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Abstract. Let T be the regularity structure associated with a given system of singular stochastic
PDEs. The paracontrolled representation of the Π map provides a linear parametrization of the
nonlinear space of admissible models M = (g,Π) on T , in terms of the family of para-remainders
used in the representation. We give an explicit description of the action of the most general
class of renormalization schemes on the parametrization space of the space of admissible models.
The action is particularly simple for renormalization schemes associated with degree preserving
preparation maps. The BHZ renormalization scheme has that property.

1 – Introduction

Regularity structures were introduced by M. Hairer [20] as a setting where to make sense and
prove well-posedness of a large family of stochastic partial differential equations (PDEs) that come
as scaling limit of microscopic discrete random dynamics where nonlinear and random effects
balance each other. Each equation of this class is called a subcritical singular stochastic PDE.
Prominent examples of subcritical singular stochastic PDE are given by the 1-dimensional (KPZ)
equation

(∂t − ∂2
x)u = |∂xu|2 + ζ,

with a (1 + 1)-dimensional spacetime white noise ζ, by the 2 or 3 dimensional parabolic Anderson
model equation

(∂t −∆)u = uξ,

with ξ a space white noise, and by the 3-dimensional scalar (Φ4
3) equation from quantum field

theory
(∂t −∆)u = −u3 + ζ,

with a (1 + 3)-dimensional spacetime white noise ζ. Besides the fundamental works by M. Hairer
and his co-authors [20, 12, 15, 11] a number of works provide partial views on different parts of the
theory [21, 16, 18, 22, 17]. We refer the reader to Bailleul & Hoshino’s Tourist guide to regularity
structures and singular stochastic PDEs [6] for a short self-contained reference on the algebraic and
analytic sides of regularity structures theory and its applications to the study of singular stochastic
PDEs.

One of the main features of the theory of regularity structures is the tight intertwining between
its analytic, algebraic and probabilistic sides. To each subcritical singular stochastic PDE is
attached an algebraic structure over which analytical objects are defined. Their realization as
distributions on the state space of the equation requires the probabilistic construction of a finite
number of distributions, a model. This construction involves an explicit construction with strong
algebraic features, called renormalization. We tackle in the present work a question that is exactly
at the intersection of the three sides of the subject: Study the action on the parametrization space
of the set of admissible models of the most general renormalization schemes. To better grasp
the stakes of that problem recall that the setting of regularity structures disentangles the task of
solving an equation from the problem of making sense of a number of ill-defined quantities that are
characteristic from the singular nature of the equation. The latter are encapsulated in the notion
of model over a regularity structure. It provides a finite family of reference distributions/functions
which are used to give local descriptions of possible solutions to a given singular stochastic PDE
around each point in its state space. The construction of models associated with low regularity
random noises is what renormalization is about. The systematic approach to the renormalization
problem for singular stochastic partial differential equations (PDEs) was built gradually from
Hairer’s ad hoc construction in his groundbreaking work [20] to Bruned, Hairer and Zambotti’s
general setting for the BPHZ-type robust renormalization procedure [12] implemented by Chandra
& Hairer in [15]. The dual action of this renormalization procedure on the equation was unveiled
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in Bruned, Chandra, Chevyrev and Hairer’s work [11]. The specific BHZ renormalization scheme
was included in [9] by Bruned in a larger class of renormalization schemes, and the dual action
of schemes of this class on the equation was investigated in Bailleul & Bruned’s work [3] using
algebraic insights from Bruned & Manchon’s work [13].

The definition of a model (g,Π) over a given regularity structure T involves nonlinear operations
that turn the metric space of models into a nonlinear space. Bailleul & Hoshino were able in
[4, 5] to provide a parametrization of the space of models over a given regularity structure by a
linear space, a product of Hölder spaces. This parametrization involves the tools of paracontrolled
calculus. Having such a parametrization is useful for understanding the structure of the space
of models and [4, 5] contains a number of applications. The present work tackles the question
of understanding the action of the most general renormalization scheme on the parametrization
space of the models used for the study of systems of singular stochastic PDEs. The particular
case of branched rough paths was investigated earlier by Tapia & Zambotti in [26] – branched
rough paths are a particular example of models over a particular regularity structure, indexed
by a time interval. Tapia & Zambotti obtained a free transitive action of a product of Hölder
spaces on the space of branched rough paths. The action of a general renormalization map on
their parametrization space was investigated by Bruned in [10]. However the particular case of
branched rough paths only captures part of the structure of the general case.

The regularity structures used for the study of singular stochastic PDEs have a particular
structure described in depth in [12]. The models ‘adapted’ to this structure are called admissible.
We need a piece of notation to describe the parametrization of the set of admissible models over a
given regularity structure T =

(
(T ,∆), (T +,∆+)

)
. Given τ ∈ T write

∆τ =
∑
σ≤τ

σ ⊗ (τ/σ) ∈ T ⊗ T +. (1.1)

A choice of linear basis B of T fixes uniquely this decomposition by requiring that the elements
σ ∈ T that appear in the sum belong to B. This notation is only used in that sense in this work.
In order to stick strictly to the statements proved in [4] we formulate things in the case where the
state space of the dynamics is the isotropic space Rd or its periodic version Td; this corresponds to
elliptic equations. A similar result holds in the anisotropic setting used for the study of parabolic
equations. The bilinear operator P below stands for a paraproduct operator; its definition or
analytic properties are not needed in the present work, so we refer the reader to the first section of
[4] for more information. Let T be the BHZ regularity structure associated with a given (elliptic)
singular stochastic PDE and let B be a basis of T – details are given in Section 2. The following
statement is a particular case of Theorem 2 in [4].

Theorem 1 – Given any family of distributions
(
[τ ] ∈ Cdeg(τ)(Rd)

)
τ∈B,deg(τ)≤0

, there exists a
unique admissible model M = (g,Π) on T such that one has

Πτ =
∑
σ≤τ

Pg(τ/σ)[σ],

for all τ ∈ B with deg(τ) ≤ 0.

Note the specific form of the above representation of Πτ ; a different paracontrolled representation
of Π involving other functions than the g(τ/σ) has for instance no a priori reason to give rise to a
parametrization of the model. It is convenient to talk of a bracket map [ · ] associated with the model
Π. The precise statement of our main result involves notations that will be introduced below. We
state it here in a qualitative form and refer the reader to Theorem 10 and Theorem 13 for the full
statements. The (degree preserving) preparation maps and their associated renormalization maps
mentioned in Theorem 2 are defined in Definition 3 and Definition 7 and equations (2.19), (2.20)
in Section 3.

Theorem 2 – Assume that an admissible model on T is given and parametrized by a family of
distributions [τ ] ∈ Cdeg(τ)(Rd), for τ ∈ B with deg(τ) ≤ 0. Let R : T 7→ T be a preparation map
with associated renormalization map MR : T 7→ T and renormalized model

(
gR,ΠR

)
.
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(1) If R is degree preserving then the map ΠR, hence the entire admissible model, is parametrized
by the [MRτ ], for τ ∈ B with deg(τ) ≤ 0.

