Paracontrolled calculus and regularity structures |l

I. BAILLEUL & M. HOSHINO

Abstract. We prove a general equivalence statement between the notions of models and modelled
distributions over a regularity structure, and paracontrolled systems indexed by the regularity
structure. This takes in particular the form of a parametrisation of the set of models over a
regularity structure by the set of reference functions used in the paracontrolled representation
of these objects. A number of consequences are emphasized. The construction of a modelled
distribution from a paracontrolled system is explicit, and takes a particularly simple form in the
case of the regularity structures introduced by Bruned, Hairer and Zambotti for the study of
singular stochastic partial differential equations.

1 — Introduction

The set of singular stochastic partial differential equations (PDEs) is characterized by the
appearance in each equation of this class of ill-defined products, typically the product of a
distribution with a function that is not sufficiently regular. The parabolic Anderson model
equation

(at - A)U = UC,

on the two dimensional torus is a typical example of singular PDE. The space white noise ¢
has almost surely parabolic Holder regularity o — 2, for any «a < 1, and u cannot be expected
to have better regularity than being a-Holder. So the product u(¢ does not make sense, since
a+ (@ —2) < 0. Two different sets of tools for the study of singular stochastic PDEs have
emerged recently, under the form of Hairer’s theory of regularity structures [14, [7, [8, [6] and
paracontrolled calculus [13} 3, [4], after Gubinelli, Imkeller and Perkowski’ seminal work. Both
of them implement the same mantra: Make sense of the equation in a restricted space of
functions/distributions whose elements look like the linear combination of reference random
quantities, for which the ill-defined terms that come from the analysis of the product problems
can be defined using probabilistic tools. Within the setting of regularity structures, Taylor-like
pointwise expansions and jet-like objects are used to make sense of what it means to look like
a linear combination of reference quantities

f() ~ ZfT(z)(I'IET)(-), near z, for all spacetime points z.

In the paracontrolled approach, one uses paraproducts to implement this mantra
T

Each term P,b is a function or a distribution. This approach is justified at an intuitive level by
the fact that Py [7] can be thought of as a modulation of the reference function/distribution
[7]. The two options seem technically very different from one another.

While Hairer’s theory has now reached the state of a ready-to-use black box for the study
of singular stochastic PDEs, like Cauchy-Lipschitz well-posedness theorem for ordinary dif-
ferential equations, the task of giving a self-contained treatment of renormalisation matters
within paracontrolled calculus remains to be done. It happens nonetheless to be possible to
compare the two languages, independently of their applications to the study of singular sto-
chastic PDEs. This task was initiated in Gubinelli, Imkeller, Perkowski’ seminal work [13] and
Martin and Perkowski’s work [22], and in our previous work [5], where we proved that the set
of admissible models M = (g, 1) over a concrete regularity structure .7 = (T, A1), (T, A))
equipped with an abstract integration map is parametrised by a paracontrolled representation
of Tl on the set of elements 7 with non-positive homogeneity. (Admissible models play a crucial
in the regularity structures approach to the study of singular stochastic PDEs.) Theorem 21
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in [5] says indeed that given any family ([7] € CI") with 7 in a linear basis of T, there

I7|<0
exists a unique admissible model (g, 1) on .7 such that one has

MNr = Z Pg(T/g)[[O']] + [[T]], (1.1)

o<T
for all 7 € T in the basis, with non-positive homogeneity. (All notations and words are
explained below.) This result provides a parametrisation of the nonlinear set of admissible
models by a linear space, providing for instance a natural notion of tangent space to the space
of admissible models. The distribution [[7]] appears in as ‘the’ part of N7 of regularity |7|
in this decomposition, while the paraproducts Pg(,/,)[0] have regularity |o| < |7|, for o < 7.

To understand the practical relevance of this linear parametrization of the space of ad-
missible models on 7, assume .7 stands for the Bruned, Hairer, and Zambotti’s regularity
structure [7] associated with a singular stochastic PDE and M® = (g%, °) stands for the naive
interpretation model associated with a smoothened noise in the equation, with regulariza-
tion parameter €. The BPHZ renormalization procedure for the model involves a real-valued
map k acting on a side space T, which also defines a homogeneity-preserving linear map k
from T into itself. It follows from Theorem 21 in [5] that the bracket data associated with

the renormalised model ¥M¢ is simply given by the [[%(7')]], for 7 of negative homogeneity.
The convergence of renormalised admissible models has thus a direct counterpart in terms of
bracket data. This answers one of the problems mentioned at the end of Tapia and Zambotti’s
work [25] on the parametrization problem for the set of branched rough paths, in the present
general setting.

Here is another illustration of the use of the parametrization result of admissible models
proved in [5] that will be developed in Section and Section Consider the elementary
setting of branched rough paths; they are admissible models on particular examples of regular-
ity structures. Theorem 21 in [5] gives a direct proof of Lyons’ extension theorem, saying that
a branched Holder p-rough path has a unique extension into a branched Hoélder g-rough path,
for any ¢ > p. (Recall weak geometric rough paths are branched rough paths.) This result
allows to define the signature of a branched rough path. Similarly, let .7 be a regularity struc-
ture built from integration operators, with elements of arbitrary large positive homogeneity. It
follows from Theorem 21 in [5] that an admissible model defined on the quotient space of 7,
modulo elements of a given positive homogeneity «, has a unique extension into an admissible
model over the regularity structure .7~ quotiented by the elements of homogeneity 3, for any
B > «. This allows to define the signature of an admissible model.

Such statements are concerned with admissible models on regularity structures associated
with singular stochastic PDEs. We step back in the present work and prove a general result
giving a parametrization of the nonlinear space of arbitrary models M = (g, 1) on any reason-
able concrete regularity structure, by a linear space, in terms of representations of the maps
g and [1 by paracontrolled systems, similar to identity . (The set of models on any given
regularity structure is always nonempty, as it contains the element My = (g, My), with gy the
character on Tt that sends any basis element of 7" on 1, and My the null map. The nonlinear-
ity of the space of models can be seen from the analytical constraints that they need to satisfy,
that involves nonlinear operations on g.) Being reasonable means here satisfying assumptions
(A-C) from Section [3| and Section {4l We insist here on the fact that these assumptions are
not related to any kind of singular stochastic PDE or any dynamics or structure that could be
modelled with such a regularity structure. As we shall see, the regularity structures used for
the study of singular stochastic PDEs enjoy these properties, so all our results hold for them.

The result takes the following form. Given a concrete regularity structure
T = ((T+7 A+)7 (T7 A))a

denote by Aap(7, RY) the space of models on R? decreasing rapidly at infinity. Once again,
all terms will be properly defined below.



Theorem 1. Let T be a concrete reqularity structure satisfying assumptions (A-C). Then
one can construct a locally Lipschitz continuous map

'//rap(vad) - H Clgllj Rd H Crap
oeB+H\BE TeB\Bx. (1.2)

(&) ~ ([o1™. [71¥ o € B*\B}, 7 < B\Bx)

by giving paracontrolled representations of g and N, for (g,MN) € Myap(T,RY). Furthermore,
Myop(T RY) is locally bi-Lipschitz homeomorphic to the product space

[TcebRy < ] clbrY. (1.3)

oegt TEB., |T|<0

The first claim in Theorem []is part of Theorem 1 in [5]; see formulas and below for
an explicit description of the map . The sets B and BT are fixed linear bases of the spaces
T and T, respectively, consisting of homogeneous vectors. The set B, in ([1.3)parametrizes
part of the basis B, while the set G parametrizes part of the basis BT. The letter G stands
for ‘generator’. In the present setting of a general concrete regularity structure, the space T
is not related to T, unlike what happens with the special regularity structures used for the
study of singular stochastic PDEs. It is thus not surprising that there is some freedom in
the construction/parametrization of the map g. The degrees of freedom are parametrized by
the set GF, described in assumption (C). Assumption (A) is a harmless requirement on how
polynomials sit within 7" and 7. Assumption (B) is a very mild requirement on the splitting
map A : T — T ® T, and assumption (C) is a structure requirement on 7't and A™ that
provides a fundamental induction structure. The three assumptions are met by all concrete
regularity structures built for the study of singular stochastic PDEs.

This type of parametrization is not entirely new as Tapia and Zambotti described in [25] a
free transitive action of a product of Holder spaces on the space of branched rough paths, a
particular example of model over a particular regularity structure. This action was not proved
to be continuous however. In relation with the renormalization problem of stochastic models,
Theorem [I] describes precisely the freedom that we have to tweak a divergent family of models
and turn it into a convergent family of models. The renormalization process needs to give
converging bracket data [o[M, [7]&. See a forthcoming work.

We single out here two direct consequences of Theorem [I] about density and extension
questions on the space of models.

e The set of models with rapid decrease is equipped with a family of norms M — |M|,,
indexed by positive exponents a. Smooth functions are known to be dense in any Holder space
c? (R%), with growth exponent a, if one sees the latter as a subset of c? ~°(R%), for any positive
€. Theorem [I| provides as a consequence a direct proof of the following density result, proved
in Section — see Singh and Teichmann’s work [24] for a similar result, proved therein from
an explicit mollification procedure on models.

Corollary 2. Given any positive exponent ¢, the set of smooth models with rapid decrease is

||

dense in the set of models with finite Cgl)—norms, for the topology induced by the Crap - -norms.

e Branched rough paths are models on a finite time interval [0,T], over a particular ex-
ample of concrete regularity structure of the form 7+ = ((TF, A"), (", A™)), that satisfies
assumptions (A-C). These models are entirely determined by their g-maps, and the elements
of T* are planted rooted trees with decorations on the nodes in a finite set {1, ..., ¢}; edges are
not decorated. Defining a branched rough path above an /-dimensional control h = (h!, ..., ht )
means defining a g-map over (7', AT) such that g assigns h/ to the tree with only one node
with decoration j, for all 1 < j < /¢, and no edge. The first proof that this is possible for any
choice of Holder control h was found by Lyons and Victoir [20], for geometric rough paths, using
the axiom of choice. This unexpected device stimulated further explorations of this questions,



and different proofs not using the axiom of choice were given subsequently [26, [14] 25, [I§].
Unterberger constructs in [26] a rough path above h using paraproduct-like tools. Hairer uses
in [I4] the reconstruction theorem for that purpose, while Liu, Promel and Teichmann use
in [I8] a version of the reconstruction theorem for Sobolev models and the notion of Sobolev
rough path to extend Lyons-Victoir extension in their setting. Tapia and Zambotti used in
[25] an explicit form of the Baker-Campbell-Hausdorff formula to bypass the use of the axiom
of choice in the construction of a lift, and gave a parametrization of the set of all branched
rough paths above h. Theorem [l| provides a direct access to such an extension result, in so far
as the family of trees with only one node with decoration j, for 1 < j < /¢, is a subset of the
generator set G in that setting.

Corollary 3. (Lyons-Victoir's extension theorem) — Given any R-valued Hélder control h
on the time interval [0,T], there exists a branched rough path above h.

The above branched rough path is said to be a lift of the control h. Like in [25], Theorem
actually gives a parametrization of the set of all branched rough paths above h. One can
formulate the same extension problem for the models on the class of concrete regularity struc-
tures introduced for the study of singular stochastic PDEs by Bruned, Hairer and Zambotti
in [7] — we talk of BHZ regularity structures. We refer the reader to Section for basics
on BHZ regularity structures, and simply mention here that as in the case of branched rough
paths, the elements of BHZ regularity structures .7 are rooted decorated trees. Their roots
may have decorations, and we denote by (e;)1<j<¢ the family of one node trees with no edges,
and decoration j.

Corollary 4. (Extension result for models on BHZ regularity structures) — Given a multi-

dimensional noise = ((1,...,¢), with ¢; € Cllr;fo‘(Rm), for all 1 < i < ¢, there exists a model
M = (g, M) on the BHZ reqularity structure .7 such that M(e;) = (;, for all 1 < j < L.

The above model is said to be a lift of the noise (. The parametrization of admissible models
proved in [5] shows that one can further impose to the extension that it is an admissible model.
(Recall the notion of admissibility is related to a peculiar feature of the regularity structures
used for the study of singular stochastic PDEs.) As for the case of branched rough paths,
Theorem [1] actually gives a description of the set of all models above the ¢-dimensional noise
¢. Corollary [3] and Corollary [4] are proved in Section Corollary [3] and Corollary (4] are
actually previously unnoticed consequences of Theorem 21 in [5]. The general extension result
stated in Corollary {4 is outside the scope of Theorem 21 in [5].

Enough for the consequences of Theorem |1} we now turn to the problem of the parametriza-
tion of the space of modelled distributions associated with a given model.

Given a model M = (g, 1) on a concrete regularity structure, natural regularity spaces are
given by the Holder-type spaces DY(T, g), with generic element

.f = Z fTT'

TeB, |T|<v

For M = (g,MN) € Mrap(7, R?), there is an associated notion of rapidly decreasing space of
modelled distributions taking values in the vector space T', with regularity exponent v, denoted
by Diap(T,g). The parametrization of Dy (T, g) by data in paracontrolled representations of
elements of that space requires in general a structure condition on these data reminiscent of a
similar condition introduced by Martin and Perkowski in [22]; it is stated in Theorem This
non-trivial structure condition has a clear meaning in terms of an extension problem for the
map g from the Hopf algebra T'" to a larger Hopf algebra; an interesting technical point on
its own. The structure condition happens nonetheless to take a very simple form for special
concrete regularity structures satisfying assumption (D).

Theorem 5. Let a concrete regularity structure  satisfy assumptions (A-D). Pick v € R\{0}
such that y—|7| ¢ N for any basis element T of T with |7| < v, and M = (g, N) € Mrap(T,R?).



