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Abstract. We prove a general equivalence statement between the notions of models and modelled
distributions over a regularity structure, and paracontrolled systems indexed by the regularity
structure. This takes in particular the form of a parametrisation of the set of models over a
regularity structure by the set of reference functions used in the paracontrolled representation
of these objects. A number of consequences are emphasized. The construction of a modelled
distribution from a paracontrolled system is explicit, and takes a particularly simple form in the
case of the regularity structures introduced by Bruned, Hairer and Zambotti for the study of
singular stochastic partial differential equations.

1 – Introduction

The set of singular stochastic partial differential equations (PDEs) is characterized by the
appearance in each equation of this class of ill-defined products, typically the product of a
distribution with a function that is not sufficiently regular. The parabolic Anderson model
equation

pBt ´∆qu “ uζ,

on the two dimensional torus is a typical example of singular PDE. The space white noise ζ
has almost surely parabolic Hölder regularity α´ 2, for any α ă 1, and u cannot be expected
to have better regularity than being α-Hölder. So the product uζ does not make sense, since
α ` pα ´ 2q ă 0. Two different sets of tools for the study of singular stochastic PDEs have
emerged recently, under the form of Hairer’s theory of regularity structures [14, 7, 8, 6] and
paracontrolled calculus [13, 3, 4], after Gubinelli, Imkeller and Perkowski’ seminal work. Both
of them implement the same mantra: Make sense of the equation in a restricted space of
functions/distributions whose elements look like the linear combination of reference random
quantities, for which the ill-defined terms that come from the analysis of the product problems
can be defined using probabilistic tools. Within the setting of regularity structures, Taylor-like
pointwise expansions and jet-like objects are used to make sense of what it means to look like
a linear combination of reference quantities

fp¨q „
ÿ

τ

fτ pzq
`

Πg
zτ
˘

p¨q, near z, for all spacetime points z.

In the paracontrolled approach, one uses paraproducts to implement this mantra
f „

ÿ

τ

Pfτ rτ s.

Each term Pab is a function or a distribution. This approach is justified at an intuitive level by
the fact that Pfτ rτ s can be thought of as a modulation of the reference function/distribution
rτ s. The two options seem technically very different from one another.

While Hairer’s theory has now reached the state of a ready-to-use black box for the study
of singular stochastic PDEs, like Cauchy-Lipschitz well-posedness theorem for ordinary dif-
ferential equations, the task of giving a self-contained treatment of renormalisation matters
within paracontrolled calculus remains to be done. It happens nonetheless to be possible to
compare the two languages, independently of their applications to the study of singular sto-
chastic PDEs. This task was initiated in Gubinelli, Imkeller, Perkowski’ seminal work [13] and
Martin and Perkowski’s work [22], and in our previous work [5], where we proved that the set
of admissible models M “ pg,Πq over a concrete regularity structure T “

`

pT`,∆`q, pT,∆q
˘

equipped with an abstract integration map is parametrised by a paracontrolled representation
of Π on the set of elements τ with non-positive homogeneity. (Admissible models play a crucial
in the regularity structures approach to the study of singular stochastic PDEs.) Theorem 21
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in [5] says indeed that given any family
`

rrτ ss P C|τ |
˘

|τ |ď0
, with τ in a linear basis of T , there

exists a unique admissible model pg,Πq on T such that one has

Πτ “
ÿ

σăτ

Pgpτ{σqrrσss ` rrτ ss, (1.1)

for all τ P T in the basis, with non-positive homogeneity. (All notations and words are
explained below.) This result provides a parametrisation of the nonlinear set of admissible
models by a linear space, providing for instance a natural notion of tangent space to the space
of admissible models. The distribution rrτ ss appears in (1.1) as ‘the’ part of Πτ of regularity |τ |
in this decomposition, while the paraproducts Pgpτ{σqrrσss have regularity |σ| ă |τ |, for σ ă τ .

To understand the practical relevance of this linear parametrization of the space of ad-
missible models on T , assume T stands for the Bruned, Hairer, and Zambotti’s regularity
structure [7] associated with a singular stochastic PDE and Mε “ pgε,Πεq stands for the naive
interpretation model associated with a smoothened noise in the equation, with regulariza-
tion parameter ε. The BPHZ renormalization procedure for the model involves a real-valued
map k acting on a side space T´, which also defines a homogeneity-preserving linear map rk
from T into itself. It follows from Theorem 21 in [5] that the bracket data associated with
the renormalised model kMε is simply given by the rrrkpτqss, for τ of negative homogeneity.
The convergence of renormalised admissible models has thus a direct counterpart in terms of
bracket data. This answers one of the problems mentioned at the end of Tapia and Zambotti’s
work [25] on the parametrization problem for the set of branched rough paths, in the present
general setting.

Here is another illustration of the use of the parametrization result of admissible models
proved in [5] that will be developed in Section 4.1 and Section 4.4. Consider the elementary
setting of branched rough paths; they are admissible models on particular examples of regular-
ity structures. Theorem 21 in [5] gives a direct proof of Lyons’ extension theorem, saying that
a branched Hölder p-rough path has a unique extension into a branched Hölder q-rough path,
for any q ą p. (Recall weak geometric rough paths are branched rough paths.) This result
allows to define the signature of a branched rough path. Similarly, let T be a regularity struc-
ture built from integration operators, with elements of arbitrary large positive homogeneity. It
follows from Theorem 21 in [5] that an admissible model defined on the quotient space of T ,
modulo elements of a given positive homogeneity α, has a unique extension into an admissible
model over the regularity structure T quotiented by the elements of homogeneity β, for any
β ą α. This allows to define the signature of an admissible model.

Such statements are concerned with admissible models on regularity structures associated
with singular stochastic PDEs. We step back in the present work and prove a general result
giving a parametrization of the nonlinear space of arbitrary models M “ pg,Πq on any reason-
able concrete regularity structure, by a linear space, in terms of representations of the maps
g and Π by paracontrolled systems, similar to identity (1.1). (The set of models on any given
regularity structure is always nonempty, as it contains the element M0 “ pg0,Π0q, with g0 the
character on T` that sends any basis element of T` on 1, and Π0 the null map. The nonlinear-
ity of the space of models can be seen from the analytical constraints that they need to satisfy,
that involves nonlinear operations on g.) Being reasonable means here satisfying assumptions
(A-C) from Section 3 and Section 4. We insist here on the fact that these assumptions are
not related to any kind of singular stochastic PDE or any dynamics or structure that could be
modelled with such a regularity structure. As we shall see, the regularity structures used for
the study of singular stochastic PDEs enjoy these properties, so all our results hold for them.

The result takes the following form. Given a concrete regularity structure
T “

`

pT`,∆`q, pT,∆q
˘

,

denote by MrappT ,Rdq the space of models on Rd decreasing rapidly at infinity. Once again,
all terms will be properly defined below.
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Theorem 1. Let T be a concrete regularity structure satisfying assumptions (A-C). Then
one can construct a locally Lipschitz continuous map

MrappT ,Rdq Ñ
ź

σPB`zB`X

C|σ|rappR
dq ˆ

ź

τPBzBX

C|τ |rappR
dq

pg,Πq ÞÑ
´

rrσssM, rrτ ssg ; σ P B`zB`X , τ P BzBX
¯

(1.2)

by giving paracontrolled representations of g and Π, for pg,Πq P MrappT ,Rdq. Furthermore,
MrappT ,Rdq is locally bi-Lipschitz homeomorphic to the product space

ź

σPG`˝

C|σ|rappR
dq ˆ

ź

τPB‚, |τ |ă0

C|τ |rappR
dq. (1.3)

The first claim in Theorem 1 is part of Theorem 1 in [5]; see formulas (3.5) and (3.6) below for
an explicit description of the map (1.2). The sets B and B` are fixed linear bases of the spaces
T and T`, respectively, consisting of homogeneous vectors. The set B‚ in (1.3)parametrizes
part of the basis B, while the set G`˝ parametrizes part of the basis B`. The letter G stands
for ‘generator’. In the present setting of a general concrete regularity structure, the space T`
is not related to T , unlike what happens with the special regularity structures used for the
study of singular stochastic PDEs. It is thus not surprising that there is some freedom in
the construction/parametrization of the map g. The degrees of freedom are parametrized by
the set G`˝ , described in assumption (C). Assumption (A) is a harmless requirement on how
polynomials sit within T and T`. Assumption (B) is a very mild requirement on the splitting
map ∆ : T Ñ T b T`, and assumption (C) is a structure requirement on T` and ∆` that
provides a fundamental induction structure. The three assumptions are met by all concrete
regularity structures built for the study of singular stochastic PDEs.

This type of parametrization is not entirely new as Tapia and Zambotti described in [25] a
free transitive action of a product of Hölder spaces on the space of branched rough paths, a
particular example of model over a particular regularity structure. This action was not proved
to be continuous however. In relation with the renormalization problem of stochastic models,
Theorem 1 describes precisely the freedom that we have to tweak a divergent family of models
and turn it into a convergent family of models. The renormalization process needs to give
converging bracket data rrσssM, rrτ ssg. See a forthcoming work.

We single out here two direct consequences of Theorem 1 about density and extension
questions on the space of models.
‚ The set of models with rapid decrease is equipped with a family of norms M ÞÑ }M}a,

indexed by positive exponents a. Smooth functions are known to be dense in any Hölder space
Cβa pRdq, with growth exponent a, if one sees the latter as a subset of Cβ´εa pRdq, for any positive
ε. Theorem 1 provides as a consequence a direct proof of the following density result, proved
in Section 4.4 – see Singh and Teichmann’s work [24] for a similar result, proved therein from
an explicit mollification procedure on models.
Corollary 2. Given any positive exponent ε, the set of smooth models with rapid decrease is
dense in the set of models with finite C|τ |rap-norms, for the topology induced by the C|τ |´εrap -norms.
‚ Branched rough paths are models on a finite time interval r0, T s, over a particular ex-

ample of concrete regularity structure of the form T ` “
`

pT`,∆`q, pT`,∆`q
˘

, that satisfies
assumptions (A-C). These models are entirely determined by their g-maps, and the elements
of T` are planted rooted trees with decorations on the nodes in a finite set t1, . . . , `u; edges are
not decorated. Defining a branched rough path above an `-dimensional control h “ ph1, . . . , h`q
means defining a g-map over pT`,∆`q such that g assigns hj to the tree with only one node
with decoration j, for all 1 ď j ď `, and no edge. The first proof that this is possible for any
choice of Hölder control h was found by Lyons and Victoir [20], for geometric rough paths, using
the axiom of choice. This unexpected device stimulated further explorations of this questions,
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and different proofs not using the axiom of choice were given subsequently [26, 14, 25, 18].
Unterberger constructs in [26] a rough path above h using paraproduct-like tools. Hairer uses
in [14] the reconstruction theorem for that purpose, while Liu, Prömel and Teichmann use
in [18] a version of the reconstruction theorem for Sobolev models and the notion of Sobolev
rough path to extend Lyons-Victoir extension in their setting. Tapia and Zambotti used in
[25] an explicit form of the Baker-Campbell-Hausdorff formula to bypass the use of the axiom
of choice in the construction of a lift, and gave a parametrization of the set of all branched
rough paths above h. Theorem 1 provides a direct access to such an extension result, in so far
as the family of trees with only one node with decoration j, for 1 ď j ď `, is a subset of the
generator set G`˝ in that setting.
Corollary 3. (Lyons-Victoir’s extension theorem) – Given any R`-valued Hölder control h
on the time interval r0, T s, there exists a branched rough path above h.

The above branched rough path is said to be a lift of the control h. Like in [25], Theorem
1 actually gives a parametrization of the set of all branched rough paths above h. One can
formulate the same extension problem for the models on the class of concrete regularity struc-
tures introduced for the study of singular stochastic PDEs by Bruned, Hairer and Zambotti
in [7] – we talk of BHZ regularity structures. We refer the reader to Section 4.3 for basics
on BHZ regularity structures, and simply mention here that as in the case of branched rough
paths, the elements of BHZ regularity structures T are rooted decorated trees. Their roots
may have decorations, and we denote by p‚jq1ďjď` the family of one node trees with no edges,
and decoration j.
Corollary 4. (Extension result for models on BHZ regularity structures) – Given a multi-
dimensional noise ζ “ pζ1, . . . , ζ`q, with ζi P C|‚i|rappRmq, for all 1 ď i ď `, there exists a model
M “ pg,Πq on the BHZ regularity structure T such that Πp‚jq “ ζj, for all 1 ď j ď `.

The above model is said to be a lift of the noise ζ. The parametrization of admissible models
proved in [5] shows that one can further impose to the extension that it is an admissible model.
(Recall the notion of admissibility is related to a peculiar feature of the regularity structures
used for the study of singular stochastic PDEs.) As for the case of branched rough paths,
Theorem 1 actually gives a description of the set of all models above the `-dimensional noise
ζ. Corollary 3 and Corollary 4 are proved in Section 4.4. Corollary 3 and Corollary 4 are
actually previously unnoticed consequences of Theorem 21 in [5]. The general extension result
stated in Corollary 4 is outside the scope of Theorem 21 in [5].

Enough for the consequences of Theorem 1; we now turn to the problem of the parametriza-
tion of the space of modelled distributions associated with a given model.

Given a model M “ pg,Πq on a concrete regularity structure, natural regularity spaces are
given by the Hölder-type spaces DγpT, gq, with generic element

f “
ÿ

τPB, |τ |ăγ
fττ.

For M “ pg,Πq P MrappT ,Rdq, there is an associated notion of rapidly decreasing space of
modelled distributions taking values in the vector space T , with regularity exponent γ, denoted
by Dγ

rappT, gq. The parametrization of Dγ
rappT, gq by data in paracontrolled representations of

elements of that space requires in general a structure condition on these data reminiscent of a
similar condition introduced by Martin and Perkowski in [22]; it is stated in Theorem 22. This
non-trivial structure condition has a clear meaning in terms of an extension problem for the
map g from the Hopf algebra T` to a larger Hopf algebra; an interesting technical point on
its own. The structure condition happens nonetheless to take a very simple form for special
concrete regularity structures satisfying assumption (D).

Theorem 5. Let a concrete regularity structure T satisfy assumptions (A-D). Pick γ P Rzt0u
such that γ´|τ | R N for any basis element τ of T with |τ | ă γ, and M “ pg,Πq PMrappT ,Rdq.
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Then one can construct a locally Lipschitz continuous map
Dγ

rappT, gq Ñ
ź

τPB, |τ |ăγ
Cγ´|τ |rap pRdq

by giving a paracontrolled representation of elements in Dγ
rappT, gq. Furthermore, Dγ

rappT, gq is
locally bi-Lipschitz homeomorphic to the product space

ź

τPB‚, |τ |ăγ
Cγ´|τ |rap pRdq.

See formula (3.7) for the paracontrolled representation of a modelled distribution in Dγ
rappT, gq.

Similarly, we can see the further homeomorphism result
Mrap ˙Dγ

rap »
ź

σPG`˝

C|σ|rappR
dq ˆ

ź

τPB‚, |τ |ă0

C|τ |rappR
dq ˆ

ź

τPB‚, |τ |ăγ
Cγ´|τ |rap pRdq,

where Mrap ˙ Dγ
rap is the space of all pairs

`

pg,Πq,f
˘

of models pg,Πq P MrappT ,Rdq and
modelled distributions f P Dγ

rappT, gq. Following Corollary 2, say here that given a model M
on a concrete regularity structure T , the set of modelled distributions with rapid decrease
is equipped with a family of norms f ÞÑ }f}a, indexed by a positive growth exponent a.
The following result is obtained as a direct consequence of Theorem 5 and the density of
smooth functions in any Hölder space Cβa pRdq, equipped with the weaker Cβ´εa pRdq-topology,
for any positive exponent ε. As pointed out in Section 2 of Singh and Teichmann’s work
[24], one can use the reconstruction theorem to define a mollification operator on modelled
distributions and obtain as a consequence a density statement for the set of smooth modelled
distributions. Theorem 5 shows that any mollification operation on Hölder spaces induces a
mollification operation on the space of modelled distributions; this result is independent of the
reconstruction theorem. See Section 4.4 for a proof.
Corollary 6. Let a concrete regularity structure T satisfy assumptions (A-D). Fix a model
on T . Given any exponents γ P R as in Theorem 5 and ε ą 0, the set of smooth elements
`

pg,Πq,f
˘

in Mrap ˙ Dγ
rap is dense in the same space but with the topology induced by the

C|τ |´εrap -norms and the Dγ´ε
rap -norm.

Unlike the other assumptions, assumption (D) is fundamentally a requirement on a linear
basis of T , not on the concrete regularity structure itself. It may then happen that one basis of
T satisfies it whereas another does not. Satisfying assumption (D) thus means the existence of
a linear basis satisfying this assumption. It happens that the class of concrete BHZ regularity
structures introduced by Bruned, Hairer and Zambotti in [7] for the study of singular stochastic
PDEs all satisfy assumption (D), despite the fact that their canonical bases do not satisfy it.
We refer the reader to Section 4.3 for the notations t P L and |t|.

Theorem 7. Assume that the set t|t|utPL Y t1u is rationally independent. Then the BHZ
concrete regularity structures satisfy assumptions (A-D).