(2) In the general case of a non-degree preserving preparation map R the bracket map [ · ]R
giving the parametrization of the map ΠR is given explicitly in terms of the bracket map [ · ].

Item (1) means that the renormalized model (gR,ΠR) is characterized by the fact that one has

ΠRτ =
∑
σ≤τ

PgR(τ/σ)[MRσ]

for all τ ∈ B with deg(τ) ≤ 0. The description of the renormalized model is not as nice in the general
setting of item (2). We emphasize here that the class of degree preserving preparation maps is much
larger than the class of BHZ renormalization maps. We start Section 2 by giving back the main
features of the BHZ regularity structure associated with a given system of singular stochastic PDEs.
The renormalization schemes that we consider in this work are built from maps called preparation
maps. A number of useful results about these maps and their associated renormalization maps are
given in Section 2. The proof of Theorem 2 in the particular case of degree preserving preparation
maps is the object of Section 3; the general case is treated in Section 4.

2 – Basics on regularity structures and preparation maps

We first recall in Section 2.1 the setting of BHZ regularity structures that we use in the present
work. Preparation maps and their elementary properties are described in Section 2.2.

2.1 BHZ regularity structures associated with singular stochastic PDEs

Consider for simplicity the case of a single equation whose mild formulation writes

u = K ∗
(
F (u,∇u, . . .)ξ +G(u,∇u, . . .)

)
, (2.1)

with ∗ standing for space or spacetime convolution and ξ denoting a non-constant ‘noise’. (What
follows works verbatim when working with several equations and more noises.) The main idea of
regularity structures is to iterate the mild formulation locally when the noises ξ is replaced by
a regularized version. Nonlinearities F or G are Taylor-expanded around arbitrary base points
x ∈ Rd and one can construct recentered iterated integrals around each point. One obtains a local
description of the solution of (2.1) of the form

u(y) =
∑
τ∈T

cτ (x) (Πxτ) (y) +R(x, y) (2.2)

where the collection T consists of combinatorial objects called decorated trees that we will be
described below. The coefficients cτ (x) are Taylor-type coefficients, the Πxτ are iterated integrals
recentered around the point x and R(x, y) is a Taylor-type remainder.

We now introduce decorated trees and their symbolic notations. Pick two symbols I and Ξ and
let D := {I,Ξ} × Nd define the set of edge decorations. Decorated trees over D are triples of the
form τne = (τ, n, e) where τ is a non-planar rooted tree with node set Nτ and edge set Eτ . The
maps n : Nτ → Nd and e : Eτ → D are node, respectively edge, decorations. The set of decorated
trees is denoted by T0 and we write T0 for the linear span of T0. The index 0 refers to the fact
that T0 and T0 are background objects from which the spaces T and T +, part of the regularity
structure associated with (2.1), will be defined. The tree product · on T0 is defined by

(τ, n, e) · (τ ′, n′, e′) = (τ · τ ′, n + n′, e + e′) , (2.3)
where τ · τ ′ is the rooted tree obtained by identifying the roots of τ and τ ′. The sums n + n′ and
e + e′ mean that decorations are added at the root and extended to the disjoint union by setting
them to vanish on the other tree. Each edge and vertex of both trees keeps its decoration, except
the roots which merge into a new root decorated by the sum of the previous two decorations.
• We will use mainly in this work a symbolic notation for these decorated trees. Denote by

{e1, . . . , ed} the canonical basis of Nd.
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– An edge decorated by (I, a) ∈ D is denoted by Ia. The symbol Ia is also viewed as the
operation that grafts a tree onto a new root via a new edge with edge decoration a. The new
root at hand remains decorated with 0. The operator Ia encodes a space-time convolution
with the kernel ∂aK.

– An edge decorated by (Ξ, 0) ∈ D is denoted by Ξ. We only consider decorated trees having
such edge as a terminal edge meaning that one of its extremity is a leaf. We also disregard
trees having some decorations of the form (Ξ, a) with a 6= 0.

– A factor Xk encodes a single node •k decorated by k ∈ Nd. We write Xi, i ∈ {1, . . . , d}, to
denote Xei . The element X0 is identified with the empty tree 1.

Any decorated tree τ admits the following decomposition

τ = XkΞm
n∏
i=1

Iai(τi),

where the τi are decorated trees and the product
∏n
i=1 is the tree product. The factor Xk expresses

the fact that the root of τ is decorated by k. Using symbolic notation one can reformulate the tree
product (2.3) as(

XkΞm
∏
i

Iai(τi)

)Xk′Ξm
′∏
j

Ibj (σj)

 = Xk+k′Ξm+m′
∏
i

Iai(τi)
∏
j

Ibj (σj).

We note here for later use that a forest is a collection of trees equipped with the forest product
given by the disjoint union. Recall that characters are linear maps that are multiplicative.

•We now associate to decorated trees numbers that depend on their decorations. These numbers
form a degree map denoted by deg : T0 → R defined inductively by the following relations

deg(1) = 0, deg(Ξ) = α, deg(σ) = deg(τ) + β − |a|, deg(στ) = deg(σ) + deg(τ), (2.4)
where α < 0 is the (space or spacetime) regularity of the noise Ξ in a suitable Hölder space, β
corresponds to the gain of regularity in Schauder estimate for the convolution operator with the
kernel K. We also denote by | · |Ξ : T0 → N the map that counts the number of noises in any given
decorated tree. Using the degree map deg we associate to any E ⊂ T0 the set

E+ :=
{
Xk

n∏
i=1

I+
ai(τi) ; deg(Iai(τi)) > 0, τi ∈ E, k ∈ Nd

}
. (2.5)

This definition means that all the branches outgoing from the root must be of positive degree. We
use a different symbol I+

a to stress that E+ is not a subset of E as there is no constraint on the
edges connected to the root for elements of E+. We define T +

0 as the linear span of T+
0 and equip

T +
0 with a Hopf algebra structure. Its product is the tree product and its coproduct ∆+ is given

by

∆+(I+
a τ) :=

∑
`∈Nd

(
I+
a+` ⊗

(−X)`

`!

)
∆τ + 1⊗ I+

a τ, (2.6)

and its antipode map S+ is given inductively by the relation

S+(I+
a τ) = −

∑
`∈Nd

M+

(
I+
a+` ⊗

X`

`!
S+

)
∆τ. (2.7)

Denote byM+ : T +
0 ⊗T

+
0 → T

+
0 the multiplication operator in T +

0 and by 1? : T0 → R the counit
linear map equal to one on 1 and zero otherwise. The main identities that we will use in the sequel
are the co-associativity and the characterization of the antipode given below by(

∆+ ⊗ Id
)

∆+ =
(
Id⊗∆+

)
∆+ (2.8)

and
M+

(
S+ ⊗ Id

)
∆+ =M+

(
Id⊗ S+

)
∆+ = 1?1 (2.9)
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The space T0 is equipped with a co-action ∆ defined by
∆(•) := • ⊗ 1, for • ∈

{
1, Xi,Ξ

}
, ∆Xi = Xi ⊗ 1 + 1⊗Xi,

∆(Iaτ) := (Ia ⊗ Id)∆τ +
∑

|`+m|<deg(Iaτ)

X`

`!
⊗ Xm

m!
I+
a+`+m(τ).