Then one can construct a locally Lipschitz continuous map
DLp(Tig) =~ [] Ch(RY)

TEB, |T|<y
by giving a paracontrolled representation of elements in Diap(T,g). Furthermore, Diap (T, g) is
locally bi-Lipschitz homeomorphic to the product space

[T cRrRY.

T€B,, |T|<y

See formula for the paracontrolled representation of a modelled distribution in Dy (T, g)-
Similarly, we can see the further homeomorphism result
Meap ¥ Dl > [[ QAR x [] Cy®R) < [T cimRY,
oeGd T€B., |T|<0 T€B., |T|<y

where .#yap X Diap is the space of all pairs ((g, H),f) of models (g, M) € Mrap(7,RY) and
modelled distributions f € Dip(T, g). Following Corollary [2] say here that given a model M
on a concrete regularity structure .7, the set of modelled distributions with rapid decrease
is equipped with a family of norms f +— | flls, indexed by a positive growth exponent a.
The following result is obtained as a direct consequence of Theorem [5| and the density of
smooth functions in any Hélder space Ch (R%), equipped with the weaker cl ~¢(R%)-topology,
for any positive exponent . As pointed out in Section 2 of Singh and Teichmann’s work
[24], one can use the reconstruction theorem to define a mollification operator on modelled
distributions and obtain as a consequence a density statement for the set of smooth modelled
distributions. Theorem [5| shows that any mollification operation on Hoélder spaces induces a
mollification operation on the space of modelled distributions; this result is independent of the
reconstruction theorem. See Section [4.4] for a proof.

Corollary 6. Let a concrete reqularity structure 7 satisfy assumptions (A-D). Fix a model
on 7. Given any exponents v € R as in Theorem [J] and € > 0, the set of smooth elements
((g, I'I),f) in Mrap X Diap is dense in the same space but with the topology induced by the

T|—€ -
CllraIL -norms and the Dzape—norm.

Unlike the other assumptions, assumption (D) is fundamentally a requirement on a linear
basis of T', not on the concrete regularity structure itself. It may then happen that one basis of
T satisfies it whereas another does not. Satisfying assumption (D) thus means the existence of
a linear basis satisfying this assumption. It happens that the class of concrete BHZ regularity
structures introduced by Bruned, Hairer and Zambotti in [7] for the study of singular stochastic
PDEs all satisfy assumption (D), despite the fact that their canonical bases do not satisfy it.
We refer the reader to Section for the notations t € £ and [t|.

Theorem 7. Assume that the set {|t|}ce U {1} is rationally independent. Then the BHZ
concrete regularity structures satisfy assumptions (A-D).

e BHZ regularity structures vs general regularity structures. Readers familiar with the use
of regularity structures for the study of singular stochastic PDEs may feel unconfortable at
the idea of working regularity structures that do not come from a singular stochastic PDE and
with models where the maps g and 1 are unrelated, unlike in the former setting. This freedom
is useful, and Hoshino showed for instance in [I6} I7] how this leads to a clear understanding
of a number of fundamental continuity results for iterated correctors introduced in Bailleul &
Bernicot’s work [4] on high order paracontrolled calculus, from a regularity structures point
of view. As a further illustration of the use of this freedom, let us see how Theorem [I| gives
back a proof of the continuity of the product map (a,b) € C*(R?) x C#(R?) — ab € CP(R?),
for a € (0,1), B < 0, and a + 8 > 0; this is another formulation of Proposition 4.14 in [14].



Indeed, consider the concrete regularity structure .7 = ((I't, A™), (T, A)) with
Tt =span(1,,A4), T = span(B,C),
with [14]:=0, |A] :== «, |B] := 3, |C| := a + 3, and splitting maps
ATl =1,®1,, ATA=A®1, +1, ® A,

and

AB=B®1,, AC=C®1;:+BRA.
Theorem [1] tells us that the model (g, M), with g(1;) = 1, is uniquely characterized by the two
inputs

g(A) =aecC*RY), NB=beC’RY.

The distribution ¢ := lNC' is in particular determined by a and b. We see that 1 provides an
extension of the product map (a,b) — ab, by noting that for smooth inputs a, b, the identity
(N&C)(x) = 0, implies in that case c(z) = a(x)b(x), for all z € RY.

As a matter of fact, working with models with unrelated g and I should somehow be easier
than working with admissible models, where g and [1 are entangled with one another so as to
satisfy the admissibility condition.

As far as working with general regularity structures rather than just working regularity
structures associated with singular stochastic PDEs is concerned, we would like to encourage
the reader to think about general regularity structures as mathematical models of rough 'media’
within which one still has a calculus. Rough medias have no reason to be associated with any
PDE on a general basis.

The following additional remarks put further our results in perspective.

e In the theory of regularity structures, the solution map of a singular stochastic PDE
has the following structure
Mrap(T,RY) = DYy (T, 8) = CP(RY).

rap

The first arrow associates to a model the solution in D, (T, g) of the regularity struc-
ture counterpart of the equation; the second arrow involves the model-dependent re-
construction map R. The composition of these two maps defines a locally Lipschitz
map. Theorem [I| implies that the solution map actually has the structure

[[c®) < [ chLR)—cPRY. (1.4)

oGl TEB., |T|<0

The map is a general form of the solution maps constructed in the previous works
[13, [4] on paracontrolled calculus. Since the ansatz on solutions were given by hand in
those papers, it was very hard to extend the argument to a whole class of equations.
Our results reveal the relation between such handmade ansatz and the sophisticated
algebraic structure in Hairer’s theory, showing that it is possible to apply paracontrolled
calculus to more general equations in an automatic way, like the works [14] [7, 8] [©].

e The map (1.4) provides interesting insights on parts of the theory of regularity struc-
tures. For example, one of the difficult part of the theory is the continuity result for
the model-dependent multi-level extension

KM DY(T,g) - DT(T, g),

of the resolution map £~', with the property that RM(XMf) = £=1(RMf), for any
modelled distributions f € DY(T, g) — its very definition is non-obvious, see [14] Section
5]. From the paracontrolled point of view, we take profit from the fact that the classical
resolution map £~! preserves the paracontrolled structure

£ NPy [ + 11— Yy (£ D) + £ 1]



up to the introduction of the modified paraproduct Psg := L7'P(Lg) — see []. The
main results in the present paper can be applied to such a modified paraproduct. The
map KM can be obtained directly from Theorem |5 by giving first a paracontrolled
representation of an element of DY(7,g), then applying £~!, using the modified para-
product, and finally using Theorem 5[ again to get back an element of D7*2(T, g). We
do not give the details here and leave it to a future work.

e The local Lipschitz parametrizations of the sets of models and modelled distributions
from Theorem [I] and Theorem [5| offer the possibility to define dynamics in these spaces
by solving ordinary (or controlled/rough) differential equations driven by vector fields
on the parametrization spaces. In the setting of pathspace analysis on manifolds, this
kind of pathwise dynamics provided a clean understanding of Driver’s flow equation on
pathspace, in relation with quasi-invariance questions for Wiener measure on pathspace
over a compact Riemannian manifold [I2, 19, 2]. One may also make sense of classical
stochastic PDEs on the space of models or modelled distributions, as in Liu, Promel
and Teichmann’s work [I§].

Notice that we considered a function space whose elements decrease rapidly at infinity
mainly for a technical reason. Our assumption is related to localizing a singular PDE. Indeed,
we can consider a class of models on a bounded domain vanishing on the boundary, via a
diffeomorphism between R? and that domain. Instead, the following modifications are also
possible.

e Theorems [1| and 5| above hold also with the spaces .#ow and D of slowly growing

slow

models and modelled distributions, respectively, with the spaces Cy,, replaced by Cg .
Such a modification is important because temporally or spatially stationary models

belong to Aoy, but not to .#;.p. More details can be found in Appendix Q

o If the elements in G& and B, all have homogeneities smaller than 1, then Theorem
and Theorem [5/ above hold for the unweighted spaces .# and D7, with the spaces Cy,,
replaced by usual Hoélder spaces C%. An important example is the space of branched
rough paths. As said above, Tapia and Zambotti proved in [25] an analogue of Theorem

for the space of branched rough paths by a different approach.

Like in our previous work [5], we work here with the usual isotropic Holder space rather
than with anisotropic spaces. All results given here hold true in that more general setting,
with identical proofs. The reader will find relevant technical details in the work [22] of Martin
and Perkowski.

Section [2] is dedicated to describing different functional spaces and operators. Section [3] is
dedicated to giving paracontrolled representations of models and the reconstruction of modelled
distributions in terms of data in paracontrolled systems, proving part of Theorem [I} The later
is proved in Section [4] where the main work consists in providing a parametrization of g-maps
by paracontrolled representations, Theorem [I7] Theorem [5] and Theorem [7] are proved in
Section and respectively. Appendix [A] gives back the setting of concrete regularity
structures introduced in [5], while Appendix [B| gives a number of technical details that are
variations on corresponding results from [5].

Notations e We use exclusively the letters o, 3,7y to denote real numbers that play the role of
reqularity exponents, and use the letters o, 7, u,v to denote elements of T or T.

e We agree to use the shorthand notation st) to mean both the statement s and the statement
5T,

o We use the pairing notation {-,-) for duality between a finite dimensional vector space and
its dual space.

e We adopt the notations and terminology of the work [5], and write in particular Ng and
8yz, for what is denoted by I, and Ty in Hairer’s terminology.



2 — Functional setting

We describe in this section different function spaces we shall work with and introduce a
modified paraproduct. For € R?, set

2|4 := 1+ |z|, xeR%
The weight function |x|, satisfies the inequalities
[+ yls < |zlalyls, /Al < |2l
for any A > 1

Let (p;)_1<i<oo be a dyadic decomposition of unity on R, i.e. p; : R? — [0,1] is a compactly
supported smooth radial function with the following properties.
o supp(p-1) < {z € R%; 2| < 3} and supp(po) = {z € R?; § < |z| < §}.
e pi(x) = po(27%x) for any x € R and i > 0.
e > pi(z) =1 for any x € RY.

We define the Littlewood-Paley blocks (A;)-1<i<oo by Aif :
is a Fourier transform on R? and F~! is its inverse. For j

A

1<j—1
Denote by @); and P; the integral kernels associated with A; and S

Aifle)i= [ Qe =iy Sif@)i= [ P -0y

= pi(V)f := F 1 (piFf), where F
= 1,set

- For any measurable function f : R? - R, set
Hf“LgC(Rd) = H| : |:<LfHLoo(Rd)7

and define the corresponding space L (R?) of functions with finite | -|| Lo (Réy-nOTIL. Set

rap ﬂ LOO Rd gi)w U LOO Rd

- For any distribution ¢ € S’(Rd), set
[€lcaray = sup 2% A€ poo (ray-
j=—1
and define the corresponding space C(R?) of functions with finite || - lce (rey-norm. We

have C§(RY) = C*(R?), with the usual definition of the Hélder space C%(R?) as the
Besov space BY ,.(R?) — see e.g. Bahouri, Chemin and Danchin’s book [I]. Set

0¢]
d d d
rap ﬂ Ca R SOW(R ) = U Cga(R
a=1
- For any two-parameter functlon F:R?xR? - Rand a >0, set
F(z,y)]
F a = a a } .
||| H‘C(Q) (RExR%) %Sylg;d (‘$|>x< A ‘y|*) ’.73 — y|a

and define the corresponding space C("‘2) (R?xR?) of functions with finite |- Hca (RIxRY)"

norm. Set also
o0

Cly(RT x RY) := €y ((RT xR, €y .0 (RTx RY) := (1) €y L(RY x RY).

a=1



- For any R%indexed family of distributions A = (A;),ere © S’(R?) on R?, and a € R,

set
[Allpg == sup sup |2[427%|[(Ay, Pj(z —-))|.
zeRd j=—1
Set
o0
D*:=D§, D&, :=[)Ds.
a=1

(In Hairer’ seminal work [14], models are assumed to satisfy a (A, ¢)-uniform regularity con-
dition

|(MET)(e)] < AT,
locally uniformly in z. Requiring (N&7),.ge € D!l is equivalent to the above uniform estimate
—see e.g. Lemma 6.6 of Gubinelli, Imkeller and Perkowski’ seminal work [I3] on paracontrolled
distributions.)

For any distributions f, g € S’(R?), we define the paraproduct

o]

Prg:= >.(S1)(As9),

J=1
and resonant operator

N(f9) = D, (Aif)(Aj9).

li—jl<1
For any g € S'(R?), set
Sg:=g—Pig=(A_1+Ag)ge C*(RY). (2.1)

(The letter S is chosen for ‘smooth’.) The following continuity result is an elementary variation
on the classical continuity results for the paraproduct and resonant operators. We refer for
instance the reader to Lemma 2.1.34 in J. Martin’s thesis [21] for a reference.

Proposition 8. Let o, €R, a,be Z.
o If a # 0, then C¢(R?) x Cf(Rd) 53(f,g) = Pyge CaAOJr’B(Rd), is continuous.

a+b
o Ifa+ >0, then C¥(R?) x Cf(Rd) 3(f,9)—N(f,g) € Cg‘ibﬁ(Rd), is continuous.
o Ifa,B # 0 and o+ B > 0, then CZ(RY) x CJ(RY) 3 (f,g) = f-g € C*FC(RY), is
continuous.

As a consequence of the last item, the product fg, of f € S(R?) and g € C*(R?), belongs to

(R%), for any o € R — so the space Cf‘ap(Rd) is in particular not empty.

