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Abstract. In this article a stochastic particle system approximation to the parametric sensi-
tivity in the Smoluchowski coagulation equation is introduced. The parametric sensitivity is the
derivative of the solution to the equation with respect to some parameter, where the coagulation
kernel depends on this parameter. It is proved that the particle system converges weakly to the
sensitivity as the number of particles N increases. A Monte Carlo algorithm is developed and vari-
ance reduction techniques are applied. Numerical experiments are conducted for two kernels: the
additive kernel and one which has been used for studying soot formation in a free molecular regime.
It is shown empirically that the techniques for variance reduction are indeed very e�ective and that
the order of convergence is O(1/N). The algorithm is then compared to an algorithm based on a
�nite di�erence approximation to the sensitivity and it is found that the variance of the sensitivity
estimators are considerably lower than that for the �nite di�erence approach. Furthermore, two
methods of establishing `e�ciency' are considered and the new algorithm is found to be signi�cantly
more e�cient.
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1. Introduction. Smoluchowski's description of a coagulation process is made
in terms of densities µt(x) of particles of mass x = 1, 2, 3, . . . and takes the form of an
in�nite dimensional di�erential equation

d

dt
µt(x) =

1
2

x−1∑
y=1

K(y, x− y)µt(y)µt(x− y)− µt(x)
∞∑

y=1

K(x, y)µt(y). (1.1)

The symmetric kernel K(x, y) appearing in this equation should be understood as
giving the rate at which two particles of mass x and y coagulate. One gets an equiv-
alent and more symmetric equation considering µt(·) as a measure on the set of
non-negative integers and looking at the time evolution of observables of the form
(f, µt) :=

∑
x f(x)µt(x); moments are examples of such observables. In these terms,

equation (1.1) takes the form

(f, µt) = (f, µ0) +
1
2

∫ t

0


 ∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
K(x, y)µs(x)µs(y)


ds.

(1.2)
The basic problem we address is to derive a numerical scheme to understand how
the solution to this equation depends on possible parameters in the kernel. We shall
write Kλ to indicate that K depends on some d-dimensional parameter λ, and shall
write µλ

t for the solution of equation (1.2). Formally di�erentiating this equation with
respect to λ and setting σλ

t = ∂λµλ
t we get

(f, σλ
t ) = (f, σλ

0 ) +
1
2

∫ t

0

( ∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
Kλ(x, y)µλ

s (x) σλ
s (y)

)
ds

+
∫ t

0

( ∑

x,y>1

{
f(x + y)− f(x)− f(y)

}
K ′

λ(x, y)µλ
s (x) µλ

s (y)
)
ds.

(1.3)
K ′

λ is here the derivative of Kλ with respect to λ. Section 2 presents an algorithm
which simulates the sensitivity σλ

t very accurately and in an e�cient way.
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There are two main motivations for performing sensitivity analysis. The �rst
is for solving inverse problems. If some particle system is governed by a partial
di�erential equation which in turn is dependent upon some unknown parameter, it
is desirable to �nd this parameter. This can be achieved by choosing the parameter
value which minimises some residual which is a function of experimentally realised
quantities and its computational analogue, which varies with the parameter. The
minimisation procedure often uses a gradient search, thus the value of computing
parametric derivatives is apparent. Secondly, in considering a scienti�c model, we
often wish to consider the smallest model which reasonably �ts the data, in which
case sensitivity analysis can be performed to discard parameters with small sensitivity.

Whilst the usual tools of solving di�erential equations (and their associated nu-
merical schemes) are badly adapted to the above in�nite dimensional framework, the
stochastic approach of interaction particle systems (basically Markov chains) can be
used e�ciently, in this setting, as Marcus in [1], and later Lushnikov in [2], �rst re-
alised. We follow their approach and give a stochastic particle approximation of the
sensitivity σλ

t .
Before running any simulation, one should investigate the well-posedness of equa-

tion (1.3): if it had more than one solution it would be unclear what solution a nu-
merical scheme approximates. The most general answers to this theoretical question
for Smoluchowski equation were given by Jeon in [3] and Norris in [4], under a growth
assumption on the interaction kernel and a moment condition on the initial condition
µ0. Surprisingly enough, the existence and uniqueness problem for the sensitivity was
only solved recently, by Bailleul [5], using methods developed by Kolokoltsov [6]. The
algorithm developed in this article is the numerical counterpart of this theoretical
work1.