(2.10)

This definition turns the pair (T0,∆) into a right comodule over T +
0 and one has the following

compatibility identity
(∆⊗ Id) ∆ =

(
Id⊗∆+

)
∆. (2.11)

(These expressions used in Hairer’s original work [20] are different from the expressions used by
Bruned, Hairer and Zambotti in [12]. One moves from [20] to [12] by performing a change of basis
in T +

0 and taking
∑
`∈Nd

(−X)`

`! I
+
a+`(τ) in the role of I+

a (τ). The induction rule giving the action
of ∆ on the abstract integration operator is more useful here in the form of relation (2.23) than in
the form given in [12], identity (3.6) in [6].)

• The BHZ regularity structure associated to equation (2.1) is a subset T ⊂ T0 defined from
the product appearing from the right hand side of the equation. (The acronym ‘BHZ’ is chosen
after the names of the three authors of [12].) For example, due to the affine structure of the
noise, the term Ξ2 does not appear in any meaningful formal expansion of a potential solution
to equation (2.1); this puts a constraint on the way the decorated trees for this equation are
constructed. Such constraints are formalized through the notion of normal complete rule. We
refer the reader to Section 5 of [12] where those rules have been detailed. The main property of
T0 is that the co-module and Hopf algebraic structures satisfied by T0 and T +

0 are also satisfied
by T (linear span of T ) and T + (linear span of T+) with the same maps ∆ and ∆+. Suitable
assumptions on the products of (2.1), called local sub-criticality, guarantee that T admits a direct
sum decomposition T =

⊕
β∈A Tβ involving finite dimensional vector spaces Tβ generated by

decorated trees of degree β. We write T for the pair
(
(T ,∆), (T +,∆+)

)
that defines the (BHZ)

regularity structure associated with equation (2.1). It is clear from this description that T and
T + come equipped with canonical bases.

• We recall that the notion of admissibility of a model (g,Π) over the BHZ regularity structure
for equation (2.1) is relative to the operator K and that admissible models satisfy

Π(Iaτ) = (DaK) ∗ (Πτ)

and
g−1
x

(
I+
a τ
)

= −
(
DaK ∗ Πxτ

)
(x), (2.12)

where
Πx :=

(
Π⊗ g−1

x

)
∆, (2.13)

for all x in the state space.

• The algebraic structure given by a regularity structure encodes the mechanics of local ex-
pansions and re-expansions for the functions involved in the analysis of a given equation. The
renormalization procedure involved in the definition of a model associated with a low regularity
noise is encoded in another algebraic structure. Given a subset E of T0, we denote by E− the
forest formed of elements in E having negative degree. One uses a coproduct ∆− and a co-action
δ : T → T − ⊗ T to construct renormalization maps parametrized by the group of characters G−
of T −. The group structure on the set of characters is derived from the fact that T − has a Hopf
algebra structure when equipped with ∆ and an appropriate antipode map S−. The map δ turns
the space T into a left comodule over T −. Here is the key identity in this business

(Id⊗ δ) δ =
(
∆− ⊗ Id

)
δ,

It gives the formula
`1 ? `2 := (`1 ⊗ `2) ∆−, `−1 = `(S−·),

for the convolution product ? of two characters of T − and their inverse, and provides an action of
such characters on T

M` := (`⊗ Id) δ, M` ◦Mg = M`?g. (2.14)
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Adding extra decorations one can obtain a simple action of the maps M` on admissible models
(g,Π) setting

ΠM`
x := ΠxM`. (2.15)

(The action of M` on the g-part of the model will be described later.) Such a definition is possible
due to the co-interaction between ∆ and δ described by

M(13)(2)(4) (δ ⊗ δ) ∆ = (Id⊗∆) δ

where δ is aslo defined as a map from T + into T − ⊗ T + and M(13)(2)(4) is given for τ1, τ3 ∈ T −,
τ2 ∈ T and τ4 ∈ T + by:

M(13)(2)(4) (τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = τ1τ3 ⊗ τ2 ⊗ τ4
where the product between τ1 and τ3 is the forest product. We will continue in the sequel with a
more general formalism for the renormalization procedure introduced by Bruned in [9].

We will denote below by B the canonical basis of T ; this fixes in particular the shorthand
notation in formula (1.1) describing ∆.

2.2 Preparation maps

We take from [9] the following definition.

Definition 3 – A preparation map is a map
R : T → T

that fixes polynomials and such that
– for each τ ∈ T there exist finitely many τi ∈ T and constants λi such that

Rτ = τ +
∑
i

λiτi, with deg(τi) ≥ deg(τ) and |τi|Ξ < |τ |Ξ, (2.16)

– one has
(R⊗ Id)∆ = ∆R. (2.17)

Identity (2.16) gives an upper triangular structure to preparation maps that is useful for in-
ductive proofs. Identity (2.17) encodes a commutation property between the recentering operator
encoded in the map ∆ and the ‘renormalization’ operator encoded in the map R.

Example – The archetype of a preparation map is defined from a map δr, with the index ‘r’ for
‘root’, defined similarly as the splitting map δ, but extracting from any τ ∈ T only one diverging
subtree of τ with the same root as τ at a time, and summing over all possible such subtrees – see
Definition 4.2 in [9]. Given a character ` of the algebra T − the map

R` := (`⊗ Id)δr (2.18)
is a preparation map. �

We will work exclusively with preparation maps R : T → T such that
R Ia = Ia,

for all a. Let M×R : T → T and MR : T → T be the maps uniquely defined from R by requiring
that M×R is multiplicative and satisfies

M×R (Iaτ) = Ia
(
M×R (Rτ)

)
(2.19)

and
MR := M×RR. (2.20)

The map MR is the renormalization map associated with the preparation map R. While this map
is not multiplicative it follows from (2.20) that MR commutes with all the integration operators
Ia. Note that the map MR`

associated with (2.18) is of the type introduced in [12]. In the setting
of [12] the structure of the renormalization schemes on T and their induced actions on T + are
encoded in the splitting maps δ : T → T − ⊗ T and characters of the algebra T −. Here the
algebraic structure associated with the renormalization map MR is entirely encoded in the latter.
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The following result is used to describe the renormalized model; it was first proved in Proposition
8.36 in [20]. We give an elementary proof to be self-contained.

Lemma 4 – The map (
Id⊗M+

)
(∆⊗ Id) : T ⊗ T + → T ⊗ T +

is invertible.