Ca

rap

We use a modified paraproduct in Section 3.1.3. Note that
V" f = FH(] - FF),

for m e Z, is well-defined for functions f € S(R?) whose Fourier transform have support in an
annulus. For m € N and « € R, the map |V|™ sends continuously CI‘?;p(Rd) into C%_pm(Rd). For
m € N, we define the modified paraproduct

00]
Fg:= [VI"(PsVI"™g) = Y IVI™(S;if - IVI7"Ayg).
j=1
Note that PY = P. The first item of Proposition |§] also holds for the modified paraproduct P™.
This modified paraproduct will play a pivotal role in the proof of Lemma along the proof
of Theorem [I7] The latter provides the construction of a g-map from bracket data.
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— From regularity structures and models to paracontrolled systems

This section sets the scene and contains a proof of the first part of Theorem|[I} We work in the
setting of concrete regularity structures, a special case of regularity structures introduced in [5].
Their definition is recalled in Appendix[A] As we work a priori with the most general concrete
regularity structures, we need to identify a number of conditions that serve our purpose in
Section Assumption (A) is a harmless assumption on how polynomials sit inside 7" and
T*. Assumption (B) is a very mild requirement on the splitting map A : T — T ® T*. Both
assumptions are met by the regularity structures used in the study of singular PDEs. This
is all we need to get a representation of models and reconstructions of modelled distributions
by paracontrolled systems. Before embarking on the journey, recall from [5] that we use the

notations
AO‘ZZ}L@O‘/M, Atr = Z veT/ty
pu<o v<tr
to denote the action of the splitting map A on T and the coproduct A* on T — see the
comments following assumption (A). The notation y < o will mean p < o and p # o; we shall
make a similar use of the expression v <* 7.

We shall introduce along the way three assumptions (A), (B), (C) on general regularity
structures. Their meaning is to be understood in the light of what regularity structures are
useful for: They encode the algebra at hand in the pointwise description of ‘irregular’ functions.
One will for instance read assumption (A) as saying that the classicaly regular part of functions
behave as in the classical Taylor calculus. Interpretations of assumptions (B) and (C) are given
after their statement.

3.1 A basic assumption

Appendix [A] recalls elementary properties of concrete regularity structures. Let J =
((T*, A%), (T, A)) be a concrete regularity structure with T+ = @, 4+ Tof and T' = @y 4 Tp-
Write 1, for the unit of the algebra T". Recall that we agree to use the shorthand notation
s(*) to mean both the statement s and the statement s .

Assumption (A) — The spaces T and T have linear bases BT and B, respectively, with the
following properties.

(1) B* is a commutative monoid freely generated by a finite set BY and Taylor monomials
X1,...,X4. Each element T € B has a positive homogeneity. For general elements in
B, homogeneities are defined by | X;| = 1, and multiplicativity

[To| = || + |o].
(2) The action of AT on polynomials is characterised by its action on the monomials
A+XZ‘ =X;®01; +1, ® X;, (31)
that holds for all 1 < i < d. Denote by B} the submonoid generated by X1,..., Xq.

(3) There ewists a subset B, = B, such that B is in bijection with N% x B,. An element
(k,0) e N% x B,, is denoted by X*o, and assigned a homogeneity

X" o == k| +o].
(4) If B. contains an element 1 with homogeneity 0, then it is unique and satisfies the
identity
Al=1®1,.
Write X" for XF1. Set
Bx := {X"}jene € B.
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The coproduct A on X* is characterised by its action on the monomials
where X; = X% and ¢; = ((5 ) L€ Nd that holds for all 1 < i < d, and by requiring
multiplicativity on Bx. For geneml elements, one has the multzplzcatwe formula

A(XFo) = (AXF) (Ao).

For later use, denote by {7'},c5 the dual basis of B. Following [5], for o,7 € B*), write
o <) 7, if o appears in the left hand side of the tensor products in the optimal expansion of
A7 50 we have the unique representation

A = Z c®(r/Fo),
oeB(+)
o<(Hr

where 7/(*)o € TT\{0}. The relation < needs not to be transitive. Using the coassociativity
(AN @I)AM 7 = (Id@ AT) AWM,
we obtain the chain formula

At/ = Y /P /). (3.2)

u<(+)1j<(+)7

Write 0 <(P) 7, if o <) 7 and o # 7. The notations /N o and o <) 7 are only used for
7 and o in B™). Be careful! The notations <, <, etc. are basis-dependent — like the matrix
of a linear map.

The following structural assumption simplifies some arguments in this paper.
Assumption (B)

(1) For each 7,0 € B with o < 7, either 7/o € span(B5;) or 7/c € span(BT\B%).

(2) For any T € BY\B% and 0 € B, /70 € span(BT\BY).

(3) For any T € B\Bx and o € Bx, /o € span(Bt\BY).

Assumption (B) is about the distinction between polynomial and non-polynomial elements.
Assumption (B-1) means that, in the expansion of A7, there is no term of the form c®(n+X*),
with 1 € span(BT\B%) and k € N9. It is used to justify the quantity [[11/7]8 in the formula
below. Assumptions (B-2) and (B-3) is needed in the proof of Theorem BHZ
regularity structure satisfies assumption (B), since polynomial and non-polynomial elements
are obviously distinguished by the number of their edges. See Section for details.

A natural way to ensure (B) is to give homogeneities not in N for the non-polynomial
elements. Hence the following is one of the sufficient conditions.

Assumption (B’) — Homogeneities of elements in BT\BY and B\Bx are not nonnegative
integers.

This is a kind of natural assumption on regularity structures associated with PDEs; As-
sumption 5.3 in [I4] is a part of assumption (B’) for elements in B\Bx. Under assumption
(B) write, for 7€ BT,

Atr = Z ® (r/%o) —i—ZXk ® (r/7 Xk

U€B+\B+

=: Z ® (r/%o) +Z—®Dk

oeBH\BE

(3.3)

Extend by linearity the map D* from T} to T for all o € A.

—[k]

Lemma 9. Under assumptions (A) and (B) one has, for all o,7 € T and all k,¢ e N,
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(a) D1 =1,
(b) if T € BY\BY, then D1 € span(B+\BY), moreover, DE1 # 0 only if |k| < |7|,
(c) DDt = DF*+r,
(d) DFX' = Ve i X°F,
(e) D*(r0) = > (:/)DleDk_kla — Leibniz rule,
Proof — Item (a) comes from the property satisfied by coproducts in Hopf algebras,

recalled in Appendix [A] The former part of item (b) is a consequence of assumption (B-
2). The latter part comes from the property (A.1l). Since |7| > 0 by the definition of

concrete regularity structures, the term Xk—f ® D¥r appears in the expansion of A*7 only
if |k| < |7]. Item (c) is a consequence of the coassociativity property

(AT @IDAT = (Id@ AT)AT
of the coproduct A*™. Expanding both SldeS at 7 € B', we have

>, 1@/ e/ o+ ) f " @ Do (r/t)+ Y F® - ® Dk
oneBH\BE oeB+\BY, keNd k,leNd
k
= Y c@ATE/f0)+ Y S @atDhy
ceBT\BL keNd

It gives indeed the identity

A*DFr= Y DFo(r/to) Z o @DW (3.4)

o<, O'$B; LeNd

this means (c). Item (d) is a direct consequence of the Leibniz formula for the polynomials,
which follows from identity (3.1)) giving the action of AT on X; and the multiplicativity
property of A*. Ttem (e) is again a consequence of the multiplicativity property of AT,
>

3.2  From models to paracontrolled systems

We recall in this section some of the results proved in [5], stated here in the slightly more
general setting of the present work. The proofs of these extensions are given in Appendix
These results are proved in Sections 2 and 3 in [5] without any extra assumptions about
‘bounded polynomials’ and interaction between Tt and T. Hence the proofs are completely
parallel to the proofs in [5], except for the use here of the modified paraproduct and the weight.

Given Fréchet spaces E and F', denote by L(FE, F') the space of continuous linear maps from

E into F. Recall G stands for the set of characters of the Hopf algebra T'". Given maps

g:R"—>G*, NeL(T,S'RY),
and z,y € R?, set

8yx = (gy ®g;1)A+ eG,

and

né:= (N®g, YA e L(T,S'(RY).
Set

Bo := min A,

where A is a homogeneity set of ' = D s 4 Tj-

Definition 10. Let a concrete regularity structure 7 satisfying assumption (A) be given. We
denote by

Mo (T ,RY),
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the set of pairs of maps
g:R"—> G, NeL(T,8RY),
such that
(a) one has g, (X*) = 2, for all x € R% k € N%;
(b) for any T € BE, the function x — gu(7) belongs to L;’Slp(Rd), and the function

(z,y) — gyz(7)7

belongs to C(‘;;mp(Rd x R%);

(c) one has (NX*o)(x) = 2¥(No)(z) and (N1)(z) = 1;
(d) for any T € B,\{1}, one has N7 € Crﬁﬁp(Rd), and the R-indexed family of distributions

(N&7),era belongs to D‘ryp.

The pair (g,MN) is called o rapidly decreasing model on the concrete regularity structure 7 .

We define metrics on the space of rapidly decreasing models on 7 setting

a1 (&) 5= s (18~ )0 oz + &~ £ty o)

reBs
o <<” =)0 oy + (T8 - (ﬂf)g')o)(-)lDaa)

With a slight abuse of notations, we write
g:(7) € LE,(RY),  gye(r) € Cly) o (RE x RY).

The definition of a model depends on the choice of subspaces span(BT\B%) and span(B\Bx),
but not on the choice of their bases. Indeed, since

g:(X*) € L (RY),  gu(X*) € Cly) (R x RY)

and since L%, (RY)- L%, (RY) < L%, (RY) and €& (R xRY)-CJ,  (RIxR?) = €yl (RIxRY),
for all non-negative a, 3, condition (b) holds for any 7 € B*\B%. Recall that the set B, in
item (d) of Definition [L0| stands for the index parametrizing the non-polynomial part of the
basis of T'. It is not so obvious to see whether condition (d) holds or not for any 7 € B\Bx;

however, the following lemma holds.

||

Lemma 11. Assume (A) and (B). Under the condition (c), the estimate (MN%T),era € Drap
holds for any T € B\Bx.

Proof — We prove the estimate for X*7, with 7 € B,, k € NY\{0}. Because of the multiplicative
property in assumption (A-4) and item (c) in Definition we have
NeEX*r = (- — z)*Ner.
Recalling the notations at the beginning of Section [2 we have
$,(NEX*) (@) = | Pyl = )y~ 0 (MEn) o) dy = | P~ ) (M) dy,

where Pf(x) := (—z)kP;(x). Hence Pj;1 * Pf = Pf by the property of support of Fourier
transform, and we have

S (NEX*T) (x) = Pjyr » Py + (NET)(2) = JP}“(OC = 9)Si1(ME7) (y) dy.

By induction, we assume the required estimate for any 0 < 7 (hence o0 = 7 or 0 = X kn
with some k # 0 and n € B, such that || < |7|). Since either of o or 7/0 is non-polynomial
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by assumption (B), for any a € N,
19511 (MEX) ()| = |Sj4+1(MEByeT) ()] < D |gya(7/0)||Sj41(ME0) (v)]

O<T

< (Jel + w1 ) D ly — |72l

O<T

By using the scaling property Pf(a:) = 2j(d_|k|)Pf(2j x) and by a similar argument to
Lemma [29 in Appendix [B] we can conclude that

|5;(NEXFr) ()| < |l * 279 (71D,

Xk
hence (I'I%KkT)xeRd € Dl‘gp T‘. >

The next statement is a variation on Proposition 12 of [5], where we use now the usual poly-
nomials and polynomial weights, and the modified paraproducts P™ instead of the bounded
polynomials, no weights and the usual paraproduct P. Its proof is given in Appendix

Theorem 12. Let T stand for a regularity structure satisfying assumptions (A) and (B).
Pick m € N. For any model M = (g, M) € Mrap(T,RY), there exists a family

m, T d m,M o d
(s ecth®y) . . (Eo1™ € CURY) o, )
such that one has, for any T € BY\BY and o € B\Bx, the identities

g(r) = >, Pu e, lvI™E+ 7175 (3.5)

1y <tv<tr
+
veBH\By

Mo = Z ngo_/u) [[,u]]m’M + [[O']]m’M. (3.6)

n<o
HeB\Bx

Moreover, the mapping

— m,g 7| (pd m,M lo] (pd )
v (e e ch®h) o (I e @) )
is locally Lipschitz continuous.

This version of the statement, with m > 1, will be used in the proof of Theorem given
in Section Write [7]8 and [o]]M instead of [7]™# and [¢]™M, when m = 0.

Given a model M € #yap(7,R?) on a regularity structure .7, and v € R, define the space
Diap(T, g) of rapidly decreasing modelled distributions as the set of functions

I R? — G—) Tj,
<y
such that, for each T € B, the function (7', f(-)) belongs to L% (R?), and the function

(Z’,y) — <T/7 f(y> - g/y\w‘f(x>>
-

) ‘rTa'p(Rd x R%). The reconstruction Rf of f € Dp(T,g) is an element of S’(R?)
satisfying the condition

belongs to C

(Rf—MEf(@)) €D,

zeR
If v > 0, there exists exactly one reconstruction. If v < 0, there are infinitely many recon-
structions and two reconstructions are equal modulo Crvap(Rd). (This is a key point to prove
Proposition ) In what follows, we assume v # 0 and denote Rf by the one defined in

Corollary [33]in Appendix [B] If v = 0, existence of the reconstruction is not ensured in general.
See Example 5.5 in [I1].
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The next statement was proved in [5], Theorem 14, in the unweighted setting; its extension
to the present setting is given in Appendix [B]

Theorem 13. Let 7 be a regularity structure satisfying assumptions (A) and (B). Let a
reqularity exponent v € R\{0} and a model M = (g,N) € Myap(T,RY) on T be given. For any

modelled distribution
f= > fr0eDL(T.g),

o<y
each coefficient f, has a paracontrolled representation

fo = > Py /o8 + [Lf-15, (3.7)

o<p
p/o €span(B+\B%)

where [[ f, ]| € Coap Il (RY). (The quantity [[j1/c]® is defined as a linear extension of the symbols
I8 in Theoremi) Moreover, there exists a distribution [fM € Cap(R?) such that

Rf = > Prlol™+[£1" (3.8)
oeB\Bx

The mapping

(feDi(T.0) ~ (([[f]]M, (151%) o) € Chp(RY) x [T €7 (RY) )

oeB

is locally Lipschitz continuous.

