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Abstract. We develop in this note the tools of regularity structures to deal with singular stochastic
PDEs that involve non-translation invariant differential operators. We describe in particular the
renormalised equation for a very large class of spacetime dependent renormalization schemes.

1 – Introduction

In contrast to paracontrolled calculus [18, 1, 3] that was developed in a manifold, hence non-
translation invariant, setting, after being set first in the Euclidean torus, the theory of regularity
structures [20, 12, 15, 10] has so far been developed in the translation-invariant setting of locally
Euclidean spaces and its analytic side was devised for the analysis of equations involving constant
coefficients differential operators. The extension of the theory to a manifold setting calls for a
development of the theory to deal in a first step with non-translation invariant differential operators
in a locally Euclidean setting. It is the purpose of the present note to make that first step, assuming
from the reader that she/he is already acquainted with the fundamentals of the theory of regularity
structures, such as exposed for instance in Hairer’s lecture notes [21, 22], the book [17] by Friz
& Hairer, or Chandra & Weber’s article [16], where accessible accounts of part of the theory
of regularity structures. Bailleul & Hoshino’s ‘Tourist Guide’ [8] provides a dense self-contained
presentation of the analytic and algebraic sides of the theory.

Denote by (x0, x1) ∈ R × T a typical spacetime point over the one dimensional periodic torus
T. (We choose for convenience of notations to work on the one dimensional torus rather than on
a multidimensional torus.) Let

Liv := ai(·)∂2
x1
v + bi(·)∂x1

v, (1 ≤ i ≤ k0),

stand for a finite family of second order differential operators with smooth coefficients. We consider
systems of parabolic equations of the form(

∂x0 − Li
)
ui = f(u)ξ + g(u, ∂x1u), (1 ≤ i ≤ k0), (1.1)

with u := (u1, . . . , uk0) and each ui taking values in a finite dimensional space Rdi , and ξ =
(ξ1, . . . , ξn0

) an n0-dimensional spacetime ‘noise’. An initial condition u0 of positive Hölder regu-
larity is given and fixed throughout that work.

Non-translation invariance refer to the fact that the operators Li in the system (1.1) are not
supposed to have constant coefficients. Working in a non-translation invariant setting does not
influences the algebraic side of the theory of regularity structures encoding the mechanics of the
local description of modelled distributions/functions. We can use in the non-translation invariant
setting the same algebraic structure, with no extended decorations, as in the translation-invariant
setting. The translation-invariant character of the operators involved in the equations studied so
far using the theory of regularity structures manifests itself in two different ways. On a technical
level, a number of operators have ‘radial’ kernels q(y − x), rather than just kernels q(x, y), as
a consequence of translation-invariance. This simplifies a number of things, to start with the
definition of β-regularizing singular kernels – Assumption 5.1 in [20], on which the construction
of the regularity structure counterpart of the associated operator rests entirely. We tackle that
technical point by adopting the heat kernel setting to the analytic side of the theory of regularity
structures adopted in Bailleul & Hoshino’s ‘Tourist Guide’. It rests on a family of estimates that
play the role the estimates involved in the definition of β-regularizing kernels, and that can be
proved to hold in a non-translation invariant setting. This is exposed in Section 2.

On a more fundamental level, translation-invariance manifests itself in the renormalization pro-
cess in the fact that renormalization constants are involved rather than renormalization functions,
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as expected in a non-translation-invariant setting, as found for instance in the paracontrolled
approach to singular stochastic PDEs developed in [1, 2, 3]. The very formulation of the renor-
malization scheme of Bruned, Hairer and Zambotti [12] does not make obvious sense anymore in
a non-translation-invariant setting. Denote by M = (Π, g) the canonical smooth admissible model
associated with a given (system of) singular stochastic PDE(s) driven by a smooth noise, acting on
the regularity structure

(
(T ,∆), (T +,∆+)

)
associated with that system after Bruned, Hairer and

Zambotti’s work [12]. The renormalized admissible smooth model built in [12] is associated with
a character ` of an algebra to which one attaches a linear map M` : T → T , and a renormalized
interpretation operator

Π` := Π ◦M`.

The map Π` defines a unique admissible model. Such a renormalization scheme cannot work in
a non-translation invariant setting, even by replacing ` by a character-valued function `(x) of the
state space variable x, as such a map cannot account for some possible internal renormalization
indexed by functions of the internal variables of the multiple integral expression defining the
renormalized interpretation map, not by the base/external variable x. So a different approach
of renormalization is needed in the non-translation invariant setting. We devised in our previous
work [4] an alternative approach to the renormalized equation that by-passes the use of extended
decorations. We show in Section 3 that the natural extension of this approach to the renormalized
equation works perfectly in the non-translation invariant setting. This alternative involves state
space dependent preparation maps and their associated models, both of which are discussed in
Section 3.1. The renormalized equation is dealt with in Section 3.2 following the pattern of proof
of our previous work [4], as it applies almost verbatim to the non-translation invariant setting. We
prove as Theorem 10 of Section 3.2 the following statement, which is the main result of the present
work. The notions involved here are explained in the body of the text.