‚ BHZ regularity structures vs general regularity structures. Readers familiar with the use
of regularity structures for the study of singular stochastic PDEs may feel unconfortable at
the idea of working regularity structures that do not come from a singular stochastic PDE and
with models where the maps g and Π are unrelated, unlike in the former setting. This freedom
is useful, and Hoshino showed for instance in [16, 17] how this leads to a clear understanding
of a number of fundamental continuity results for iterated correctors introduced in Bailleul &
Bernicot’s work [4] on high order paracontrolled calculus, from a regularity structures point
of view. As a further illustration of the use of this freedom, let us see how Theorem 1 gives
back a proof of the continuity of the product map pa, bq P CαpRdq ˆ CβpRdq Ñ ab P CβpRdq,
for α P p0, 1q, β ă 0, and α ` β ą 0; this is another formulation of Proposition 4.14 in [14].
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Indeed, consider the concrete regularity structure T “
`

pT`,∆`q, pT,∆q
˘

with
T` “ spanp1`, Aq, T “ spanpB,Cq,

with |1`| :“ 0, |A| :“ α, |B| :“ β, |C| :“ α` β, and splitting maps
∆`1` “ 1` b 1`, ∆`A “ Ab 1` ` 1` bA,

and
∆B “ B b 1`, ∆C “ C b 1` `B bA.

Theorem 1 tells us that the model pg,Πq, with gp1`q “ 1, is uniquely characterized by the two
inputs

gpAq “ a P CαpRdq, ΠB “ b P CβpRdq.
The distribution c :“ ΠC is in particular determined by a and b. We see that Π provides an
extension of the product map pa, bq ÞÑ ab, by noting that for smooth inputs a, b, the identity
pΠg

xCqpxq “ 0, implies in that case cpxq “ apxqbpxq, for all x P Rd.

As a matter of fact, working with models with unrelated g and Π should somehow be easier
than working with admissible models, where g and Π are entangled with one another so as to
satisfy the admissibility condition.

As far as working with general regularity structures rather than just working regularity
structures associated with singular stochastic PDEs is concerned, we would like to encourage
the reader to think about general regularity structures as mathematical models of rough ’media’
within which one still has a calculus. Rough medias have no reason to be associated with any
PDE on a general basis.

The following additional remarks put further our results in perspective.

‚ In the theory of regularity structures, the solution map of a singular stochastic PDE
has the following structure

MrappT ,Rdq Ñ Dγ
rappT, gq

R
ÝÑ Cβ0pRdq.

The first arrow associates to a model the solution in Dγ
rappT, gq of the regularity struc-

ture counterpart of the equation; the second arrow involves the model-dependent re-
construction map R. The composition of these two maps defines a locally Lipschitz
map. Theorem 1 implies that the solution map actually has the structure

ź

σPG`˝

C|σ|rappR
dq ˆ

ź

τPB‚, |τ |ă0

C|τ |rappR
dq Ñ Cβ0pRdq. (1.4)

The map (1.4) is a general form of the solution maps constructed in the previous works
[13, 4] on paracontrolled calculus. Since the ansatz on solutions were given by hand in
those papers, it was very hard to extend the argument to a whole class of equations.
Our results reveal the relation between such handmade ansatz and the sophisticated
algebraic structure in Hairer’s theory, showing that it is possible to apply paracontrolled
calculus to more general equations in an automatic way, like the works [14, 7, 8, 6].

‚ The map (1.4) provides interesting insights on parts of the theory of regularity struc-
tures. For example, one of the difficult part of the theory is the continuity result for
the model-dependent multi-level extension

KM : DγpT, gq Ñ Dγ`2pT, gq,

of the resolution map L´1, with the property that RMpKMfq “ L´1pRMfq, for any
modelled distributions f P DγpT, gq – its very definition is non-obvious, see [14, Section
5]. From the paracontrolled point of view, we take profit from the fact that the classical
resolution map L´1 preserves the paracontrolled structure

L´1 :
ÿ

Pfτ rrτ ss ` rrf ss ÞÑ
ÿ

Pfτ
`

L´1rrτ ss
˘

` L´1rrf ss,
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up to the introduction of the modified paraproduct Pfg :“ L´1Pf pLgq – see [4]. The
main results in the present paper can be applied to such a modified paraproduct. The
map KM can be obtained directly from Theorem 5 by giving first a paracontrolled
representation of an element of DγpT, gq, then applying L´1, using the modified para-
product, and finally using Theorem 5 again to get back an element of Dγ`2pT, gq. We
do not give the details here and leave it to a future work.

‚ The local Lipschitz parametrizations of the sets of models and modelled distributions
from Theorem 1 and Theorem 5 offer the possibility to define dynamics in these spaces
by solving ordinary (or controlled/rough) differential equations driven by vector fields
on the parametrization spaces. In the setting of pathspace analysis on manifolds, this
kind of pathwise dynamics provided a clean understanding of Driver’s flow equation on
pathspace, in relation with quasi-invariance questions for Wiener measure on pathspace
over a compact Riemannian manifold [12, 19, 2]. One may also make sense of classical
stochastic PDEs on the space of models or modelled distributions, as in Liu, Prömel
and Teichmann’s work [18].

Notice that we considered a function space whose elements decrease rapidly at infinity
mainly for a technical reason. Our assumption is related to localizing a singular PDE. Indeed,
we can consider a class of models on a bounded domain vanishing on the boundary, via a
diffeomorphism between Rd and that domain. Instead, the following modifications are also
possible.

‚ Theorems 1 and 5 above hold also with the spaces Mslow and Dγ
slow of slowly growing

models and modelled distributions, respectively, with the spaces Cαrap replaced by Cαslow.
Such a modification is important because temporally or spatially stationary models
belong to Mslow, but not to Mrap. More details can be found in Appendix C.

‚ If the elements in G`˝ and B‚ all have homogeneities smaller than 1, then Theorem 1
and Theorem 5 above hold for the unweighted spaces M and Dγ , with the spaces Cαrap

replaced by usual Hölder spaces Cα. An important example is the space of branched
rough paths. As said above, Tapia and Zambotti proved in [25] an analogue of Theorem
1 for the space of branched rough paths by a different approach.

Like in our previous work [5], we work here with the usual isotropic Hölder space rather
than with anisotropic spaces. All results given here hold true in that more general setting,
with identical proofs. The reader will find relevant technical details in the work [22] of Martin
and Perkowski.

Section 2 is dedicated to describing different functional spaces and operators. Section 3 is
dedicated to giving paracontrolled representations of models and the reconstruction of modelled
distributions in terms of data in paracontrolled systems, proving part of Theorem 1. The later
is proved in Section 4, where the main work consists in providing a parametrization of g-maps
by paracontrolled representations, Theorem 17. Theorem 5 and Theorem 7 are proved in
Section 4.2 and 4.3, respectively. Appendix A gives back the setting of concrete regularity
structures introduced in [5], while Appendix B gives a number of technical details that are
variations on corresponding results from [5].

Notations ‚ We use exclusively the letters α, β, γ to denote real numbers that play the role of
regularity exponents, and use the letters σ, τ, µ, ν to denote elements of T or T`.
‚We agree to use the shorthand notation sp`q to mean both the statement s and the statement

s`.
‚ We use the pairing notation x¨, ¨y for duality between a finite dimensional vector space and

its dual space.
‚ We adopt the notations and terminology of the work [5], and write in particular Πg

x and
xgyx, for what is denoted by Πx and Γxy in Hairer’s terminology.
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2 – Functional setting

We describe in this section different function spaces we shall work with and introduce a
modified paraproduct. For x P Rd, set

|x|˚ :“ 1` |x|, x P Rd.

The weight function |x|˚ satisfies the inequalities
|x` y|˚ ď |x|˚|y|˚, |x{λ|˚ ď |x|˚,

for any λ ě 1.

Let pρiq´1ďiă8 be a dyadic decomposition of unity on Rd, i.e. ρi : Rd Ñ r0, 1s is a compactly
supported smooth radial function with the following properties.

‚ supppρ´1q Ă tx P Rd ; |x| ă 4
3u and supppρ0q Ă tx P Rd ; 3

4 ă |x| ă
8
3u.

‚ ρipxq “ ρ0p2
´ixq for any x P Rd and i ě 0.

‚
ř8
i“´1 ρipxq “ 1 for any x P Rd.

We define the Littlewood-Paley blocks p∆iq´1ďiă8 by ∆if :“: ρip∇qf :“ F´1pρiFfq, where F
is a Fourier transform on Rd and F´1 is its inverse. For j ě ´1, set

Sj :“
ÿ

iăj´1

∆i.

Denote by Qi and Pj the integral kernels associated with ∆i and Sj

∆ifpxq :“

ż

Rd
Qipx´ yqfpyqdy, Sjfpxq :“

ż

Rd
Pjpx´ yqfpyqdy.

- For any measurable function f : Rd Ñ R, set
}f}L8a pRdq :“

›

›| ¨ |a˚f
›

›

L8pRdq,

and define the corresponding space L8a pRdq of functions with finite }¨}L8a pRdq-norm. Set

L8rappR
dq :“

8
č

a“1

L8a pR
dq, L8slowpR

dq :“
8
ď

a“1

L8´apR
dq.

- For any distribution ξ P S 1pRdq, set
}ξ}Cαa pRdq :“ sup

jě´1
2jα}∆jξ}L8a pRdq.

and define the corresponding space Cαa pRdq of functions with finite } ¨ }Cαa pRdq-norm. We
have Cα0 pRdq “ CαpRdq, with the usual definition of the Hölder space CαpRdq as the
Besov space Bα8,8pRdq – see e.g. Bahouri, Chemin and Danchin’s book [1]. Set

CαrappR
dq :“

8
č

a“1

Cαa pRdq, CαslowpR
dq :“

8
ď

a“1

Cα´apRdq.

- For any two-parameter function F : Rd ˆ Rd Ñ R and α ą 0, set

|||F |||Cα
p2q,a

pRdˆRdq :“ sup
x,yPRd

`

|x|a˚ ^ |y|
a
˚

˘

ˇ

ˇF px, yq
ˇ

ˇ

|x´ y|α
.

and define the corresponding space Cα
p2q,apR

dˆRdq of functions with finite }¨}Cα
p2q,a

pRdˆRdq-
norm. Set also

Cαp2qpR
d ˆ Rdq :“ Cαp2q,0pR

d ˆ Rdq, Cαp2q,rappR
d ˆ Rdq :“

8
č

a“1

Cαp2q,apR
d ˆ Rdq.
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- For any Rd-indexed family of distributions Λ “ pΛxqxPRd Ă S 1pRdq on Rd, and α P R,
set

|||Λ|||Dαa :“ sup
xPRd

sup
jě´1

|x|a˚2
jα
ˇ

ˇxΛx, Pjpx´ ¨qy
ˇ

ˇ.

Set

Dα :“ Dα
0 , Dα

rap :“
8
č

a“1

Dα
a .

(In Hairer’ seminal work [14], models are assumed to satisfy a (λ, ϕ)-uniform regularity con-
dition

ˇ

ˇpΠg
xτqpϕ

λ
xq
ˇ

ˇ À λ|τ |,

locally uniformly in x. Requiring pΠg
xτqxPRd P D

|τ | is equivalent to the above uniform estimate
– see e.g. Lemma 6.6 of Gubinelli, Imkeller and Perkowski’ seminal work [13] on paracontrolled
distributions.)

For any distributions f, g P S 1pRdq, we define the paraproduct

Pfg :“
8
ÿ

j“1

pSjfqp∆jgq,

and resonant operator
Πpf, gq :“

ÿ

|i´j|ď1

p∆ifqp∆jgq.

For any g P S 1pRdq, set
Sg :“ g ´ P1g “ p∆´1 `∆0qg P C

8pRdq. (2.1)
(The letter S is chosen for ‘smooth’.) The following continuity result is an elementary variation
on the classical continuity results for the paraproduct and resonant operators. We refer for
instance the reader to Lemma 2.1.34 in J. Martin’s thesis [21] for a reference.

Proposition 8. Let α, β P R, a, b P Z.

‚ If α ‰ 0, then Cαa pRdq ˆ Cβb pR
dq Q pf, gq ÞÑ Pfg P Cα^0`β

a`b pRdq, is continuous.
‚ If α` β ą 0, then Cαa pRdq ˆ Cβb pR

dq Q pf, gq ÞÑ Πpf, gq P Cα`βa`b pR
dq, is continuous.

‚ If α, β ‰ 0 and α ` β ą 0, then Cαa pRdq ˆ Cβb pR
dq Q pf, gq ÞÑ f ¨ g P Cα^βa`b pR

dq, is
continuous.

As a consequence of the last item, the product fg, of f P SpRdq and g P CαpRdq, belongs to
CαrappR

dq, for any α P R – so the space CαrappR
dq is in particular not empty.

We use a modified paraproduct in Section 3.1.3. Note that
|∇|mf :“ F´1

`

| ¨ |mFf
˘

,

for m P Z, is well-defined for functions f P SpRdq whose Fourier transform have support in an
annulus. For m P N and α P R, the map |∇|m sends continuously CαrappR

dq into Cα´mrap pRdq. For
m P N, we define the modified paraproduct

Pmf g :“ |∇|m
`

Pf |∇|´mg
˘

“

8
ÿ

j“1

|∇|m
`

Sjf ¨ |∇|´m∆jg
˘

.

Note that P0 “ P. The first item of Proposition 8 also holds for the modified paraproduct Pm.
This modified paraproduct will play a pivotal role in the proof of Lemma 18, along the proof
of Theorem 17. The latter provides the construction of a g-map from bracket data.
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3 – From regularity structures and models to paracontrolled systems

This section sets the scene and contains a proof of the first part of Theorem 1. We work in the
setting of concrete regularity structures, a special case of regularity structures introduced in [5].
Their definition is recalled in Appendix A. As we work a priori with the most general concrete
regularity structures, we need to identify a number of conditions that serve our purpose in
Section 3.1. Assumption (A) is a harmless assumption on how polynomials sit inside T and
T`. Assumption (B) is a very mild requirement on the splitting map ∆ : T Ñ T b T`. Both
assumptions are met by the regularity structures used in the study of singular PDEs. This
is all we need to get a representation of models and reconstructions of modelled distributions
by paracontrolled systems. Before embarking on the journey, recall from [5] that we use the
notations

∆σ “
ÿ

µďσ

µb σ{µ, ∆`τ “
ÿ

νď`τ

ν b τ{`ν

to denote the action of the splitting map ∆ on T and the coproduct ∆` on T` – see the
comments following assumption (A). The notation µ ă σ will mean µ ď σ and µ ‰ σ; we shall
make a similar use of the expression ν ă` τ .

We shall introduce along the way three assumptions (A), (B), (C) on general regularity
structures. Their meaning is to be understood in the light of what regularity structures are
useful for: They encode the algebra at hand in the pointwise description of ‘irregular’ functions.
One will for instance read assumption (A) as saying that the classicaly regular part of functions
behave as in the classical Taylor calculus. Interpretations of assumptions (B) and (C) are given
after their statement.

3.1 A basic assumption

Appendix A recalls elementary properties of concrete regularity structures. Let T “
`

pT`,∆`q, pT,∆q
˘

be a concrete regularity structure with T` “
À

αPA` T
`
α and T “

À

βPA Tβ.
Write 1` for the unit of the algebra T`. Recall that we agree to use the shorthand notation
sp`q to mean both the statement s and the statement s`.

Assumption (A) – The spaces T` and T have linear bases B` and B, respectively, with the
following properties.

(1) B` is a commutative monoid freely generated by a finite set B`˝ and Taylor monomials
X1, . . . , Xd. Each element τ P B`˝ has a positive homogeneity. For general elements in
B`, homogeneities are defined by |Xi| “ 1, and multiplicativity

|τσ| “ |τ | ` |σ|.

(2) The action of ∆` on polynomials is characterised by its action on the monomials
∆`Xi “ Xi b 1` ` 1` bXi, (3.1)

that holds for all 1 ď i ď d. Denote by B`X the submonoid generated by X1, . . . , Xd.
(3) There exists a subset B‚ Ă B, such that B is in bijection with Nd ˆ B‚. An element

pk, σq P Nd ˆ B‚, is denoted by Xkσ, and assigned a homogeneity
|Xkσ| :“ |k| ` |σ|.

(4) If B‚ contains an element 1 with homogeneity 0, then it is unique and satisfies the
identity

∆1 “ 1b 1`.

Write Xk for Xk1. Set
BX :“ tXkukPNd Ă B.
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The coproduct ∆ on Xk is characterised by its action on the monomials
∆Xi “ Xi b 1` ` 1bXi,

where Xi “ Xei and ei “ pδijq
d
j“1 P Nd, that holds for all 1 ď i ď d, and by requiring

multiplicativity on BX . For general elements, one has the multiplicative formula

∆pXkσq “ p∆Xkq p∆σq.

For later use, denote by tτ 1uτPB the dual basis of B. Following [5], for σ, τ P Bp`q, write
σ ďp`q τ , if σ appears in the left hand side of the tensor products in the optimal expansion of
∆p`qτ , so we have the unique representation

∆p`qτ “
ÿ

σPBp`q
σďp`qτ

σ b pτ{p`qσq,

where τ{p`qσ P T`zt0u. The relation ď needs not to be transitive. Using the coassociativity
`

∆p`q b Id
˘

∆p`qτ “
`

Idb∆`
˘

∆p`qτ,

we obtain the chain formula
∆`pτ{p`qµq “

ÿ

µďp`qνďp`qτ

pν{p`qµq b pτ{p`qνq. (3.2)

Write σ ăp`q τ , if σ ďp`q τ and σ ‰ τ . The notations τ{p`qσ and σ ăp`q τ are only used for
τ and σ in Bp`q. Be careful! The notations ď,ă, etc. are basis-dependent – like the matrix
of a linear map.