A similar statement with P used in place of P holds true. We end this section with three
useful formulas involving g, that will be used in the proof of Theorem The reader can skip
this statement now and come back to it at the moment where it is needed. Recall D¥r = 0, for
|k| > |7|. Let Px : T" — T, stand for the canonical projection map on Ty, and for 7 € BF
set

fo(1) = — (8 ® g, ') (Px ®Id)(A*7)

= _Z 7l g_l D'r)
For 7 # 1., we also have
fo(7) = (8. ®g, ) ((Id — Px) ® 1d) (A% )
= ) elo)g (/M)

o<, O’$B)+(

Lemma 14. Let T be a reqularity structure satisfying assumption (A) and (B). For any
7€ BN\BY and any k € N, we have

g(D'r) = Y gl(r/To)fu(Do). (3.9)
O’<+T,O'$B;

and

gym(DkT) = Z gy$(7/+ Z D’H—Z ) (3.10)

o<, O’$B)+( ¢
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and
£.(D"7) = 1g1<108{ (8, @ 87 ((1d — Py) @ 1) A* ||

] T sl

o<, Jél’j’}

: (3.11)

?JZQU.

Note that one cannot interchange in the derivative operator with the sum, as a given
function gy, (o) may not be sufficiently regular to be differentiated k times. Note that formula
does not have the classical feature of a Taylor-type expansion formula, which would
rather involve an z-dependent term in front of gy, (7/*0), in the first term of the right hand
side.

Proof — e Note first that formula (3.4) for A+ (DFr) gives
fo(D*r) = (8. ® g, 1) ((Id — Px) @ Id)A* DF 1 = Z g.(D*v) gt (r/Tv).  (3.12)
v<tr, 1/¢B;r(

Formula (3.9) is an inversion formula for the preceding identity. One obtains the former
from the latter by writing

Y, &/ fo)fu(Dro) = > ga(7/*0)g; ' (0/ " v)ga (D)

0S+T,U¢B} V<+U<+T70'7V$B)+(

- 2 g:(r/"0)g, (o) v)g. (D" V)

v<to<tr, 1/¢B)+(
D (g @) (/) (DFY)
v<tr, I/¢B;—(

=g, (DkT).

(In the second equality, we can remove the condition “o ¢ B} ” because v < X% implies
that v e B}L(. In the last equality, we use the property of the antipode.)

e Applying g, ® g, to (8.4), we have

l

_ Yy _

gue(D'r) = >, g(D'u)e (/i) + ) e (D)
n<tr, pgBY e

, (3.13)
k o\ o—L1(y,/+ + (y — ) k+¢/
= 2 gy(D M)gy v/ 1) gya(T/ V)_Zfo(D ),
p<tv<tr, pgBY v .
where we use the formula in the expansion of g 1(7/" ). Identity follows from
(3.13)) using (3.12). Note that u <* v and p ¢ B} implies that v ¢ B;g.

e Formula comes from identity by rewriting the terms g, (D*v) for v € BY\BY%
in an appropriate form. As a preliminary remark, notice that applying g,, ® g, to the
defining identity for the DFv, we have

gy (Y —a)F
gy(v) = Z gyx(a)gx(u/+0)+2gz(D V) .
k

k!
o<ty 0’¢B;—(
Since one has

aggy$(0)’y:x = 0’
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for any = € R, whenever |k| < |o|, one then has

g:(D"v) = Likj<v| 0§{gy(y) - Z 8ye(0) gz(V/JrU)}‘ . (3.14)
a<+ma¢3§ v=
lo|<k|

At the same time, one has

gy (V)= D) (& re) W/ T ey(n) = ) (80" ) v/t 1) gy(p)

pu<ty u<ty

u¢B;

= ) /to)gr o/ ey (1)
pu<to<ty
p,oeBE

In the second equality, we use assumption (B-2) to derive (g;! * g,)(v/TX*) = 0 for
any k € N% In the third equality, we use that u <* o and p ¢ BY implies o ¢ BY.
Furthermore, since u <* o ¢ B%, u € B%, and |o| < |k| implies u < o (hence |u| < |k]),

we have
Y m(/To)e o/ e = ). g/ T0) gye(0) + P (v),
u<togsty o<ty
1,o¢BE, o|<|k| o¢BY, |o|<|k|

where p_| is a polynomial of degree less than [k, hence 6’;p<|k‘ = 0. We thus obtain

from formula (3.14)), that
go(D*v) = 1|k<u|9§{ Y &/ To)g o/ ) gy(u)}’y#

pu<tosty
1,0¢B%, [o|>|k|

Inserting this expression in formula (3.12]) one gets,
(D)= Y g '(7/"v) g (D)

Vé*TJ@B}

A D YR PR P NP

u<to<tustr
M,O’,l/élg}, |J|>‘k‘

:aéf{ 2 g;%/w)gz<u/+a>g;1<o/+ﬂ>gy<“>}\y_x

pu<to<tuvgtr
ugBY, lo|>|k|

:85{ 2 <gx*g;1><7/+a>g;1<a/*ﬂ>gy“‘)}\y-x

u<to<tr
n0¢BY, o>kl

= 1|k|<|755{ Y &/ gy(u)}‘

y==
p<tr, pgBY

In the third line, we can omit the condition o, v ¢ B} because of u ¢ B}. In the last line,
we use that (g, * g;!)(7/7o) = 1 if and only if o = 7. >

4 — From paracontrolled systems to models and modelled distributions

We prove the main results of this work in this section. Theorem [I| gives a parametrization
of the space of models by ‘bracket’ data in paracontrolled representations. The main part of
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the work consists in building a g-map from a paracontrolled representation for it on a minimal
subset of a linear basis of T". Assumption (C) below gives a structural assumption on T
that identifies this minimal set. The proofs of Corollary [2] on the density of smooth models,
Corollary [3] and Corollary [4 on extension problems, are proved in Section [£.4]

Theorem [5| provides a parametrization of the space of modelled distributions of regularity
v, for a fixed v € R, by a product of Holder spaces. It is proved in Section On a technical
level, one brings back the proof of Theorem [5| to an extension problem for the g-map from the
Hopf algebra T'" to a larger Hopf algebra T' ; . This allows to see Theorem |5 as a corollary of
Theorem |1| under the additional assumption (D).

Unlike the other assumptions, assumption (D) is about a basis B of T' rather than about
T itself. It is thus possible that a given basis satisfies assumption (D) whereas another does
not. This flexibility is at the heart of the proof of Theorem [7] dealing with the case of
BHZ regularity structures, investigated in Section Those regularity structures introduced
by Bruned, Hairer and Zambotti in [7] provide the universal model of regularity structures
associated with a subcritical singular stochastic PDE.

4.1 From paracontrolled systems to models

The following claim is the same as Corollary 15 in [5], with the modified paraproduct P™
in the role of P. Recall from Theorem [12|the definition of the reference distributions [o]™M,
in the paracontrolled representation of the Il operator of a model M, using the modified
paraproduct P™.

Proposition 15. Let . be a regularity structure satisfying assumptions (A) and (B). Pick
m € N, and assume we are given a map g : R — G, such that conditions (a) and (b) in

Definition are satisfied. Then for any family ([[7']] € CQ)(Rd)> B, 7]<0’ there exists a
T€Bo, |T|<
unique model M = (g, M) € Mrap(T,R?) such that
Nr = Z Pa(r/o) [e]™M + [7], V1eB., || <0. (4.1)
o<T
The map

(& (T eCch®D) )~ Methup(7.RY

T€B., |T|<0
1S continuous.

Note that the distributions [¢]™M in (@.1)) are recursively defined by application of Theorem
to the subspace g, 3. If 0 € B, with [o] <0, then [e]™M = [[o].

Proof — e Recall there is no other element than 1 of zero homogeneity in the present setting,
and pick a basis vector 7 € B, with |7| < 0, and assume that (g,[1) is a model on the
sector T-|. Set for all x € R4

hy(z) := Z g.(7/0)0;

o<T

this defines a modelled distribution in D'r;‘p(T, g). Then the bound (N&7),cra € D'r;‘p is
equivalent to that N7 is one of the reconstructions of h,. From the version of Theorem
with the modified paraproduct P™, the distribution

Rh, = 3 Po o] + [h
o<T

is a reconstruction of h,. Since
Nr — Rh, = [r] — [ ]™M € cl7| (RY),

rap

the distribution N7 appears then as another reconstruction of h..
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o If one picks now a basis vector p € B, with || > 0, then h, € DlﬁL(T, g) has a unique
reconstruction, equal to Ny, that is characterized by the data

(”%U, g:(n/o);zeR o < u),

from the defining property of a reconstruction. An elementary induction then shows the
existence of a unique extension of Il to T" that satisfies the property N7 = Rh,, for every
T € B with positive homogeneity. >

The fact that this statement holds not only for the paraproduct P but also for the modified
paraproduct P™ will play a pivotal role in the proof of Lemma below. The proof of
Proposition [I5] makes it clear that the above parametrization of the set of I maps is related to
the non-uniqueness of the reconstruction map on the set of modelled distributions of negative
regularity exponent. This statement leaves us with the task of giving a parametrization of the
set of characters g on T by their paracontrolled representation. We need for that purpose to
make the following assumptions on the Hopf algebra (T, A1) and the basis B of T". Recall
that D¥ : T+ — Toi‘ K| is a linear map satisfying the recursive rules from Lemma |9 Recall
that a pre-order < is a reflexive transitive binary relation. Write c <7 if c <7 and 7 € 0.

Assumption (C)
(1) There exists a finite subset G of B such that BY is of the form
Bt = |_| {DkT cke N4, |7 —|k| > ()}.

TeGd

(2) There exists a preorder < on the set B such that, for each T € G, the coproduct At
is of the form

k
Atr=7®1+ Z o®(t/To) + Z X ® DFr, (4.2)
k

+
o<tr,0¢By

with o € BY(r7) and 7/o € span(B* (7)), for each o in the above sum, where for
each 7 € B*, denote by BT (77) the submonoid of BT generated by

{X1,..., Xq} U |_| {Dko ke N |o| — |k >0}.
UEQSL,O'<IT

(3) For any element o € BY\BY such that there exists T € GF and o <* 7, the homogeneity
of o is non-integer.

Note the disjoint union in the description of BF. Assumption (C-1) identifies a set of
generators, modulo the action of the D operator. Assumption (C-2) provides a useful induction
structure. Assumption (C-3) is a part of assumption (B’) and it is used at the end of the
proof of Theorem If one understands the coproduct A* as giving the elementary pieces of
any given element, assumption (C) as a whole provides an inductive description of B*.

As discussed in Section BHZ regularity structure satisfies assumption (C). Indeed, we
can choose G as a set of all conforming trees of the form I(7), and the operator D* appears
as the form D*I{(t) = I!(r). In the BHZ regularity structure, one of the examples of < is
the binary relation based on the scale of graphs. Since o and 7/%¢ in are subtree and
quotient tree of T respectively, it follows from definition of A™ that o,7/Tc < 7. The last
assumption is true, if the types {t} are assigned rationally independent homogeneities {|t|}.
See Theorem [26] for details. We leave now this special setting and come back to our general
setting.
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Lemma 16. Denote Tt (77) := span(BT(77)). For any 7 € GF and any o € BT (77), one
has

AtoeTT(r)@T (7). (4.3)

Proof — By multiplicativity it is sufficient to show the case o = D*n e B*(77) with n e G+
and ke N%. If k = 0, follows because of the transitivity of <. By the formula
for AT DFp and the property D* : T*(77) — TF(77) that is proved by Lemma @ DFn
also satisfies . >

Recall from formula (3.14) that if we are given characters (g;),ege on 7% as in Definition
then

(') <Ly d{e - Y a0l (4.4
o<t O’¢B)+( y=r
lo|<||

The induction structure from assumption (C-2) restricts the above sum and shows that the
family of all g,(D*7) is uniquely determined by the preceding formula. It follows then from
assumption (C-1) that the character g on T'" is entirely determined by the datum of the g(7),
for 7 € GF. We have in particular, if 7 € G is minimal (i.e., there is no o € GI such that
o< 7) then

k
y—x
B =g+ Y U g 0b),
[k|<|7]
since B (17) = BY%, so for |k| < ||, one has
gw(DkT) = 6559(7)’y=x’ (4.5)
and
fI(DkT) = gZ(DkT)>
and ,
—x
gye (D7) = g, (D7) = ) W g (pbeiry, (4.6

l
Recall that, given a concrete regularity structure .7,
y—i_ = ((T+7 A+)7 (T+7 A+>)

is also a concrete regularity structure, and that for a g map as in Definition [10] one defines a
model M& = (g, M8) on 77 setting

(Ne7) (y) = gy(7).

Theorem 17. Let T stand for a concrete reqularity structure satisfying assumptions (A-C).