Three approaches to the simulation of the sensitivity by systems of particles
have mainly been used up to now. The �rst uses weighted particles, as illustrated
by Vikhansky and Kraft [7]. They approximate the family of solutions

{
µλ

t

}
λ
by

Marcus-Lushnikov processes
∑

n>0 wn(t ; λ)δxn(t) where the dependence on λ is en-
tirely put on the weights wn(t ; λ). A heuristic argument imposes to their derivative
to satisfy a kind of Markov evolution rule. Despite its (numerically veri�ed) conver-
gence this approach essentially has the same speed of convergence and variance as the
Marcus-Lushnikov process. Further, the paper does not any information regarding
computation run times.

The second approach considers adjoint sensitivity [8]. A backward partial dif-
ferential equation is used rather than a forward one, as used in most other methods.
The advantage of this method is that sensitivity for any parameter value is immediate
once the computation have been done whereas using the forward equation requires
explicit calculation for each parameter value. The disadvantage is that one can only
calculate the sensitivities for a particular functional of the particle ensemble.

In the third approach, devised by the authors with J. R. Norris in the forthcoming
article [9], the sensitivity σλ

t is approximated by the ratio (µλ+δλ ; N
t − µλ ; N

t )/δλ,
where µλ+δλ ; N

t and µλ ; N
t are two Markus-Lushnikov processes corresponding to close

parameters, coupled so as to minimise the di�erence of their random �uctuations
around µλ+δλ

t and µλ
t . This approach leads to a massive decrease of variance but does

not improve the speed of convergence of the algorithm.

1Consult this article for conditions under which existence and uniqueness of a solution to the
sensitivity equation (1.3) holds.
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The algorithm we propose improves the variance of the sensitivity estimator and
requires a much smaller number of particles to converge. This is described in section
2. The reader who is not interested in mathematical details can skip sections 2.1 and
2.2 where it is proven that the particle system introduced in section 2 converges to
the sensitivity. Section 3 presents the algorithm we have used to obtain the numerical
results of section 4.

Notation. We shall prove convergence of the particle system in a general setting
where masses of particles can take any positive real value. The densities of particles
will then be represented by non-negative measures µt and all sums will be replaced by
integrals. In this framework we shall write (f, µ) for

∫
f(x)µ(dx) and Smoluchowski's

equation (1.2) will be written

(f, µt) = (f, µ0) +
1
2

∫ t

0

∫ {
f(x + y)− f(x)− f(y)

}
K(x, y) µs(dx) µs(dy)ds.

We shall formally write it as

µ̇λ
t =

1
2
Kλ(µλ

t , µλ
t ). (1.4)

In the same way, we shall write formally equation (1.3) for the sensitivity as

σ̇λ
t = Kλ

(
µλ

t , σλ
t

)
+

1
2
K ′

λ

(
µλ

t , µλ
t

)
. (1.5)

The integral notation is adopted from now on.
2. Markov chain approximation. It is probably fair to say that although the

Smoluchowski equation (1.2) is a deterministic evolution equation it should primar-
ily be thought of as a deterministic large scale picture of a stochastic mesoscopic
dynamics. Indeed, Smoluchowski obtained his equation from a representation of the
coagulation process using `particles' moving according to Brownian trajectories whose
di�usivity depends on their mass and coagulate when they are close to each other.
As explained in the article [10] of Chandrasekhar, section 6 of chapter III, in a region
of space where the coagulating particles are well mixed, one can forget about their
spatial location and obtain a mean-�eld evolution for their mass distribution. This
mean-�eld picture is provided by Smoluchowski equation. Given in its simple form
(1.1), it is not clear at �rst sight how one should simulate a solution to this in�nite
dimensional di�erential system.