The following structural assumption simplifies some arguments in this paper.
Assumption (B)

(1) For each τ, σ P B with σ ă τ , either τ{σ P spanpB`Xq or τ{σ P spanpB`zB`Xq.
(2) For any τ P B`zB`X and σ P B`X , τ{`σ P spanpB`zB`Xq.
(3) For any τ P BzBX and σ P BX , τ{σ P spanpB`zB`Xq.

Assumption (B) is about the distinction between polynomial and non-polynomial elements.
Assumption (B-1) means that, in the expansion of ∆τ , there is no term of the form σbpη`Xkq,
with η P spanpB`zB`Xq and k P Nd. It is used to justify the quantity rrµ{τ ssg in the formula
(3.7) below. Assumptions (B-2) and (B-3) is needed in the proof of Theorem 12. BHZ
regularity structure satisfies assumption (B), since polynomial and non-polynomial elements
are obviously distinguished by the number of their edges. See Section 4.3 for details.

A natural way to ensure (B) is to give homogeneities not in N for the non-polynomial
elements. Hence the following is one of the sufficient conditions.
Assumption (B’) – Homogeneities of elements in B`zB`X and BzBX are not nonnegative
integers.

This is a kind of natural assumption on regularity structures associated with PDEs; As-
sumption 5.3 in [14] is a part of assumption (B’) for elements in BzBX . Under assumption
(B) write, for τ P B`,

∆`τ “
ÿ

σPB`zB`X

σ b pτ{`σq `
ÿ

k

Xk b pτ{`Xkq

“:
ÿ

σPB`zB`X

σ b pτ{`σq `
ÿ

k

Xk

k!
bDkτ

(3.3)

Extend by linearity the map Dk from T`α to T`α´|k|, for all α P A.

Lemma 9. Under assumptions (A) and (B) one has, for all σ, τ P T` and all k, ` P Nd,
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(a) D0τ “ τ ,
(b) if τ P B`zB`X , then Dkτ P spanpB`zB`Xq, moreover, Dkτ ‰ 0 only if |k| ă |τ |,
(c) DkD`τ “ Dk``τ ,
(d) DkX` “ 1kď`

`!
p`´kq! X

`´k,

(e) Dkpτσq “
ř

k1
`

k
k1

˘

Dk1τDk´k1σ – Leibniz rule,

Proof – Item (a) comes from the property (A.1) satisfied by coproducts in Hopf algebras,
recalled in Appendix A. The former part of item (b) is a consequence of assumption (B-
2). The latter part comes from the property (A.1). Since |τ | ą 0 by the definition of
concrete regularity structures, the term Xk

k! bD
kτ appears in the expansion of ∆`τ only

if |k| ă |τ |. Item (c) is a consequence of the coassociativity property
p∆` b Idq∆` “ pIdb∆`q∆`

of the coproduct ∆`. Expanding both sides at τ P B`, we have
ÿ

σ,ηPB`zB`X

η b pσ{`ηq b pτ{`σq `
ÿ

σPB`zB`X , kPNd

Xk

k!
bDkσ b pτ{`σq `

ÿ

k,`PNd

Xk

k!
b
X`

`!
bDk``τ

“
ÿ

σPB`zB`X

σ b∆`pτ{`σq `
ÿ

kPNd

Xk

k!
b∆`Dkτ.

It gives indeed the identity

∆`Dkτ “
ÿ

σď`τ, σRB`X

Dkσ b pτ{`σq `
ÿ

`PNd

X`

`!
bDk``τ, (3.4)

this means (c). Item (d) is a direct consequence of the Leibniz formula for the polynomials,
which follows from identity (3.1) giving the action of ∆` on Xi and the multiplicativity
property of ∆`. Item (e) is again a consequence of the multiplicativity property of ∆`.
B

3.2 From models to paracontrolled systems

We recall in this section some of the results proved in [5], stated here in the slightly more
general setting of the present work. The proofs of these extensions are given in Appendix
B. These results are proved in Sections 2 and 3 in [5] without any extra assumptions about
‘bounded polynomials’ and interaction between T` and T . Hence the proofs are completely
parallel to the proofs in [5], except for the use here of the modified paraproduct and the weight.

Given Fréchet spaces E and F , denote by LpE,F q the space of continuous linear maps from
E into F . Recall G` stands for the set of characters of the Hopf algebra T`. Given maps

g : Rd Ñ G`, Π P L
`

T,S 1pRdq
˘

,

and x, y P Rd, set
gyx :“ pgy b g´1

x q∆
` P G`,

and
Πg
x :“ pΠb g´1

x q∆ P L
`

T,S 1pRdq
˘

.

Set
β0 :“ minA,

where A is a homogeneity set of T “
À

βPA Tβ.

Definition 10. Let a concrete regularity structure T satisfying assumption (A) be given. We
denote by

MrappT ,Rdq,
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the set of pairs of maps
g : Rd Ñ G`, Π P L

`

T,S 1pRdq
˘

,

such that
(a) one has gxpX

kq “ xk, for all x P Rd, k P Nd;
(b) for any τ P B`˝ , the function x ÞÑ gxpτq belongs to L8rappR

dq, and the function
px, yq ÞÑ gyxpτq,

belongs to C|τ |
p2q,rappR

d ˆ Rdq;

(c) one has pΠXkσqpxq “ xkpΠσqpxq and pΠ1qpxq “ 1;
(d) for any τ P B‚zt1u, one has Πτ P Cβ0rappRdq, and the Rd-indexed family of distributions

pΠg
xτqxPRd belongs to D|τ |rap.

The pair pg,Πq is called a rapidly decreasing model on the concrete regularity structure T .

We define metrics on the space of rapidly decreasing models on T setting

da
`

pg,Πq, pg1,Π1q
˘

:“ sup
τPB`˝

ˆ

}pg¨ ´ g1¨qpτq}L8a pRdq `
›

›pg¨¨ ´ g1¨¨qpτq
›

›

C|τ |
p2q,a

pRdˆRdq

˙

` sup
σPB‚

ˆ

}pΠ´ Π1qσ}Cβ0a pRdq
`
›

›

`

pΠg
¨ ´ pΠ

1
¨q
g1qσ

˘

p¨q
›

›

D
|σ|
a

˙

.

With a slight abuse of notations, we write

gxpτq P L
8
rappR

dq, gyxpτq P C|τ |p2q,rappR
d ˆ Rdq.

The definition of a model depends on the choice of subspaces spanpB`zB`Xq and spanpBzBXq,
but not on the choice of their bases. Indeed, since

gxpX
kq P L8slowpR

dq, gyxpX
kq P C|k|

p2qpR
d ˆ Rdq

and since L8slowpR
dq¨L8rappR

dq Ă L8rappR
dq and Cα

p2qpR
dˆRdq¨Cβ

p2q,rappR
dˆRdq Ă Cα`β

p2q,rappR
dˆRdq,

for all non-negative α, β, condition (b) holds for any τ P B`zB`X . Recall that the set B‚ in
item (d) of Definition 10 stands for the index parametrizing the non-polynomial part of the
basis of T . It is not so obvious to see whether condition (d) holds or not for any τ P BzBX ;
however, the following lemma holds.

Lemma 11. Assume (A) and (B). Under the condition (c), the estimate pΠg
xτqxPRd P D

|τ |
rap

holds for any τ P BzBX .

Proof – We prove the estimate for Xkτ , with τ P B‚, k P Ndzt0u. Because of the multiplicative
property in assumption (A-4) and item (c) in Definition 10, we have

Πg
xX

kτ “ p¨ ´ xqkΠg
xτ.

Recalling the notations at the beginning of Section 2, we have

Sj
`

Πg
xX

kτ
˘

pxq “

ż

Pjpx´ yqpy ´ xq
kpΠg

xτqpyq dy “

ż

P kj px´ yqpΠ
g
xτqpyq dy,

where P kj pxq :“ p´xqkPjpxq. Hence Pj`1 ˚P
k
j “ P kj by the property of support of Fourier

transform, and we have

Sj
`

Πg
xX

kτ
˘

pxq “ Pj`1 ˚ P
k
j ˚ pΠ

g
xτqpxq “

ż

P kj px´ yqSj`1pΠ
g
xτqpyq dy.

By induction, we assume the required estimate for any σ ď τ (hence σ “ τ or σ “ Xkη
with some k ‰ 0 and η P B‚ such that |η| ă |τ |). Since either of σ or τ{σ is non-polynomial
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by assumption (B), for any a P N,
ˇ

ˇSj`1pΠ
g
xτqpyq

ˇ

ˇ “
ˇ

ˇSj`1pΠ
g
ypgyxτqpyq

ˇ

ˇ ď
ÿ

σďτ

ˇ

ˇgyxpτ{σq
ˇ

ˇ

ˇ

ˇSj`1pΠ
g
yσqpyq

ˇ

ˇ

À
`

|x|´a˚ ` |y|´a˚
˘

ÿ

σďτ

|y ´ x||τ |´|σ| 2´j|σ|.

By using the scaling property P kj pxq “ 2jpd´|k|qP kj p2
jxq and by a similar argument to

Lemma 29 in Appendix B, we can conclude that
ˇ

ˇSjpΠ
g
xX

kτqpxq
ˇ

ˇ À |x|´a˚ 2´jp|τ |`|k|q;

hence
`

Πg
xX

kτ
˘

xPRd P D
|Xkτ |
rap . B

The next statement is a variation on Proposition 12 of [5], where we use now the usual poly-
nomials and polynomial weights, and the modified paraproducts Pm instead of the bounded
polynomials, no weights and the usual paraproduct P. Its proof is given in Appendix B.

Theorem 12. Let T stand for a regularity structure satisfying assumptions (A) and (B).
Pick m P N. For any model M “ pg,Πq PMrappT ,Rdq, there exists a family

ˆ

´

rrτ ssm,g P C|τ |rappR
dq

¯

τPB`zB`X
,
´

rrσssm,M P C|σ|rappR
dq
˘

σPBzBX

˙

such that one has, for any τ P B`zB`X and σ P BzBX , the identities

gpτq “
ÿ

1`ă`νă`τ

νPB`zB`X

Pmgpτ{`νqrrνss
m,g ` rrτ ssm,g, (3.5)

Πσ “
ÿ

µăσ

µPBzBX

Pmgpσ{µqrrµss
m,M ` rrσssm,M. (3.6)

Moreover, the mapping

M ÞÑ

ˆ

´

rrτ ssm,g P C|τ |rappR
dq

¯

τPB`zB`X
,
´

rrσssm,M P C|σ|rappR
dq

¯

σPBzBX

˙

is locally Lipschitz continuous.

This version of the statement, with m ě 1, will be used in the proof of Theorem 17 given
in Section 4.1. Write rrτ ssg and rrσssM instead of rrτ ssm,g and rrσssm,M, when m “ 0.

Given a model M P MrappT ,Rdq on a regularity structure T , and γ P R, define the space
Dγ

rappT, gq of rapidly decreasing modelled distributions as the set of functions
f : Rd Ñ

à

βăγ

Tβ,

such that, for each τ P B, the function xτ 1,fp¨qy belongs to L8rappR
dq, and the function

px, yq ÞÑ
@

τ 1,fpyq ´ xgyxfpxq
D

belongs to Cγ´|τ |
p2q,rappR

d ˆ Rdq. The reconstruction Rf of f P Dγ
rappT, gq is an element of S 1pRdq

satisfying the condition
´

Rf ´ Πg
xfpxq

¯

xPRd
P Dγ

rap.

If γ ą 0, there exists exactly one reconstruction. If γ ă 0, there are infinitely many recon-
structions and two reconstructions are equal modulo CγrappRdq. (This is a key point to prove
Proposition 15.) In what follows, we assume γ ‰ 0 and denote Rf by the one defined in
Corollary 33 in Appendix B. If γ “ 0, existence of the reconstruction is not ensured in general.
See Example 5.5 in [11].
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The next statement was proved in [5], Theorem 14, in the unweighted setting; its extension
to the present setting is given in Appendix B.

Theorem 13. Let T be a regularity structure satisfying assumptions (A) and (B). Let a
regularity exponent γ P Rzt0u and a model M “ pg,Πq PMrappT ,Rdq on T be given. For any
modelled distribution

f “
ÿ

|σ|ăγ

fσσ P Dγ
rappT, gq,

each coefficient fσ has a paracontrolled representation
fσ “

ÿ

σăµ

µ{σ P spanpB`zB`Xq

Pfµrrµ{σss
g ` rrfσss

g, (3.7)

where rrfσssg P Cγ´|σ|rap pRdq. (The quantity rrµ{σssg is defined as a linear extension of the symbols
rrτ ssg in Theorem 12.) Moreover, there exists a distribution rrf ssM P CγrappRdq such that

Rf “
ÿ

σPBzBX

Pfσ rrσss
M ` rrf ssM. (3.8)

The mapping
´

f P Dγ
rappT, gq

¯

ÞÑ

˜

´

rrf ssM,
`

rrfσss
g
˘

σPB

¯

P CγrappR
dq ˆ

ź

σPB
Cγ´|σ|rap pRdq

¸

is locally Lipschitz continuous.

A similar statement with Pm used in place of P holds true. We end this section with three
useful formulas involving g, that will be used in the proof of Theorem 17. The reader can skip
this statement now and come back to it at the moment where it is needed. Recall Dkτ “ 0, for
|k| ą |τ |. Let PX : T` Ñ T`X , stand for the canonical projection map on T`X , and for τ P B`
set

fxpτq :“ ´
`

gx b g´1
x

˘

pPX b Idqp∆`τq

“ ´
ÿ

`

x`

`!
g´1
x pD

`τq.

For τ ‰ 1`, we also have
fxpτq :“ pgx b g´1

x q
`

pId´ PXq b Id
˘

p∆`τq

“
ÿ

σď`τ, σRB`X

gxpσq g´1
x pτ{

`σq.

Lemma 14. Let T be a regularity structure satisfying assumption (A) and (B). For any
τ P B`zB`X and any k P Nd, we have

gxpD
kτq “

ÿ

σď`τ, σRB`X

gxpτ{
`σqfxpD

kσq. (3.9)

and

gyxpD
kτq “

ÿ

σď`τ, σRB`X

gyxpτ{
`σqfypD

kσq ´
ÿ

`

py ´ xq`

`!
fxpD

k``τq, (3.10)
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and
fxpD

kτq “ 1|k|ă|τ |B
k
y

!

pgy b g´1
x q

`

pId´ PXq b Id
˘

∆`τ
)

ˇ

ˇ

y“x

“ 1|k|ă|τ |B
k
y

"

ÿ

σď`τ, σRB`X

gypσq g´1
x pτ{

`σq

*

ˇ

ˇ

ˇ

y“x
.

(3.11)

Note that one cannot interchange in (3.11) the derivative operator with the sum, as a given
function gypσq may not be sufficiently regular to be differentiated k times. Note that formula
(3.10) does not have the classical feature of a Taylor-type expansion formula, which would
rather involve an x-dependent term in front of gyxpτ{

`σq, in the first term of the right hand
side.

Proof – ‚ Note first that formula (3.4) for ∆`pDkτq gives

fxpD
kτq “ pgx b g´1

x q
`

pId´ PXq b Id
˘

∆`Dkτ “
ÿ

νď`τ, νRB`X

gxpD
kνq g´1

x pτ{
`νq. (3.12)

Formula (3.9) is an inversion formula for the preceding identity. One obtains the former
from the latter by writing

ÿ

σď`τ, σRB`X

gxpτ{
`σqfxpD

kσq “
ÿ

νď`σď`τ, σ,νRB`X

gxpτ{
`σqg´1

x pσ{
`νqgxpD

kνq

“
ÿ

νď`σď`τ, νRB`X

gxpτ{
`σqg´1

x pσ{
`νqgxpD

kνq

“
ÿ

νď`τ, νRB`X

pg´1
x b gxqpτ{

`νqgxpD
kνq

“ gxpD
kτq.

(In the second equality, we can remove the condition “σ R B`X” because ν ď` Xk implies
that ν P B`X . In the last equality, we use the property of the antipode.)

‚ Applying gy b g´1
x to (3.4), we have

gyxpD
kτq “

ÿ

µď`τ, µRB`X

gypD
kµq g´1

x pτ{
`µq `

ÿ

`

y`

`!
g´1
x pD

k``τq

“
ÿ

µď`νď`τ, µRB`X

gypD
kµq g´1

y pν{
`µq gyxpτ{

`νq ´
ÿ

`1

py ´ xq`
1

`1!
fxpD

k``1τq,

(3.13)

where we use the formula (3.2) in the expansion of g´1
x pτ{

`µq. Identity (3.10) follows from
(3.13) using (3.12). Note that µ ď` ν and µ R B`X implies that ν R B`X .

‚ Formula (3.11) comes from identity (3.12) by rewriting the terms gxpD
kνq for ν P B`zB`X

in an appropriate form. As a preliminary remark, notice that applying gyx b gx to the
defining identity (3.3) for the Dkν, we have

gypνq “
ÿ

σď`ν, σRB`X

gyxpσq gxpν{
`σq `

ÿ

k

gxpD
kνq

py ´ xqk

k!
.