Then, for any family ([[T]] € Cl;L(Rd)) o there exists a unique model M& = (g,M8&) on T+
TEY,

such that

g(7‘) = Z Pg(T/+U)IIU]]Mg + [[7‘]], VT1e g:_ (4.7)
o<tr
oceBT\B%;
The map
(Il e CEhR?) . > M8 & (7R (4.8)

is locally Lipschitz continuous.

Note that one uses the paraproduct P and the brackets [-]™® in the statement. The modified
paraproduct P™ is only used in the proof of Lemma where we construct a model on an
intermediate regularity structure introduced along the proof. The injectivity of the map (4.8)
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is elementary, so Theorem [I7]and Proposition[I5} with Theorem [I2] prove all together Theorem
M

The remaining of this section is dedicated to proving Theorem [I7] The proof is done by
induction on the preorder <.

e Initialisation of the induction. If 7 € G is an minimal element, then set

g(r) == [,
and define g(D*7) and g, (D*7) by (4.5) and (4.6). It is clear on these formulas that they

define elements of the spaces CILQL_W(RC[) c Lﬁgp(Rd) and Cg‘)_rlalﬂ(Rd x R%), respectively.

e Induction step. Fix 7 € GF and assume that g has been constructed on the submonoid
B*(77) as a continuous function of the bracket data — so all the functions [o[M* and g(7/* o)
make sense as elements of their natural spaces. Define g(7) by identity (4.7), and define

g(D*1) by ([@4), for all k € N¢ with |k| < |7|. The induction step consists in proving that
g.(DFr) e L;‘gp(Rd) and g, (DF7) € Cg‘);L’g(Rd x R?), as one can use for a, 3 non-negative the
inclusions

Gow(RY) - L, (RY) © L, (RY)

slow rap rap
and 5 5
d . pd d . pd at d . pd
C(az)(R x R%) 'C(z),rap(R x RY) c C(2),rap(R x RY),
to get the regularity properties of g, (u D*7) and gy, (u D¥7), for pe B¥(77).
Choose m € N, with m > |7|. We introduce a regularity structure 7 (7) with Hopf algebra
part T (77) and T-space defined as follows. Consider the formal symbols

a(m)
indexed by o € BJ’\B}, with homogeneity
‘O'(m)‘ = |o| —m.
Set
T (7) := span({a(m) o<1, 0¢B%}u {T(m)}>,

so all elements of 7™ (7) have negative homogeneity. Lemma (16| ensures that we can define a
coassociative coproduct
§:T™(1) > T"(1)QT(r7)
setting
o) = 3 uM @ (o )
u<to, ugBy
for each basis element of 77 (7). Lemma [16| also ensures that
AY(TH (7)) cTT(r)@T (),
SO
T () = ((T*(77), %), (17 (7).6)
is a concrete regularity structure.
We build a model (g, A) on 7™(7), from g : TT(77) — R given by an induction assumption
and an operator A : T (1) — S'(R?) defined by
No™) = |V|"g(),
where [V|™ is the Fourier multiplier operator |V[™¢ = F~!(| - ["F(). The pair (g,A) turns
out to be a model by Lemma below. Then formula (3.11]) giving f,(D*o) can be interpreted
in terms of that model, under the form of identities

f,(Dkg) = Jhom (Ag(a<m>)) ()
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for operators J*m

on distributions defined below. The identity

N = AEog’,
where g° := (Id ® g)4, is then used crucially to obtain estlmates on f,(D*o), that eventually
give informations on g,(D*7) and gy, (D*7) via formulas and -

Lemma 18. The pair (g,N) is a rapidly decreasing model on the regularity structure 7™ ().

Proof — Since we have the identity
Ao ™) = |V"glo) = >, Po, VI [ul® + V" [o]E,
p<o, ugBy

for all o € B+\B; with o <* 7, from the intertwining relation defining P and the induc-
tion assumption, the operator A is the unique model on .7 (1) associated by Proposition
to the inputs

[o"™] == V| [o]¥ € Cig, ™ (RY),

rap
since all elements of 7" (7) have negative homogeneity. >

Note that it follows from identity (3.11)) in Lemma [14] that the model M and the function
f(D*o) are related by the identity

fx(Dka)za’;{ > gf(ﬂ/*u)gy(u)}‘y_x

p<to, pgBy

= a’;{lvyl‘m > ggl(ff/*u)/\(ﬂ(m))(y)}‘y_x
p<to, ugBL (4.9)

= a’;{!vyl‘m/\;% (o—<m>)(y)}]
= ijm(/\g )))( ),
where the operators J?’ are defined by

IET(C) = M|V T A,

y=z

for an appropriate distribution ¢ € S'(R%). If j > 0, since the Fourier transform of A;( is
supported on an annulus, the function J?’m(g ) is always well-defined; this is not the case of
Jlfin(() However, we only use in this section distributions ¢ of the form ¢ = |V|™¢ (where
such ¢ is unique in the class of rapidly decreasing functions), so J ’i;”(g ) = OFA_1€, in our
setting.

Lemma 19. Under assumptions (A-C), for any o € BY\B% with o <* 7,k e N¢, and a € N,
we have

k, —a o—i(lo|—Ik
’ij(A§<U(m)))(x)‘ < Ja|ze 2 el=IkD)

k:,m m —a o|l— —q —
TS @) <yt Dy afl ),
p<to, ugBy

Consequently, f,(D*o) e LL

rap-
Proof — For the first estimate, since

@) (@) = Y grt o/ )t A iga(p) € LE,,
u<to, ugBY
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by assumption, it is sufficient to consider the case j > 0. By the property of p;, there
exists a smooth function p supported on an annulus, and such that setting p;(-) := p(277-),
one has pjp; = pj. Set

QY™ = A |IVIT(F ),
and note the scaling property
@’?:m(.) - 2j(d+\k|—m)@kvm(2j.).
J

We now use the fact that (g, A) is a model to write
3 (8o f@’”” 2= ) (AS(0™)) ()
= [ @ = )85 (08 0 8570 ()
2 JQM Y) gy (/") A (AE(L™)) (y)dy.

usto
Recall that |2 + y|+ < |z|«|y|«, for all 2,y € R By Lemma for any a € N we have
Jk””(Ag(o("”))(x)
< % [le = ulbI@ @ = lly =1l A8 ) dy
p<to
< }: 9—3(lul—m f|||ka H|b|“”dz
p<to

< }: 93 (lul=m)9i(|kl—m |ﬂ+u)JwZ‘|Qk"l |p“ﬂ el g

p<to
< 9—i(lo|=[k])

We get the second estimate from the first using once again the fact that (g, A) is a model,
writing

I (@) () = I (A5 (" @) )W) = N galo/ ) I (M) (),

u<to, ugBY

We can now prove that g, (D7) e L?gp(Rd) and gy, (D7) € ng;gﬂ(Rd x R?%), and close the

induction step. We use the formulas from Lemma [I4] for that purpose. First, since
g(D'r) = Y glr/To)f (D),
o<tr, UGZB;E

(R?) and f,(D*c) e LL_(R?), from Lemma we have indeed g, (D¥7) €

rap
L% (R%). Second, one can rewrite the identity

rap

D)= Y gl )0k~ 2 LD g ety

gy.’E - gyﬂf e, x )
o<, 0’¢B} L

from Lemma using identity (4.9) for the f-terms. This gives for gy, (D*7) the formula

— )t
2{ D T AT E L (L)) [V R SR i J?”’m(/\i(T(m’))(:v)}

J o<*tr, UéB;—( |k+e]<|7]
|kl <lo|

with g, (7/%0) € LY

slow
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=: Z g‘;m(DkT).

Given ,y € R?, set jo = —1, if |y —x| > 2, and pick otherwise jo > —1 such that |y —xz| ~ 275,
One uses the first estimate from Lemma [I9] to bound above the sum over j > jo

21 Y, lg)e(DF7)]

J=jo
<Y fy—afrilelale- S Sy gl gmilel-lki-e)

e iZdo [k+0<Ir]

[kl <lo] (4.10)

< Y fy—affrilelgmlel=) ST gy gl g-iorllki-e)

o<tr |[k+2|<|T]

|k|<|o]
< |y — af 7171k

To consider the sum over j < jo, assume now that |y — x| < 2. Then, since (g, ) is a model
and

N(r™) = A (g 7™) = 35 gue(r/ oINS ™),

o<tr
we have for gZCC(DkT) the formula
gl (DF7) = ;" (N (™)) () = 35 (/T o) (M) ()
o<t O’¢B;—(
k|>|o]
_ 2\
_ Z (y E'l‘) Jf-‘ré,m(l\ggg(T(m)))(x)
|k+0|<|7| )
(y — x)k/ ! [b] Th+K (Ag(.(m)
= [b] 2 an T} (1= &)PLITH (AL (7)) (& + t(y — ) dt

|k"[=Tb] '

k,
— ) gw(r/o)ITT (A (e))(y)
o<t 0¢BY
|k[>o]
where b := |7| — |k|, by the multivariable Taylor remainder formula. Note that |7],|o| ¢ N in
the above formula, by assumption (C-3). Since |y — 2| < 2, [x + t(y — o)[x = |z]4. It follows
then from Lemma [19|that Z_qu-o |g{,x(Dk7)’ is bounded above by

K'|+||—|o —a o—j(lo|—|k|—|k
Z Z Z ’y_x“ [+|7] H]JS‘* 9—i(lo|=[kI=IK])
J<jo |K'|=[b] o<1, O’¢B;

£y Tl e g-iliel-Ik

J<jo o<tr,0¢BY
|k|>]o|

Slalz® D> Jy— MRl gl Ik=IRD
o<tT, 0¢BY,
+ |ylz @ Z |y — a|ITI=1el 9=do(ll-1k)

o<t m;éB;r(
|k|>o]

— - —k
s (|:E|*a+ |y‘*a)|y_$|\7'| | l

Together with inequality (4.10]), the preceding upper bound tells us that g, (D7) € C (‘;;;L]ﬂ (R x

R). This closes the induction step. >
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Remarks — 1. On branched rough paths. The setting of R’-valued branched rough paths
provides an example of regularity structure where Theorem [5| applies, giving an alternative
point of view on the results of Tapia and Zambotti in [25]. The Hopf algebra (T, A%) is in
that case the Butcher-Connes-Kreimer Hopf algebra. We recall the details for the reader as it
also sets the scene for part of the results of Section

The set T is the free commutative unital algebra generated by the set BI of non-planar
rooted trees with node decorations in a finite set {1, ..., ¢} and no decoration on the edges. The
empty tree plays the role of the unit in 7. A product of decorated trees is called a forest, so
generic elements of " are linear combinations of forests. The splitting map A" is the algebra
morphism defined on trees as follows. Given a labelled rooted decorated tree 7, denote by
Sub(7) the set of subtrees of 7 with the same root as 7, and induced decoration. Given such a
subtree s, we obtain a collection 71, ..., 7, of decorated rooted trees by removing s and all the
adjacent edges to s from 7, and keeping the node decoration inherited from 7. Write 7/s for
the monomial 7y ...7,. One defines a linear multiplicative map A™ : Tt — TT ®T™", defining
it on decorated trees by the formula

Atr = Z s® (1/s),

seSub(7)

An explicit formula for the antipode was first given by Connes and Kreimer in their celebrated
work [I0]; see [9] for a simple and enlighting proof. Each node decoration i € {1,...,¢} is
assigned a homogeneity « € (0,1), and each decorated tree 7 is equipped with the homogeneity
a(f7), where §7 denotes the number of nodes contained in 7. The homogeneity of a forest is
the sum of the homogeneities of its decorated trees. It is elementary to check that (T, A™)
is indeed a Hopf algebra. To avoid polynomials and derivatives, we consider the subalgebra
of trees with homogeneities smaller than 1. Thus assumptions (A-C) without polynomials X*
and derivatives D* hold, but it does not matter here. Branched rough paths are g-maps on
(T+,A") over a fixed time interval [0,7] in place of R?. Theorem applies then in this
setting and provides a parametrization of the set of branched rough paths by the product
space HTeBo* CIl([0,7],RY), in accordance with Tapia and Zambotti’s main result, Theorem
1.2 and Corollary 1.3 in [25]. Our parametrization is different from their identification of the
space of branched rough paths as a principal homogeneous space over the preceding product
of Holder spaces.

(Theorem (1| cannot be applied in a finite region [0, 7] directly. To overcome this point, we
extend a function f € C([0,T],R") to [T, T] symmetrically, and extend it to [(2n—1)T, (2n+
1)T| for any n € Z periodically. Then for any « € (0,1), the Holder space C([0,T],R) is
identified with the space

Cos(RRY) i= { € CORRY); f(8) = (=), f(t+2T) = (1) for any t R},

Note that Littlewood-Paley blocks A; preserve the symmetry and periodicity, so such spaces
are closed under paradifferential operators (paraproduct, its two-parameter extension, etc.)
used in this paper. Hence we can apply Theorem |1 to such spaces.)

2. On the signature of arbitrary models. We mentioned in the introduction that admissible
models on regularity structures built from integration operators have a well-defined signature
— that is a unique extension to the full regularity structure with elements of arbitrary large
positive homogeneity. This comes from the fact that such models are determined uniquely by
the definition of the Il map on elements of the regularity structure of negative homogeneity.
Extending a regularity structure with additional elements of positive homogeneity the initial
datum of the restriction of 1 on the elements of negative homogeneity still defines a unique
admissible model on the extended regularity structure. Such an automatic extension result
does not hold for general models, with unrelated g and Nl maps. Indeed, Theorem tells
us that the set of g-maps is parametrized by a set of functions indexed by GF. Embedding
a regularity structure into a larger regularity structure will a priori embed the set G into a
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larger set, implying the non-uniqueness of an extension of the g-map, from Theorem [I7] again.
The following statement follows nonetheless from Theorem [1| while it is beyond the scope of
Theorem 21 in [5]. See Section 4 in [5] for the definition of admissible model.