Proof – Writing
∆σ =

∑
σ1≤σ

σ1 ⊗ σ/σ1,

one has for σ ∈ T and τ ∈ T +(
Id⊗M+

)
(∆⊗ Id)(σ ⊗ τ) =

∑
σ1≤σ

σ1 ⊗
(
σ/σ1τ

)
and the only element in the previous sum whose T +-component has maximum degree is σ⊗τ .
This shows the injectivity of the map

(
Id⊗M+

)
(∆⊗ Id). It surjectivity comes from the fact

that (
Id⊗M+

)
(∆⊗ Id)(σ ⊗ τ) =: σ ⊗ τ +N(σ ⊗ τ),

for a nilpotent map N , so a Neumann series gives the inverse of (Id⊗M+) (∆⊗Id). A different
representation (

Id +N
)−1

= (Id⊗M+)
(
Id⊗ S+ ⊗ Id

)(
∆⊗ Id

)
(2.21)

was proved by Bruned in Lemma 3.20 of [9]. Formula (2.21) plays a role in the proof of Lemma
8 in Section 3. �

It follows from Lemma 4 that one defines inductively two maps
δR : T → T ⊗ T +, M+

R : T + → T +,

setting
(Id⊗M+)(∆⊗ Id)δR := (MR ⊗M+

R )∆, (2.22)
with M+

R : T + → T +, the multiplicative map fixing the monomials and such that one has

M+
R

(
I+
a (τ)

)
=M+

(
I+
a ⊗ Id

)
δRτ,

for all τ ∈ T . Lemma 5 below gives a useful representation of the map δR that leads to a direct
proof of Proposition 6. The proof of Lemma 5 is the very place where we take advantage of the
fact that we work with renormalization maps built from a preparation map, as opposed to working
with a general renormalization map as those of Section 8.3 of Hairer’ seminal work [20]. Define a
multiplicative map

δ×R : T → T ⊗ T +

setting
δ×R(•) := • ⊗ 1, for • ∈

{
1, Xi,Ξ

}
,

δ×R(Iaτ) := (Ia ⊗ Id)δ×R(Rτ)−
∑

|`|≥deg(Iaτ)

X`

`!
⊗M+

(
I+
a+` ⊗ Id

)
δ×R(Rτ).

(2.23)

Lemma 5 – One has δR = δ×R R.

Proof – We proceed by induction. Using identity (2.20) to write
(MR ⊗M+

R )∆ = (M×R ⊗M
+
R )∆R

and the fact that R is invertible we are down to checking that one has
(Id⊗M+)(∆⊗ Id)δ×R = (M×R ⊗M

+
R )∆.

It suffices by multiplicativity to consider a tree of the form Ia(τ), for which one has on the
one hand

(M×R ⊗M
+
R )∆Ia(τ)

(2.10)
= (Ia ⊗ Id)

(
M×R ⊗M

+
R

)
∆τ +

∑
|`+m|<deg(Iaτ)

X`

`!
⊗ Xm

m!
M+
R

(
I+
a+`+m(τ)

)
.
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On the other hand we have

(Id⊗M+)(∆⊗ Id)δ×R
(
Ia(τ)

) (2.23)
= (Ia ⊗ Id)(Id⊗M+)(∆⊗ Id)δRτ

+
∑

`,m∈Nd

X`

`!
⊗ Xm

m!
M+

(
I+
a+`+m ⊗ Id

)
δRτ

−
∑

|`+m|≥deg(Iaτ)

X`

`!
⊗ Xm

m!
M+

(
I+
a+`+m ⊗ Id

)
δRτ

We conclude by applying the induction hypothesis on τ . A similar proof was performed in
Proposition 3.19 of [9] using the explicit formula (2.21) for

(
Id +N

)−1.
�

Definition – A map A : T → T × T +, with Aτ =
∑
τ1 ⊗ τ2, is said to be upper triangular if

deg(τ1) ≥ deg(τ), for all τ1 in the preceding decomposition of Aτ , τ ∈ T .

Proposition 6 – The map δR is upper triangular.

Proof – It suffices from the property (2.16) of preparation maps to see that δ×R is upper tri-
angular. This point is obtained from (2.23) and the multiplicativity of δ×R by an elementary
induction on deg(τ) + |τ |Ξ. �

It follows from Proposition 6 and the definition of M+
R that deg

(
M+
Rσ
)
≥ deg(σ), for all σ ∈ T+.

The last ineguality means that for M+
Rσ =

∑
i λiσi, with deg

(
σi
)
≥ deg(σ) for every i.

3 – The case of degree preserving preparation maps

We prove the first part of Theorem 2 in this section. Degree preserving preparation maps
are defined below in Definition 7. The algebraic properties enjoyed by the renormalization maps
associated with the class of degree preserving preparation maps allow a direct construction of
renormalized admissible models close to what is done for the BHZ models from Bruned-Hairer-
Zambotti’s work [12]. The construction involved in the general case is not as simple; it will be
detailed in Section 4.

Recall from Theorem 1 that the formula
Πτ =

∑
σ≤τ

Pg(τ/σ)[σ], (3.1)

for τ ∈ T with deg(τ) ≤ 0, provides a parametrization of the set of admissible models over a large
class of regularity structures containing those used for the study of singular stochastic PDEs – the
BHZ regularity structures from Section 2.1. Let us stress that if we are given an admissible model
(g,Π), formula (3.1) defines uniquely the bracket map [·]. Indeed identity

Πτ =
∑
σ<τ

Pg(τ/σ)[σ] + [τ ], (3.2)

shows that [τ ] depends on Πτ and the [σ] and g applied to elements which are strictly smaller.
The renormalization maps used in [12] are built from specific features of BHZ regularity structures
and from a character on the Hopf algebra (T −,∆−) that is in co-interaction with (T ,∆), such
as encoded in (2.14) and (2.15). A single feature of the fine structures involved in the definition
of the preparation map associated with the BHZ renormalization map is of importance here. It
singles out a large class of preparation maps for which the action of their associated renormalization
maps on the parametrization space takes the simple form given in Theorem 10 below. The BHZ
renormalization maps form one family of this class.
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Definition 7 – A preparation map is said to be degree preserving if for each τ ∈ T there exists
finitely many τi ∈ T and constants λi such that

Rτ = τ +
∑
i

λiτi, with deg(τi) = deg(τ) and |τi|Ξ < |τ |Ξ. (3.3)

Compare condition (3.3) with condition (2.16) involved in the definition of an arbitrary prepa-
ration map. The introduction in [12] of decorated trees with extended decorations allows precisely
to design a setting where the splitting map associated with the renormalization procedure enjoys
a similar property. (One works in this setting with two degree maps deg and deg−, with deg− not
taking into account the extended decorations and involved in the definition of the Hopf algebra
(T −,∆−) that is part of the renormalization structure on T .) Although elementary it is of funda-
mental importance that the maps M×R and MR associated to a degree preserving preparation map
R are also degree preserving. This is what allows to prove the next statement by induction.

Lemma 8 – For any degree preserving preparation map R one has
δRτ = (MRτ)⊗ 1 (3.4)

and the co-interaction identity
∆MR =

(
MR ⊗M+

R

)
∆. (3.5)

One further has that M+
R commutes with the antipode S+.