The approach developed by Marcus in his seminal paper [1] in a sense comes
back to the primary stochastic description of the coagulation phenomenon and relies
on the intuitive content of Smoluchowski equation. Two particles of masses x and
y coagulate at rate K(x, y) to create a new particle of mass x + y: The particles x
and y are removed from the system and the particle x + y added. This motivated
Marcus, and later Lushnikov, to represent a particle of mass x by a Dirac mass δx at x
and to introduce a strong Markov jump process on the space of discrete non-negative
measures with the following simple dynamics. Denote by µN

0 =
1
N

∑

i

δxi its initial

state and by µN
t its state at time t. Associate to each pair 1 6 i < j 6 N independent

exponential random times Tij with parameter K
(
xi, xj

)

N
and set

T = min{Tij ; 1 6 i < j 6 N}.
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The process remains constant on the time interval [0, T ), and if T = Tpq it has a jump
1
N

(
δxp+xq

− δxp
− δxq

)
at time T . The dynamics then starts afresh. Note that the

new measure at time T is still non-negative, and that the above description leads to
a mean jump of the process during a time interval [t, t + δt] equal to2

δt
∑

x,x′

(
δx+x′ − δx − δx′

)
K(x, y)µN

t (x)µN
t (x′)

up to terms of order δt
N and o(δt). This property makes it clear that the process

converges to a solution of the Smoluchowski equation as N goes to in�nity (under
proper conditions), a fact which was used for simulation purposes long before it was
proved under general conditions in [4].

Following the heuristic approach of Marcus and Lushnikov, we are going to give
in the next section a particle description of the sensitivity equation

σ̇λ
t = Kλ

(
µλ

t , σλ
t

)
+

1
2
K ′

λ

(
µλ

t , µλ
t

)
. (2.1)

To that end, introduce the notation K ′
+ := K ′ ∨ 0 and K ′

− := K ′ ∧ 0 (dropping the
index λ for it will be �xed), and write, for a signed measure σ,

σ = σ1 dσ
d|σ|>0 − |σ|1 dσ

d|σ|<0 =: σ+ − σ−,

Using this notation, re-write equation (2.1) as

σ̇+
t − σ̇−t =

(
Kλ

(
µλ

t , σ+
t

)
+

1
2
K ′

+

(
µλ

t , µλ
t

))−
(
Kλ

(
µλ

t , σ−t
)

+
1
2
K ′
−

(
µλ

t , µλ
t

))
(2.2)

This equation will motivate the introduction of the Markov chain described in the
next section.
Notation. Given three non-negative measures µ, σ+, σ− on (0,∞) we shall adopt the
notation µ⊕σ+⊕σ− to denote the R3

+-valued measure on (0,∞)3. It will clarify the
notation to denote by x ⊕ y ⊕ z the point of R3 with co-ordinates x, y and z. Given
non-negative functions f, g, h on (0,∞) set

(
f ⊕ g ⊕ h, µ⊕ σ+ ⊕ σ−

)
:= (f, µ)⊕ (g, σ+)⊕ (h, σ−).

As we shall simulate both µt and (σ+
t , σ−t ) at the same time, our approximating

Markov chain will take values in the set

N :=
{
µ⊕ σ+ ⊕ σ− ; µ, σ+, σ− non-negative discrete measures on (0,∞)

}
.

2.1. Chain, generator. In the same way as the right hand side of Smoluchowski
equation (1.4) can be interpreted as the coagulation of particles of µt of mass x and y
at rate K(x, y), we are going to follow what equation (2.2) suggest and interpret the
term K(µt, σ

+
t ) appearing there as the coagulation of a particle in µt of mass x with a

particle in σ+
t of mass y at rate K(x, y). Note that this leads to a jump δx+y− δx− δy

of σ+ which could transform the non-negative measure σ+
t into a signed measure, as

the term δx does not necessarily appear inside σ+
t (while δy does). We shall take care

of this by adding δx to the negative part σ−t of σt instead of subtracting it from σ+
t ;

2µN
t denotes the state of the process at time t.
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as we are only interested in the di�erence σ+
t − σ−t (= σt) this has no consequence.

Note also that the particle δx from µt used in that coagulation event will not be
removed from µt. Similar interpretations of the terms K(µt, σ

−
t ) and 1

2K ′
±(µt, µt)

lead us to de�ne the following Markov chain Θt = Xt ⊕ Yt ⊕ Zt on N . Denote by
Θ0 =

( ∑

i=1..m

δxi

)
⊕

( ∑

k=1..p

δyk

)
⊕

( ∑

`=1..q

δz`

)
its starting point.