Corollary 20. Let T be a regularity structure satisfying assumptions (A-C). Let T' < T be
a sub-regularity structure of 7 satisfying these assumptions as well, and such that 7' contains
all the elements of 7 of negative homogeneity. Then any admissible model on 7' has a unique
extension into an admissible model on 7 .

Like with Lyons’ extension theorem, it is important to notice that the extension map is
a continuous map. So even in a stochastic setting where the construction of a model may
require stochastic analysis arguments, once this is done, the extension of this model to a larger
structure no longer involves probability arguments.

4.2 From paracontrolled systems to modelled distributions

We prove Theorem [5]in this section. Let .7 be a regularity structure satisfying assumptions
(A-C). Pick v € R, and M = (g, M) € Myap(7,RY).

The key observation is that proving Theorem [5| is equivalent to an extension problem for
the map g. Consider indeed the commutative algebra T; generated by BT and new symbols

(FT)TGB, |7|<y+
Define the homogeneity of the symbol F'. by

[Fr| =~ —|7l.
The coproduct A}, on T4 extending A and such that
AT(Fp) = (F) @1+ Y (/7)) ® (F), (4.11)
TS

is coassociative and turns T into a Hopf algebra. It satisfies assumptions (A) and (B) with
B+o ::B:U{FT; ’T‘ <7}

in the role of BY. Note that T ; does not satisfy assumption (C) in general, since the D¥F,
have no reason to be independent from the {F,},. The elementary proof of the next statement
is left to the reader.

Lemma 21. Given a family (f:)rep of continuous functions on RY, set f :=> s f-7, and

gac(FT) = fq—(IE)
Then
(7' F(y) — G f () = 8ya(Fr).

Defining a modelled distribution f € D, (T, g) is thus equivalent to extending the map g
from T to T in such a way that the extended map on (T, A}) still satisfies the regularity
constraints from Definition [10l

Recall from assumption (B) that either 41/ € span(BT\BY) or p/7 € span(B%), for 7, u € B.
If p/7 € span(BY), set

Xk
pfr = 3 )
keNd
and define
DFF.:= ) (k) F, (4.12)
TS
p/Tespan(BY)
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Then we have

Xk
A*F, =F,®1+ > (Wr)@F,+ Y, Fr ®@D'Fr.
Tp keNd
p/Tespan(BH\BY)

Theorem 22. Let a concrete reqularity structure J satisfying assumptions (A-C) be given,
together with a family ([f-] € C?a;m(Rd))TeB < Assume that v — |7| ¢ N for any 7 € B
with |7| < . Pick a model (g,N) € Mrap(T,R?). Define

fo= ) Prlw/rIE+ I,

T<p, [l <y
p/Tespan(BH\BE)

and

We=d{rw- % eswnn@l] (4.13)

T, |pl <y, [/ TI<K|
p/Tespan(BH\BY)

If the structure conditions

= 3 k) fa (4.14)

T, |l <y
p/Tespan(BY)

holds for any T € B and k € N, then
f = Z fTT € D;Yap(T’ g)

TeB

The structure condition is reminiscent of a condition introduced by Martin and Perkowski in
[22] to give a characterisation of modelled distributions in terms of Besov type spaces. Given
that we see f; as g(F';), formula is nothing but a formula for g(D*F;) — the analogue
of formula in the present setting.

Proof — Consider the extended Hopf algebra freeT ; freely generated by the symbols
(X1,....Xa} BT U {D’“(FT); reB, v > |7+ |k]}.

It satisfies assumptions (A-C). By Theorem (17| giving a paracontrolled parametrization of
the map g by its definition on the g(7), with 7 € G5 1= G U {FT Tl < 'y}, there exists
a unique model g on f'eeT;S that coincides with g on T'", and such that

g(FT) = Z Pg(Fu)[[:u/T]]g + [[f‘r]]a

T, |1l <y
for all 7 € B with |7| < 7. Since T is the quotient space of T} by the relations (£.12),
and
k
g(D'F-) = ) (k) g(Fp),
T<p, |l <y
p/Tespan(BY)
from the structure condition (4.14)), the map g is consistently defined on the quotient
space, where it satisfies the estimates from Definition >

One can get rid of the structure condition in some cases.

Assumption (D) — For any 7 € B., there is no term of the form o @ X* with k # 0, in the
expansion of Ar.
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Under assumption (D), we can show that, given 7 € B, the only u > 7 such that p/7 has
a non-null component on X* is y = X*7. Indeed, writing u = X’ (¢ € N, o € B,), by the
multiplicativity of A and by (A.2]), we have

(Id® Px)Au = (Id ® Px)(AX*)(Ao)

= (Id® Px)(AX)(c®11) = )| <£>X“a® x*

k
Then p/7 € span(X*) if and only if 7 = X* %o, thus 4 = X*7. Then (#.12) takes the form
14
k
DFKE_’“U:([_]C) FX%? o€ B..

Moreover, this reduces to the formula
D*F, = k' Fxi,,  o€B,
hence the structure condition (4.14]) takes the simple form (4.15) below. Note that the data

in the next statement is indexed by B,, unlike in the general case of Theorem [22] where it is
indexed by B.

Corollary 23. Let T be a regularity structure satisfying assumptions (A-D), and a family
([f-1 € C;Ya;‘T|(Rd))T€B. irl<y be given. Assume that v — |7| ¢ N for any T € B with || < 7.
Pick a model (g,N) € Myap(T,R). Set, for T € B, with |7| < 7,

fri= > P llw/T1® + [Lf-1,

T<p, |pl<y
p/Tespan(BH\BE)

and, for T € Be, k € NO\{0} with |k| + |7| < 7,
T LA VR VIR W P Y] Y

T, |l <y, [/7TI<|K]

p/Tespan(BH\BY)
Then
fi= > foo= > fx, X'TeD], (T g).
oeB, |o|<y T€B,, keNd
|7+ k<

Corollary [23] yields the homeomorphism result from Theorem 5] As stated in the introduc-
tion, we can see the further homeomorphism result

Mrap % Dy i= { (M, f)s M€ My (7 ,RY), f € DY (Tog)}
=~ [[ad®R) < [ ca®)x ] "R,

oeGt T€B., |T|<0 T€B., |T|<y

where the left hand side has a topology induced by the metrics

da((M, £), (M', )
= du(MM) + sup |7, (F(3) = € () = (' (0) ~ € F'(2)))

cl I (RixRaY

Note that assumption (D) is an assumption about the basis B of 7" we choose to work
with, not about the regularity structure itself. It is thus possible that a given basis satisfies
assumption (D) whereas another does not. This flexibility is at the heart of the proof of
Theorem [7 in the next section.
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4.3 Modelled distributions over BHZ regularity structures

Bruned, Hairer and Zambotti introduced in [7] class of regularity structures convenient for
the study of singular stochastic PDEs. We call these structures BHZ regularity structures

TBHz = ((T];Hz, Afyz): (Teuz, ABHZ))-

Although the canonical basis of these concrete regularity structures do not satisfy assumption
(D) the following result holds true.

Theorem 24. Assume that the set of homogeneities {|t|}ce U {1} is rationally independent,
that is, the only tuple of integers {ki}¢ U {k1} such that Y, kt| + k1 = 0 is the trivial soluion
ki = k1 = 0. Then the canonical bases B]JSFHZ and Bpuz satisfy assumptions (A-C). Moreover,
one can construct a basis of Tpuy that satisfies assumptions (A-D).

The remaining of this section is dedicated to proving this statement. We recall first the
elements of the construction of BHZ regularity structures that we need here. These concrete
regularity structures are indexed by decorated rooted trees.

Any finite connected graph without loops and with a distinguished vertex is called a rooted
tree. For any rooted tree 7, denote by N, the node set, by E, the edge set, by o, € N;
the distinguished vertex, called root of 7. Let also £ be a finite set of types. (Edges will be
interpreted differently depending on their type, when given any model on Jgyy. Different
types may for instance correspond to different convolution operators.) Denote by B the set of
rooted decorated trees. Each 7 € B is a rooted tree equipped with the type map t: £, — £
and with the decorations

e n: N, > N
e0:N, »Z'®Z(2).
e ¢: F. — N9,

Equivalently, the set B is generated recursively by the application of the following operations
— see [7, Section 4.3].

e One has " € B for any k € N%, where o

and o(e) =0®0.

e If 7,0 € B then 70 € B, where 70 is called a tree product; 7o is a graph 7 U ¢ divided
by the equivalence relation ~ on N; 1 N, where x ~ y means = = y or z,y € {0r, 0}
On the root o;r, the decorations n(g-,) = n(o;) + n(os) and 0(g-») = 0(o:) + 0(0s)
are given.

e For any te £ and k € N9,

is a tree with only one node o, with n(e) = k,

reB = Ii(1)eB,

where the tree I,i (7) is obtained by adding on 7 one distinguished node ¢’ and one edge
e = (o0r,0') of type t, with decorations ¢(e) = k and o(¢') =0 0.

e For any o€ Z¢@® Z(£), denote by R, the operator on decorated rooted trees adding a
value a on the decoration o on g;. Assume

TeB = Ry.(r)eB.

By applying the operator R, with various a on each step as above, one can see that,
if 7 € B then the same decorated tree with any other o-decorartion is also an element
of B.

Each type t € £ is assigned a nonzero real number |t|, the collection of which satisfies the
assumption of Theorem One assigns a homogeneity |n|, o], [e|, [t| to the decorations and
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edge types of any decorated tree 7, and set

7] = Inf + Jof = e[ + [

= ) Inm)+ X Jo(n)| = D) le(e)l + D) ln),
neN, neN, eeF neN,
where |a+ Y, at| := |a| + >, ait| for a+ Y t € Z{DZ(L). A noise-type object © is represented
by I8(e?), with t of negative homogeneity.

With each subcritical singular stochastic PDE is associated a notion of conforming and
strongly conforming decorated tree. The basis Bgpyz of Tsuyz is made up of the set of elements
of B that strongly conforms the rule (see Section 5 in [7]), and the basis By, of Try, is made
up of the elements of the form

N
[ [ 1),
=1

where k., ki € N, t; € £, 7; € Bpuy, and |I;; (7;)] > 0. Such a tree is said to conform the rule.
We do not need more details here and refer the interested reader to Section 5 of [7]. We do
not describe in particular the details of the definition of the splitting maps Appz and AEHZ;
we only record the following fact, where we write 1 for ¢, and X* for e*.

Proposition 25. [7, Proposition 417] The coproduct A = Auyz : Taz — TBuz ®T§HZ7
satisfies the following identities

Al=1®1, AX;=X;®1+1®X;, A(ro)=(AT1)(Ao),
Xt
o
[+ [kl <|7l+]E

ALi(r) = (I ® Id) AT + ® It 4(7), ARa(7) = (Ra ®1d)AT.

The coproduct AT = AEHZ : T];HZ — T];HZ ®T§HZ, satisfies the same identities with A in the
right hand sides replaced by A™.

Theorem 26. The bases B = Bguy, and Bt = By, satisfy assumptions (A-C).

Proof — Assumption (A) is satisfied by setting
Bf ={Ii(r)eBT;te L keN, reB}, B.:={reB;n(p) =0}

and X* = X* = ¥, Assumption (B) follows because polynomial elements and non-
polynomial elements are distinguished by the number of their edges. Indeed, §E, = 0 if
and only if T € B} = Bx. Assumption (C-1) is satisfied by setting

GH:={Ii(r)eB";te g, e B}

Then D¥I(7) = I} (7) follows from Proposition To check (C-2), we define the binary
relation on BT by denoting o < 7 if

o tF, < {FE;, or

e tE, = §F; and |n,| < |n.|, where n; (resp. n,) denotes the n-decoration given for 7

(resp. o).

This relation is transitive and satisfies the first condition of (C-2). The second one in (C-
2) follows from the graphical definition of AT — see Section 2 in [7] for details. Essentially,
we have the decomposition

Afr = ZO’@ (r/70),
where either of the following holds.
e o is the same graph as 7 but with n, < n,. 7/ consists of only one node.

e 0 is a strict subtree of 7 such that g, = o,, and 7/7 ¢ is a quotient graph of 7 obtained
by contracting the subgraph ¢ into one node.
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For the first case, if n, = n,; then o = 7 as an element of B, and if n, < n; then o < 7.
For the second case, if N, = 0 then o is a polynomial and if $N, > 0 then o,7/T0c < 7.
Hence the formula holds. For the last assumption, since the set {|t|}ce U {1} is
rationally independent, non-polynomial 7 (hence 7 has at least one edge) has non-integer
homogeneity. Hence (C-3) holds. >

The canonical bases Bppyz of BHZ concrete regularity structures do not satisfy assumption
(D) since one has

Xk
AL(Xi0) = [§(X0) @1+ [§(O) @ Xi + >,  —+®I(X;0),
|k|<|®|+1+]t]
for any edge type t with positive homogeneity, but the second term in the right hand side
contradicts to assumption (D). Now we define another basis of Tgyyz. Set
T := span(B).

The tree product (7,0) — 7o and the operators I} and R, are linearly extended to T'. For
any te £ and k, £ e N¢, we define the new operator gI;; : T — T, by

l
i (7) = < >Xm(—1)“”1}c Xtemr.
mZN m (x7m7)
(An operator ¢Ij, represents the convolution with a kernel z‘(0* K)(z). These operators also
appeared in the very recent work [I5] of Hairer and Pardoux.) If 7 is homogeneous, then ,I}(7)
is also homogeneous and
eZ(r)| = It = k] + 0] + 7]

Lemma 27. Consider the subset B, = T generated by the following rules.
e 1€ %,. N
e T B, = (Ii(7) € B..
[} TEB. = Ra(T)GB..
e T,0eB, = 10 € B,.
Set

~

B:= {XkT; keN? re %,}
Then B is a linear basis of T, and there exists a basis B= gBHZ of Teuz, such that Bc B.