Proof – Note that the co-interaction identity (3.5) is equivalent from (2.17) to the identity
∆M×R =

(
M×R ⊗M

+
R

)
∆. (3.6)

This identity involves only multiplicative maps on T , so it suffices to prove it for elements of T
of the form Ξ, Xk or Ia(τ). It is elementary to check it for Ξ and Xk. We prove identities (3.4)
and (3.6) for elements of T of the form Ia(τ) by induction on deg(τ)+|τ |Ξ, for a generic τ ∈ T .
We use the symbol (?) above an = sign to emphasize the use of the induction assumption in
a sequence of equalities. Write

MRτ = τ +
∑
i

ciσi,

for constants ci, with |σi|Ξ < |τ |Ξ. As
deg(Iaτ) > deg(τ),

for all Iaτ ∈ T , one has
deg(Iaτ) + |τ |Ξ > deg(σi) + |σi|Ξ, ∀ i

from the fact that MR is degree preserving. This justifies the use of the induction hypothesis
in the (?) equality below.

∆M×R (Iaτ) = ∆Ia(MRτ) = (Ia ⊗ Id)∆(MRτ) +
∑

|`+m|<deg(Iaτ)

X`

`!
⊗ Xm

m!
I+
a+`+m(MRτ)

(?)
= (IaMR ⊗M+

R )∆τ +
∑

|`+m|<deg(Iaτ)

X`

`!
⊗ Xm

m!
M+
R I

+
a+`+m(τ)

=
(
M×R ⊗M

+
R

)
∆Ia(τ)

The bound on |`+m| in the first line comes from the degree preserving property of MR: one
has deg(Iaτ) = deg(Iaσi) for all i. We have used the induction assumption about (3.6) for
the first term in the right hand side of the third equality and the induction assumption about
(3.4) for the second term in the right hand side of that equality coupled with the fact that

I+
b (MRτ) =M+

(
I+
b ⊗ Id

)
δRτ = M+

R

(
I+
b τ
)
, ∀ τ ∈ T.

Identity (2.22) defining δR then reads
(Id⊗M+)(∆⊗ Id)δRσ = (MR ⊗M+

R )∆σ = ∆(MRσ),

and it follows from the explicit formula (2.21) that
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δRσ = (Id⊗M+)
(
Id⊗ S+ ⊗ Id

)(
∆⊗ Id

)
∆(MRσ)

= (Id⊗M+)
(
Id⊗ S+ ⊗ Id

)(
Id⊗∆+

)
∆(MRσ)

= (Id⊗ 1∗1)∆(MRσ) = MRσ ⊗ 1.

where we have used the following property of the antipode S+

M+
(
S+ ⊗ Id

)
∆+ = 1∗1

One sees that M+
R and S+ commute using the inductive relation

S+Ia(τ) = −
∑
`∈Nd

M+
(
I+
a+` ⊗

X`

`!
S+
)
∆τ

for the antipode S+ and writing

M+
RS

+(I+
a τ) = −

∑
`∈Nd

M+

(
M+
R I

+
a+` ⊗

X`

`!
M+
RS

+

)
∆τ = −

∑
`∈Nd

M+

(
I+
a+`MR ⊗

X`

`!
S+M+

R

)
∆τ

= −
∑
`∈Nd

M+

(
I+
a+` ⊗

X`

`!
S+

)
∆MRτ = S+

(
I+
a MRτ

)
= S+M+

R (I+
a τ).

�

Similar computations are involved in Remark 4.2.6 and Proposition 4.2.8 of [8]. Note that it
follows from (3.4) that the multiplicative map M+

R satisfies in that case the relation
M+
R

(
I+
a (τ)

)
= I+

a (MRτ).

Since MR is degree preserving we read on the previous identity that M+
R is also degree preserving.

One then proves similarly as in the proof of Lemma 8 that M+
R satisfies the co-interaction identity(

M+
R ⊗M

+
R

)
∆+ = ∆+M+

R . (3.7)
Given an admissible model (g,Π) on T set

gR := g ◦M+
R , ΠR := Π ◦MR.

It follows from the fact that M+
R commutes with the antipode S+ that

(gR)−1 = g−1 ◦M+
R .

Corollary 9 – The pair
(
gR,ΠR

)
defines an admissible model on T .

Proof – On the one hand, identities (2.22) and (3.4) ensure that

ΠRxτ =
(
ΠR ⊗ (gRx)−1

)
∆τ =

{
ΠR ⊗

(
g−1
x ◦M+

R

)}
∆τ =

(
Π⊗ g−1

x

)
(MR ⊗M+

R )∆τ

(2.22)
=

(
Πx ⊗ g−1

x

)
δRτ

(3.4)
= Πx(MRτ).

(3.8)

It follows from this identity and the fact that MR is degree preserving that ΠRx satisfies the
analytic estimates required from a model on T . On the other hand, the co-interaction identity
(3.7) gives

gRyx =
(

gRy ⊗ (gRx)−1
)

∆+ =
(
gy ⊗ g−1

x

)(
M+
R ⊗M

+
R

)
∆+

(3.7)
=
(
gy ⊗ g−1

x

)
∆+M+

R = gyx ◦M+
R .

It follows from this identity and the fact that M+
R is degree preserving that gRyx satisfies the

analytic estimates required from a model on T . �

Theorem 10 – Assume T =
(
(T ,∆), (T +,∆+), (T −,∆−)

)
is the BHZ regularity structure associ-

ated with a system of singular stochastic PDEs. Let B stands for the canonical linear basis of T
and let (g,Π) be an admissible model on T , with associated bracket map [ · ] in its paracontrolled
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representation (3.1). For any degree preserving preparation map R the admissible model
(
gR,ΠR

)
on T is parametrized by the family

(
[MRτ ] ∈ Cdeg(τ)(Rd)

)
τ∈B, deg(τ)≤0

.

Proof – The action of MR on the parametrization set of the space of admissible models is
given by

ΠRτ = Π(MRτ)
(3.5)
=

∑
1<σ≤τ

Pg(M+
R (τ/σ))[MRσ] =

∑
1<σ≤τ

PgR(τ/σ)[MRσ].

The second equality follows from the fact that M+
R commutes with the antipode S+ and from

the formula (4.2) for gR. The term Pf1 is equal to zero for any f ∈ S ′(Rd). Therefore one can
remove the term σ = 1 in the sum giving ΠRτ . The fact that MRσ is a sum of terms of the
same degree as the degree of σ shows that the preceding identity gives a parametrization of
the model associated with ΠR by the [MRσ], for all σ with negative degree. �

Theorem 10 provides a nice action of MR on the parametrisation space. Indeed one gets the
explicit expression

[·]MR = [MR·] (3.9)
for the renormalised brackets [·]MR . This is an important result because it shows that the recursive
definition of the [·] is decouple from the renormalization and it is connected with (2.15). In both
cases, the co-interaction (3.5) between the recentering given by ∆ and the renormalization given
by δ plays a major role in the proof. In the context of degree preserving renormalization maps,
(3.5) is replaced by (3.6). In the next section, we will consider a more general set up and one gets
a weaker result saying that [·]MR depends recursively on the brackets [·].