Since one has
Bkygyxpσq

ˇ

ˇ

y“x
“ 0,
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for any x P Rd, whenever |k| ă |σ|, one then has

gxpD
kνq “ 1|k|ă|ν| B

k
y

"

gypνq ´
ÿ

σă`ν, σRB`X
|σ|ď|k|

gyxpσq gxpν{
`σq

*

ˇ

ˇ

ˇ

y“x
. (3.14)

At the same time, one has
gypνq “

ÿ

µď`ν

pg´1
x ˚ gxqpν{

`µq gypµq “
ÿ

µď`ν

µRB`X

pg´1
x ˚ gxqpν{

`µq gypµq

“
ÿ

µď`σď`ν

µ,σRB`X

gxpν{
`σq g´1

x pσ{
`µqgypµq.

In the second equality, we use assumption (B-2) to derive pg´1
x ˚ gxqpν{

`Xkq “ 0 for
any k P Nd. In the third equality, we use that µ ď` σ and µ R B`X implies σ R B`X .
Furthermore, since µ ď` σ R B`X , µ P B`X , and |σ| ď |k| implies µ ă` σ (hence |µ| ă |k|),
we have

ÿ

µď`σď`ν

µ,σRB`X , |σ|ď|k|

gxpτ{
`σq g´1

x pσ{
`µq gypµq “

ÿ

σď`ν
σRB`X , |σ|ď|k|

gxpν{
`σq gyxpσq ` pă|k|pyq,

where pă|k| is a polynomial of degree less than |k|, hence Bkypă|k| “ 0. We thus obtain
from formula (3.14), that

gxpD
kνq “ 1|k|ă|ν|B

k
y

"

ÿ

µď`σď`ν

µ,σRB`X , |σ|ą|k|

gxpν{
`σq g´1

x pσ{
`µq gypµq

*

ˇ

ˇ

ˇ

y“x
.

Inserting this expression in formula (3.12) one gets,

fxpD
kτq “

ÿ

νď`τ, νRB`X

g´1
x pτ{

`νq gxpD
kνq

“ Bky

"

ÿ

µď`σď`νď`τ

µ,σ,νRB`X , |σ|ą|k|

g´1
x pτ{

`νq gxpν{
`σq g´1

x pσ{
`µq gypµq

*

ˇ

ˇ

ˇ

y“x

“ Bky

"

ÿ

µď`σď`νď`τ

µRB`X , |σ|ą|k|

g´1
x pτ{

`νq gxpν{
`σq g´1

x pσ{
`µq gypµq

*

ˇ

ˇ

ˇ

y“x

“ Bky

"

ÿ

µď`σď`τ

µ,σRB`X , |σ|ą|k|

pgx ˚ g´1
x qpτ{

`σq g´1
x pσ{

`µq gypµq

*

ˇ

ˇ

ˇ

y“x

“ 1|k|ă|τ |B
k
y

"

ÿ

µď`τ, µRB`X

g´1
x pτ{

`µq gypµq

*

ˇ

ˇ

ˇ

y“x
.

In the third line, we can omit the condition σ, ν R B`X because of µ R B`X . In the last line,
we use that pgx ˚ g´1

x qpτ{
`σq “ 1 if and only if σ “ τ . B

4 – From paracontrolled systems to models and modelled distributions

We prove the main results of this work in this section. Theorem 1 gives a parametrization
of the space of models by ‘bracket’ data in paracontrolled representations. The main part of
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the work consists in building a g-map from a paracontrolled representation for it on a minimal
subset of a linear basis of T`. Assumption (C) below gives a structural assumption on T`

that identifies this minimal set. The proofs of Corollary 2 on the density of smooth models,
Corollary 3 and Corollary 4 on extension problems, are proved in Section 4.4.

Theorem 5 provides a parametrization of the space of modelled distributions of regularity
γ, for a fixed γ P R, by a product of Hölder spaces. It is proved in Section 4.2. On a technical
level, one brings back the proof of Theorem 5 to an extension problem for the g-map from the
Hopf algebra T` to a larger Hopf algebra T`F . This allows to see Theorem 5 as a corollary of
Theorem 1 under the additional assumption (D).

Unlike the other assumptions, assumption (D) is about a basis B of T rather than about
T itself. It is thus possible that a given basis satisfies assumption (D) whereas another does
not. This flexibility is at the heart of the proof of Theorem 7, dealing with the case of
BHZ regularity structures, investigated in Section 4.3. Those regularity structures introduced
by Bruned, Hairer and Zambotti in [7] provide the universal model of regularity structures
associated with a subcritical singular stochastic PDE.

4.1 From paracontrolled systems to models

The following claim is the same as Corollary 15 in [5], with the modified paraproduct Pm

in the role of P. Recall from Theorem 12 the definition of the reference distributions rrσssm,M,
in the paracontrolled representation of the Π operator of a model M, using the modified
paraproduct Pm.

Proposition 15. Let T be a regularity structure satisfying assumptions (A) and (B). Pick
m P N, and assume we are given a map g : Rd Ñ G`, such that conditions (a) and (b) in
Definition 10 are satisfied. Then for any family

´

rrτ ss P C|τ |rappRdq
¯

τPB‚, |τ |ă0
, there exists a

unique model M “ pg,Πq PMrappT ,Rdq such that

Πτ “
ÿ

σăτ

Pmgpτ{σqrrσss
m,M ` rrτ ss, @ τ P B‚, |τ | ă 0. (4.1)

The map
ˆ

g,
´

rrτ ss P C|τ |rappR
dq

¯

τPB‚, |τ |ă0

˙

ÞÑ M P MrappT ,Rdq

is continuous.

Note that the distributions rrσssm,M in (4.1) are recursively defined by application of Theorem
12 to the subspace

À

βă|τ | Tβ. If σ P B‚ with |σ| ă 0, then rrσssm,M “ rrσss.

Proof – ‚ Recall there is no other element than 1 of zero homogeneity in the present setting,
and pick a basis vector τ P B‚ with |τ | ă 0, and assume that pg,Πq is a model on the
sector Tă|τ |. Set for all x P Rd

hτ pxq :“
ÿ

σăτ

gxpτ{σqσ;

this defines a modelled distribution in D|τ |rappT, gq. Then the bound pΠg
xτqxPRd P D

|τ |
rap is

equivalent to that Πτ is one of the reconstructions of hτ . From the version of Theorem
13 with the modified paraproduct Pm, the distribution

Rhτ “
ÿ

σăτ

Pmgpτ{σqrrσss
m,M ` rrhτ ss

m,M

is a reconstruction of hτ . Since
Πτ ´ Rhτ “ rrτ ss ´ rrhτ ss

m,M P C|τ |rappR
dq,

the distribution Πτ appears then as another reconstruction of hτ .
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‚ If one picks now a basis vector µ P B, with |µ| ą 0, then hµ P D|µ|rappT, gq has a unique
reconstruction, equal to Πµ, that is characterized by the data

´

Πg
xσ, gxpµ{σq;x P Rd, σ ă µ

¯

,

from the defining property of a reconstruction. An elementary induction then shows the
existence of a unique extension of Π to T that satisfies the property Πτ “ Rhτ , for every
τ P B with positive homogeneity. B

The fact that this statement holds not only for the paraproduct P but also for the modified
paraproduct Pm will play a pivotal role in the proof of Lemma 18 below. The proof of
Proposition 15 makes it clear that the above parametrization of the set of Π maps is related to
the non-uniqueness of the reconstruction map on the set of modelled distributions of negative
regularity exponent. This statement leaves us with the task of giving a parametrization of the
set of characters g on T` by their paracontrolled representation. We need for that purpose to
make the following assumptions on the Hopf algebra pT`,∆`q and the basis B` of T`. Recall
that Dk : T`α Ñ T`α´|k|, is a linear map satisfying the recursive rules from Lemma 9. Recall
that a pre-order Ĳ is a reflexive transitive binary relation. Write σ Ÿ τ if σ Ĳ τ and τ đ σ.

Assumption (C)

(1) There exists a finite subset G`˝ of B`˝ such that B`˝ is of the form

B`˝ “
ğ

τPG`˝

!

Dkτ ; k P Nd, |τ | ´ |k| ą 0
)

.

(2) There exists a preorder Ĳ on the set B` such that, for each τ P G`˝ , the coproduct ∆`τ
is of the form

∆`τ “ τ b 1`
ÿ

σă`τ, σRB`X

σ b pτ{`σq `
ÿ

k

Xk

k!
bDkτ, (4.2)

with σ P B`pτ´q and τ{`σ P span
`

B`pτ´q
˘

, for each σ in the above sum, where for
each τ P B`, denote by B`pτ´q the submonoid of B` generated by

 

X1, . . . , Xd

(

Y
ğ

σPG`˝ , σŸτ

!

Dkσ ; k P Nd, |σ| ´ |k| ą 0
)

.

(3) For any element σ P B`zB`X such that there exists τ P G`˝ and σ ď` τ , the homogeneity
of σ is non-integer.

Note the disjoint union in the description of B`˝ . Assumption (C-1) identifies a set of
generators, modulo the action of theD operator. Assumption (C-2) provides a useful induction
structure. Assumption (C-3) is a part of assumption (B’) and it is used at the end of the
proof of Theorem 17. If one understands the coproduct ∆` as giving the elementary pieces of
any given element, assumption (C) as a whole provides an inductive description of B`.

As discussed in Section 4.3, BHZ regularity structure satisfies assumption (C). Indeed, we
can choose G`˝ as a set of all conforming trees of the form I t0pτq, and the operator Dk appears
as the form DkI t0pτq “ I tkpτq. In the BHZ regularity structure, one of the examples of Ĳ is
the binary relation based on the scale of graphs. Since σ and τ{`σ in (4.2) are subtree and
quotient tree of τ respectively, it follows from definition of ∆` that σ, τ{`σ Ÿ τ . The last
assumption is true, if the types ttu are assigned rationally independent homogeneities t|t|u.
See Theorem 26 for details. We leave now this special setting and come back to our general
setting.
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Lemma 16. Denote T`pτ´q :“ span
`

B`pτ´q
˘

. For any τ P G`˝ and any σ P B`pτ´q, one
has

∆`σ P T`pτ´q b T`pτ´q. (4.3)

Proof – By multiplicativity it is sufficient to show the case σ “ Dkη P B`pτ´q with η P G`˝
and k P Nd. If k “ 0, (4.3) follows because of the transitivity of Ÿ. By the formula (3.4)
for ∆`Dkη and the property Dk : T`pτ´q Ñ T`pτ´q that is proved by Lemma 9, Dkη
also satisfies (4.3). B

Recall from formula (3.14) that if we are given characters pgxqxPRd on T` as in Definition
10, then

gxpD
kτq “ 1|k|ă|τ | B

k
y

"

gypτq ´
ÿ

σă`τ, σRB`X
|σ|ď|k|

gyxpσq gxpτ{
`σq

*

ˇ

ˇ

ˇ

y“x
. (4.4)

The induction structure from assumption (C-2) restricts the above sum and shows that the
family of all gxpD

kτq is uniquely determined by the preceding formula. It follows then from
assumption (C-1) that the character g on T` is entirely determined by the datum of the gpτq,
for τ P G`˝ . We have in particular, if τ P G`˝ is minimal (i.e., there is no σ P G`˝ such that
σ Ÿ τ) then

gypτq “ gyxpτq `
ÿ

|k|ă|τ |

py ´ xqk

k!
gxpD

kτq,

since B`pτ´q “ B`X , so for |k| ă |τ |, one has

gxpD
kτq “ Bkygypτq

ˇ

ˇ

y“x
, (4.5)

and
fxpD

kτq “ gxpD
kτq,

and
gyxpD

kτq “ gypD
kτq ´

ÿ

`

py ´ xq`

`!
gxpD

k``τq. (4.6)

Recall that, given a concrete regularity structure T ,
T ` “

`

pT`,∆`q, pT`,∆`q
˘

is also a concrete regularity structure, and that for a g map as in Definition 10 one defines a
model Mg “ pg,Πgq on T ` setting

`

Πgτ
˘

pyq “ gypτq.

Theorem 17. Let T stand for a concrete regularity structure satisfying assumptions (A-C).
Then, for any family

´

rrτ ss P C
|τ |
rappRdq

¯

τPG`˝
, there exists a unique model Mg “ pg,Πgq on T `

such that
gpτq “

ÿ

σă`τ

σPB`zB`X

Pgpτ{`σqrrσss
Mg
` rrτ ss, @ τ P G`˝ . (4.7)

The map
´

rrτ ss P C |τ |rappR
dq

¯

τPG`˝
ÞÑ Mg P MrappT

`,Rdq (4.8)

is locally Lipschitz continuous.

Note that one uses the paraproduct P and the brackets rr¨ssMg in the statement. The modified
paraproduct Pm is only used in the proof of Lemma 18, where we construct a model on an
intermediate regularity structure introduced along the proof. The injectivity of the map (4.8)
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is elementary, so Theorem 17 and Proposition 15, with Theorem 12, prove all together Theorem
1.

The remaining of this section is dedicated to proving Theorem 17. The proof is done by
induction on the preorder Ĳ.
‚ Initialisation of the induction. If τ P G`˝ is an minimal element, then set

gpτq :“ rrτ ss,

and define gpDkτq and gyxpD
kτq by (4.5) and (4.6). It is clear on these formulas that they

define elements of the spaces C|τ |´|k|rap pRdq Ă L8rappR
dq and C|τ |´|k|

p2q,rappR
d ˆ Rdq, respectively.

‚ Induction step. Fix τ P G`˝ and assume that g has been constructed on the submonoid
B`pτ´q as a continuous function of the bracket data – so all the functions rrσssMg and gpτ{`σq
make sense as elements of their natural spaces. Define gpτq by identity (4.7), and define
gpDkτq by (4.4), for all k P Nd with |k| ă |τ |. The induction step consists in proving that
gxpD

kτq P L8rappR
dq and gyxpD

kτq P C|τ |´|k|
p2q,rappR

d ˆRdq, as one can use for α, β non-negative the
inclusions

L8slowpR
dq ¨ L8rappR

dq Ă L8rappR
dq

and
Cαp2qpR

d ˆ Rdq ¨ Cβ
p2q,rappR

d ˆ Rdq Ă Cα`β
p2q,rappR

d ˆ Rdq,

to get the regularity properties of gxpµD
kτq and gyxpµD

kτq, for µ P B`pτ´q.
Choose m P N, with m ą |τ |. We introduce a regularity structure T mpτq with Hopf algebra

part T`pτ´q and T -space defined as follows. Consider the formal symbols
σpmq

indexed by σ P B`zB`X , with homogeneity
ˇ

ˇσpmq
ˇ

ˇ :“ |σ| ´m.

Set
Tmpτq :“ span

´

 

σpmq ; σ ă` τ, σ R B`X
(

Y
 

τ pmq
(

¯

,

so all elements of Tmpτq have negative homogeneity. Lemma 16 ensures that we can define a
coassociative coproduct

δ : Tmpτq Ñ Tmpτq b T`pτ´q

setting
δ
`

σpmq
˘

:“
ÿ

µď`σ, µRB`X

µpmq b pσ{`µq

for each basis element of Tmpτq. Lemma 16 also ensures that
∆`

`

T`pτ´q
˘

Ă T`pτ´q b T`pτ´q,

so
T mpτq :“

´

pT`pτ´q,∆`q, pTmpτq, δq
¯

is a concrete regularity structure.
We build a model pg,Λq on T mpτq, from g : T`pτ´q Ñ R given by an induction assumption

and an operator Λ : Tmpτq Ñ S 1pRdq defined by
Λpσpmqq :“ |∇|mgpσq,

where |∇|m is the Fourier multiplier operator |∇|mζ “ F´1
`

| ¨ |mFζ
˘

. The pair pg,Λq turns
out to be a model by Lemma 18 below. Then formula (3.11) giving fxpD

kσq can be interpreted
in terms of that model, under the form of identities

fxpD
kσq “ Jk,m

´

Λg
xpσ

pmqq

¯

pxq
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for operators Jk,m on distributions defined below. The identity
Λg
x “ Λg

y ˝ xgyx
δ,

where pgδ :“ pId b gqδ, is then used crucially to obtain estimates on fxpD
kσq, that eventually

give informations on gxpD
kτq and gyxpD

kτq via formulas (3.9) and (3.10).

Lemma 18. The pair pg,Λq is a rapidly decreasing model on the regularity structure T mpτq.