Proof — Assume that 7 € B is expanded by the basis f)’, that is, 7 is of the form
T = Z a; X ki o;
i

with a; € R, k; € N, and o; € B.. Since the commutative property Ro(X*) = XFR, (")
holds by the definition, R, (7) is also expanded by B. By the inversion formula

Hxe) = % () )X o)

meNd

I{(7) is also expanded by B. Certainly, if 7,0 € span(fﬂ’), then 70 € Span([ﬁ'). We can
conclude that T' = span(B) by the induction on the number of edges on 7.
As in the definition of Bgyyz from B, one obtains B by keeping only those elements from

B that strongly conforms. >

The set B can be encoded as a set of rooted decorated trees using different decorations
from the preceding decorations. Each 7 € B, is represented by a rooted tree with o and ¢
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decorations, together with a new decoration
f: B, — N
The map g],i : B, — B., is defined as follows. For any 7 € B. with root o, the tree gIZ(T)

is obtained by adding to 7 one node ¢’ and one edge e := (p, ¢’), with decorations e(e) = k
and f(e) = £. BEach 7 = XFo € B is represented by a rooted tree with decorations n, o, e, f,
where n vanishes at any node except the root, where it is equal to k. We call this tree
representation of elements of B the non-canonical representation. Note that, under such
exchange of representations, the shape of trees is preserved.

Theorem 28. The basis B of Tenyz, satisfies assumption (D), where B. = B, n B.

Proof — The proof is done by the induction on the number of edges on 7 in its non-canonical
representation. In fact, one can conclude a stronger claim; for any 7 € B,, one has

Ar — Z anO' ® 7. (416)
oeBa, neB\span{X*};

It is sufficient to show that, if the coproduct of 7 € B. has such a form, then (I} (7) also
satisfies the same condition. To complete the proof, we compute explicitly the coproduct
A(eI}(7)). Since

¢

X
AL(X7) = (I ® IA)A(X7) + ) i ® It o (X°T)
feNd
= Y ()t @x (/o) + Y ﬁ@I‘ (X°r)
b k /) k+20 )
o<T,beNd LeNd
we have
A(aI]E;(T)) = Z <Z) (AXb)(_l)a_bAIk(X“_bT)
beNd

S 10 [ R

o<T,b,c,deNd

a—b[ @ b CXE b—c a—b
b % () (D) e xt st
£,b,ceNd
=: (i) + (ii).
The term (ii) does not contain any terms of the form o ® X* with & # 0. The sum (i) is
equal to

dva @ eyt (yd ¢ yd'
a=c+67+d+d’

al al . i 7 od
= X M(agd(_l)dcld!X I;(Xda))@)( 2 (D)X Xd(T/a)>

OST B=c'+d’
a=a+f3

= > (Z)af,g(a)ca(X—X)ﬁ(T/a)

O<T
a=a+f3

= Y alk(0) ® (1/0) = (oI} ®T)AT.

O<T
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Since 7 is assumed in the induction step to have a coproduct (4.16]), hence A(,I} (7)),
enjoys the same property. >

4.4 Density and extension corollaries

Corollaries and @ are proved as follows. Note that Schwartz space S(R?) is dense
in the space Cgp(Rd) in the topology of Cg_pa(Rd) for any € > 0; for any f € Crﬂap(Rd), the
function e*® f belongs to S(R?) and satisfies

c t—0
HetAf - f”cf—f(Rd) < t? HfHCg(Rd) —0
for any a > 0. See e.g. Proposition 3.12 of [23].

Proof of Corollary [2] - By Theorem the space #yap (7, R%) is homeomorphic to the product

space
d d

[Ta®) < [ ciRY.

oegt TEB., |T|<0
For any € > 0, any elements of this space can be approximated by smooth elements in the
topology of the same space with each exponent |7| replaced by |7| —e. By the formulas
(3.5) and (3.6), it turns out that a smooth element of (1.3) is transferred to a smooth
model in Aap(7,RY). >

The proof of Corollary [6]is completely parallel and left to the reader.

Proof of Corollaries [3] and [4] — For Corollary [3| consider the algebra T'; generated by the set
B of rooted trees as in Remark 1 of the previous section. Given an R’-valued a-Hoélder
function h = (h;)L,, a lift of the control h is a branched rough path (H ")rep+ such that
H*® = h;, where e; denotes a graph with only one node and with node decoration i. By
Theorem |1} such a lift is transferred to an elements of the product space [ ] 5+ CJZI‘O(R)
such that [[e;]] = h;. A trivial extension is defined by [[7]] = 0 if §7 > 2, and the associated
model is nothing but a trivial lift of A.

Corollary {4 is proved by a similar argument. By admissibility, the set .#(.7,R™) is

14

homeomorphic to the space [ [ .z, |-/<o CQD(R’”). Given a multi-dimensional noise ((;);_;,

a trivial extension is defined by

- {0

0, otherwise.

A — Concrete regularity structures

We recall in this appendix the setting of concrete regularity structures introduced in [5],
and refer the reader to Section 2 of [5] for motivations for the introduction of that setting.

Definition — A concrete regularity structure 7 = (T'",T) is the pair of graded vector spaces

TH=P T, T=FP7Ts
aeATt BeA
such that the following holds.

o The index set At < Ry contains the point 0, and A* + AT < A™; the index set A < R
is bounded below, and both A*and A have no accumulation points in R. Set

Bp := min A.
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o The vector spaces T\ and Tg are finite dimensional.

e The set T" is an algebra with unit 1., with an algebra morphism
AT TH - THQTT,
such that AT1, =1, ® 14, and, for T € T,

Atredr@li+1, @7+ Y, Ty ®T} ,5¢, (A1)
0<fB<a
and AT satisfies the coassociativity property
(AT @I)AT = (Id®@ AT)AT.
That is, T™ has a Hopf structure with coproduct A* and counit 1',.
e One has T, = span(1y), and for any o, B € AT, one has T;Tgr c T;Ha.
e One has a linear splitting map

A:T—->TQRTT,
of the form
AT € T®1++ZT5®T5_5 (A.2)

B<a

for each T € T, with the right comodule property
(AQId)A = (IdQ A)A.
Let B} and Bg be bases of T, and Tp, respectively. We assume By = {1.}. Set

B = ) BfY, B:=[]Bs

acAt BeEA
An element T of TO(CJF) is said to be homogeneous and is assigned homogeneity |7| := . The
homogeneity of a generic element T € T(H) is defined as |7| := max{a}, such that T has a

non-null component in Té+). We denote by
T = ((T*,A"),(T,A))
a concrete regqularity structure.
One of the elementary and important examples is the Taylor polynomial ring. Consider
symbols X7i,..., Xy and set
Tx :=R[Xy,..., Xy
For a multi index k = (k;)%_, € N%, we use the notation
Xk o= X xhe
We define the homogeneity | X*| = |k| := Y, k;, and the coproduct
AX; =X;®1+1®X;. (A.3)
Then ((T'x,A), (Tx,A)) is a concrete regularity structure.

The set GT of characters g : Tt — R, i.e. nonzero algebra morphisms, forms a group with
the convolution product
g1 %92 := (91 ® g2)A™.
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B — Technical estimates

We provide in this appendix a number of technical estimates that are variations on the
corresponding results from [5]. Proofs are given for completeness.

Lemma 29. Ifa>0 andae€Z, then
j Pz — )|z — yl°ylsody < 279 )7,
f 1Qi(z — )|z — yl*lylz°dy < 27 |25,

Proof — Recall the inequalities in the beginning of Section [2| If a > 0,

|24 J |Pi(z — y)||z — y|*|yl; *dy < J|Pi($ —y)|lz —y|*|lz — ylody = f|P¢(y)||y|°‘|yidy
_ j Py(y)
If a <0,

f P — )| — yllyls%dy < |2l3° j Pi(x — )|l — yl°e — ylstdy < 27 ol

Yy Yy ad <2—i0¢ P o ad <2*i0¢
5| |57, < [Po()|lyl*lylsdy < 27

As a consequence of Lemma we have the inequality
18, fl < suwlett [ 1Qse ~ IFWdy < iz sup el [ 1060~ w)lole"dy
x x
< I fllze-

for any a € Z. This ensures that S maps C2(R?) to C*(RY) for any « € R.

Recall the two-parameter extension of the paraproduct, used in [5]. For any distribution A
on R? x R, we define

@N)@) = [ Ple— Qi - A0y

R4 xRd

(PA)(z) := ). (QA) ().

j>1
If A(y, z) is of the form f(y)g(z), then PA = Pg.
Proposition 30. [5, Proposition 8 (a)] Fiz a € Z.
(a) For any A € S’(Rd X Rd) for which there exists o € R such that HQ]-AHLOO(Rd) < 277e,
for all j =1, one has PA € C2(RY) and
IPAlegray < ?;111) 2jaHC*IJ'AHL;;O(Rd)

(b) For any o > 0 and F € C2)a (R? x R), one has PF € C¢(RY) and

IPFcaray < \HF”’%) (RdxRd)-
Proof — (a) Since .# P; is supported in the annulus {)\ e R%: A < 27 x %} and ZQ; is

supported in the annulus {)\ e R%: 27 x § <Al <27 x %}, the integral

[ @uta =Pt = Qs - 2y
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vanishes if |i — j| > 5. Hence A;(PA) = >, 5, Ai(Q;A) and we have
APz < X, 18i(QiMIez £ ) QM s ), 279 527

li—j]<4 li—jl<4 li—jl<4

For (b) it is sufficient to show that HQ]FHLOO < 27J® By Lemma
Q;F(2)] < f’Pj(x —y)Qj(x —2)| (Iylx* + |215%)ly — 2|* dyd=
< [P = 9@y = 2 (ol + 121) (Jo = oI + o = 21°) dydz

< 2700

Recall from [4] the definition of the operator
R*(f,9,h) := P;Pgh —Pygh.

This operator is continuous from C*(R?) x C#(R?) x C7(R?) into C*TA+7(R?), for any «, 8 € [0,1]
and v € R — see Proposition 14 therein.

Proposition 31. [5, Proposition 10] Consider a function f € L (RY) and a finite family
(ak, bp)1<ken in LE (R x LE (RY) such that

slow (

N
Zak _bk( ))+f£z> xaQERda
with a remainder fyw. Let a > 0 and 8 € R be given. Assume that either of the following

assumptions holds.

(a) J€ Lrap( )7 arby € Lrap( ) fﬂ € Ca
(b) fie Cy (Rd x RY) and g € Crap(R ).

Then one has the estimate

rap( X Rd), and g € Cslow(R ).

N
Z ak‘) bk) CI?;JIgﬁ(Rd)

Proof — Recall from identity (2.1) the definition of the operator S. As in the proof of Propo-
sition 10 in [5], we see that

ZRO(ak:bkag> —S(Prg) + P(Sg) Zpakbk Sg) — (( £9)(y ))

The first three terms belong to C5,(R?), assuming cither (a) or (b). Consider the last
term. Note that

Q((Pro)w)@) = ¥ [P0 - n)(Sif) ) (Big)w) dody

li—jl<4

For case (a), there exists b € N such that |A;g(y)| < 27%y[5. Since f* € €2, (R? x R?) for
any a € N, one has

(552001 < [ 1Pty = wll il du < [Py =)=l + a7 du
s f [Pily = w)|(Ju = 1™ + [y — 2[*) (Jul7*7" + |2[°7") du

< (J2l7 7P+ w0 27 + |y — 2|*)
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by Lemma [29] Hence we have

Qi ((Pra)w)(2)]

< 2 | B = 2)l1QiG = »)|(SifL) W)][(Aig) ()] dady
|i—jl<4

< D0 | PG =2)]|Qi¢z = )| (2" + [yl ") [yl (27 + |y — 2|*) 277 dady
li—jl<4

S X | 1B 0lQi = w2l + 1) (27 12—l + |2 —yl*) 277 dody
|i—jl<4

< Z ’z‘;a (2—ia + 2—ja) 2—i6 < |Z’*—a 2—j(o¢+5).
li—jl<4

For case (b), since |A;g(y)| <277 |y|;® for any a € N, and

|Sfﬁ J“P _UH }du’SJ‘Pi(y_U)HU—MO‘du§2_i0‘+|y_x|a’
we have
’QJ’((Pfﬁg Y f|P — o) Qi (2 — )| |(Sif%) )| |(Aig) (y)| dady
|Z jl<4
< J‘P z—acHQJ z—y Hy‘* (2 loa_i_’y_x’ ) Z’dedy
li—jl<4
\l jl<4
< Z |Z|;a (2—ia + 2—ja) 9—if < |Z|*—a 2—j(a+5).
li—jl<4
By Proposition we are done. N

Proposition 32. [, Proposition 9] Let v € R and By € R be given together with a family A,
of distributions on R, indezed by x € RY. Assume one has
sup |z3[Axcs0 < 00
zeR4
for any a € Z and one can decompose (A, — A;) under the form
L
¢ ol
Ay—Ay =) ¢, 0,
(=1
for L finite, R%-indexed distributions ©F, and real-valued coefficients cy depending measurably
on x and y. Assume that for each ¢ there exists By < =y such that either of the following
conditions holds.

(a) ©F € Dﬁfp and ¢t € C?Q;ﬁé(Rd x R%).
(b) ©f e DB and ' € Cé;,fgp(Rd x R%).