The example of branched rough paths – An action of a renormalization group was observed
previously in Bruned’s work [10] on the renormalization of branched rough paths. This kind of
rough paths was introduced by Gubinelli in [19]. Hairer & Kelly showed in [23] that they can be
seen as weak geometric rough paths over a larger space. See e.g. Cass & Weidner’s work [14] or
Bailleul’s work [1] for a quick grasp on branched rough paths.

The regularity of a branched rough path is quantified by an exponent γ ∈ (0, 1), and a γ-
branched rough path is indexed by decorated trees τ ; denote by |τ | the number of nodes in τ . Fix
γ ∈ (0, 1), and for a continuous function h on [0, 1] write ht for its value at time t. Tapia and
Zambotti exhibited in [26] a free transitive action of the product space of Hölder spaces

Hγ :=

{
g =

(
g(τ)

)
τ∈B ∈

∏
τ∈B,|τ |≤1/γ

Cγ|τ |([0, 1]) ; g0(τ) = 0

}
,

where B is a certain collection of γ-branched rough paths, on the space of all γ-branched rough
paths. One of the main results of Bruned’s work [10] provides an explicit formula for the map
gM ∈ Hγ sending any γ-branched rough path X to X ◦M , for a renormalization map M associated
in this particular setting to a preparation map of BHZ type, hence degree preserving map. The
map gM is given in Theorem 4.4 of [10] and takes the form

gMt (τ)− gMs (τ) =
〈
Xts ◦M, τ

〉
− 〈Xts, τ〉. (3.10)

where X is the Lyons-Victoir extension of X. The latter is not so explicit, so Theorem 10 above
gives a better description of the action of a renormalization map even in that setting. The para-
controlled parametrization bypasses in particular the problem emphasized in Remark 4.6 of [10]
related to the nonlinear character of the Lyons-Victoir extension map. Bellingeri, Friz, Paycha
& Preiss’ recent work [7] contains material related to the question of renormalization of smooth
rough paths.

4 – The general case

We prove the second part of Theorem 2 in this section. In the particular case of degree preserving
preparation maps Lemma 8 gives a simple form for δR, one has the co-interaction identity (3.5)
and the commutation of M+

R with the antipode S+. These properties do not hold in the case of
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a general preparation map R so one cannot use the mechanics of the proof of Theorem 10 in the
general case. One can however give an explicit description of the admissible model MR =

(
gR,ΠR

)
associated with R and infer from it an inductive description of the bracket map [ · ]R associated
with ΠR. We describe the admissible model associated with a preparation map in Section 4.1
before describing the bracket map [ · ]R in Section 4.2.

4.1 Renormalised model associated with a preparation map

We will use in the next statement a density argument in the space of models that requires the
introduction of a regularity structure T (ε), indexed by a positive regularity exponent ε. The only
difference between T (ε) and T is the notion of degree deg(ε) on T (ε), defined as deg(ε)(τ) =

deg(τ) − ε, for all τ ∈ T or τ ∈ T +\{1}. The exponent ε is chosen small enough deg(ε)(τ) to be
positive for all T +\{1}. Given now an admissible model

(
g,Π

)
on T , set for all τ ∈ T and σ ∈ T +

ΠRτ := Π
(
MRτ

)
, (gR)−1(σ) := g−1

(
M+
Rσ
)
. (4.1)

The map ΠR satisfies the admissibility condition from the fact thatMR commutes with the operators
Ia and from the admissibility of the map Π.

Proposition 11 – The pair
(
gR,ΠR

)
defines an admissible model on T (ε).

We have in particular
gR(σ) = g

(
S+M+

R S
+σ
)
, ∀σ ∈ T +. (4.2)

We will see as a corollary of Theorem 13 that
(
gR,ΠR

)
is actually a model on T . Bruned has

proved in Section 3 of [9] a version of Proposition 11 for continuous admissible models. The use
below of a density argument allows to extend the result to all admissible models.

Proof – Smooth models are models for which all the Πτ and g(σ) are smooth functions. We
know from Theorem 2 in [4] or Theorem 5 in [5], giving paracontrolled parametrization of
the space of admissible models, that the set of smooth admissible models on T is dense in
the topology associated with the canonical injection of the set of models on T in the set of
models on T (ε). See also Theorem 2.14 in Singh and Teichmann’s work [25] for a similar
statement. It suffices then to prove that for any smooth model (g,Π) the pair

(
gR,ΠR

)
defines

an admissible model on T – this is what we prove in the following.
Identity (2.22) ensures that

ΠRxτ =
(
ΠR ⊗ (gRx)−1

)
∆τ =

{
ΠR ⊗

(
g−1
x ◦M+

R

)}
∆τ

=
(
Π⊗ g−1

x

)
(MR ⊗M+

R )∆τ

(2.22)
=

(
Πx ⊗ g−1

x

)
δRτ.

(4.3)

It follows from this identity and the fact that δR is upper triangular, Lemma 6, that ΠRx satisfies
the analytic estimates required from a model on T . Note that this holds for all admissible
models (g,Π), smooth or not. (This point will be used in the proof of Corollary 14.)
Note that it follows from (4.3) and the admissibility of the model (g,Π) that one has for all
τ ∈ T and all x (

gRx
)−1(I+

a τ
)

= g−1
x

(
M+
R

(
I+
a τ
))

= g−1
x

(
M+

(
I+
a ⊗ Id

)
δRτ
)

(2.12)
=

(
(−DaK ∗ Πx)(x)⊗ g−1

x

)
δRτ

(4.3)
= −

(
DaK ∗ ΠRx τ

)
(x).

(4.4)

Write for all x, y
gRyx :=

(
gRx ⊗

(
gRy
)−1
)

∆+,
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and define now a multiplicative map from T into itself setting for all τ ∈ T

ĝRyx(τ) :=
(
Id⊗ gRyx

)
∆τ.

Denoting by µβ the component of any µ ∈ T in Tβ in the grading
⊕

β∈A Tβ of T , the analytic
estimates required from gRyx for

(
gR,ΠR

)
to be a model on T are equivalent to having∣∣∣(ĝRyx(σ)

)
β

∣∣∣ . |y − x|deg(σ)−β (4.5)

for all σ ∈ T and all β with β < deg(τ), for all x, y. We have

ĝRyx(Xi) = Xi + (xi − yi)1, ĝRyx(Ξ) = Ξ.

The following identity is where working with smooth models helps – continuous models would
make the job as well.