Theorem – Let R : R2 × T → T be a strong preparation map such that

Rτ = τ, for τ ∈ TX ⊕
⊕

a∈T+×{0}

Ia(T ).

Let MR stand for its associated admissible model, with associated reconstruction map RMR . Let
u stand for the modelled distribution solution of the regularity structure lift of system (1.1) with
initial condition u0. Then

u := RMRu

is a solution of the renormalized system

(∂x0
− Li)ui = Fi(u, ∂x1

u) ξ +

n0∑
l=0

Fi

((
R(·)∗ − Id

)
ζl

)
(u, ∂x1

u) ξl, (1 ≤ i ≤ k0). (1.2)

In a setting where the noise ξ is random, one can in particular associate to the character-valued
function

`(x, τ) := E
[
(Πτ)(x)

]
,

a strong preparation map R` : R2×T → T in such a way that the associated renormalized system
(1.2) takes the same form

(∂x0
− Li)ui = Fi(u, ∂x1

u) ξ +
∑
τ∈B−

`(·, τ)
Fi(τ)

(
u, ∂x1

u
)

S(τ)
, (1 ≤ i ≤ k0),

as it does when the random noise ξ from which Π is built is translation-invariant in law and the
above function `(x, τ) is a constant function of x for each τ . We do not touch here on the question
of showing that such renormalization schemes provide limit admissible models when used on models
built from regularized random noises such as space or spacetime white noise.

Notations – Define the parabolic distance d on R× R by

d(x, x′) :=
√
|x0 − x′0|+ |x1 − x′1|,
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for arbitrary points x = (x0, x1), x′ = (x′0, x
′
1) in R2, and define a scaling operator

sλ(x) :=
(
λ2x0, λx1

)
, (1.3)

for all λ > 0 and all x = (x0, x1) ∈ R2. Set
|k|s := 2k0 + k1, (∀ k ∈ N× N),

We will write Ot,0+(t∞) to denote a t-dependent bounded quantity that is O(tn) for all n ≥ 0,
as t goes to 0. We will also write Ox,∞(|x|−∞) to denote a x-dependent bounded quantity that is
O
(
|x|−n

)
for all n ≥ 0, as x goes to ∞. Denote by Dt,x,x′ the differential operator on R× (R2)2.

We refer to Section 2 of our previous work [4] for a detailed presentation of the regularity
structure T =

(
(T ,∆), (T +,∆+)

)
associated with system (1.1). We only mention here that the

(possibly multidimensional) abstract noise symbol is denoted by ζ = (ζ0, ζ1, . . . , ζn0), with ζ0 = 1.
In accordance, we set ξ0 := 1, the constant function equal to 1. Edges of trees in T or T + are
decorated with labels a ∈ T+×N2, where T+ = (t1, . . . , tk0) stands for a finite set with k0 elements
representing which operator (∂x0 − Li)−1 is attached to that edge. Recall that S(τ) stands for the
symmetry factor of a decorated tree τ . Assume we are given a family

(F lk)1≤k≤k0,1≤l≤n0

of functions of a finite number of abstract variables Za indexed by a ∈ L+ × N2. We define in the
usual way partial derivatives Da in the variable Za, and set for all k ∈ N2

∂k :=
∑
a

Za+kDa.

We define inductively a family F = (Fi)1≤i≤k0 of functions of the variables Za, indexed by T ,
setting for τ = Xkζl

∏n
j=1 Iaj (τj), with aj = (tlj , kj), for all 1 ≤ i ≤ k0,

Fi(ζl) := F li , Fi(τ) := ∂kDa1 ...DanFi(ζl)

n∏
j=1

Flj (τj). (1.4)

2 – The analytic setting

Denote by
Lx1

v := a(·)∂2
x1
v + b(·)∂x1

v,

a second order differential operator on R with smooth coefficients. The notation Lx1
emphasizes

the fact that it only acts on the x1 argument. The analysis of the regularity structure lift of the
resolvent operator (∂x0 − Lx1)−1 done by Hairer in Section 5 of [20] rests entirely on a notion of
β-regularizing singular kernel whose definition takes profit of translation-invariance. We follow the
alternative heat kernel approach of Bailleul & Hoshino’s ‘Tourist Guide’ [8] to extend the analysis
to a non-translation invariant setting.

Define the non-positive symmetric fourth order elliptic differential operator on R× R

G := ∂2
x0
− L2

x1
.

Denote by K(t, x, x′) the kernel of the heat semigroup etG – i.e. the kernel of the fundamental
solution of the equation

(∂t − Gx)K = 0,

with boundary condition
lim
t→0+

K(t, x, x′) = δx′ ,

using the notation Gx to emphasixe that the operator G acts on the x-variable of K. Bailleul &
Hoshino’s ‘Tourist Guide’ [8] makes it clear that the analytic side of the machinery of regularity
structures rests on the uniform estimate∫

R2

∣∣∂nxK(t, x, x′)
∣∣ d(x, x′)c dx . t

c−|n|s
4 , (∀x′ ∈ R2, n ∈ N× N, c ∈ R+). (2.1)
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(The notation pt(x, x′) was used in [8] rather than K(t, x, x′) – the latter is more convenient in the
present work.) This estimate plays the role of the decompositions of the β-regularizing singular
kernels used by Hairer in Section 5 of [20].