Proof – Since we have the identity
Λpσpmqq “ |∇|mgpσq “

ÿ

µăσ, µRB`X

Pmgpσ{`µq|∇|
mrrµssg ` |∇|mrrσssg,

for all σ P B`zB`X with σ ď` τ , from the intertwining relation defining Pm and the induc-
tion assumption, the operator Λ is the unique model on T mpτq associated by Proposition
15 to the inputs

rrσpmqss :“ |∇|mrrσssg P C|σ|´mrap pRdq,

since all elements of Tmpτq have negative homogeneity. B

Note that it follows from identity (3.11) in Lemma 14 that the model Π and the function
fpDkσq are related by the identity

fxpD
kσq “ Bky

"

ÿ

µď`σ, µRB`X

g´1
x pσ{

`µqgypµq

*

ˇ

ˇ

ˇ

y“x

“ Bky

"

|∇y|
´m

ÿ

µď`σ, µRB`X

g´1
x pσ{

`µqΛ
`

µpmq
˘

pyq

*

ˇ

ˇ

ˇ

y“x

“ Bky

"

|∇y|
´mΛg

x

`

σpmq
˘

pyq

*

ˇ

ˇ

ˇ

y“x

“:
ÿ

j

Jk,mj

´

Λg
x

`

σpmq
˘

¯

pxq,

(4.9)

where the operators Jk,mj are defined by

Jk,mj pζq :“ Bk|∇|´m∆jζ,

for an appropriate distribution ζ P S 1pRdq. If j ě 0, since the Fourier transform of ∆jζ is
supported on an annulus, the function Jk,mj pζq is always well-defined; this is not the case of
Jk,m´1 pζq. However, we only use in this section distributions ζ of the form ζ “ |∇|mξ (where
such ξ is unique in the class of rapidly decreasing functions), so Jk,m´1 pζq “ Bk∆´1ξ, in our
setting.

Lemma 19. Under assumptions (A-C), for any σ P B`zB`X with σ ď` τ, k P Nd, and a P N,
we have

ˇ

ˇ

ˇ
Jk,mj

`

Λg
xpσ

pmqq
˘

pxq
ˇ

ˇ

ˇ
À |x|´a˚ 2´jp|σ|´|k|q,

ˇ

ˇ

ˇ
Jk,mj

`

Λg
xpσ

pmqq
˘

pyq
ˇ

ˇ

ˇ
À |y|´a˚

ÿ

µď`σ, µRB`X

|y ´ x||σ|´|µ|2´jp|µ|´|k|q.

Consequently, fxpD
kσq P L8rap.

Proof – For the first estimate, since
Jk,m´1

`

Λg
xpσ

pmqq
˘

pxq “
ÿ

µď`σ, µRB`X

g´1
x pσ{

`µqBkx∆´1gxpµq P L
8
rap,



23

by assumption, it is sufficient to consider the case j ě 0. By the property of ρj , there
exists a smooth function ρ̃ supported on an annulus, and such that setting ρ̃jp¨q :“ ρ̃p2´j ¨q,
one has rρjρj “ ρj . Set

rQk,mj :“ Bk|∇|´mpF´1ρ̃jq,

and note the scaling property
rQk,mj p¨q “ 2jpd`|k|´mq rQk,m0 p2j ¨q.

We now use the fact that pg,Λq is a model to write

Jk,mj
`

Λg
xpσ

pmqq
˘

pxq “

ż

rQk,mj px´ yq∆j

`

Λg
xpσ

pmqq
˘

pyqdy

“

ż

rQk,mj px´ yq∆j

`

Λg
y ˝ xgyx

δ
pσpmqq

˘

pyqdy

“
ÿ

µď`σ

ż

rQk,mj px´ yq gyxpσ{
`µq∆j

`

Λg
ypµ

pmqq
˘

pyqdy.

Recall that |x` y|˚ ď |x|˚|y|˚, for all x, y P Rd. By Lemma 18, for any a P N we have

|x|a˚

ˇ

ˇ

ˇ
Jk,mj

`

Λg
xpσ

pmqq
˘

pxq
ˇ

ˇ

ˇ

À
ÿ

µď`σ

ż

|x´ y|a˚
ˇ

ˇ rQk,mj px´ yq
ˇ

ˇ|y ´ x||σ|´|µ| |y|a˚

ˇ

ˇ

ˇ
∆j

`

Λg
ypµ

pmqq
˘

pyq
ˇ

ˇ

ˇ
dy

À
ÿ

µď`σ

2´jp|µ|´mq
ż

|z|a˚
ˇ

ˇ rQk,mj pzq
ˇ

ˇ|z||σ|´|µ| dz

À
ÿ

µď`σ

2´jp|µ|´mq2jp|k|´m´|σ|`|µ|q
ż

|z|a˚
ˇ

ˇ rQk,m0 pzq
ˇ

ˇ|z||σ|´|µ| dz

À 2´jp|σ|´|k|q.

We get the second estimate from the first using once again the fact that pg,Λq is a model,
writing

Jk,mj
`

Λg
xpσ

pmqq
˘

pyq “ Jk,mj

´

Λg
y

`

xgyx
δ
pσpmqq

˘

¯

pyq “
ÿ

µď`σ, µRB`X

gyxpσ{
`µqJk,mj

`

Λg
ypµ

pmqq
˘

pyq.

B

We can now prove that gxpD
kτq P L8rappR

dq and gyxpD
kτq P C|τ |´|k|

p2q,rappR
d ˆ Rdq, and close the

induction step. We use the formulas from Lemma 14 for that purpose. First, since
gxpD

kτq “
ÿ

σď`τ, σRB`X

gxpτ{
`σq fxpD

kσq,

with gxpτ{
`σq P L8slowpR

dq and fxpD
kσq P L8rappR

dq, from Lemma 19, we have indeed gxpD
kτq P

L8rappR
dq. Second, one can rewrite the identity

gyxpD
kτq “

ÿ

σď`τ, σRB`X

gyxpτ{
`σq fypD

kσq ´
ÿ

`

py ´ xq`

`!
fxpD

k``τq,

from Lemma 14, using identity (4.9) for the f-terms. This gives for gyxpD
kτq the formula

ÿ

j

#

ÿ

σď`τ, σRB`X
|k|ă|σ|

gyxpτ{
`σqJk,mj

`

Λg
ypσ

pmqq
˘

pyq ´
ÿ

|k``|ă|τ |

py ´ xq`

`!
Jk``,mj

`

Λg
xpτ

pmqq
˘

pxq

+



24

“:
ÿ

j

gjyxpD
kτq.

Given x, y P Rd, set j0 “ ´1, if |y´x| ě 2, and pick otherwise j0 ě ´1 such that |y´x| » 2´j0 .
One uses the first estimate from Lemma 19 to bound above the sum over j ě j0

|x|a˚
ÿ

jěj0

ˇ

ˇgjyxpD
kτq

ˇ

ˇ

À
ÿ

jěj0

ÿ

σď`τ, σRB`X
|k|ă|σ|

|y ´ x||τ |´|σ| 2´jp|σ|´|k|q `
ÿ

jěj0

ÿ

|k``|ă|τ |

|y ´ x||`| 2´jp|τ |´|k|´|`|q

À
ÿ

σď`τ
|k|ă|σ|

|y ´ x||τ |´|σ| 2´j0p|σ|´|k|q `
ÿ

|k``|ă|τ |

|y ´ x||`| 2´j0p|τ |´|k|´|`|q

À |y ´ x||τ |´|k|.

(4.10)

To consider the sum over j ă j0, assume now that |y ´ x| ă 2. Then, since pg,Λq is a model
and

Λg
xpτ

pmqq “ Λg
y

`

xgyx
δτ pmq

˘

“
ÿ

σď`τ

gyxpτ{
`σqΛg

ypσ
pmqq,

we have for gjyxpDkτq the formula

gjyxpD
kτq “ Jk,mj

`

Λg
xpτ

pmqq
˘

pyq ´
ÿ

σď`τ, σRB`X
|k|ą|σ|

gyxpτ{
`σqJk,mj

`

Λg
ypσ

pmqq
˘

pyq

´
ÿ

|k``|ă|τ |

py ´ xq`

`!
Jk``,mj

`

Λg
xpτ

pmqq
˘

pxq

“ rbs
ÿ

|k1|“rbs

py ´ xqk
1

k1!

ż 1

0
p1´ tqrbsJk`k

1

j

`

Λg
xpτ

pmqq
˘`

x` tpy ´ xq
˘

dt

´
ÿ

σď`τ, σRB`X
|k|ą|σ|

gyxpτ{σqJ
k,m
j

`

Λg
ypσ

pmqq
˘

pyq

where b :“ |τ | ´ |k|, by the multivariable Taylor remainder formula. Note that |τ |, |σ| R N in
the above formula, by assumption (C-3). Since |y ´ x| ă 2, |x ` tpy ´ xq|˚ » |x|˚. It follows
then from Lemma 19 that

ř

´1ďjăj0

ˇ

ˇgjyxpDkτq
ˇ

ˇ is bounded above by
ÿ

jăj0

ÿ

|k1|“rbs

ÿ

σď`τ, σRB`X

|y ´ x||k
1|`|τ |´|σ||x|´a˚ 2´jp|σ|´|k|´|k

1|q

`
ÿ

jăj0

ÿ

σď`τ, σRB`X
|k|ą|σ|

|y ´ x||τ |´|σ||y|´a˚ 2´jp|σ|´|k|q

À |x|´a˚
ÿ

σď`τ, σRB`X

|y ´ x||k
1|`|τ |´|σ| 2´j0p|σ|´|k|´|k

1|q

` |y|´a˚
ÿ

σď`τ, σRB`X
|k|ą|σ|

|y ´ x||τ |´|σ| 2´j0p|σ|´|k|q

À
`

|x|´a˚ ` |y|´a˚
˘

|y ´ x||τ |´|k|.

Together with inequality (4.10), the preceding upper bound tells us that gyxpD
kτq P C|τ |´|k|

p2q,rappR
dˆ

Rdq. This closes the induction step. B
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Remarks – 1. On branched rough paths. The setting of R`-valued branched rough paths
provides an example of regularity structure where Theorem 5 applies, giving an alternative
point of view on the results of Tapia and Zambotti in [25]. The Hopf algebra pT`,∆`q is in
that case the Butcher-Connes-Kreimer Hopf algebra. We recall the details for the reader as it
also sets the scene for part of the results of Section 4.4.

The set T` is the free commutative unital algebra generated by the set B`˝ of non-planar
rooted trees with node decorations in a finite set t1, . . . , `u and no decoration on the edges. The
empty tree plays the role of the unit in T`. A product of decorated trees is called a forest, so
generic elements of T` are linear combinations of forests. The splitting map ∆` is the algebra
morphism defined on trees as follows. Given a labelled rooted decorated tree τ , denote by
Subpτq the set of subtrees of τ with the same root as τ , and induced decoration. Given such a
subtree s, we obtain a collection τ1, . . . , τn of decorated rooted trees by removing s and all the
adjacent edges to s from τ , and keeping the node decoration inherited from τ . Write τ{s for
the monomial τ1 . . . τn. One defines a linear multiplicative map ∆` : T` Ñ T`bT`, defining
it on decorated trees by the formula

∆`τ “
ÿ

sPSubpτq

sb pτ{sq,

An explicit formula for the antipode was first given by Connes and Kreimer in their celebrated
work [10]; see [9] for a simple and enlighting proof. Each node decoration i P t1, . . . , `u is
assigned a homogeneity α P p0, 1q, and each decorated tree τ is equipped with the homogeneity
αp7τq, where 7τ denotes the number of nodes contained in τ . The homogeneity of a forest is
the sum of the homogeneities of its decorated trees. It is elementary to check that pT`,∆`q

is indeed a Hopf algebra. To avoid polynomials and derivatives, we consider the subalgebra
of trees with homogeneities smaller than 1. Thus assumptions (A-C) without polynomials Xk

and derivatives Dk hold, but it does not matter here. Branched rough paths are g-maps on
pT`,∆`q over a fixed time interval r0, T s in place of Rd. Theorem 17 applies then in this
setting and provides a parametrization of the set of branched rough paths by the product
space

ś

τPB`˝ C
|τ |pr0, T s,R`q, in accordance with Tapia and Zambotti’s main result, Theorem

1.2 and Corollary 1.3 in [25]. Our parametrization is different from their identification of the
space of branched rough paths as a principal homogeneous space over the preceding product
of Hölder spaces.

(Theorem 1 cannot be applied in a finite region r0, T s directly. To overcome this point, we
extend a function f P Cpr0, T s,R`q to r´T, T s symmetrically, and extend it to

“

p2n´1qT, p2n`

1qT
‰

for any n P Z periodically. Then for any α P p0, 1q, the Hölder space Cαpr0, T s,R`q is
identified with the space

Cαp,spR,R
`q :“

!

f P CαpR,R`q ; fptq “ fp´tq, fpt` 2T q “ fptq for any t P R
)

.

Note that Littlewood-Paley blocks ∆i preserve the symmetry and periodicity, so such spaces
are closed under paradifferential operators (paraproduct, its two-parameter extension, etc.)
used in this paper. Hence we can apply Theorem 1 to such spaces.)

2. On the signature of arbitrary models. We mentioned in the introduction that admissible
models on regularity structures built from integration operators have a well-defined signature
– that is a unique extension to the full regularity structure with elements of arbitrary large
positive homogeneity. This comes from the fact that such models are determined uniquely by
the definition of the Π map on elements of the regularity structure of negative homogeneity.
Extending a regularity structure with additional elements of positive homogeneity the initial
datum of the restriction of Π on the elements of negative homogeneity still defines a unique
admissible model on the extended regularity structure. Such an automatic extension result
does not hold for general models, with unrelated g and Π maps. Indeed, Theorem 17 tells
us that the set of g-maps is parametrized by a set of functions indexed by G`˝ . Embedding
a regularity structure into a larger regularity structure will a priori embed the set G`˝ into a
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larger set, implying the non-uniqueness of an extension of the g-map, from Theorem 17 again.
The following statement follows nonetheless from Theorem 1 while it is beyond the scope of
Theorem 21 in [5]. See Section 4 in [5] for the definition of admissible model.

Corollary 20. Let T be a regularity structure satisfying assumptions (A-C). Let T 1 Ă T be
a sub-regularity structure of T satisfying these assumptions as well, and such that T 1 contains
all the elements of T of negative homogeneity. Then any admissible model on T 1 has a unique
extension into an admissible model on T .

Like with Lyons’ extension theorem, it is important to notice that the extension map is
a continuous map. So even in a stochastic setting where the construction of a model may
require stochastic analysis arguments, once this is done, the extension of this model to a larger
structure no longer involves probability arguments.

4.2 From paracontrolled systems to modelled distributions

We prove Theorem 5 in this section. Let T be a regularity structure satisfying assumptions
(A-C). Pick γ P R, and M “ pg,Πq PMrappT ,Rdq.

The key observation is that proving Theorem 5 is equivalent to an extension problem for
the map g. Consider indeed the commutative algebra T`F generated by B` and new symbols

pF τ qτPB, |τ |ăγ .

Define the homogeneity of the symbol F τ by
|F τ | :“ γ ´ |τ |.

The coproduct ∆`
F on T`F extending ∆` and such that

∆`pF τ q “ pF τ q b 1`
ÿ

τďµ

pµ{τq b pF µq, (4.11)

is coassociative and turns T`F into a Hopf algebra. It satisfies assumptions (A) and (B) with

B`F ,˝ :“ B`˝ Y
!

F τ ; |τ | ă γ
)

in the role of B`˝ . Note that T`F does not satisfy assumption (C) in general, since the DkF τ

have no reason to be independent from the tF µuµ. The elementary proof of the next statement
is left to the reader.

Lemma 21. Given a family pfτ qτPB of continuous functions on Rd, set f :“
ř

τPB fττ , and
gxpF τ q :“ fτ pxq.

Then
@

τ 1,fpyq ´ xgyxfpxq
D

“ gyxpF τ q.

Defining a modelled distribution f P Dγ
rappT, gq is thus equivalent to extending the map g

from T` to T`F in such a way that the extended map on pT`F ,∆
`
F q still satisfies the regularity

constraints from Definition 10.
Recall from assumption (B) that either µ{τ P spanpB`zB`Xq or µ{τ P spanpB`Xq, for τ, µ P B.

If µ{τ P spanpB`Xq, set

µ{τ “:
ÿ

kPNd

cµτ pkq
Xk

k!
,

and define
DkF τ :“

ÿ

τďµ

µ{τPspanpB`Xq

cµτ pkqF µ. (4.12)
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Then we have

∆`F τ “ F τ b 1`
ÿ

τďµ

µ{τPspanpB`zB`Xq

pµ{τq b F µ `
ÿ

kPNd

Xk

k!
bDkF τ .

Theorem 22. Let a concrete regularity structure T satisfying assumptions (A-C) be given,
together with a family

`

rrfτ ss P Cγ´|τ |rap pRdq
˘

τPB, |τ |ăγ. Assume that γ ´ |τ | R N for any τ P B
with |τ | ă γ. Pick a model pg,Πq PMrappT ,Rdq. Define

fτ :“
ÿ

τďµ, |µ|ăγ

µ{τPspanpB`zB`Xq

Pfµrrµ{τ ss
g ` rrfτ ss,

and

f pkqτ pxq :“ Bky

"

fτ pyq ´
ÿ

τďµ, |µ|ăγ, |µ{τ |ď|k|

µ{τPspanpB`zB`Xq

gyxpµ{τq fµpxq

*

ˇ

ˇ

ˇ

y“x
. (4.13)

If the structure conditions

f pkqτ “
ÿ

τďµ, |µ|ăγ

µ{τPspanpB`Xq

cµτ pkq fµ, (4.14)

holds for any τ P B and k P Nd, then
f “

ÿ

τPB
fττ P Dγ

rappT, gq.

The structure condition is reminiscent of a condition introduced by Martin and Perkowski in
[22] to give a characterisation of modelled distributions in terms of Besov type spaces. Given
that we see fτ as gpF τ q, formula (4.13) is nothing but a formula for gpDkF τ q – the analogue
of formula (3.14) in the present setting.