Lemma 12 – One has the identity

ĝRyx
(
Iaτ
)

= Ia
(

ĝRyxτ
)
−

∑
|`|<deg(Iaτ)

(X + x− y)`

`!
ΠRx

(
Ia+`

(
ĝRyxτ

))
(y). (4.6)

Proof – Note the pointwise evaluation of ΠRx at a given point y; we work with smooth models
to make sense of it – having a continuous model would be sufficient. We briefly recall how one
can obtain (4.6) as the settings in [4] and [9] are not striclty speaking the same. The inductive
relation (2.10) on ∆ gives

ĝRyx
(
Iaτ
)

= Ia
(

ĝRyxτ
)

+
∑

|`+m|<deg(I+a τ)

X`

`!
gRyx

(
Xm

m!
I+
a+`+m(τ)

)

= Ia
(

ĝRyxτ
)

+
∑

|k|<deg(I+a τ)

(X + x− y)k

k!
gRyx
(
I+
a+k(τ)

) (4.7)

Rewriting gRyx under the form

gRyx =
((

(gRx)−1 ◦ S+
)
⊗ (gRy )−1

)
∆+,

in order to use relation (4.4) giving (gRx)−1 and (gRy )−1, one has

gRyx
(
Ib(τ)

)
(2.7)
= (gRy )−1

(
I+
b (τ)

)
−

∑
m,n∈Nd

({
(gRx)−1I+

b+m+n ⊗
(−x)m

m!
(gRx)−1

}
S+∆⊗ yn

n!
(gRy )−1

)
∆τ

= (gRy )−1
(
I+
b (τ)

)
−
∑
k∈Nd

(y − x)k

k!

(
(gRx)−1I+

b+k ⊗
(

(gRx)−1S+ ⊗ (gRy )−1
)

∆+
)

∆τ

= (gRy )−1
(
I+
b (τ)

)
−
∑
k∈Nd

(y − x)k

k!

(
(gRx)−1I+

b+k ⊗ gRyx∆+
)

∆τ

= (gRy )−1
(
I+
b (τ)

)
−
∑
k∈Nd

(y − x)k

k!
(gRx)−1

(
I+
b+k

(
ĝRyx(τ)

))
,

for all b. One gets identity (4.6) as follows from the preceding equality using the explicit
expression for (gRx)−1 given in (4.4) and the relation ΠRx ◦ ĝRyx = ΠRy . Write ĝRyx(τ) =

∑
i λiτi,

with deg(τi) ≤ deg(τ) – note that ΠRy τ = ΠRx ĝ
R
yxτ =

∑
i λiΠ

R
x τi, then

gRyx
(
I+
a+`(τ)

)
= −

(
(Da+`K) ∗ (ΠRyτ)

)
(y)−

∑
i

λi
∑
m∈Nd

(y − x)m

m!

(
gRx
)−1(I+

a+`+m(τi)
)

=
∑
i

λi

−((Da+`K) ∗ (ΠRxτi)
)

(y)−
∑
m∈Nd

(y − x)m

m!

(
gRx
)−1(I+

a+`+m(τi)
)
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=
∑
i

λiΠ
R
x

(
I+
a+`(τi)

)
(y) = ΠRx

(
I+
a+`

(
ĝRyx(τ)

))
(y).

Together with identity (4.7), this gives the recursive formula (4.6). �

An elementary induction as in the proof of Proposition 3.16 in [9] shows then that the size
bound (4.5) on ĝRyx(σ) holds for all σ = Ia(τ), with τ ∈ T . This works as follows. Let
α < deg(σ). If α ∈ R \ N, let us write ĝRyx

(
τ
)

= τ +
∑
i λ

i
yxτi with

deg(τi) = αi < deg(τ),
∣∣(τi)αi

∣∣ . |x− y|deg(τ)−αi ;

then if∣∣(ĝRyx(σ)
)
α

∣∣ =
∣∣(Ia(ĝRyx(τ)

))
α

∣∣ .∑
i

1{αi+β−|a|=α}|x− y|
deg(τ)+β−|a|−αi . |x− y|deg(σ)−α

Now, if α ∈ N and α < deg(σ) then

∣∣(ĝRyx(σ)
)
α

∣∣ =

∣∣∣∣∣∣
 ∑
α≤|`|<deg(σ)

(X + x− y)`

`!
ΠRx

(
Ia+`

(
ĝRyx(τ)

)
(y)


α

∣∣∣∣∣∣
.

∑
α≤|`|<deg(σ)

|x− y||`|−α
∑

γ≤deg(τ)

|x− y|γ−|`|+β−|a|
∣∣(ĝRyx(τ)

)
γ

∣∣
.

∑
α≤|`|<deg(σ)

|x− y||`|−α
∑

γ≤deg(τ)

|x− y|γ−|`|+β−|a||x− y|deg(τ)−γ . |x− y|deg(σ)−α.

The multiplicativity of ĝRyx on T ensures that the bound (4.5) holds for all σ ∈ T . �

Remark – Proposition 11 can be proved in a different way, defining first a map δ+R : T + → T +

via the identity
(Id⊗M+)(∆+ ⊗ Id)δ+R =

(
S+M+

RS
+ ⊗M+

R

)
∆+.

One can prove as in Lemma 4 that the map (Id ⊗M+)(∆+ ⊗ Id) : T + ⊗ T + → T + ⊗ T + is
invertible. The defining relation for δ+R ensures that

gRyx =
(
gRy ⊗ (gRx)−1

)
∆+ =

(
gy ⊗ g−1

x

)(
S+M+

RS
+ ⊗M+

R

)
∆+

=
(
gyx ⊗ (gx)−1

)
δ+R .

A deep and fairly non-trivial result of Hairer & Quastel ensures that the map δ+R is upper triangular
if the map δR is upper triangular – see Lemma B.1 in [24]. The size estimates on gRyx(σ), for any
σ ∈ T +, follows then from the preceding formula for gRyx and Hairer & Quastel’s result. It shows
directly that

(
gR,ΠR

)
is an admissible model on T at the price of using Lemma B.1 of [24] as a

blackbox. Our proof is elementary and does not use Hairer & Quastel’s result; it follows the proof
of Theorem 3.19 in [9]. We recover in Corollary 14 below the fact that

(
gR,ΠR

)
is an admissible

model on T rather than just an admissible model on T (ε).

4.2 Parametrization of renormalized models

Assume now that we work with any preparation map R on T . The co-interaction identity (3.5)
and the fact that M+

R commutes with S+ are not guaranteed to hold anymore so the proof of
Theorem 10 breaks down. We use instead the map δR which provides a connection between the
renormalized model and the original model. We use the shorthand notation

δRτ =:
∑
σ≤Rτ

σ ⊗ τ/Rσ (4.8)

to describe the map δR. The sum is implicitly indexed by elements σ ∈ T in the canonical basis B
of T .
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We need to introduce some basic definitions/results on the paraproduct P used in the represen-
tation Theorem 1 before stating our main result. Recall from [4] the definition of the two-parameter
extension P of the paraproduct operator in terms of the kernels Qi of the Littlewood-Paley pro-
jectors – see e.g. Section 3.1 of [4]. For j ≥ 1, set

Pj :=
∑

−1≤i≤j−2

Qi,

and for a two variables real-valued distribution Λ on Rd × Rd, and j ≥ 1, set for all x ∈ Rd(
QjΛ

)
(x) :=

〈
Λ, Pj(x− ·)⊗Qj(x− ·)

〉
.