The present section is dedicated to giving a precise description of the heat kernel K(t, x, x′) of G
that implies the estimates (2.1). Our main result is given in Proposition 5 below. Its proof follows
the philosophy of Melrose calculus [24] such as popularized by Grieser in his notes [19]. This point
of view shares similarities with Hadamard’s classical construction of the parametrix for the heat
kernel of second order differential operators with regular enough coefficients.

We describe in Section 2.1 a family (Sα)α≥0 of classes of t-dependent operators R2 defined
by ‘scaling properties’ of their kernels. Like in pseudo-differential calculus, one can associate a
symbol to such operators, called here ‘leading term’, and a calculus on symbols that captures the
essential action of the composition of such operators. The heat kernel K of G is constructed in
Section 2.2 using a Volterra series representation, taking advantage of the calculus on symbols.
The convergence result stated in our main result, Proposition 5, guarantees that K has a ‘scaling
property’ from which the family of estimates (2.1) follows as a direct consequence.

2.1 The heat calculus associated with G

Recall from (1.3) the definition of the parabolic scaling operator s.

Definition 1 – Given α ≥ 0, define Sα as the family of smooth functions K on (0,∞)× (R2)2 such
that

- one has the off diagonal decay
Dm
t,x,x′K

(
t, x, x′

)
= Ot,0+(t∞), (2.2)

for all x 6= x′ and all m ∈ N× (N2)2,
- one has

K
(
t, x, x′

)
= t−

7
4 +αK̃

(
t, st−1/4(x− x′), x′

)
,

for a smooth function K̃ : (0,∞)× (R2)2 → R such that the function

(s, z, x′) 7→ K̃(s4, z, x′)

is smooth on [0,∞)× (R2)2, with

Dm
s,z,x′K̃

(
s4, z, x′

)
= Oz,∞

(
|z|−∞

)
, (2.3)

for each m ∈ N× (N2)2, uniformly in s ∈ [−T, T ] and x′ ∈ R2, for any fixed T > 0.

We choose the letter ‘S’ for this class of kernels to emphasize the scaling property encoded in
its definition. One has

K̃(t, z, x′) = t
7
4 +αK

(
t, x′ + st1/4(z), x′

)
.

The reason for the choice of exponent 7/4 will appear clearly in the proof of Proposition 3 – this
is the only choice that gives spacetime convolution the property stated therein. Note the inclusion
Sβ ⊂ Sα, for 0 ≤ α ≤ β. Note also that K̃(s4, z, x′) is smooth up to {s = 0} included.

Definition – The leading term K of K is defined for z ∈ R2 and x′ ∈ R2 as
K(z, x′) := K̃(0, z, x′).

The next elementary statement will be crucial in the construction and the description of the
heat kernel of G. The gain of exponent involved in this statement is the source of the convergence
of the series representation (2.10) of the heat kernel of G given in Proposition 5.

Lemma 2 – Pick α ≥ 0. Given K ∈ Sα, its leading term satisfies K = 0 iff K ∈ Sα+1/4.

Proof – One has K = 0 if K ∈ Sα+1/4, by definition of the class Sβ for every β > α. If now
K = 0, one can use the fact that K̃(s4, z, x′) is a smooth function of s up to {s = 0} to write
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the Taylor formula

K
(
s4, z, x′

)
= (s4)−7/4+αs

∫ 1

0

K̃
(
as, z, x′

)
da.

One reads on this identity the fact that K ∈ Sα+1/4. �

It will be useful below to notice here that for K ∈ S1 and f smooth the function Kf defined by
the formula

(Kf)(t, x) :=

∫
K(t, x, x′)f(x′) dx′

is a smooth function of (t1/4, x), for t ∈ [0,∞) and x ∈ R2, and that we have

(Kf)(0, x) = f(x)

∫
K(z, x) dz. (2.4)

It follows that if K ∈ Sα with α > 1, one has
(Kf)(0, x) = 0; (2.5)

write K = tα−1K ′, with K ′ ∈ S1.
We define as usual the spacetime convolution of two smooth functions A,B defined on (0,∞)×

(R2)2 setting

(A ∗B)(t, x, x′) :=

∫ t

0

∫
R2

A(t− s, x, w)B(s, w, x′) dwds

whenever the integral is absolutely convergent. We will write
A∗n := A ∗ · · · ∗A

for the n-fold convolution of A with itself.

Proposition 3 – Pick α, β > 0 and A ∈ Sα and B ∈ Sβ, with leading terms A and B respectively.
Then A ∗B is an element of Sα+β with leading term denoted by A ? B, equal to

A ? B(z, x′) =

∫ 1

0

∫
R2

(1− a)−7/4−αa−7/4−β A
(
s(1−a)−1/4(z − v), x′

)
B
(
sa−1/4(v), x′

)
dvda.

