂x) for fixed y. We aim to construct the fundamental solution Qt(x, y) in
the form

Q = L+ L ∗ Φ. (A.10)
with some family Φ = {Φt(x, y)} of functions. We set

Kt(x, y) ··= (P (x, ∂x)− ∂t)Lt(x, y) =
(
P (x, ∂x)− P (y, ∂x)

)
Zyt (x− y).

Then Qt(x, y) satisfies
(
∂t − P (x, ∂x)

)
Qt(x, y) = 0 if and only if
Φ = K +K ∗ Φ.

This implies that the formal solution Φ is given by the form

Φt(x, y) =

∞∑
m=1

K
(m)
t (x, y), K(m) ··= K∗m = K(m−1) ∗K. (A.11)

The series (A.11) is actually absolutely convergent and we can obtain Qt(x, y) by the formula
(A.10).

34 – Lemma. {∂nt ∂kxLt}t>0 is in the class G
(−|k|s−Nn)
1,α for any (n, k) ∈ N×Nd.

Proof – The Gaussian estimate and the Hölder estimate for the first variable immediately follow
from Lemma 32. The Hölder estimate for the second variable comes from the analyticity of Z
with respect to the coefficients and the Hölder regularity of ak(x). See Lemma 4 of [13, Chapter
9] for details. �

35 – Lemma. {Kt}t>0 is in the class G
(α−N)
α,α .

Proof – Since Kt(x, y) =
(
P (x, ∂x)− P (y, ∂x)

)
Zyt (x− y), we have

|Kt(x, y)| . ‖x− y‖αs eεtG
(c,−N)
t (x− y) . eεtG

(c1,α−N)
t (x− y) (A.12)

for some c1 < c, where ‖x − y‖αs is absorbed in the exponential of G
(c,−N)
t instead of the

reduction of the coefficient c. The Hölder estimate for both variables are obtained by a similar
way. �

36 – Lemma. One has {Φt}t>0 ⊂ G
(α−N)
α,α .

Proof – First we show the estimates∣∣K(m)
t (x, y)

∣∣ ≤ CeεtBmtmα/N−1

Γ(mα−|s|N )
G

(c′,0)
t (x− y) (A.13)

for some constants c′, C,B > 0 which depend only on s, N, δ, A,H, ε. Let m0 be the smallest
integer m0 such that m0α > |s|. Up to m ≤ m0, (A.13) is inductively obtained by Lemma
29-(3). Indeed, starting from (A.12) we have

|K(m)
t (x, y)| . eεt

(
G(cm−1,(m−1)α−N) ∗ G(c1,α−N)

)
t
(x) . eεtG

(cm,mα−N)
t (x)

for some cm < cm−1. For m > m0, we use Lemma 29-(4) to obtain
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|K(m)
t (x, y)| ≤ eεt Bm−1

Γ( (m−1)α−|s|
N )

(
G(c′,(m−1)α−N) ∗ G(c1,α−N)

)
t
(x)

≤ eεt
Bm−1CΓ( αN )

Γ(mα−|s|N )
G

(c′,mα−N)
t (x).

Hence (A.13) holds with B = CΓ( αN ). Summing up (A.13) over m ≥ 1, we have

|Φt(x, y)| . eγttα/N−1G
(c′,0)
t (x− y) = eγtG

(c′,α−N)
t (x− y).

for some C, c, γ. The Hölder estimates are obtained by applying Lemma 31-(1) into the formula.
Φ = K +K ∗ Φ = K + Φ ∗K.

�

Proof of Theorem 33 – It is sufficient to apply Lemma 31 to the formula
∂kxQ = ∂kxL+ ∂xL

k ∗ Φ.

to get ∂kxQ ∈ G
(−|k|s)
α,α . If |k|s < N , then Lemma 31-(1) is enough. If |k|s = N , we use Lemma

31-(2) by noting that∣∣∣∣ ∫
Rd
∂`xLt(x, y)dy

∣∣∣∣ = lim
z→x

∣∣∣∣ ∫
Rd

(
∂`xZ

y
t (x− y)− ∂`xZzt (x− y)

)
dy

∣∣∣∣
≤ Ceεt

∫
Rd
‖x− z‖αs G

(c,−|`|s)
t (x− z) dz . eεttα/N−|`|s

for any ` ∈ Nd \ {0}. �

We return to the proof of Proposition 27.
Proof of Proposition 27 – We omit the proof of Hölder estimates because it is an easy modifi-
cation. Recall that we can expand ∂kxQ

b
t = ∂kxQ

b
t(x, y) into the series

∂kxQ
b = ∂k1L+ ∂kxL ∗ Φ = ∂kxL+

∞∑
m=1

∂kxL ∗K(m), (A.14)

where Lt(x, y) ··= Zb(y)(x−y), K(1)
t (x, y) ··= (b(x)−b(y))∂2

xLt(x, y), and K(m+1) = K(1)∗K(m)

as in the proof of Theorem 33. (4.22) is obtained in the proof of Theorem 33. For (4.22), it is
sufficient to use Lemma 26 with M = 1 to replace b(y) with b(x).