2.1.1. Dynamics. Associate to each pair
• 1 6 i < j 6 m, exponential random variables Rij , Sij and Tij with respective

parameters K(xi, xj) and K ′
+(xi, xj) and K ′

−(xi, xj),
• (i, k) ∈ J1,mK × J1, pK an exponential random variable Uik with parameter

K(xi, yk),
• (i, `) ∈ J1, mK × J1, qK an exponential random variable Vi` with parameter

K(xi, z`).
All these random variables are supposed to be independent. Denoting by W the �rst
event happening in the system

W = min
{
Rij , Sij , Tij , Uik, Vi` ; 1 6 i < j 6 m, k ∈ J1, pK, ` ∈ J1, qK},

the jump ∆Θ of the Markov chain depends on which of these exponential clocks rings
�rst. For future reference, the di�erent types of events that can happen are numbered.
If

W = Rij , then ∆Θ =
(
δxi+xj − δxi − δxj

)⊕ 0⊕ 0 (event type: 0 )
W = Sij , then ∆Θ = 0⊕ δxi+xj ⊕

(
δxi + δxj

)
(event type: 1+)

W = Tij , then ∆Θ = 0⊕ (
δxi + δxj

)⊕ δxi+xj (event type: 1−)
W = Uik, then ∆Θ = 0⊕ (

δxi+yk
− δyk

)⊕ δxi (event type: 2+)
W = Vi`, then ∆Θ = 0⊕ δxi ⊕

(
δxi+z`

− δz`

)
(event type: 2−)

The process Θt will be constant on the time interval [0,W ) and have jump ∆Θ at
time W . The dynamics then starts afresh.
Remark. It is clear from this description that for any function ϕ satisfying the
relation ϕ(a + b) > ϕ(a) − ϕ(b) for any a, b > 0, the function (ϕ, Yt + Zt) increases
with time. This fact is useful for the convergence result stated in theorem 2.2.

Given any positive integer N , de�ne 1
N Θt as the element 1

N Xt ⊕ 1
N Yt ⊕ 1

N Zt of
N , and set

ΘN
t :=

1
N

Θ t
N

=: µN
t ⊕ σ+,N

t ⊕ σ−,N
t .

Note that the �rst component of ΘN
t is the usual Marcus-Lushnikov process. Set

σN
t = σ+,N

t − σ−,N
t . We are going to prove in theorem 2.2 that σN

t converges in law
to the sensitivity σt. Those who do not care about the mathematical details of such a
statement can skip the remaining of this section and go to section 3.

2.1.2. Generator. The analytic description of the Markov chain {ΘN
t }t>0 in

terms of its generator will be useful in proving theorem 2.2. Given a non-negative
measure µ of the form 1

N

∑
δxi de�ne the rescaled counting measure on ordered pairs

of masses of distinct particles by

µ̃(A×A′) := µ(A)µ(A′)− 1
N

µ(A ∩A′),
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and de�ne the measure G(N)(µ) and the operator P(N)(µ) setting for any measurable
bounded function f

(
f,G(N)(µ)

)
=

1
2

∫ {
f(x + x′)− f(x)− f(x′)

}
K(x, x′) µ̃(dx, dx′)

(
f,P(N)(µ)

)
=

1
2

∫ {
f(x + x′)− f(x)− f(x′)

}2
K(x, x′) µ̃(dx, dx′).

Given x > 0 and a non-negative measure γ on R∗+ we shall write K(x, γ) for the
integral

∫
K(x, y)γ(dy).

Denote by H(N) the generator of the process
{
ΘN

t

}
06t6T

; for any bounded mea-
surable functions f, g, h on (0,∞) the R3-valued process

Mf,g,h ; N
t :=

(
f ⊕ g ⊕ h,ΘN

t

)− (
f ⊕ g ⊕ h,ΘN

0

)−
∫ t

0

(
f ⊕ g ⊕ h,H(N)

(
ΘN

s

))
ds

is a martingale (with respect to its natural �ltration). For a measure µ of the form
1
N

∑
δxi

and Θ = µ⊕ σ+ ⊕ σ− ∈ N we have
(
f ⊕ g ⊕ h,H(N)(Θ)

)
=

(
f,G(N)(µ)

) ⊕{
1
2

∫ {
g(x + x′)K ′

+(x, x′) +
(
g(x) + g(x′)

)
K ′
−(x, x′)

}
µ̃(dx, dx′)

+
∫ {(

g(x + y)− g(y)
)
K(x, y)σ+(dy) + g(x)K(x, σ−)

}
µ(dx)

}
⊕

{
1
2

∫ {
h(x + x′)K ′

−(x, x′) +
(
h(x) + h(x′)

)
K ′

+(x, x′)
}

µ̃(dx, dx′)

+
∫ {(

h(x + z)− h(z)
)
K(x, z)σ−(dz) + h(x)K(x, σ+)

}
µ(dx)

}

(2.3)

Compare this formula with the description of the dynamics given in the section
2.1.1.