The action of P on Λ is given by
PΛ :=

∑
j≥1

QjΛ.

It coincides with the paraproduct operator when applied to product distrutions Λy,z = a(y)b(z),
in the sense that

P
(
a(y)b(z)

)
= Pab.

We use here a formal notation to emphasize the dependence of a distribution on Rd × Rd on its
arguments. Recall also from [2] the definition of the operator

R(a, b, c) := Pa(Pbc)− Pabc, (4.9)
and the fact that it maps continuously Cα(Rd)×Cβ(Rd)×Cγ(Rd) into Cα+β+γ(Rd), for all α, β ∈
(0, 1) and γ ∈ (−3, 3). (See Proposition 3 in [2] – the parameters in the definition of the operators
can be arranged so as to get the continuity of R for γ in any a priori fixed interval of regularity
exponents. The interval (−3, 3) has thus no special meaning.) We need also a key recursive identity
which has been used in [4] – identity (2.5) therein. Rewriting the identity

ΠRτ =
∑
σ≤τ

gRx(τ/σ) ΠRxσ

under the form
ΠRxτ = ΠRτ −

∑
σ<τ

gRx(τ/σ) ΠRxσ

and iterating, we get first

ΠRxτ = ΠRτ −
∑
σ<τ

gRx(τ/σ) ΠRσ +
∑

σ2<σ1<τ

gRx(τ/σ1)gRx(σ1/σ2) ΠRxσ2,

and after a finite number of iterations
ΠRxτ = ΠRτ −

∑
n≥1

(−1)n
∑

σn<···<σ1<τ

gRx(τ/σ1) · · · gRx(σn−1/σn) ΠRσn. (4.10)

Similarly, one has

Πxτ = Πτ −
∑
n≥1

(−1)n
∑

σn<···<σ1<τ

gx(τ/σ1) · · · gx(σn−1/σn) Πσn. (4.11)

If one uses relation (4.3) to write

ΠRxτ =
∑
σ≤Rτ

g−1
x (τ/Rσ) Πxσ

we obtain from (4.11) the identity

ΠRxτ =
∑
σ≤Rτ

g−1
x (τ/Rσ) Πσ −

∑
n≥1

(−1)n
∑

σn<···<σ1<σ≤Rτ

g−1
x (τ/Rσ)gx(σ/σ1) · · · gx(σn−1/σn) Πσn.

(4.12)
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Theorem 13 – The formula

[τ ]R =
∑
n≥1

(−1)n−1
∑

1<τn+1<···<τ1<τ

R
(

gR(τ/τ1) · · · gR(τn−1/τn) ; gR(τn/τn+1) ; [τn+1]R
)

+ P
((

ΠRyτ
)
(z)
)

+ S(ΠRτ),

(4.13)

where P
((

ΠRyτ
)
(z)
)

is given by

P
((

ΠRyτ
)
(z)
)

=
∑
σ≤Rτ

Pg−1(τ/Rσ)[σ] +
∑
n≥1

∑
1<σn<···<σ1<σ≤Rτ

(−1)n−1×

R
(

g−1(τ/Rσ) g(σ/σ1) · · · g(σn−1/σn) ; g(σm/σn+1) ; [σm+1]
)
,

(4.14)

and defines inductively the bracket map [ · ]R in terms of the bracket map [ · ]. One has moreover
P1

(
ΠRτ

)
=: ΠRτ − S(ΠRτ),

where S(ΠRτ) is a smooth term depending continuously in any Hölder topology on the distribution
ΠRτ .

Proof – One can repeat safely part of the proof of Proposition 12 in [4]. We proceed by
induction on the size of the trees. By applying P to the identity (4.10), one has

P1

(
ΠRτ

)
=
∑
n≥1

(−1)n
∑

τn<···<τ1<τ
PgR(τ/τ1)...gR(τn−1/τn)ΠRτn + P

((
ΠRyτ

)
(z)
)
,

In the end, we have

ΠRτ =
∑
n≥1

(−1)n
∑

1<τn<···<τ1<τ

PgR(τ/τ1)...gR(τn−1/τn)ΠRτn + P
((

ΠRyτ
)
(z)
)

+ S(ΠRτ)

We replace τn by the following expression

ΠRτn =
∑

1<τn+1<τn

PgR(τn/τn+1)[τn+1]R + [τn]R,

and using the definition (4.9) of the operator R, we get

[τ ]R =
∑
n≥1

(−1)n−1
∑

1<τn+1<···<τ1<τ

R
(

gR(τ/τ1) · · · gR(τn−1/τn) ; gR(τn/τn+1) ; [τn+1]R
)

+ P
((

ΠRyτ
)
(z)
)

+ S(ΠRτ),

(4.15)

from the same ‘fantastic’ telescopic sum as in the proof of Proposition 12 in [4]. The same
mechanics is at work in the proof of identity (4.14). Indeed, since one has from identity (4.12)

P
((

ΠRyτ
)
(z)
)

=
∑
σ≤Rτ

Pg−1(τ/Rσ)[σ]−

∑
n≥1

(−1)m
∑

σn<···<σ1<σ≤Rτ

Pg−1(τ/Rσ) g(σ/σ1)···g(σn−1/σn)[σn],

and
Πσn =

∑
σn+1≤σn

Pg(σn/σn+1)[σn+1],

a telescopic sum appears and leaves formula (4.14). Formulas (4.15) and (4.14) give jointly
an inductive formula giving [τ ]R in terms of the [τ ′], with τ ′ ∈ T . �

Corollary 14 – The model
(
gR,ΠR

)
on T (ε) is actually a model on T .

Proof – Given τ ∈ T with deg(τ) ≤ 0, we know from Proposition 10 in [4] that the double sum
in (4.13) defines an element of Cdeg(τ)(Rd). Since the distribution Λ =

(
ΠRyτ

)
(z) on Rdy × Rdz
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satisfies from (4.3) the estimate ∥∥QjΛ
∥∥ . 2−jdeg(τ),

uniformly in j ≥ 1, Proposition 8 in [4] tells us that P
((

ΠRyτ
)
(z)
)

is also an element of
Cdeg(τ)(Rd). All the brackets [τ ]R are thus elements of Cdeg(τ)(Rd), so

(
gR,ΠR

)
turns out to

be a model on T from Theorem 1, as the unique model on T associated to the brackets [ · ]R
provides canonically a model on T (ε) that needs to coincide with

(
gR,ΠR

)
, by uniqueness. �
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nique, 1–40, (2021).
[6] I. Bailleul and M. Hoshino, A tourist guide to regularity structures and singular stochastic PDEs.

arXiv:2006:03524, 1–81, (2020).
[7] C. Bellingeri and P. Friz and S. Paycha and R. Preiss, Smooth rough paths, their geometry and algebraic

renormalization arXiv:2111.15539, (2021).
[8] Y. Bruned. Singular KPZ Type Equations. 205 pages, PhD thesis, Université Pierre et Marie Curie - Paris VI,
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