It remains to show (4.23). We expand each of the far right hand side of (A.14) as

∂kxLt(x, y) = (∂kxZt)
b(x)(y − x) + t(∂k+2

x Zt)
b(x)(y − x)(b(y)− b(x)) + G

(2−k)
1,1 ,

∞∑
m=1

∂kxL ∗K(m) = ∂xL ∗K + G
(2−k)
1,1

and compare the second term of the right hand side of the first equation and the first term of
the right hand side of the second equation. We decompose

t(∂k+2
x Zt)

b(x)(y − x)(b(y)− b(x)) + (∂kxL ∗K)t(x, y)

=
(
b(y)− b(x)

) ∫
(0,t)×R

(∂kzZt−s)
b(x)(x− z)(∂2

zZs)
b(x)(z − y) dsdz

+

∫
(0,t)×R

(∂kxZt−s)
b(z)(x− z)

(
b(z)− b(y)

)
(∂2
zZs)

b(y)(z − y) dsdz
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=

∫
(0,t)×R

(∂kxZt−s)
b(x)(x− z)

(
b(z)− b(x)

)
(∂2
zZs)

b(x)(z − y) dsdz

+

∫
(0,t)×R

(∂kxZt−s)
b(x)(x− z)

(
b(z)− b(y)

)(
(∂2
zZs)

b(y) − (∂2
zZs)

b(x)
)
(z − y) dsdz

+

∫
(0,t)×R

(
(∂kxZt−s)

b(z) − (∂kxZt−s)
b(x)
)
(x− z)

(
b(z)− b(y)

)
(∂2
zZs)

b(y)(z − y) dsdz

=: I1(x, y) + I2(x, y) + I3(x, y).

For I1 we further decompose

I1(x, y) = b′(x)

∫
(0,t)×R

(∂kxZt−s)
b(x)(x− z) (z − x) (∂2

zZs)
b(x)(z − y) dsdz

+

∫
(0,t)×R

(∂kxZt−s)
b(x)(x− z)

(
b(z)− b(x)− b′(x)(z − x)

)
∂2
zZ

b(x)
s (z − y) dsdz

=: b′(x)Y
b(x)
t (x− y) + J(x, y).

For J , by the integration by parts and Lemma 31, we have

J(x, y) =

∫
(0,t)×R

(∂k+1
x Zt−s)

b(x)(x− z)
(
b(z)− b(x)− b′(x)(z − x)

)
(∂zZs)

b(x)(z − y) dsdz

−
∫

(0,t)×R
(∂kxZt−s)

b(x)(x− z)
(
b′(z)− b′(x)

)
∂zZ

b(x)
s (z − y) dsdz

.
∫

(0,t)×R
G

(c,−1−k)
t−s (x, z)|z − x|2G(c,−1)

s (z, y)dsdz +

∫
(0,t)×R

G
(c,−k)
t−s (x, z)|z − x|G(c,−1)

s (z, y) dsdz

. G
(c′,2−k)
t (x, y)

for some c > c′ > 0. We have that Y k,λt = −(x∂kZλ) ∗ ∂2Zλ ∈ G
(1−k)
1,1 by the similar argument.

The proof of I2, I3 ∈ G
(2−k)
1,1 are more direct because b(z) − b(y) reduces the singularity of

∂2
zZ

λ(z − y), while we use Lemma 31-(ii) for I2 with k = 2. �

In the rest of this appendix we prove Theorem 3 in the more general form stated in Theorem
37 below. Let L = ∂t − P (x, ∂x) be the parabolic operator satisfying the assumptions of
Theorem 33, and denote by Γt(x, y) be its fundamental solution. For any bounded continuous
function f on Rd, we define (

Γtf
)
(x) :=

∫
Rd

Γt(x, y)f(y)dy.

It should be noted that Γt satisfies the semigroup property ΓtΓsf = Γt+sf . Let then define for
β < 0 the space Cβs (L) as the completion of the set of bounded continuous functions f on Rd

under the norm
‖f‖Cβs (L)

··= sup
0<t≤1

t−β/N‖Γtf‖L∞(R2).

37 – Theorem. For any β′ < β < 0, the embedding Cβs (L) ⊂ Cβ
′

s (L) is compact.

Proof – We first remark the important inequalities
‖Γtf‖Lip . t(β−1)/N‖f‖Cs(L),

‖Γtf − f‖L∞ . t1/N‖f‖Lip,

where Lip is the space of Lipschitz functions with respect to ‖·‖s. They are easy consequences of
the semigroup property and the Gaussian estimates of Γt. Let {fn}n∈N be a bounded sequence
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in Cβs (L). Since
‖Γtfn‖Lip . t(β−1)/N

and ∥∥Γt+sfn − Γtfn
∥∥
L∞

. s1/N‖Γtfn‖Lip . s1/N t(β−1)/N ,

the family of functions (t, x) 7→ Γtfn(x) is uniformly bounded and equicontinuous on compact
sets of (0,∞) × Rd. Hence by Ascoli-Arzelà theorem, there exists a subsequence {n(k)}k∈N2

such that the locally uniform convergence limit Ft(x) = limk→∞ Γtfn(k) exists. Since Ft inherits
the semigroup property and the above Hölder continuity with respect to t from Γtfn, we have

‖Ft+s − Ft‖Cβ−1
s (L) = sup

0<r≤1
r−(β−1)/N‖Ft+s+r − Fs+r‖L∞ . s1/N .

This implies {Ft}t>0 is a Cauchy sequence in Cβs (L) as t→ 0. Setting F = limt→0 Ft ∈ Cβ−1
s (L),

we also have that F = limk→∞ fn(k) in Cβ−1
s (L) by the standard 3ε argument. By interpolation

this convergence also holds in Cβ
′

s (L) for any β′ < β. �
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