(i) Event {W = Rij} corresponds to the term
(
f,G(N)(µ)

)⊕ 0⊕ 0;
(ii) Event {W = Sij} corresponds to the term 1

2

∫
0 ⊕ g(x + y) ⊕ (

h(x) +
h(y)

)
K ′

+(x, y)µ̃(dx, dy); a similar term corresponds to the event {W = Tij};
(iii) Event {W = Uik} corresponds to the term

∫ {
0 ⊕ (

g(x + z) − g(z)
) ⊕

h(x)K(x, z)σ+(dz)
}
µ(dx); a similar term corresponds to the event {W = Vi`}.

The sum of all these terms gives
(
f ⊕ g ⊕ h,H(N)(Θ)

)
.

Following a classical approach, the study of martingales of the form Mf,g,h ; N
· will

be our main tool in the proof of the convergence theorem. The explicit expression of
the bracket of Mf,g,h ; N will be useful in that task. We have

〈
Mf,g,h ; N

〉
t
=

1
N

∫ t

0

(
f ⊕ g ⊕ h,Q(N)

(
ΘN

s

))
ds,

where QN
(
Θ

)
is characterised on measures Θ of the form

(
1
N

∑
δxi

)
⊕ σ+ ⊕ σ− by
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the formula
(
f ⊕ g ⊕ h,Q(N)(Θ)

)
=

(
f,P(N)(µ)

) ⊕{
1
2

∫ {
g(x + x′)2K ′

+(x, x′) +
(
g(x) + g(x′)

)2
K ′
−(x, x′)

}
µ̃(dx, dx′)

+
∫ {(

g(x + y)− g(y)
)2

K(x, y) σ+(dy) + g(x)2 K(x, σ−)
}

µ(dx)
}
⊕

{
1
2

∫ {
h(x + x′)2K ′

−(x, x′) +
(
h(x) + h(x′)

)2
K ′

+(x, x′)
}

µ̃(dx, dx′)

+
∫ {(

h(x + z)− h(z)
)2

K(x, z)σ−(dz) + h(x)2 K(x, σ+)
}

µ(dx)
}

2.2. Convergence theorem. Denote by U a bounded open set of some Rd

indexing the family Kλ of kernels. Let ϕ : (0,∞) → R+ be a sublinear function:
ϕ(sx) 6 sϕ(x) for any s > 0 and x ∈ (0,∞); such a function is also subadditive:
ϕ(x + y) 6 ϕ(x) + ϕ(y), for any x, y ∈ (0,∞). We shall suppose that the interaction
kernels Kλ satisfy the growth condition

Kλ(x, y) 6 ϕ(x)ϕ(y)

for any x, y ∈ (0,∞), λ ∈ U , and that the initial condition of Smoluchowski equation
(1.2) (or better its `continuous mass version') satis�es the moment condition

∫
ϕ(x)4+εµ0(dx) < ∞ (2.4)

for some (small) ε > 0. We shall suppose in theorem 2.2 that ϕ2 is sub-additive;
together with the above moment condition (2.4) on µ0 this implies that Smoluchowski
equation has a unique strong solution3, de�ned for all non-negative times.

The following norm was used on the space M1 of signed Borel measures µ such
that ‖µ‖1 :=

(
ϕ, |µ|) < ∞, in the article [5] where the following key result about

sensitivity is proved.
Theorem 2.1. Assume the moment condition (2.4) and that Kλ(x, y) and∣∣K ′

λ(x, y)
∣∣ are both bounded above by ϕ(x)ϕ(y) for any x, y. Then the map (t, λ) ∈

[0,∞) × U 7→ µλ
t ∈

(M1, ‖.‖1
)
, is a C1 function and its derivative σλ

t satis�es the
following equation for any bounded measurable function f(4).

(
f, σλ

t

)
=

(
f, σλ

0

)
+

∫ t

0

∫
{f}(x, y)Kλ(x, y)µλ

s (dx)σλ
s (dy)ds

+
1
2

∫ t

0

∫
{f}(x, y)K ′

λ(x, y)µλ
s (dx)µλ

s (dy)ds

The function σλ
· is the only

(M1, ‖.‖1
)
-valued solution of this equation.