Proof – We split the integral giving A ∗ B into a part ‘near’ x′ and a part ‘near’ x. This is
done by inserting a smooth non-negative function χ in the integral, identically equal to 1 near
x′. A change of variables a := s/t and v := st−1/4(w − x′) and z := st−1/4(x− x′) gives for∫ t

0

∫
R2

A(t− s, x, w)B(s, w, x′)χ(w) dwds

the formula

t−7/4−α−β
∫

(1− a)−7/4−αa−7/4−β×

Ã
(
t(1− a), s(1−a)−1/4(z − v), x′ + st1/4(v)

)
B̃
(
ta, sa−1/4(v), x′

)
χ
(
x′ + st1/4(v)

)
dvda,

with an integral over [0, 1] × R2. We see on this formula that the exponents add up, which
justifies our choice of exponent 7/4 in defining the classes S. We split the integral on the
two sub-intervals [0, 1/2] and [1/2, 1] and treat the interval [0, 1/2] first. Changing variable
v′ := sa−1/4(v) provides an a3/4 from the Jacobian and shows that the exponent of a in the
integral is strictly bigger than 1 as β > 0, so the integral is indeed converging. Rapid decay of
the function of z defined by this half integral comes from the rapid decay of Ã and B̃ together
with the inequality ∣∣s(1−a)−1/4

(
z − sa1/4(v′)

)∣∣ & ∣∣|z| − |v′|∣∣.
The part of the integral corresponding to the interval [1/2, 1] is treated similarly. Use another
change of variable to deal with∫ t

0

∫
R2

A(t− s, x, w)B(s, w, x′) (1− χ)(w) dwds.

Dominated convergence gives the formula for A ? B. �
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Given x′ ∈ R2, define the leading part of G with coefficients frozen at x′ by
Gx
′

z := ∂2
z0 − a(x′1)2∂4

z1 .

Note that this operator is not equal to the operator obtained from G by freezing its coefficients at
x′; we have only kept from the latter the terms of higher derivatives in z0 and z1. This operator
is in particular independent of the drift b in the definition of Lx1

. Set also for z = (z0, z1) ∈ R2

z · ∂z := 2z0∂z0 + z1∂z1 .

Proposition 4 – Pick α ≥ 1 and K ∈ Sα. Then
E := (∂t − G)K ∈ Sα−1

and the leading term E of E satisfies the equation

E(z, x′) =
(
− 7

4
+ α− 1

4
z · ∂z − Gx

′

z

)
K(z, x′). (2.6)

The letter E is chosen for ‘error’ as it quantifies how K fails to satisfy the equality (∂t−G)K = 0.
Since K(·, x′) only captures the main, zero-th order, behaviour of the kernel K near x′ in terms
terms of the scaling parameter ‘t’, it is not surprising that only the leading part Gx′ of G appears
in relation (2.6). The drift b in Lx1 plays in particular no role in this relation while it does in the
definition of G and E.

Proof – Set ` := 7
4 − α and write K(t, x, x′) = t−`K̃

(
t, st−1/4(x − x′), x′

)
, with K̃ a function

of (t, z, x′) as in Definition 1. We have

∂tK = −`t−`−1K̃ + t−` ∂tK̃ −
t−`−1

4
st−1/4(x− x′) · ∂zK̃

=: t−`−1
(
− `− 1

4
z · ∂z

)
K̃ + E1,

(2.7)

with
E1 = t−`∂tK̃ ∈ Sα−3/4

since
∂t = 1/(4t3/4) ∂t1/4 ,

and K̃ is a smooth function of t1/4 from (2.3). Since ∂x0
= t−1/2∂z0 and ∂x1

= t−1/4∂z1 , one
has

GK =: t−`−1Gx
′

z K̃ + E2, (2.8)

with
E2 = t−`−1

(
∂2
z0 − a(x1)2∂4

z1 − G
x′

z

)
K̃

+

(
t−`−3/4

(
2ab+ 2a∂x1

a
)
(x1) ∂3

z1K̃ + t−`−1/2
(
2a∂x1

b+ b∂x1
a+ a∂2

x1
a
)
(x1) ∂2

z1K̃

+ t−`−1/4
(
a∂x1

b+ b∂x1
b
)
(x1) ∂z1K̃

)
=: t−`−1

(
∂2
z0 − a(x1)2∂4

z1 − G
x′

z

)
K̃ + (· · · )(x1)

= t−`−1
(
a(x′1)2 − a(x1)2

)
∂4
z1K̃ + (· · · )

(
x′1 + t1/4z1

)
= t−`−3/4a(x1, x

′
1)
(
z′1 − z1

)
∂4
z1K̃ + (· · · )

(
x′1 + t1/4z1

)
∂2
z1K̃,

using the division property
a(x′1)2 − a(x1)2 =: a(x1, x

′
1)
(
x′1 − x1

)
= t1/4b(x1, x

′
1)
(
z′1 − z1

)
,

for a smooth function a. We see on the above identity for E2 that E2 ∈ Sα−3/4, so this term
makes no contribution to the leading term of R, and one gets from (2.7) and (2.8) the equation
giving E in terms of K. �
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2.2 Heat kernel estimates

Fix x′ ∈ R2 and let K1(t, ·, x′) stand for the kernel of the function (etG
x′

)∗δx′ – the density at
‘time’ t of the Gx′-semigroup started from x′. Given that the operator Gx′ is translation invariant,
K1(t, ·, x′) is obtained from the inverse Fourier transform of the Schwartz function

(λ0, λ1) 7→ exp
(
− t
(
λ2

0 + a(x′1)2λ4
1

))
,

and one has the scaling identity
K1(t, x, x′) = t−3/4K1

(
1, st−1/4(x− x′), x′

)
.