Proof – Consider the extended Hopf algebra freeT`F freely generated by the symbols

tX1, . . . , Xdu Y B`˝ Y
!

DkpF τ q ; τ P B, γ ą |τ | ` |k|
)

.

It satisfies assumptions (A-C). By Theorem 17 giving a paracontrolled parametrization of
the map g by its definition on the gpτq, with τ P G`F ,˝ :“ G`˝ Y

 

F τ ; |τ | ă γ
(

, there exists
a unique model g on freeT`F that coincides with g on T`, and such that

gpF τ q :“
ÿ

τďµ, |µ|ăγ

PgpF µqrrµ{τ ss
g ` rrfτ ss,

for all τ P B with |τ | ă γ. Since T`F is the quotient space of freeT`F by the relations (4.12),
and

g
`

DkF τ

˘

“
ÿ

τďµ, |µ|ăγ

µ{τPspanpB`Xq

cµτ pkq gpF µq,

from the structure condition (4.14), the map g is consistently defined on the quotient
space, where it satisfies the estimates from Definition 10. B

One can get rid of the structure condition in some cases.

Assumption (D) – For any τ P B‚, there is no term of the form σ b Xk with k ‰ 0, in the
expansion of ∆τ .
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Under assumption (D), we can show that, given τ P B, the only µ ě τ such that µ{τ has
a non-null component on Xk is µ “ Xkτ . Indeed, writing µ “ X`σ (` P Nd, σ P B‚), by the
multiplicativity of ∆ and by (A.2), we have

pIdb PXq∆µ “ pIdb PXqp∆X`qp∆σq

“ pIdb PXqp∆X`qpσ b 1`q “
ÿ

k

ˆ

`

k

˙

X`´kσ bXk.

Then µ{τ P spanpXkq if and only if τ “ X`´kσ, thus µ “ Xkτ . Then (4.12) takes the form

DkFX`´kσ “
`!

p`´ kq!
FX`σ, σ P B‚.

Moreover, this reduces to the formula
DkF σ “ k!FXkσ, σ P B‚,

hence the structure condition (4.14) takes the simple form (4.15) below. Note that the data
in the next statement is indexed by B‚, unlike in the general case of Theorem 22 where it is
indexed by B.

Corollary 23. Let T be a regularity structure satisfying assumptions (A-D), and a family
`

rrfτ ss P Cγ´|τ |rap pRdq
˘

τPB‚, |τ |ăγ be given. Assume that γ ´ |τ | R N for any τ P B with |τ | ă γ.
Pick a model pg,Πq PMrappT ,Rdq. Set, for τ P B‚ with |τ | ă γ,

fτ :“
ÿ

τďµ, |µ|ăγ

µ{τPspanpB`zB`Xq

Pfµrrµ{τ ss
g ` rrfτ ss,

and, for τ P B‚, k P Ndzt0u with |k| ` |τ | ă γ,

fXkτ pxq :“
1

k!
Bky

"

fτ pyq ´
ÿ

τďµ, |µ|ăγ, |µ{τ |ď|k|

µ{τPspanpB`zB`Xq

gyxpµ{τq fµpxq

*

ˇ

ˇ

ˇ

y“x
. (4.15)

Then
f :“

ÿ

σPB, |σ|ăγ
fσ σ “

ÿ

τPB‚, kPNd

|τ |`|k|ăγ

fXkτ X
kτ P Dγ

rappT, gq.

Corollary 23 yields the homeomorphism result from Theorem 5. As stated in the introduc-
tion, we can see the further homeomorphism result

Mrap ˙Dγ
rap :“

!

pM,fq ; M P MrappT ,Rdq, f P Dγ
rappT, gq

)

»
ź

σPG`˝

C|σ|rappR
dq ˆ

ź

τPB‚, |τ |ă0

C|τ |rappR
dq ˆ

ź

τPB‚, |τ |ăγ
Cγ´|τ |rap pRdq,

where the left hand side has a topology induced by the metrics
da
`

pM,fq, pM1,f 1q
˘

:“ dapM,M1q ` sup
τPB

›

›

›

@

τ 1, pfpyq ´ xgyxfpxqq ´ pf
1pyq ´ xg1yxf

1pxqq
D

›

›

›

Cγ´|τ |a pRdˆRdq
.

Note that assumption (D) is an assumption about the basis B of T we choose to work
with, not about the regularity structure itself. It is thus possible that a given basis satisfies
assumption (D) whereas another does not. This flexibility is at the heart of the proof of
Theorem 7 in the next section.



29

4.3 Modelled distributions over BHZ regularity structures

Bruned, Hairer and Zambotti introduced in [7] class of regularity structures convenient for
the study of singular stochastic PDEs. We call these structures BHZ regularity structures

TBHZ “
´

pT`BHZ,∆
`
BHZq, pTBHZ,∆BHZq

¯

.

Although the canonical basis of these concrete regularity structures do not satisfy assumption
(D) the following result holds true.

Theorem 24. Assume that the set of homogeneities t|t|utPL Y t1u is rationally independent,
that is, the only tuple of integers tktut Y tk1u such that

ř

t kt|t| ` k1 “ 0 is the trivial soluion
kt “ k1 “ 0. Then the canonical bases B`BHZ and BBHZ satisfy assumptions (A-C). Moreover,
one can construct a basis of TBHZ that satisfies assumptions (A-D).

The remaining of this section is dedicated to proving this statement. We recall first the
elements of the construction of BHZ regularity structures that we need here. These concrete
regularity structures are indexed by decorated rooted trees.

Any finite connected graph without loops and with a distinguished vertex is called a rooted
tree. For any rooted tree τ , denote by Nτ the node set, by Eτ the edge set, by %τ P Nτ

the distinguished vertex, called root of τ . Let also L be a finite set of types. (Edges will be
interpreted differently depending on their type, when given any model on TBHZ. Different
types may for instance correspond to different convolution operators.) Denote by B the set of
rooted decorated trees. Each τ P B is a rooted tree equipped with the type map t : Eτ Ñ L
and with the decorations

‚ n : Nτ Ñ Nd.
‚ o : Nτ Ñ Zd ‘ ZpLq.
‚ e : Eτ Ñ Nd.

Equivalently, the set B is generated recursively by the application of the following operations
– see [7, Section 4.3].

‚ One has ‚k P B for any k P Nd, where ‚k is a tree with only one node ‚, with np‚q “ k,
and op‚q “ 0‘ 0.

‚ If τ, σ P B then τσ P B, where τσ is called a tree product; τσ is a graph τ \ σ divided
by the equivalence relation „ on Nτ \Nσ, where x „ y means x “ y or x, y P t%τ , %σu.
On the root %τσ, the decorations np%τσq “ np%τ q ` np%σq and op%τσq “ op%τ q ` op%σq
are given.

‚ For any t P L and k P Nd,
τ P B ñ I tkpτq P B,

where the tree I tkpτq is obtained by adding on τ one distinguished node %1 and one edge
e “ p%τ , %

1q of type t, with decorations epeq “ k and op%1q “ 0‘ 0.
‚ For any α P Zd ‘ ZpLq, denote by Rα the operator on decorated rooted trees adding a

value α on the decoration o on %τ . Assume
τ P B ñ Rαpτq P B.

By applying the operator Rα with various α on each step as above, one can see that,
if τ P B then the same decorated tree with any other o-decorartion is also an element
of B.

Each type t P L is assigned a nonzero real number |t|, the collection of which satisfies the
assumption of Theorem 28. One assigns a homogeneity |n|, |o|, |e|, |t| to the decorations and
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edge types of any decorated tree τ , and set
|τ | :“ |n| ` |o| ´ |e| ` |t|

:“
ÿ

nPNτ

|npnq| `
ÿ

nPNτ

|opnq| ´
ÿ

ePEτ

|epeq| `
ÿ

nPNτ

|tpnq|,

where |a`
ř

t att| :“ |a|`
ř

t at|t| for a`
ř

t t P Zd‘ZpLq. A noise-type object Θ is represented
by I t0p‚0q, with t of negative homogeneity.

With each subcritical singular stochastic PDE is associated a notion of conforming and
strongly conforming decorated tree. The basis BBHZ of TBHZ is made up of the set of elements
of B that strongly conforms the rule (see Section 5 in [7]), and the basis B`BHZ of T`BHZ is made
up of the elements of the form

‚k
N
ź

i“1

I tikipτiq,

where k, ki P Nd, ti P L, τi P BBHZ, and |I tikipτiq| ą 0. Such a tree is said to conform the rule.
We do not need more details here and refer the interested reader to Section 5 of [7]. We do
not describe in particular the details of the definition of the splitting maps ∆BHZ and ∆`

BHZ;
we only record the following fact, where we write 1 for ‚0, and Xk for ‚k.

Proposition 25. [7, Proposition 4.17] The coproduct ∆ “ ∆BHZ : TBHZ Ñ TBHZ b T`BHZ,
satisfies the following identities

∆1 “ 1b 1, ∆Xi “ Xi b 1` 1bXi, ∆pτσq “ p∆τqp∆σq,

∆I tkpτq “
`

I tk b Id
˘

∆τ `
ÿ

|`|`|k|ă|τ |`|t|

X`

`!
b I tk``pτq, ∆Rαpτq “

`

Rα b Id
˘

∆τ.

The coproduct ∆` “ ∆`
BHZ : T`BHZ Ñ T`BHZ b T

`
BHZ, satisfies the same identities with ∆ in the

right hand sides replaced by ∆`.

Theorem 26. The bases B “ BBHZ and B` “ B`BHZ satisfy assumptions (A-C).

Proof – Assumption (A) is satisfied by setting
B`˝ :“ tI tkpτq P B` ; t P L, k P Nd, τ P Bu, B‚ :“ tτ P B ; np%τ q “ 0u,

and Xk “ Xk “ ‚k. Assumption (B) follows because polynomial elements and non-
polynomial elements are distinguished by the number of their edges. Indeed, 7Eτ “ 0 if
and only if τ P B`X “ BX . Assumption (C-1) is satisfied by setting

G`˝ :“ tI t0pτq P B` ; t P L, τ P Bu.
Then DkI t0pτq “ I tkpτq follows from Proposition 25. To check (C-2), we define the binary
relation on B` by denoting σ Ĳ τ if
‚ 7Eσ ď 7Eτ , or
‚ 7Eσ “ 7Eτ and |nσ| ď |nτ |, where nτ (resp. nσ) denotes the n-decoration given for τ

(resp. σ).
This relation is transitive and satisfies the first condition of (C-2). The second one in (C-
2) follows from the graphical definition of ∆` – see Section 2 in [7] for details. Essentially,
we have the decomposition

∆`τ “
ÿ

σ b pτ{`σq,

where either of the following holds.
‚ σ is the same graph as τ but with nσ ď nτ . τ{`σ consists of only one node.
‚ σ is a strict subtree of τ such that %σ “ %τ , and τ{`σ is a quotient graph of τ obtained

by contracting the subgraph σ into one node.
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For the first case, if nσ “ nτ then σ “ τ as an element of B, and if nσ ă nτ then σ Ÿ τ .
For the second case, if 7Nσ “ 0 then σ is a polynomial and if 7Nσ ą 0 then σ, τ{`σ Ÿ τ .
Hence the formula (4.2) holds. For the last assumption, since the set t|t|utPL Y t1u is
rationally independent, non-polynomial τ (hence τ has at least one edge) has non-integer
homogeneity. Hence (C-3) holds. B

The canonical bases BBHZ of BHZ concrete regularity structures do not satisfy assumption
(D) since one has

∆I t0pXiΘq “ I t0pXiΘq b 1` I t0pΘq bXi `
ÿ

|k|ă|Θ|`1`|t|

Xk

k!
b I tkpXiΘq,

for any edge type t with positive homogeneity, but the second term in the right hand side
contradicts to assumption (D). Now we define another basis of TBHZ. Set

T :“ spanpBq.
The tree product pτ, σq ÞÑ τσ and the operators I tk and Rα are linearly extended to T . For
any t P L and k, ` P Nd, we define the new operator `I

t
k : T Ñ T , by

`I
t
kpτq :“

ÿ

mPNd

ˆ

`

m

˙

Xmp´1q`´mI tk
`

X`´mτ
˘

.

(An operator `Ik represents the convolution with a kernel x`pBkKqpxq. These operators also
appeared in the very recent work [15] of Hairer and Pardoux.) If τ is homogeneous, then `I

t
kpτq

is also homogeneous and
ˇ

ˇ

`I
t
kpτq

ˇ

ˇ “ |t| ´ |k| ` |`| ` |τ |.

Lemma 27. Consider the subset rB‚ Ă T generated by the following rules.
‚ 1 P rB‚.
‚ τ P rB‚ ñ `I

t
kpτq P

rB‚.
‚ τ P rB‚ ñ Rαpτq P rB‚.
‚ τ, σ P rB‚ ñ τσ P rB‚.

Set
rB :“

!

Xkτ ; k P Nd, τ P rB‚
)

.

Then rB is a linear basis of T , and there exists a basis rB “ rBBHZ of TBHZ such that rB Ă rB.

Proof – Assume that τ P B is expanded by the basis rB, that is, τ is of the form
τ “

ÿ

i

aiX
kiσi

with ai P R, ki P Nd, and σi P rB‚. Since the commutative property RαpX
k¨q “ XkRαp¨q

holds by the definition, Rαpτq is also expanded by rB. By the inversion formula

I tk
`

X`σ
˘

“
ÿ

mPNd

ˆ

`

m

˙

Xmp´1q`´m `´mI
t
kpσq,

I tkpτq is also expanded by rB. Certainly, if τ, σ P spanprBq, then τσ P spanprBq. We can
conclude that T “ spanprBq by the induction on the number of edges on τ .
As in the definition of BBHZ from B, one obtains rB by keeping only those elements from
rB that strongly conforms. B

The set rB can be encoded as a set of rooted decorated trees using different decorations
from the preceding decorations. Each τ P rB‚ is represented by a rooted tree with o and e
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decorations, together with a new decoration
f : Eτ Ñ Nd.

The map `I
t
k : B̃‚ Ñ B̃‚, is defined as follows. For any τ P rB‚ with root %, the tree `I

t
kpτq

is obtained by adding to τ one node %1 and one edge e :“ p%, %1q, with decorations epeq “ k

and fpeq “ `. Each τ “ Xkσ P rB is represented by a rooted tree with decorations n, o, e, f,
where n vanishes at any node except the root, where it is equal to k. We call this tree
representation of elements of rB the non-canonical representation. Note that, under such
exchange of representations, the shape of trees is preserved.

Theorem 28. The basis rB of TBHZ satisfies assumption (D), where rB‚ “ rB‚ X rB.

Proof – The proof is done by the induction on the number of edges on τ in its non-canonical
representation. In fact, one can conclude a stronger claim; for any τ P rB‚, one has

∆τ “
ÿ

σP rB‚, ηP rBzspantXkuk

cτσησ b η. (4.16)

It is sufficient to show that, if the coproduct of τ P rB‚ has such a form, then `I
t
kpτq also

satisfies the same condition. To complete the proof, we compute explicitly the coproduct
∆p`I

t
kpτqq. Since

∆I tk
`

Xaτ
˘

“ pI tk b Idq∆
`

Xaτ
˘

`
ÿ

`PNd

X`

`!
b I tk``

`

Xaτ
˘

“
ÿ

σďτ, bPNd

ˆ

a

b

˙

I tk
`

Xbσ
˘

bXa´bpτ{σq `
ÿ

`PNd

X`

`!
b I tk``

`

Xaτ
˘

,

we have

∆
`

aI
t
kpτq

˘

“
ÿ

bPNd

ˆ

a

b

˙

`

∆Xb
˘

p´1qa´b∆Ik
`

Xa´bτ
˘

“
ÿ

σďτ, b,c,dPNd

p´1qa´b
ˆ

a

b

˙ˆ

b

c

˙ˆ

a´ b

d

˙

XcI tk
`

Xdσ
˘

bXb´cXa´b´dpτ{σq

`
ÿ

`,b,cPNd

p´1qa´b
ˆ

a

b

˙ˆ

b

c

˙

XcX
`

`!
bXb´cI tk``

`

Xa´bτ
˘

“: piq ` piiq.

The term piiq does not contain any terms of the form σ bXk with k ‰ 0. The sum piq is
equal to

ÿ

σďτ
a“c`c1`d`d1

p´1qd`d
1 a!

c!c1!d!d1!
XcI tk

`

Xdσ
˘

bXc1Xd1pτ{σq

“
ÿ

σďτ
a“α`β

a!

α!β!

˜

ÿ

α“c`d

p´1qd
α!

c!d!
XcI tk

`

Xdσ
˘

¸

b

˜

ÿ

β“c1`d1

p´1qd
1 β!

c1!d1!
Xc1Xd1pτ{σq

¸

“
ÿ

σďτ
a“α`β

ˆ

a

α

˙

αI
t
kpσq b pX ´Xq

βpτ{σq

“
ÿ

σďτ

aI
t
kpσq b pτ{σq “ paI

t
k b Idq∆τ.
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Since τ is assumed in the induction step to have a coproduct (4.16), hence ∆p`I
t
kpτqq,

enjoys the same property. B

4.4 Density and extension corollaries

Corollaries 2, 3, 4, and 6 are proved as follows. Note that Schwartz space SpRdq is dense
in the space CβrappRdq in the topology of Cβ´εrap pRdq for any ε ą 0; for any f P CβrappRdq, the
function et∆f belongs to SpRdq and satisfies

}et∆f ´ f}
Cβ´εa pRdq À t2ε}f}

Cβa pRdq
tÑ0
ÝÝÑ 0

for any a ą 0. See e.g. Proposition 3.12 of [23].