Write P(A) for Py . (Ay(2)) below.
(i) If v > 0, then there exists a unique function X € Cap(R?) such that
{P)-N-a}  eDy,

(i) If v <0, then
{P(A) — A}, € Dy
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Consequently, P(A) € szfp(Rd). If furthermore A € D7ap, then P(A) € Ciap(R?).

Proof — In view of Proposition 9 in [5], it is sufficient to show that

A;(P(A) — Am)(x)} <2797, (B.1)

sup |z[y
reRd

We write for that purpose
Ai(P(A) = Ag)(2)

- Uf Qi(r —y)Pi(y —u)Qj(y — v) (Ay — Az)(v) dydudv — A;S(Ay) ()

j=1, [i—jl<4
=:A+B+C,
where

A= ) ﬂ Qi(z —y)Pj(y —w)Q;(y — v) (Ay — Ay) (v) dydudv

li—jl<4

L
= ” Qi(x — y)Pi(y — w)Q;(y — v) by Oy (v) dydudv

li—j|l<4 (=1
and

5= % ][ et -wre- 0w 0, - 1)) dydude

li—j|<4

= 3 [[[ @ - it — 00,00 ) (o) dyauas

li—jl<4 =1
For the C term,

sup 3 |AiS(Az)(2)| < 27" sup [«f3 [S(As) e

< 27" sup ol [Asfles €277
x

for any r > 0. For the A term, for any a € Z we have

L
s 33 [ 10 - lIPw - wlldy 12,0, dyda

li—j|<4 £=1
L .
Y X [ 1= wlirst—wllu—sp -yl dyan, if (o)
li—jl<d =1
S
L .
2 Z”‘Qi(x_?‘/)Hpj(y—“)\(!U\;“+!y\;“)\u—y\”‘ﬁf?ﬁfczydu, if (b)
li—jl<4 =1
< 3 [l -l < iz,
li—jl<4

The B term has the same estimate by a similar argument. So estimate (B.1]) follows from
Lemma 29

(i) If v > 0, the estimate (B.1]) implies that the sum
Az) = > AG(P(A) — Ay)(2)

j>—1
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defines an element A of Crvap(Rd)‘. To show it, we follow the argument in Section 6 of [13].
We decompose A = ASIHL 4 \>7i+1 wwhere

AT @) o= YT A A)(x) = Sji3(P(A) — AL (2).
1<y +1
We consider AjA = AjASITL 4 A A7+ For the second term, by the estimate (B.1)) one

AN e S VT e s ), 277 s 270,
1>5+1
For the first term, since A;Sj3 = Aj, one has

ANSIT) = [ Quly = 2)Sj2a(P(A) - As) (2)de
JQJ ]+3< — Ay +Zc @E)
(PN~ A,) () + Y f )y — ) o(Sy130,) (x)da
L

Similarly to above, we can show that |[A; ST (y)| < |y|,22777 for any a € Z. In the end
we have |AjA|Le <2797, hence A € Cilp (RY).

Since ;o1 Aj(P(A) — Ay — A) () = 0 by definition, we have
S(PM) — A= M@ < 3 (A PA) - A= N @) < falz® Y 27 < [afyo2
j=i—1 j=i—1
for any a € Z.
(i) If v < 0, then directly from (B.1]),
S(PMA) — A @) < Y A (P(A) — A)@)| < [alz® 3 2797 < [afyo2

j<i—1 j<i—1
for any a € Z. >

Corollary 33. Given a concrete reqularity structure T satisfying assumptions (A) and (B)
and given a rapidly decreasing model M = (g, ), we define the map R : Dy (T, g) — Crﬁa{)p, by
Rf = Puy (MEF (@) ).

Then one has

(Rf —MEf(@)) D,

zeRd

Proof — Let A, = N f(x). Since
Ay — A, = Z <7J7g/a;y.f(y) - f($)> I_I%:T

TeB
one gets conditions (a) and (b) of Proposition [32| from the definition of a model. >

Proof of Theorem [I121 - We prove the case m = 0 here for simplicity. For general m, the
proof is at the end of this appendix, after we introduce the modified paraproducts.

Consider the first formula (3.5)). First we show that, for each 7 € BT we have

g(T) = Z Pg(T/+V) [V]g + [T]gv (B'2)

1<tv<tr veBt
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where [v]8 € Cl’;]L(Rd), ifre B+\B}, and [v]® e C, (R
ATXF =3, (lz)XZ ® X+ we have

k
(XF) = P o [XF4]8 + [X¥]e.
= 3 (3)pury

We see for instance that [1]8 = 1, then [X ] = z, since g,(X) = z, and since g, (X?) = 22
one has

4y if v e BL. If 7 = X*, then since

)

z? = 2P,z + [X?]8.
We recognize [X?]8 = MN(x, ). More generally, since gm(X =z

to CJ (R 4), by an induction we have [X*]e e cr (R

formula obtained in [5];
[7]8 = Sg(7) + Puy(8y:(7))

+ 3 (=) > R (8(r/01) - 8(0n-1/"0n), 800/ Ons1), [0ns1[E).
n=1

I<toppi<to<tor<tr

k¥ is a function belonging
4). Now let 7 € BY\B%. Recall the

This is obtained from the expansion formula obtained in [5];
gy(7/70) — ga(7/70)

0
=2 Y &/ o) galon1/ o) (8(0n/T0) — a(0n/*0))
n=1 o<top<t.<toi<tr
+gya(7/70)
(B.3)
with 0 = 1, and by definition of the R° operator. Since 7 € BT\B%, we have Sg(r) €
Cfgp(Rd) and Py (gyz(7)) € Cl;L(Rd). For the R® terms, we apply Propositionto (B.3)).

If o € By, then since 7/To € span(BT\BY%), by assumption (B-2), we have g,(7/%0) €
L® (RY) and gy, (7/%0) € C'THU‘(Rd xR%). For the sum over 0 <* g, <* --- <t 0y <t 7,

rap (2) rap
we can see that at least one element among
g(r/To1), .oy glon—1/Ton), glon/T0)
belongs to L7, (R 4). Indeed, if oy, ¢ B then g(o,/T0) € Lo (R 4). Otherwise, if 0,1 ¢

BY; then g(on—1/T0n) € L, (RY). Since 7 ¢ BY, for at least one i we have g(os/T0i41) €
LZ (RY). Since LE (R?) - L?gp(Rd) c L?gp(Rd), we can apply Proposition (a) to get

rap
St Y R (g o) glon/ o). slon/ o). o]E) € CLRO).
n=1 o<to,<t.<toi<tr

If o ¢ BY, since gy, (7/70) € C(‘;‘;M (RYxR%) and [0]8 € CJZL(R“]’) we can apply Proposition

) to get the same estimate. Hence we obtain the required estimates in the formula
1'

To get (3.5)) from (B.2]), it is sufficient to show
[7]® — [7]¥ € € (RY) (B.4)

rap

for any 7 € BT\B%. Assume that all v € BT\BY with |v| < |7| satisfy (B.4). Then we
have

[F1E [ = D, PerrinlvI®- > P/ [VIE

1<tv<tr 1<tv<tr, V¢B+

= Z Pe(r/ov) (V18 — [V]8) + ZP - xm [ XM,

1<tv<tr, Vél’j’} k#0
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The first term belongs to CX (R?) by assumption. For the second term, since [X*]& €

rap
% (R and g(r/* X*) e LL (R?), we can complete the proof.

rap
One can obtain formula (3.6) in the similar way. As above, we define the quantity [7]™
for each 7 € B by

MNr = Z Pg(T/V)[I/]M + [T]M.

v<T,veB

Then we can show that [v]™ € ClZL(RY), if v € B\By, and [v]™ € €% _(R?), if v € By. The

only difference is that, for 7 € B\Bx, we use the formula obtained in [5];
[7]8 = S(N7) + Py ((NE7) (1))

2D Y R0 8(0u/00), 80 /o) [ ).
n=1

On+1<<01<T

and use Proposition [32] to get P, ((M&7)(y)) € Cl;L(Rd). Since the property (B.4) also
holds for the operator [-[M — [-]M, we can conclude (3.6). >

Proof of Theorem [13] - is proved by a similar argument as Theorem See Theorem
14 in [5] for details. More easily, it is useful to consider the extended algebra T defined
in Section Since a modelled distribution f € DY(T,g) defines a g-part of the model
on TE by Lemma we have

fa = g(FU) = Z Pg(FM)[[:u/T]]g + [[FU]]g'

o<it
p/oespan(BH\BY)

Thus [£,]& = [F,]¢ € Clp ! (RY).

As for (3.8)), a similar interpretation is useful. Consider a symbol F' and an extended
model space Tp := T @ span(F). Giving the homogeneity |F| := v and the coproduct
formula

AF=F®1l,+ > 7®(F.),
TeB, |T|<y
the pair (Tl',f ,Tr) turns out to be a regularity structure. (It is not difficult to check that
Tr is a comodule over T4 by using (4.11).) For given a reconstruction Rf, we can define
the model on TF by setting MNF := Rf. Indeed, similarly to Lemma we can show that
MNeF = Rf — N8 f(x).

Then (3.8) follows from (3.6) in Theorem [12] >

To complete the proof of Theorem we define here the two-parameter extension P of
the modified paraproduct P™. Note that, there is an annulus A < R? such that the Fourier
transform of the function

x> Pilo — ) Qi(x - 2)
is contained in 2/ A (independently to ¥, z). Let x be a smooth function on R¢ supported in a
larger annulus A’ and such that x =1 on A. Letting R; = F~(x(277+)), we have

(QA)(x) = f f f R;(z — w)Pi(w — 9)Q;(w — 2)A(y, =) dydzduw.
R4 x R4 x R4
For m € Z, set
Q"= F (117 a)

Ry = (@ );
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then they are smooth functions such that Q;™ = [V|[7"Q; and R} = [V|"R;.

Definition 34. For any m € N and any two-variable distribution A on R? x RY, define

(Qj'A)(z) = Jf R} (z — w)Pj(w — y)Q; ™ (w — 2)Aly, z) dydzduw,
R xR x R4
(P™A)(x) := D (Q)'A)(x).

j=1

If necessary, we emphasize the integrated variables by writing
P"A =P}, (Aly, 2)).
For the special case A(y, z) = f(y)g(z), we have the consistency relation
P™A =PY'g.
All the above estimates in this appendix still hold for these modified operators. Indeed, because
of the scaling properties
Q; " (w) =21y (Vx),  RJ(w) = 2 R (),
we can show the following analogue of Lemma for any o > 0 and a € Z, one has
| 1Rz @ = e = slelulzedy < 27 e
(B.5)
[ 1@ @ =l — gyl ey < 270 e
Thus we can repeat the argument in this appendix as follows.
e Proposition [30-(a) still holds, since A;(P™A) = >}, ;< n Ai(Q]'A) for some integer

depending only on the support of y.
e Proposition ( b) still holds, since by the scaling property,

QP F@)] < [ 1@~ )Py = )Q; ™ (w — 2)| [P, 2)] dydzdo
< [1Rp @ = w)Pyw = 9@ w = 2|yl + 12127 (Ju = o1 + o~ 217) dydzdu
< 27dlemm) f |RT (2 — w)|Jwl; *dw

< 29,
e Proposition [31] still holds if R® is replaced by
R™(f,g,h) := PPTh — PP,

by a parallel argument using (B.5)).
Consequently, we can repeat the proof of Theorem [12] for any m € N.

C - The slowly growing setting

In applications of regularity structures to the study of singular stochastic PDEs set in the
entire space R? usually involve noises that do not have rapid decrease at infinity, but rather
have moderate growth at infinity. Our results can be formulated as follows in this slightly
modified setting.

We define the spaces .oy and DZIOW of slowly growing models and modelled distributions,
respectively, by replacing ‘rap’ in definitions in Section by ‘slow’. We can repeat the same

arguments to obtain the variations of Theorems [1| and |5| with the spaces #gow and DZIOW,
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respectively. All we need is to consider the weight |x|,* for some sufficiently large a, instead
of any a € Z. Precisely, we need the following minor modifications of the arguments.

. Propositionstill holds under the assumption f* e C(O‘Q) RYxR%) and g € CSIOW(R ),
instead of rapid decrease assumptions.

e Proposition [32] still holds under the assumption

,slow (

sup |z[%[Azlles, < o0
zeRd

for some a € Z, and for any ¢, ©/ € D’ and cf e Cly e (R x RY).

slow (2),slow
e Lemma [TI9] still holds for some a € Z, instead of any a.
Details are left to readers. We end this appendix by writing the precise statements of main
theorems.

Theorem 35. Let T be a concrete reqularity structure satisfying assumptions (A-C). Then
one can construct a locally Lipschitz continuous map

Mo (T, Rd) - H Cslﬂw H Cs‘chlw
oeBH\B} TeB\Bx (C.1)

(&M — ([o]™, [7]%: o € BX\BY, 7 < B\Bx)

by giving paracontrolled representations of g and N, for (g,MN) € Myap(T,RY). Furthermore,
Mgow (T ,RY) s locally bi-Lipschitz homeomorphic to the product space

[Teh®Yyx ] cil®Y.

oeGT TEB., |T|<0

Theorem 36. Let a concrete reqularity structure 7 satisfy assumptions (A-D). Pick~y € R\{0}
such that y—|7| ¢ N for any basis element T of T with |7| < v, and M = (g,N) € Mgow(T,R?).
Then one can construct a locally Lipschitz continuous map

Dslow (T’ g) - H Cglov‘vT| Rd)

TeB, |T|<y

by giving a paracontrolled representation of elements in D} (T,g). Furthermore, D} (T, g)
is locally bi-Lipschitz homeomorphic to the product space

[T chirry).

TEB., |T|<Y
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