So K1 ∈ S1 and it has leading term
K1(z, x′) = K1(1, z, x′)

that satisfies the identity (
− 1

4
− 1

4
z · ∂z − Gx

′

z

)
K1 = 0. (2.9)

The kernel K1 satisfies from identity (2.4) the convergence
lim
t→0+

K1(t, x, x′) = δx′(x).

One has
E1 := (∂t − G)K1 ∈ S0

from Proposition 4, but since it has null leading term by (2.9), Lemma 2 tells us that E1 is actually
an element of S1/4. The convolution K1 ∗ E∗n1 defines then an element of S1+n/4 for any n ≥ 1,
from Proposition 3.

Proposition 5 – The series
K := K1 +

∑
n≥1

(−1)nK1 ∗ E∗n1 (2.10)

converges in C∞
(
(0,∞) × (R2)2

)
and defines an element of S1. This is the heat kernel of the

operator G.

Proof – It is elementary to check that(
∂t − G

)
(K1 ∗ E1) = E1 + E1 ∗ E1,

and that K1 ∗ E1 tends to 0 as to t decreases to 0+ as a consequence of identity (2.5). One
thus has a telescopic sum when applying (∂t − G) to the partial sums of K, so the proof of
Proposition 5 boils down to proving the convergence in C∞

(
(0,∞)×(R2)2

)
of the sum defining

K.

• Given that E1 ∈ S1/4, one defines an element E of S1 setting

E := E∗41 ,

so writing
E(t, x, x′) = t−3/4Ẽ

(
t, st−1/4(x− x′), x′

)
and changing coordinates in the iterated integral that defines E∗n, one has for E∗n(t, x, x′)
the expression∫

0≤tn−1≤···≤t1≤t

∫
(R2)n−1

n−2∏
i=0

Ẽ

(
ti − ti+1, zi, x−

i−1∑
j=0

s(ti−ti+1)−1/4(zi+1)

)
Ẽ
(
tn−1, zn−1, x

′
)
dzdt,

with t0 = t and dz = dz1 . . . dzn−1 and dt = dt1 . . . dtn−1. The super-polynomial bound on
Ẽ that one gets from the version of (2.3) with no derivatives ensures the convergence of the
integral on (u1, . . . , un−1) and provides as a pointwise upper bound for E∗n(t, x, x′) a constant
multiple of (Ct)n−1/(n− 1)!, for a positive constant C independent of x and x′. It follows as
an elementary consequence that the K1 ∗E∗i1 ∗En, for 1 ≤ i ≤ 3, also satisfy the same bound,
which gives the uniform convergence of the sum defining K.
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•Work with E∗4+`
1 instead of E∗41 to prove convergence on compact time intervals of (0,∞) of

the `th derivatives of K, inductively on `, using the full power of the uniform estimate (2.3).
We leave the details to the reader.
• One sees on the defining formula (2.10) for K that one can decompose it as

K = K1 +

k∑
n=1

(−1)nK1 ∗ E∗n1 +O(tk)

in C`, for all k and `, so K satisfies indeed the off-diagonal decay estimate (2.2) and its
associated function K̃ satisfies the rapid decay estimate (2.3).
• Uniqueness of the heat kernel of G is automatic from the symmetry of the operator G and
the preceding existence result, by an elementary duality argument since the operator G is
symmetric. �

It follows directly from the scaling properties involved in the definition of the class S1 that the
kernel K satisfies the scaling bounds (2.1). We record that fact in a statement.

Corollary 6 – The heat kernel of the operator G satisfies the scaling estimates∫
R2

∣∣∂nxK(t, x, x′)
∣∣ d(x, x′)c dx . t

c−|n|s
4 , (∀x′ ∈ R2, n ∈ N× N, c ∈ R+).

It is straightforward to adapt all the proofs of the results of this section to the setting of R×Rd,
for any space dimension d. The exponent 7/4 in the definition of the class S is changed into 1+ 2+d

4 .

3 – Renormalization schemes and renormalised equation

The results of Section 2 allow to put the analysis of the system (1.1) in the heat kernel setting
from [8] and develop the analytic side of the theory of regularity structures as described therein,
using as an algebraic background the same setting as for the analysis of a corresponding system of
translation-invariant equations. We take care in this section of the renormalization problem.

We use in this section the notations on regularity structures set in the ‘Notations’ paragraph at
the end of the introduction, Section 1. Let then T be the regularity structure associated with the
system (1.1) of singular stochastic PDEs. Recall from the introduction that there is no hope to
build a renormalization admissible model from another admissible model Π using formulas of the
form Π◦M , for a state space dependent linear map M : R2×T → T . Our key tool for the analysis
of renormalization of system (1.1) is the following obvious extension of the notion of preparation
map introduced by Bruned in [9] and used crucially by the authors in [4].