We shall consider here a weaker topology than the ‖ · ‖1-topology. We shall equip
the space R⊕3

+ with the `1-distance: ‖x⊕y⊕z−x′⊕y′⊕z′‖ := |x−x′|+|y−y′|+|z−z′|.
3In the sense de�ned in [4].
4We write here {f}(x, y) for f(x + y)− f(x)− f(y).
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Write M⊕3 for the set of non-negative R⊕3
+ -valued measures on R∗+, and let d be any

distance on M⊕3 metrising weak convergence: {Θn}n>0 converges to Θ∞ i� for any
bounded continuous functions f, g, h on R∗+, we have

(
f⊕g⊕h,Θn

) → (
f⊕g⊕h,Θ∞

)
.

The space
(M⊕3, d

)
is a Polish space with N as a dense subset.

Fix a positive time T . We shall state our convergence theorem in the functional
setting D(

[0, T ], (M⊕3, d)
)
of càdlàg paths from [0, T ] to (M⊕3, d). This space will

be equipped with its Skorokhod topology, for which we refer the reader to the books
[11] or [12] of Billingsley and Pollard. Last, we shall denote by d0 any distance on
the set of all non-negative Borel measures on (0,∞) metrising the following notion
of convergence5: {µn}n>0 converges to µ∞ i� we have (f, µn) → (f, µ∞) for any
bounded continuous measurable function f with bounded support.

The starting point ΘN
0 of ΘN

· will be of the form 1
N XN

0 ⊕ 1
N Y N

0 ⊕ 1
N Zn

0 for some
non-negative integer-valued �nite measures XN

0 , Y N
0 , ZN

0 on (0,∞). To shorten the
notation we shall denote by

ΘN
t =: µN

t ⊕ σ+,N
t ⊕ σ−,N

t

the process starting from ΘN
0 constructed in section 2.1 and corresponding to a given

parameter λ.
We shall suppose that the function ϕ controlling the kernels Kλ satis�es identity

(2.5) below. As noted in the remark on page 5, this hypothesis implies that the
function

(
ϕ, σ+,N

t +σ−,N
t

)
increases with time; this fact will enable us to control ΘN .

Note that this hypothesis is weaker than requiring that ϕ be increasing.
Theorem 2.2 (Convergence of the particle system). Let Kλ(·, ·) : R∗+ × R∗+ →

[0,+∞) be a family of symmetric kernels indexed by λ ∈ U . We suppose the map
(λ ; x, x′) 7→ Kλ(x, x′) continuous and di�erentiable with respect to λ, with a derivative
K ′

λ(x, x′) continuous with respect to (x, x′). Let ϕ > 1 be a subadditive function whose
square is also subadditive. Assume that

ϕ(a + b) > ϕ(a)− ϕ(b), for any positive a, b, (2.5)

∀λ ∈ U , ∀x, x′, y ∈ R∗+, Kλ(x, x′) 6 ϕ(x)ϕ(x′),∣∣K ′
λ(x, y)

∣∣ 6 ϕ(x)ϕ(y),
(2.6)

Kλ(x, x′)
ϕ(x)ϕ(x′)

and K ′
λ(x, x′)

ϕ(x) ϕ(x′)
−→

x+x′→∞
0 (2.7)

Fix λ ∈ U and write ΘN
· for the corresponding process in N , started from µN

0 ⊕σ+,N
0 ⊕

σ−,N
0 . Suppose that µ0 satis�es the moment condition (2.4) for some (small) ε, that

d0

(
ϕµN

0 , ϕµ0

)
→ 0, (2.8)

and that there exists a positive constant C bigger than
(
ϕ2, µN

0

)
and

(
ϕ, σ+,N

0 +σ−,N
0

)
for any N > 1.

5This notion of convergence, usually called vague convergence, is weaker than weak convergence.
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Then the sequence of the laws of the processes ΘN is tight and any (random) weak
limit is almost surely of the form

{
µt ⊕ σ+,∞

t ⊕ σ−,∞
t

}
06t6T

, with

σ+,∞
t − σ−,∞

t = σt.

Proof. The following estimate is essential in controlling the behaviour of the
processes σ+,N and σ−,N .