Proof of Corollary 2 – By Theorem 1, the space MrappT ,Rdq is homeomorphic to the product
space

ź

σPG`˝

C|σ|rappR
dq ˆ

ź

τPB‚, |τ |ă0

C|τ |rappR
dq.

For any ε ą 0, any elements of this space can be approximated by smooth elements in the
topology of the same space with each exponent |τ | replaced by |τ | ´ ε. By the formulas
(3.5) and (3.6), it turns out that a smooth element of (1.3) is transferred to a smooth
model in MrappT ,Rdq. B

The proof of Corollary 6 is completely parallel and left to the reader.

Proof of Corollaries 3 and 4 – For Corollary 3, consider the algebra T` generated by the set
B`˝ of rooted trees as in Remark 1 of the previous section. Given an R`-valued α-Hölder
function h “ phiq

d
i“1, a lift of the control h is a branched rough path pHτ qτPB`˝ such that

H‚i “ hi, where ‚i denotes a graph with only one node and with node decoration i. By
Theorem 1, such a lift is transferred to an elements of the product space

ś

τPB`˝ C|τ |rappRq
such that rr‚iss “ hi. A trivial extension is defined by rrτ ss “ 0 if 7τ ě 2, and the associated
model is nothing but a trivial lift of h.
Corollary 4 is proved by a similar argument. By admissibility, the set M pT ,Rmq is
homeomorphic to the space

ś

τPB‚,|τ |ă0 C
|τ |
rappRmq. Given a multi-dimensional noise pζjq`j“1,

a trivial extension is defined by

rrτ ssg “

#

ζj , τ “ ‚j ,

0, otherwise.
B

A – Concrete regularity structures

We recall in this appendix the setting of concrete regularity structures introduced in [5],
and refer the reader to Section 2 of [5] for motivations for the introduction of that setting.

Definition – A concrete regularity structure T “ pT`, T q is the pair of graded vector spaces

T` “
à

αPA`

T`α , T “
à

βPA

Tβ

such that the following holds.
‚ The index set A` Ă R` contains the point 0, and A` `A` Ă A`; the index set A Ă R

is bounded below, and both A`and A have no accumulation points in R. Set
β0 :“ minA.
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‚ The vector spaces T`α and Tβ are finite dimensional.
‚ The set T` is an algebra with unit 1`, with an algebra morphism

∆` : T` Ñ T` b T`,

such that ∆`1` “ 1` b 1`, and, for τ P T`α ,

∆`τ P

$

&

%

τ b 1` ` 1` b τ `
ÿ

0ăβăα

T`β b T
`
α´β

,

.

-

, (A.1)

and ∆` satisfies the coassociativity property
p∆` b Idq∆` “ pIdb∆`q∆`.

That is, T` has a Hopf structure with coproduct ∆` and counit 11`.
‚ One has T`0 “ spanp1`q, and for any α, β P A`, one has T`α T`β Ă T`α`β.
‚ One has a linear splitting map

∆ : T Ñ T b T`,

of the form

∆τ P

$

&

%

τ b 1` `
ÿ

βăα

Tβ b T
`
α´β

,

.

-

(A.2)

for each τ P Tα, with the right comodule property
`

∆b Id
˘

∆ “
`

Idb∆`
˘

∆.

Let B`α and Bβ be bases of T`α and Tβ, respectively. We assume B`0 “ t1`u. Set

B` :“
ď

αPA`

B`α , B :“
ď

βPA

Bβ.

An element τ of T p`qα is said to be homogeneous and is assigned homogeneity |τ | :“ α. The
homogeneity of a generic element τ P T p`q is defined as |τ | :“ maxtαu, such that τ has a
non-null component in T

p`q
α . We denote by

T :“
`

pT`,∆`q, pT,∆q
˘

a concrete regularity structure.

One of the elementary and important examples is the Taylor polynomial ring. Consider
symbols X1, . . . , Xd and set

TX :“ RrX1, . . . , Xds.

For a multi index k “ pkiqdi“1 P Nd, we use the notation

Xk :“ Xk1
1 ¨ ¨ ¨Xkd

d .

We define the homogeneity |Xk| “ |k| :“
ř

i ki, and the coproduct
∆Xi “ Xi b 1` 1bXi. (A.3)

Then
`

pTX ,∆q, pTX ,∆q
˘

is a concrete regularity structure.
The set G` of characters g : T` Ñ R, i.e. nonzero algebra morphisms, forms a group with

the convolution product
g1 ˚ g2 :“ pg1 b g2q∆

`.
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B – Technical estimates

We provide in this appendix a number of technical estimates that are variations on the
corresponding results from [5]. Proofs are given for completeness.

Lemma 29. If α ě 0 and a P Z, then
ż

ˇ

ˇPipx´ yq
ˇ

ˇ|x´ y|α|y|´a˚ dy À 2´iα |x|´a˚ ,
ż

ˇ

ˇQipx´ yq
ˇ

ˇ|x´ y|α|y|´a˚ dy À 2´iα |x|´a˚ .

Proof – Recall the inequalities in the beginning of Section 2. If a ě 0,

|x|a˚

ż

ˇ

ˇPipx´ yq
ˇ

ˇ|x´ y|α|y|´a˚ dy À

ż

ˇ

ˇPipx´ yq
ˇ

ˇ|x´ y|α|x´ y|a˚dy “

ż

ˇ

ˇPipyq
ˇ

ˇ|y|α|y|a˚dy

“

ż

ˇ

ˇP0pyq
ˇ

ˇ

ˇ

ˇ

ˇ

y

2i

ˇ

ˇ

ˇ

αˇ
ˇ

ˇ

y

2i

ˇ

ˇ

ˇ

a

˚
dy ď 2´iα

ż

ˇ

ˇP0pyq
ˇ

ˇ|y|α|y|a˚dy À 2´iα.

If a ă 0,
ż

ˇ

ˇPipx´ yq
ˇ

ˇ|x´ y|α|y|´a˚ dy À |x|´a˚

ż

ˇ

ˇPipx´ yq
ˇ

ˇ|x´ y|α|x´ y|´a˚ dy À 2´iα |x|´a˚ .

B

As a consequence of Lemma 29, we have the inequality

}∆jf}L8a ď sup
x
|x|a˚

ż

|Qjpx´ yq||fpyq|dy ď }f}L8a sup
x
|x|a˚

ż

|Qjpx´ yq||y|
´a
˚ dy

À }f}L8a .

for any a P Z. This ensures that S maps Cαa pRdq to C8a pRdq for any α P R.
Recall the two-parameter extension of the paraproduct, used in [5]. For any distribution Λ

on Rd ˆ Rd, we define
`

QjΛ
˘

pxq :“

ĳ

RdˆRd

Pjpx´ yqQjpx´ zqΛpy, zqdydz,

`

PΛ
˘

pxq :“
ÿ

jě1

`

QjΛ
˘

pxq.

If Λpy, zq is of the form fpyqgpzq, then PΛ “ Pfg.

Proposition 30. [5, Proposition 8 (a)] Fix a P Z.
(a) For any Λ P S 1

`

Rd ˆ Rd
˘

for which there exists α P R such that
›

›QjΛ
›

›

L8a pRdq
À 2´jα,

for all j ě 1, one has PΛ P Cαa pRdq and
}PΛ}Cαa pRdq À sup

jě1
2jα

›

›QjΛ
›

›

L8a pRdq
.

(b) For any α ą 0 and F P Cα
p2q,apR

d ˆ Rdq, one has PF P Cαa pRdq and

}PF }Cαa pRdq À |||F |||Cαp2q,apRdˆRdq.

Proof – (a) Since FPj is supported in the annulus
!

λ P Rd; |λ| ă 2j ˆ 2
3

)

and FQj is

supported in the annulus
!

λ P Rd; 2j ˆ 3
4 ă |λ| ă 2j ˆ 8

3

)

, the integral
ż

Qipx´ wqPjpw ´ yqQjpw ´ zqdw
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vanishes if |i´ j| ě 5. Hence ∆ipPΛq “
ř

|i´j|ď4 ∆ipQjΛq and we have

}∆ipPΛq}L8a ď
ÿ

|i´j|ď4

}∆ipQjΛq}L8a À
ÿ

|i´j|ď4

}QjΛ}L8a À
ÿ

|i´j|ď4

2´αj À 2´αi.

For (b) it is sufficient to show that
›

›QjF
›

›

L8a pRdq
À 2´jα. By Lemma 29,

ˇ

ˇQjF pxq
ˇ

ˇ À

ż

ˇ

ˇPjpx´ yqQjpx´ zq
ˇ

ˇ

`

|y|´a˚ ` |z|´a˚
˘

|y ´ z|α dydz

À

ż

ˇ

ˇPjpx´ yqQjpx´ zq
ˇ

ˇ

`

|y|´a˚ ` |z|´a˚
˘

´

|x´ y|α ` |x´ z|α
¯

dydz

À 2´jα|x|´a˚ .

B

Recall from [4] the definition of the operator
R˝pf, g, hq :“ PfPgh´ Pfgh.

This operator is continuous from CαpRdqˆCβpRdqˆCγpRdq into Cα`β`γpRdq, for any α, β P r0, 1s
and γ P R – see Proposition 14 therein.

Proposition 31. [5, Proposition 10] Consider a function f P L8slowpR
dq and a finite family

pak, bkq1ďkďN in L8slowpR
dq ˆ L8slowpR

dq such that

fpyq ´ fpxq “
N
ÿ

k“1

akpxq
`

bkpyq ´ bkpxq
˘

` f 7yx, x, y P Rd,

with a remainder f 7yx. Let α ą 0 and β P R be given. Assume that either of the following
assumptions holds.

(a) f P L8rappR
dq, akbk P L8rappR

dq, f 7 P Cα
p2q,rappR

d ˆ Rdq, and g P CβslowpR
dq.

(b) f 7 P Cα
p2qpR

d ˆ Rdq and g P CβrappRdq.

Then one has the estimate
N
ÿ

k“1

R˝
`

ak, bk, g
˘

P Cα`βrap pR
dq.

Proof – Recall from identity (2.1) the definition of the operator S. As in the proof of Propo-
sition 10 in [5], we see that

ÿ

k

R˝pak, bk, gq “ ´SpPfgq ` Pf pSgq ´
ÿ

k

PakbkpSgq ´Px,y

´

`

P
f 7¨x
g
˘

pyq
¯

.

The first three terms belong to C8rappR
dq, assuming either (a) or (b). Consider the last

term. Note that

Qj

´

`

P
f 7¨x
g
˘

pyq
¯

pzq “
ÿ

|i´j|ď4

ż

Pjpz ´ xqQjpz ´ yq
`

Sif
7
¨x

˘

pyq p∆igqpyq dxdy.

For case (a), there exists b P N such that |∆igpyq| À 2´iβ|y|b˚. Since f 7 P Cαa`bpRdˆRdq for
any a P N, one has

|pSif
7
¨,xqpyq| ď

ż

ˇ

ˇPipy ´ uq
ˇ

ˇ

ˇ

ˇf 7ux
ˇ

ˇ du À

ż

ˇ

ˇPipy ´ uq
ˇ

ˇ|u´ x|α
`

|u|´a´b˚ ` |x|´a´b˚

˘

du

À

ż

ˇ

ˇPipy ´ uq
ˇ

ˇ

`

|u´ y|α ` |y ´ x|α
˘`

|u|´a´b˚ ` |x|´a´b˚

˘

du

À
`

|x|´a´b˚ ` |y|´a´b˚

˘`

2´iα ` |y ´ x|α
˘
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by Lemma 29. Hence we have
ˇ

ˇ

ˇ
Qj

´

`

P
f 7¨x
g
˘

pyq
¯

pzq
ˇ

ˇ

ˇ

À
ÿ

|i´j|ď4

ż

ˇ

ˇPjpz ´ xq
ˇ

ˇ

ˇ

ˇQjpz ´ yq
ˇ

ˇ

ˇ

ˇ

`

Sif
7
¨xqpyq

ˇ

ˇ

ˇ

ˇp∆igqpyq
ˇ

ˇ dxdy

À
ÿ

|i´j|ď4

ż

ˇ

ˇPjpz ´ xq
ˇ

ˇ

ˇ

ˇQjpz ´ yq
ˇ

ˇ

`

|x|´a´b˚ ` |y|´a´b˚

˘

|y|b˚
`

2´iα ` |y ´ x|α
˘

2´iβ dxdy

À
ÿ

|i´j|ď4

ż

ˇ

ˇPjpz ´ xq||Qjpz ´ yq
ˇ

ˇ

`

|x|´a´b˚ |y|b˚ ` |y|
´a
˚

˘

´

2´iα ` |z ´ x|α ` |z ´ y|α
¯

2´iβ dxdy

À
ÿ

|i´j|ď4

|z|´a˚
`

2´iα ` 2´jα
˘

2´iβ À |z|´a˚ 2´jpα`βq.

For case (b), since
ˇ

ˇ∆igpyq
ˇ

ˇ À 2´iβ |y|´a˚ for any a P N, and

|pSif
7
¨,xqpyq| ď

ż

ˇ

ˇPipy ´ uq
ˇ

ˇ

ˇ

ˇf 7ux
ˇ

ˇ du À

ż

ˇ

ˇPipy ´ uq
ˇ

ˇ|u´ x|α du À 2´iα ` |y ´ x|α,

we have
ˇ

ˇ

ˇ
Qj

´

`

P
f 7¨x
g
˘

pyq
¯

pzq
ˇ

ˇ

ˇ
À

ÿ

|i´j|ď4

ż

ˇ

ˇPjpz ´ xq
ˇ

ˇ

ˇ

ˇQjpz ´ yq
ˇ

ˇ

ˇ

ˇpSif
7
¨xqpyq

ˇ

ˇ

ˇ

ˇp∆igqpyq
ˇ

ˇ dxdy

À
ÿ

|i´j|ď4

ż

ˇ

ˇPjpz ´ xq
ˇ

ˇ

ˇ

ˇQjpz ´ yq
ˇ

ˇ |y|´a˚
`

2´iα ` |y ´ x|α
˘

2´iβ dxdy

À
ÿ

|i´j|ď4

ż

ˇ

ˇPjpz ´ xq
ˇ

ˇ

ˇ

ˇQjpz ´ yq
ˇ

ˇ |y|´a˚

´

2´iα ` |z ´ x|α ` |z ´ y|α
¯

2´iβ dxdy

À
ÿ

|i´j|ď4

|z|´a˚
`

2´iα ` 2´jα
˘

2´iβ À |z|´a˚ 2´jpα`βq.

By Proposition 30, we are done. B

Proposition 32. [5, Proposition 9] Let γ P R and β0 P R be given together with a family Λx
of distributions on Rd, indexed by x P Rd. Assume one has

sup
xPRd

|x|a˚}Λx}Cβ0 ă 8

for any a P Z and one can decompose pΛy ´ Λxq under the form

Λy ´ Λx “
L
ÿ

`“1

c`yx Θ`
x

for L finite, Rd-indexed distributions Θ`
x, and real-valued coefficients c`yx depending measurably

on x and y. Assume that for each ` there exists β` ă γ such that either of the following
conditions holds.

(a) Θ` P Dβ`
rap and c` P Cγ´β`

p2q pRd ˆ Rdq.
(b) Θ` P Dβ` and c` P Cγ´β`

p2q,rappR
d ˆ Rdq.

Write PpΛq for Py,z

`

Λypzq
˘

below.

(i) If γ ą 0, then there exists a unique function λ P CγrappRdq such that
!

`

PpΛq ´ λ
˘

´ Λx

)

xPRd
P Dγ

rap.

(ii) If γ ă 0, then
 

PpΛq ´ Λx
(

xPRd P D
γ
rap.
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Consequently, PpΛq P Cβ0rappRdq. If furthermore Λ P Dγ
rap, then PpΛq P CγrappRdq.