Definition – A preparation map is a map
R : R2 × T → T

such that all the maps R(x, ·) fix polynomials and such that
• for each τ ∈ T there exist finitely many τi ∈ T and smooth real-valued bounded functions
λi on R2 such that for every x ∈ R2

R(x, τ) = τ +
∑
i

λi(x)τi, with deg(τi) ≥ deg(τ) and |τi|Ξ < |τ |Ξ, (3.1)

• one has for all x ∈ R2 (
R(x, ·)⊗ Id

)
∆ = ∆R(x, ·). (3.2)

We will see in Section 3.1 that one can associate to any (state space dependent) preparation
map a smooth admissible model on T . Its use in the analysis of the associated renormalized
equation is analyzed in Section 3.2, where our main statement is proved in Theorem 10. The result
is specialized to BHZ-type renormalization schemes in Section 3.3.
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Example 7 – The archetype of state space dependent preparation map is defined from a map
δr, with the index ‘r’ for ‘root’, defined similarly as the splitting map δ, but extracting from any
τ ∈ T only one diverging subtree of τ with the same root as τ at a time, and summing over all
possible such subtrees – see Definition 4.2 in [9]. Given a map ` : R2 ×T − → R such that `(x, ·) is
a character of the algebra T −, for every x ∈ R2, the map

R`(x) :=
(
`(x, ·)⊗ Id

)
δr (3.3)

is a preparation map.

3.1 Renormalized canonical models associated with preparation maps

Let R be a preparation map and Π stand for the canonical model on T associated with a smooth
n0-dimensional noise ξ. Set

ΠRζ = Π̂Rζ = ξ,

and define inductively the maps ΠR and Π̂R by the relations
ΠR = Π̂RR, Π̂R(τ τ̄) = (Π̂Rτ)(Π̂Rτ̄), Π̂R(Iaτ) = DaK ∗ (ΠRτ). (3.4)

It follows from this definition and the fact that R lives fixed of elements of the for Iaτ that the
map ΠR satisfies the admissibility condition

ΠR(Iaτ) = DaK ∗ (ΠRτ).

Recall that the co-action ∆ satisfies the induction relation
∆(•) := • ⊗ 1, for • ∈

{
1, Xi, ζ

}
,

∆(Iaτ) := (Ia ⊗ Id)∆ +
∑

|`+m|<deg(Iaτ)

X`

`!
⊗ Xm

m!
I+
a+`+m(τ).

(3.5)

and set
ΠRxτ =

(
ΠR ⊗ (gRx)−1

)
∆

with
(gRx)−1

(
I+
a τ
)

= −
(
DaK ∗ ΠRxτ

)
(x), (3.6)

and
ĝRyx =

(
Id⊗ gRyx

)
∆, (3.7)

with
gRyx =

(
(gRy )−1 ◦ S+ ⊗ (gRx)−1

)
∆+.

An induction on the degree of τ shows that ΠRx is the solution of the induction relation(
ΠRxτ

)
(y) =

(
Π̂Rx
(
R(y)τ

))
(y),

Π̂Rx(τ τ̄) = (Π̂Rxτ) (Π̂Rx τ̄),(
Π̂Rx(Iaτ)

)
(y) =

(
DaK ∗ ΠRxτ

)
(y)−

∑
|k|≤deg(Iaτ)

(y − x)k

k!

(
Da+kK ∗ ΠRxτ

)
(x).

This was done in Section ?? of [9] in the case where the preparation map R does not depend on its
R2 argument. The proof carries over verbatim to the present setting. For showing the analytical
bounds for ĝRyx, one needs the following recursive identity, whose proof follows the same lines as
the proof of Lemma 11 in [5] noting that

ĝRyx(τ) =
∑
i

ci(x)τi

for coefficients ci(x) depending on x, as a consequence of the definition of the character (gRx)−1.

Lemma 8 – One has the identity

ĝRyx
(
Iaτ
)

= Ia
(

ĝRyxτ
)
−

∑
|`|<deg(Iaτ)

(X + x− y)`

`!
ΠRx

(
Ia+`

(
ĝRyxτ

))
(y). (3.8)
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Equipped with this statement, it is straightforward to follow carefully the proof of Proposition
10 in [5] and prove the following result.

Proposition 9 – The pair MR =
(
gR,ΠR

)
defines a smooth admissible model on T .

Proof – The only point that needs to be checked is the analytical bounds for ΠR. It is per-
formed by induction on the size of the trees. Given a tree τ , one has by definition(

ΠRxτ
)
(y) =

(
Π̂Rx
(
R(y)τ

))
(y) =

∑
i

λi(y)
(
Π̂Rxτi

)
(y),

where
R(y)τ =

∑
i

λi(y)τ.

We apply the induction hypothesis on
(
Π̂Rxτi

)
(y) to get the correct bound∣∣(Π̂Rxτi)(y)

∣∣ . |y − x|deg(τi), deg(τi) ≥ deg(τ).