Lemma 2.3. There exists a positive constant C1 such that

E
[

sup
06t6T

(
ϕ, σ+,N

t + σ−,N
t

)]
6 C1.

First decompose
(
ϕ, σ+,N

t + σ−,N
t

)
as the sum of a martingale

{
Mt

}
06t6T

and a
�nite variation term:

(
ϕ, σ+,N

t + σ−,N
t

)
=

(
ϕ, σ+,N

0 + σ−,N
0

)
+ Mt

+
∫ t

0

(∫ {
ϕ(x + x′) + ϕ(x) + ϕ(x′)

}
K ′(x, x′) µ̃N

s (dx, dx′)

+
∫ {

ϕ(x + y)− ϕ(y) + ϕ(x)
}

K(x, y)µN
s (dx)

(
σ+,N

s + σ−,N
s

)
(dy)

)
ds.

From (2.6) we have for each N > 1 and t ∈ [0, T ]

(
ϕ, σ+,N

t + σ−,N
t

)
6 C + Mt +

∫ t

0

∫
2
{
ϕ(x) + ϕ(x′)

}
ϕ(x)ϕ(x′)µN

s (dx)µN
s (dx′) ds

+2
∫ t

0

(
ϕ2, µN

s

) (
ϕ, σ+,N

s + σ−,N
s

)
ds.

This upper bound is simpli�ed using the subadditivity of ϕ and ϕ2 from which we
have6

(ϕ, µN
t ) 6 (ϕ, µN

0 ) 6 C and (ϕ2, µN
t ) 6 (ϕ2, µN

0 ) 6 C.

This gives a Grönwall-type inequality

(
ϕ, σ+,N

t + σ−,N
t

)
6 C + Mt + 4C2T + 2C

∫ t

0

(
ϕ, σ+,N

s + σ−,N
s

)
ds

whose mean version gives a constant C1 such that E
[(

ϕ, σ+,N
t + σ−,N

t

)]
6 C1 for any

0 6 t 6 T . We get the statement of the lemma recalling that hypothesis (2.5) implies
that the function t 7→ (

ϕ, σ+,N
t + σ−,N

t

)
is increasing.

Given ε > 0 de�ne the compact subset

Kε =
{

µ⊕ σ+ ⊕ σ− ∈M⊕3 ; max
{
(ϕ, µ),

(
ϕ, σ+

)
,
(
ϕ, σ−

)}
6 1

ε

}
⊂M⊕3,

6Since ϕ > 1 we have
(
ϕ, µN

0

) 6 (
ϕ2, µN

0

) 6 C.
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and denote by PN the law of ΘN
· on D

(
[0, T ],

(M⊕3, d
))

.
Corollary 2.4 (Compactness). Given η > 0, there exists ε > 0 such that

PN
(
D

(
[0, T ],Kε

))
> 1− η.

Now let f, g, h be bounded measurable functions on (0,∞) no greater than 1. By
lemma 2.3 we have for all s < t

E
[∫ t

s

∥∥(
f ⊕ g ⊕ h,H(N)

(
ΘN

s

))∥∥ds

]

6 2C2(t− s) + 2
∫ t

s

E
[
3C2

2
+ 2C

(
ϕ, σ+,N

r + σ−,N
r

)]
dr

6 C2(t− s)

and

E
[〈

Mf,g,h ; N
〉

t
− 〈

Mf,g,h ; N
〉

s

]

6 1
N
E

[∫ t

s

∥∥(
f ⊕ g ⊕ h,Q(N)

(
ΘN

r

))∥∥ds

]

6 4C2

N
+

1
N

∫ t

s

2E
[C2 + 4C2

2
+ 4C

(
ϕ, σ+,N

r

)
+ C

(
ϕ, σ−,N

r

)]
dr

6 C2

N
(t− s),

where C2 is a positive constant depending only on C. So, by Doob's L2-inequality,
we have

E
[

sup
s6r6t

∥∥(
f ⊕ g ⊕ h, ΘN

r −ΘN
s

)∥∥2
]

6 C3

(
(t− s)2 +

t− s

N

)
(2.9)

for some positive constant C3 depending only on C. It is then a standard fact that the
equicontinuity inequality (2.9) together with corollary on compactness enable the use
of Jakubowski's criterion7; so the sequence of laws of ΘN

· in D
(
[0, T ],

(M⊕3, d
))

has a
convergent subsequence. Denote by Θ∞· = µ∞⊕σ+,∞⊕σ−,∞ any limit point. Taking
a subsequence and changing the probability space if necessary we can suppose without
loss of generality that ΘN

· converges almost surely to Θ∞· in D
(
[0, T ],

(M⊕3, d
))

. As
ΘN
· makes jumps of size at most 3

N , in the total variation distance, the limit process
is a continuous process from [0, T ] to

(M⊕3, d
)
.