Proof – In view of Proposition 9 in [5], it is sufficient to show that

sup
xPRd

|x|a˚

ˇ

ˇ

ˇ
∆j

`

PpΛq ´ Λx
˘

pxq
ˇ

ˇ

ˇ
À 2´jγ . (B.1)

We write for that purpose
∆i

`

PpΛq ´ Λx
˘

pxq

“
ÿ

jě1, |i´j|ď4

¡

Qipx´ yqPjpy ´ uqQjpy ´ vq pΛu ´ Λxqpvq dydudv ´∆iSpΛxqpxq

“: A`B ` C,

where

A “
ÿ

|i´j|ď4

¡

Qipx´ yqPjpy ´ uqQjpy ´ vq pΛu ´ Λyqpvq dydudv

“
ÿ

|i´j|ď4

L
ÿ

`“1

¡

Qipx´ yqPjpy ´ uqQjpy ´ vq c
`
uyΘypvq dydudv

and

B “
ÿ

|i´j|ď4

¡

Qipx´ yqPjpy ´ uqQjpy ´ vq pΛy ´ Λxqpvq dydudv

“
ÿ

|i´j|ď4

L
ÿ

`“1

¡

Qipx´ yqPjpy ´ uqQjpy ´ vq c
`
yxΘxpvq dydudv

For the C term,
sup
x
|x|a˚

ˇ

ˇ∆iSpΛxqpxq
ˇ

ˇ À 2´ir sup
x
|x|a˚

›

›SpΛxq
›

›

Cr

À 2´ir sup
x
|x|a˚ }Λx}Cβ0 À 2´ir

for any r ą 0. For the A term, for any a P Z we have

|A| ď
ÿ

|i´j|ď4

L
ÿ

`“1

ĳ

ˇ

ˇQipx´ yq
ˇ

ˇ

ˇ

ˇPjpy ´ uq
ˇ

ˇ|c`uy||∆jΘypyq| dydu

À

$

’

’

’

’

’

&

’

’

’

’

’

%

ÿ

|i´j|ď4

L
ÿ

`“1

ĳ

ˇ

ˇQipx´ yq
ˇ

ˇ

ˇ

ˇPjpy ´ uq
ˇ

ˇ|u´ y|γ´β` |y|´a˚ 2´jβ`dydu, if (a)

ÿ

|i´j|ď4

L
ÿ

`“1

ĳ

ˇ

ˇQipx´ yq
ˇ

ˇ

ˇ

ˇPjpy ´ uq
ˇ

ˇ

`

|u|´a˚ ` |y|´a˚
˘

|u´ y|γ´β`2´jβ`dydu, if (b)

À
ÿ

|i´j|ď4

ż

ˇ

ˇQipx´ yq
ˇ

ˇ|y|´a˚ 2´jγdy À |x|´a˚ 2´iγ .

The B term has the same estimate by a similar argument. So estimate (B.1) follows from
Lemma 29.

(i) If γ ą 0, the estimate (B.1) implies that the sum

λpxq :“
ÿ

jě´1

∆j

`

PpΛq ´ Λx
˘

pxq
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defines an element λ of CγrappRdq. To show it, we follow the argument in Section 6 of [13].
We decompose λ “ λďj`1 ` λąj`1, where

λďj`1pxq :“
ÿ

iďj`1

∆i

`

PpΛq ´ Λx
˘

pxq “ Sj`3

`

PpΛq ´ Λx
˘

pxq.

We consider ∆jλ “ ∆jλ
ďj`1 `∆jλ

ąj`1. For the second term, by the estimate (B.1) one
has

}∆jλ
ąj`1}L8a À }λ

ąj`1}L8a À
ÿ

iąj`1

2´iγ À 2´jγ .

For the first term, since ∆jSj`3 “ ∆j , one has

∆jλ
ďj`1pyq “

ż

Qjpy ´ xqSj`3

`

PpΛq ´ Λx
˘

pxqdx

“

ż

Qjpy ´ xqSj`3

´

PpΛq ´ Λy `
ÿ

`

c`yxΘ`
x

¯

pxqdx

“ ∆j

`

PpΛq ´ Λy
˘

pyq `
ÿ

`

ż

Qjpy ´ xqc
`
yxpSj`3Θxqpxqdx

Similarly to above, we can show that |∆jλ
ďj`1pyq| À |y|´a˚ 2´jγ for any a P Z. In the end

we have }∆jλ}L8a À 2´jγ , hence λ P CγrappRdq.

Since
ř

iě´1 ∆i

`

PpΛq ´ Λx ´ λ
˘

pxq “ 0 by definition, we have
ˇ

ˇSi
`

PpΛq ´ Λx ´ λ
˘

pxq
ˇ

ˇ ď
ÿ

jěi´1

ˇ

ˇ∆j

`

PpΛq ´ Λx ´ λ
˘

pxq
ˇ

ˇ À |x|´a˚
ÿ

jěi´1

2´jγ À |x|´a˚ 2´iγ

for any a P Z.

(ii) If γ ă 0, then directly from (B.1),
ˇ

ˇSi
`

PpΛq ´ Λx
˘

pxq
ˇ

ˇ ď
ÿ

jăi´1

ˇ

ˇ∆j

`

PpΛq ´ Λx
˘

pxq
ˇ

ˇ À |x|´a˚
ÿ

jăi´1

2´jγ À |x|´a˚ 2´iγ

for any a P Z. B

Corollary 33. Given a concrete regularity structure T satisfying assumptions (A) and (B)

and given a rapidly decreasing model M “ pg,Πq, we define the map R : Dγ
rappT, gq Ñ Cβ0rap, by

Rf “ Px,y

´

`

Πg
xfpxq

˘

pyq
¯

.

Then one has
´

Rf ´ Πg
xfpxq

¯

xPRd
P Dγ

rap.

Proof – Let Λx “ Πg
xfpxq. Since

Λy ´ Λx “
ÿ

τPB

@

τ 1, xgxyfpyq ´ fpxq
D

Πg
xτ

one gets conditions (a) and (b) of Proposition 32 from the definition of a model. B

Proof of Theorem 12 – We prove the case m “ 0 here for simplicity. For general m, the
proof is at the end of this appendix, after we introduce the modified paraproducts.

Consider the first formula (3.5). First we show that, for each τ P B` we have

gpτq “
ÿ

1ă`νă`τ, νPB`
Pgpτ{`νqrνs

g ` rτ sg, (B.2)
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where rνsg P C|ν|rappRdq, if ν P B`zB`X , and rνsg P C8slowpR
dq, if ν P B`X . If τ “ Xk, then since

∆`Xk “
ř

`

`

k
`

˘

X` bXk´` we have

gpXkq “
ÿ

0ă`ăk

ˆ

k

`

˙

PgpX`qrX
k´`sg ` rXksg.

We see for instance that r1sg “ 1, then rXsg “ x, since gxpXq “ x, and since gxpX
2q “ x2,

one has
x2 “ 2Pxx` rX

2sg.

We recognize rX2sg “ Πpx, xq. More generally, since gxpX
kq “ xk is a function belonging

to C8slowpR
dq, by an induction we have rXksg P C8slowpR

dq. Now let τ P B`zB`X . Recall the
formula obtained in [5];
rτ sg “ Sgpτq `Px,y

`

gyxpτq
˘

`

8
ÿ

n“1

p´1qn´1
ÿ

1ă`σn`1ă`¨¨¨ă`σ1ă`τ

R˝
´

gpτ{`σ1q ¨ ¨ ¨ gpσn´1{
`σnq, gpσn{

`σn`1q, rσn`1s
g
¯

.

This is obtained from the expansion formula obtained in [5];
gypτ{

`σq ´ gxpτ{
`σq

“

8
ÿ

n“1

p´1qn´1
ÿ

σă`σnă`¨¨¨ă`σ1ă`τ

gxpτ{
`σ1q ¨ ¨ ¨ gxpσn´1{

`σnq
´

gypσn{
`σq ´ gxpσn{

`σq
¯

` gyxpτ{
`σq

(B.3)

with σ “ 1` and by definition of the R˝ operator. Since τ P B`zB`X , we have Sgpτq P

C8rappR
dq and Px,ypgyxpτqq P C|τ |rappRdq. For the R˝ terms, we apply Proposition 31 to (B.3).

If σ P B`X , then since τ{`σ P spanpB`zB`Xq, by assumption (B-2), we have gxpτ{
`σq P

L8rappR
dq and gyxpτ{

`σq P C|τ |´|σ|
p2q,rap pR

dˆRdq. For the sum over σ ă` σn ă` ¨ ¨ ¨ ă` σ1 ă
` τ ,

we can see that at least one element among
gpτ{`σ1q, . . . , gpσn´1{

`σnq, gpσn{
`σq

belongs to L8rappR
dq. Indeed, if σn R B`X then gpσn{

`σq P L8rappR
dq. Otherwise, if σn´1 R

B`X then gpσn´1{
`σnq P L

8
rappR

dq. Since τ R B`X , for at least one i we have gpσi{
`σi`1q P

L8rappR
dq. Since L8slowpR

dq ¨ L8rappR
dq Ă L8rappR

dq, we can apply Proposition 31-(a) to get
8
ÿ

n“1

p´1qn´1
ÿ

σă`σnă`¨¨¨ă`σ1ă`τ

R˝
´

gpτ{`σ1q ¨ ¨ ¨ gpσn´1{
`σnq, gpσn{

`σq, rσsg
¯

P C|τ |rappR
dq.

If σ R B`X , since gyxpτ{
`σq P C|τ |´|σ|

p2q pRdˆRdq and rσsg P C|σ|rappRdq we can apply Proposition
31-(b) to get the same estimate. Hence we obtain the required estimates in the formula
(B.2).

To get (3.5) from (B.2), it is sufficient to show
rrτ ssg ´ rτ sg P C8rappR

dq (B.4)

for any τ P B`zB`X . Assume that all ν P B`zB`X with |ν| ă |τ | satisfy (B.4). Then we
have

rrτ ssg ´ rτ sg “
ÿ

1ă`νă`τ

Pgpτ{`νqrνs
g ´

ÿ

1ă`νă`τ, νRB`X

Pgpτ{`νqrrνss
g

“
ÿ

1ă`νă`τ, νRB`X

Pgpτ{`νq

`

rνsg ´ rrνssg
˘

`
ÿ

k‰0

Pgpτ{`XkqrX
ksg.
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The first term belongs to C8rappR
dq by assumption. For the second term, since rXksg P

C8slowpR
dq and gpτ{`Xkq P L8rappR

dq, we can complete the proof.
One can obtain formula (3.6) in the similar way. As above, we define the quantity rτ sM
for each τ P B by

Πτ “
ÿ

νăτ, νPB
Pgpτ{νqrνs

M ` rτ sM.

Then we can show that rνsM P C|ν|rappRdq, if ν P BzBX , and rνsM P C8slowpR
dq, if ν P BX . The

only difference is that, for τ P BzBX , we use the formula obtained in [5];
rτ sg “ SpΠτq `Px,y

`

pΠg
xτqpyq

˘

`

8
ÿ

n“1

p´1qn´1
ÿ

σn`1ă¨¨¨ăσ1ăτ

R˝
´

gpτ{σ1q ¨ ¨ ¨ gpσn´1{σnq, gpσn{σn`1q, rσn`1s
M
¯

.

and use Proposition 32 to get Px,y

`

pΠg
xτqpyq

˘

P C|τ |rappRdq. Since the property (B.4) also
holds for the operator rr¨ssM ´ r¨sM, we can conclude (3.6). B

Proof of Theorem 13 – (3.7) is proved by a similar argument as Theorem 12. See Theorem
14 in [5] for details. More easily, it is useful to consider the extended algebra T`F defined
in Section 4.2. Since a modelled distribution f P DγpT, gq defines a g-part of the model
on T`F by Lemma 21, we have

fσ “ gpF σq “
ÿ

σăµ

µ{σPspanpB`zB`Xq

PgpF µqrrµ{τ ss
g ` rrF σss

g.

Thus rrfσssg “ rrF σss
g P Cγ´|σ|rap pRdq.

As for (3.8), a similar interpretation is useful. Consider a symbol F and an extended
model space TF :“ T ‘ spanpF q. Giving the homogeneity |F | :“ γ and the coproduct
formula

∆F “ F b 1` `
ÿ

τPB, |τ |ăγ
τ b pF τ q,

the pair pT`F , TF q turns out to be a regularity structure. (It is not difficult to check that
TF is a comodule over T`F by using (4.11).) For given a reconstruction Rf , we can define
the model on TF by setting ΠF :“ Rf . Indeed, similarly to Lemma 21, we can show that

Πg
xF “ Rf ´ Πg

xfpxq.

Then (3.8) follows from (3.6) in Theorem 12. B

To complete the proof of Theorem 12, we define here the two-parameter extension Pm of
the modified paraproduct Pm. Note that, there is an annulus A Ă Rd such that the Fourier
transform of the function

x ÞÑ Pjpx´ yqQjpx´ zq

is contained in 2jA (independently to y, z). Let χ be a smooth function on Rd supported in a
larger annulus A1 and such that χ ” 1 on A. Letting Rj “ F´1

`

χp2´j ¨q
˘

, we have

pQjΛqpxq “

¡

RdˆRdˆRd

Rjpx´ wqPjpw ´ yqQjpw ´ zqΛpy, zq dydzdw.

For m P Z, set
Q´mj :“ F´1

`

| ¨ |´mρj
˘

,

Rmj :“ F´1
`

| ¨ |mχp2´j ¨q
˘

;
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then they are smooth functions such that Q´mj “ |∇|´mQj and Rmj “ |∇|mRj .

Definition 34. For any m P N and any two-variable distribution Λ on Rd ˆ Rd, define

pQm
j Λqpxq :“

¡

RdˆRdˆRd

Rmj px´ wqPjpw ´ yqQ
´m
j pw ´ zqΛpy, zq dydzdw,

pPmΛqpxq :“
ÿ

jě1

pQm
j Λqpxq.

If necessary, we emphasize the integrated variables by writing
PmΛ “ Pm

y,z

`

Λpy, zq
˘

.

For the special case Λpy, zq “ fpyqgpzq, we have the consistency relation
PmΛ “ Pmf g.

All the above estimates in this appendix still hold for these modified operators. Indeed, because
of the scaling properties

Q´mj pxq “ 2jpd´mqQ´m0 p2jxq, Rmj pxq “ 2jpd`mqRm0 p2
jxq,

we can show the following analogue of Lemma 29; for any α ě 0 and a P Z, one has
ż

ˇ

ˇRmi px´ yq
ˇ

ˇ|x´ y|α|y|´a˚ dy À 2´ipα`mq |x|´a˚ ,
ż

ˇ

ˇQ´mi px´ yq
ˇ

ˇ|x´ y|α|y|´a˚ dy À 2´ipα´mq |x|´a˚ .

(B.5)

Thus we can repeat the argument in this appendix as follows.
‚ Proposition 30-(a) still holds, since ∆ipP

mΛq “
ř

|i´j|ďN ∆ipQ
m
j Λq for some integer

depending only on the support of χ.
‚ Proposition 30-(b) still holds, since by the scaling property,

ˇ

ˇQm
j F pxq

ˇ

ˇ À

ż

ˇ

ˇRmj px´ wqPjpw ´ yqQ
´m
j pw ´ zq

ˇ

ˇ |F py, zq| dydzdw

À

ż

ˇ

ˇRmj px´ wqPjpw ´ yqQ
´m
j pw ´ zq

ˇ

ˇ

`

|y|´a˚ ` |z|´a˚
˘

´

|w ´ y|α ` |w ´ z|α
¯

dydzdw

À 2´jpα´mq
ż

|Rmj px´ wq||w|
´a
˚ dw

À 2´jα|w|´a˚ .

‚ Proposition 31 still holds if R˝ is replaced by
Rmpf, g, hq :“ Pmf Pmg h´ Pmfgh,

by a parallel argument using (B.5).
Consequently, we can repeat the proof of Theorem 12 for any m P N.

C – The slowly growing setting

In applications of regularity structures to the study of singular stochastic PDEs set in the
entire space Rd usually involve noises that do not have rapid decrease at infinity, but rather
have moderate growth at infinity. Our results can be formulated as follows in this slightly
modified setting.

We define the spaces Mslow and Dγ
slow of slowly growing models and modelled distributions,

respectively, by replacing ‘rap’ in definitions in Section 3.2 by ‘slow’. We can repeat the same
arguments to obtain the variations of Theorems 1 and 5 with the spaces Mslow and Dγ

slow,
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respectively. All we need is to consider the weight |x|´a˚ for some sufficiently large a, instead
of any a P Z. Precisely, we need the following minor modifications of the arguments.

‚ Proposition 31 still holds under the assumption f 7 P Cα
p2q,slowpR

dˆRdq and g P CβslowpR
dq,

instead of rapid decrease assumptions.
‚ Proposition 32 still holds under the assumption

sup
xPRd

|x|a˚}Λx}Cβ0 ă 8

for some a P Z, and for any `, Θ` P Dβ`
slow and c` P Cγ´β`

p2q,slowpR
d ˆ Rdq.

‚ Lemma 19 still holds for some a P Z, instead of any a.
Details are left to readers. We end this appendix by writing the precise statements of main
theorems.

Theorem 35. Let T be a concrete regularity structure satisfying assumptions (A-C). Then
one can construct a locally Lipschitz continuous map

MslowpT ,Rdq Ñ
ź

σPB`zB`X

C|σ|slowpR
dq ˆ

ź

τPBzBX

C|τ |slowpR
dq

pg,Πq ÞÑ
´

rrσssM, rrτ ssg ; σ P B`zB`X , τ P BzBX
¯

(C.1)

by giving paracontrolled representations of g and Π, for pg,Πq P MrappT ,Rdq. Furthermore,
MslowpT ,Rdq is locally bi-Lipschitz homeomorphic to the product space

ź

σPG`˝

C|σ|slowpR
dq ˆ

ź

τPB‚, |τ |ă0

C|τ |slowpR
dq.

Theorem 36. Let a concrete regularity structure T satisfy assumptions (A-D). Pick γ P Rzt0u
such that γ´|τ | R N for any basis element τ of T with |τ | ă γ, and M “ pg,Πq PMslowpT ,Rdq.
Then one can construct a locally Lipschitz continuous map

Dγ
slowpT, gq Ñ

ź

τPB, |τ |ăγ
Cγ´|τ |slow pRdq

by giving a paracontrolled representation of elements in Dγ
slowpT, gq. Furthermore, Dγ

slowpT, gq
is locally bi-Lipschitz homeomorphic to the product space

ź

τPB‚, |τ |ăγ
Cγ´|τ |slow pRdq.
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