Then working with a smooth model makes the terms λi(y) bounded. This allows us to conclude
that ∣∣(Π̂Rxτi)(y)

∣∣ .∑
i

λi(y)|y − x|deg(τi) . |y − x|deg(τ).

The bound for (Π̂RxIa(τ))(y) follows from the one of (ΠRxτ)(y) and the fact that we subtract
in the definition of (Π̂RxIa(τ))(y) the correct Taylor expansion. �

The weaker conclusion in Proposition 10 of [2] that MR defines an admissible model on a modified
version T (ε) of T comes from the fact that we work therein with non smooth models for which
we use a density argument that requires the introduction of T (ε). We only work in the present
work with the smooth canonical model Π so there is no need to introduce T (ε).

3.2 Renormalised equation

In the section, we derive the renormalized equation associated to the models described in the
previous section; it involves the functions Fi(τ) defined in (1.4). We recall here from Section 4.2
of Hairer’ seminal work [20] the definition of the lift Fi of a smooth function Fi. One has for any

a =: a11 + a′ ∈ T,
with 〈a′,1〉 = 0,

Fi(a) =
∑
k

DkF (a1)

k!
(a′)k.

We need to add an extra assumption to our preparation map R introduced in our previous work [4].
We first recall the definition of the product ? : T ×T → T . It is defined for all σ = Xk

∏
i Iai(σi) ∈

T and τ ∈ T by the formula

σ ? τ := ↑kNτ

(∏
i

Iai(σi) y τ

)
where

↑kNτ τ :=
∑

∑
v∈B kv=k

∏
v∈NT

↑kvv τ.

and y corresponds to the simultaneous grafting of the τi via edges decorated by the labels ai.

Definition – A strong preparation map is a preparation map satisfying
R∗ (σ ? τ) = σ ? (R∗τ) (3.9)

for all σ ∈ T and τ ∈ T .

This identity implicitly holds pointwise on all of R2. Models of the form (3.3) provide examples
of strong preparation maps. If we consider σ ∈ T + and τ ∈ T then (3.9) is the dual version of
the ‘commutation’ relation (3.2) between R and ∆. The definition of a strong preparation map
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requires that (3.9) holds for all σ ∈ T . This property of a preparation map ensures the crucial
relation

Fi
(
R(x, ·)∗τ

)
= ∂kDa1 · · ·DanFi

(
R(x, ·)∗ζl

) n∏
j=1

Flj (τj), (3.10)

when τ = Xkζl
∏n
j=1 Iaj (τj) and aj = (tnj , kj), for all x ∈ R2. Since the model MR takes values in

the space of continuous functions, the reconstruction operator RMR associated with it is given by
the explicit formula (

RMRv
)
(x) =

(
ΠRxv(x)

)
(x)

for any modelled distribution v with positive regularity, so(
RMRv

)
(x) =

(
Π̂Rx
(
R(x)v(x)

))
(x). (3.11)

The multiplicative character of the map Π̂Rx(·)(x) is the crucial feature of this factorization of RMR .
For preparation maps R for which

R(Iaτ) = Iaτ (3.12)
for all τ ∈ T and a ∈ T+ × N2, one has

ΠRx (Iaτ) = Π̂Rx(Iaτ).

Denote by TX ⊂ T the linear space spanned by the polynomials in T . Under assumption (3.12),
modelled distributions v with values in the subspace TX ⊕

⊕
a∈T+×{0} Ia(T ) of T satisfy in that

case the identity (
RMv

)
(x) =

(
Π̂Rxv(x)

)
(x).

This is the case of the modelled distribution solution of the regularity structure lift of the system
(1.1).

Theorem 10 – Let R : R2 × T → T be a strong preparation map such that

Rτ = τ, for τ ∈ TX ⊕
⊕

a∈T+×{0}

Ia(T ).

Let MR stand for its associated admissible model. Let u stand for the modelled distribution solution
of the regularity structure lift of system (1.1) with initial condition u0. Then

u := RMRu

is a solution of the renormalized system

(∂x0
− Li)ui = Fi(u, ∂x1

u) ξ +

n0∑
l=0

Fi

((
R(·)∗ − Id

)
ζl

)
(u, ∂x1

u) ξl, (1 ≤ i ≤ k0). (3.13)

We use the notation R(·) to emphasize the dependence of R on its R2 argument. The most
general renormalized equations involves the noise ξ in their counter-terms – recall ξ0 = 1. It
is only for strong preparation maps R such that R(x)∗ζl = ζl for all l 6= 0, for all x, that the
counter-terms do not involve the noise.

Proof – The proof follows verbatim the proof of Theorem 9 in [4]. We check that the fact that
R depends on x ∈ R2 does not change its mechanics. As we are working with an admissible
model we have

(∂x0
− Li)ui = RMR(vi), vi =

∑
deg(τ)<γ−2

Fi(τ)(u, Du)

S(τ)
τ,

for a sum over the canonical basis of T . The function vi is a modelled distribution of regularity
γ. One has from (3.11), by construction,(

RMRvi
)
(x) =

(
Π̂Rx
(
R(x)vi(x)

))
(x),

and 〈
R(x)vi(x), τ

〉
=
〈
vi(x) , R(x)∗τ

〉
= Fi

(
R(x)∗τ

)(
u(x), Du(x)

)
,
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with Fi
(
R(x)∗τ

)
given by (3.10). Emphasize the crucial fact that R and vi are evaluated at

the same point x. One can then write

R(x)vi(x) =
∑ Fi

(
R(x)∗τ

)(
u(x), Du(x)

)
S(τ)

τ,

and using the Faà di Bruno formula as in the proof of Theorem 9 in [4], one gets

R(x)vi(x) =

n0∑
l=1

Fi
(
R(x)∗ζl

)(
u(x), Du(x)

)
ζl.

Using the (crucial) multiplicativity property of Π̂Rx we see that

(
(∂x0

− Li)ui
)
(x) =

(
RMRvi

)
(x) = Π̂Rx

(
R(x)vi(x)

)
(x)

=

n0∑
l=0

Π̂Rx

(
Fi
(
R∗(x)ζl)(u(x), Du(x)

)
ζl

)
(x)

=

n0∑
l=0

Fi
(
R∗(x)ζl

)((
Π̂Rxu(x)

)
(x), ∂x1

(
Π̂Rxu(x)

)
(x)
)

Π̂Rxζl

=

n0∑
l=0

Fi(R
∗(x)ζl)

(
u(x), ∂x1

u(x)
)
ξl(x).

�

3.3 BHZ renormalization

In the translation-invariant setting, one can recast the renormalization scheme introduced by
Bruned, Hairer and Zambotti in [12] in the setting of preparation maps associating to any element
` of the renormalization group a strong preparation map R` whose dual R∗` is given by

R∗` (τ) =
∑
σ∈B−

`(σ) (τ ? σ),

where B− stands for the canonical basis of T − and ? is a product first introduced in Bruned and
Manchon’s recent work [13] – see also Section 2 of [4]. (The map R` is of the form (3.3).) If the
random noise ξ in (1.1) takes values in the space of smooth functions and has a translation-invariant
distribution the BHZ renormalization corresponds to taking

`(τ) = E
[
(Πτ)(0)

]
,

with Π the canonical smooth model associated with ξ – see identity (6.25) in [12]. The renormalized
system (3.13) then takes the form

(∂x0 − Li)ui = Fi(u, ∂x1u) ξ +
∑
τ∈B−

`(τ)
Fi(τ)

(
u, ∂x1

u
)

S(τ)
, (1 ≤ i ≤ k0).

The same conclusion holds in the general non-translation invariant setting, where R(x)∗ζl = ζl for
all l 6= 0 and all x ∈ R2, and where the renormalized system takes now the form

(∂x0 − Li)ui = Fi(u, ∂x1u) ξ +
∑
τ∈B−

`(·, τ)
Fi(τ)

(
u, ∂x1

u
)

S(τ)
, (1 ≤ i ≤ k0).

We do not touch here on the question of showing that such renormalization schemes provide limit
admissible models when used on models built from regularized random noises such as space or
spacetime white noise. We expect the proof of the convergence result proved by Chandra and
Hairer in [15] in a translation invariant setting to have a direct counterpart in the non-translation
invariant setting.
Remarks – 1. How far are we from having a framework for dealing with systems of real-valued
functions on a 2 or 3-dimensional closed manifold satisfying singular stochastic PDEs of the form
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(1.1) with the differential of u in the role of ∂x1
u? The pattern of proof of the estimate (2.1) is

robust enough to be adapted to a closed manifold setting. The algebraic results of Section 3 are
insensitive to the fact that we could be on a manifold. The only point where analysis enters the
scene is when using the reconstruction theorem. The proof of the latter given in the ‘Tourist guide’
[8] works verbatim on a manifold setting once one has the estimates (2.1). Alternatively, one can
use the manifold version of Caravenna & Zambotti’s approach to the reconstruction theorem [14],
given by Rinaldi and Sclavi in [25]. However, the present setting is not sufficient to deal with more
general systems of singular stochastic PDEs, like the scalar Φ4

3 equation on a closed manifold, for
which more geometrical background needs to be introduced (jets in particular) to deal with local
expansions of order higher than 1. See the forthcoming work [23] of Hairer & Singh on the subject.

2. The group G− of characters of the algebra T − comes equipped with a convolution product
derived from the extraction/contraction coproduct ∆− : T − → T − ⊗ T −:

` ◦ ¯̀ :=
(
`⊗ ¯̀

)
∆−, `−1(·) = `(S−·),

where S− is the antipode associated to ∆−. In the translation-invariant setting of all previous
works, this group has an explicit representation in L(T ) given by

M` := (`⊗ Id) δ,

for which δ : T → T − ⊗ T is a co-action and
M`M¯̀ = M`◦¯̀.

Although we cannot build such a representation of the group G− in a non-translation invariant
setting, we can associate

R`(x) =
(
`(x, ·)⊗ Id

)
δr

to any character and any state space point x, and set
` ◦ ¯̀ :=

(
`⊗ ¯̀

)
δr,

pointwise in x, with δr is the map from Example 7. One then has
R`R¯̀ = R`◦¯̀.
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