It is proved in [4] that under conditions (2.8) and (2.4) the process µ∞· is almost
surely equal to the unique strong solution µ· of Smoluchowski equation, and that we
have almost surely sup

s6t
d0

(
ϕµN

s , ϕµs

) → 0, as N goes to ∞.

To prove that σ+,∞
· − σ−,∞

· is equal to the unique solution of equation (1.5) it
su�ces to prove that it satis�es this equation for any bounded measurable function g

7See for instance Dawson's lecture notes [13].
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with compact support, as a straightforward limit argument will give it for any bounded
measurable function. We shall suppose without loss of generality that σ+,N

0 −σ−,N
0 =

0. We shall adopt the notation

σN
s := σ+,N

s − σ−,N
s ,

∣∣σN
s

∣∣ := σ+,N
s + σ−,N

s

and

σ∞s := σ+,∞
s − σ−,∞

s ,
∣∣σ∞s

∣∣ := σ+,∞
s + σ−,∞

s .

The conclusion of lemma 2.3 can now be re-written as E
[

sup
06t6T

(
ϕ,

∣∣σN
t

∣∣)
]

6 C1.

It can be seen from expression (2.3) for H(N) that the real-valued process

Bg ; N
t =

(
g, σN

t

)−
∫ t

0

(∫
1
2
{
g(x + x′)− g(x′)− g(x)

}
K ′(x, x′) µ̃N

s (dx, dx′)

+
∫ {

g(x + y)− g(y)− g(x)
}

K(x, y)µN
s (dx) σN

s (dy)
)
ds

(2.10)

is a martingale with previsible increasing process
〈
Bg ; N

〉
t
=

1
N

∫ t

0

(∫
1
2
{
g(x + x′)− g(x′)− g(x)

}2
K ′(x, x′) µ̃N

s (dx, dx′)

+
∫ {

g(x + y)− g(y)− g(x)
}2

K(x, y)µN
s (dx) σN

s (dy)
)
ds

Using lemma 2.3 together with the almost sure inequality
(
ϕ, µN

s

)
6 C, it is seen that

E
〈
Bg ; N

〉
T

converges to 0 as N goes to ∞. So, to show that σ∞· satis�es equation
(1.5), it is su�cient to prove that the two integrals inside the right hand side of
equation (2.10) converge almost surely to

∫
1
2
{
g(x + x′)− g(x′)− g(x)

}
K ′(x, x′) µs(dx) µs(dx′)

and
∫ {

g(x + y)− g(y)− g(x)
}

K(x, y)µs(dx)σ∞s (dy) (2.11)

respectively, and that we have uniform bounds on them so that dominated convergence
under the time integral can be used. The convergence of the �rst integral was proved
in [4] using hypotheses (2.6) and (2.7), with K in place of K ′; the same argument
applies here. This integral is bounded above by 3

2‖g‖∞C2, uniformly in s ∈ [0, T ] and
N > 1.

Given δ ∈ (0,∞], the function ϕδ(x) = ϕ(x)1x6δ is subadditive. It comes from
Fatou's lemma that the inequality

E
[

sup
06t6T

(
ϕδ,

∣∣σ∞T
∣∣)

]
6 C1

holds for any δ ∈ (0,∞]. So, to any ω ∈ Ω one can associate a positive constant
m(δ ; ω) such that we have

(
ϕδ,

∣∣σ∞t (ω)
∣∣) 6

(
ϕδ,

∣∣σ∞T (ω)
∣∣) 6 m(δ ; ω)
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on the time interval [0, T ]. One can choose this constant m(δ ; ω) so that it converges
to 0 as δ decreases to 0. Taking ω in a subset Ω1 of Ω of probability 1, for which
ΘN
· (ω) converges to Θ∞· (ω) in D(

[0, T ],
(M⊕3, d

))
, we get that

(
ϕδ,

∣∣σN
t (ω)

∣∣) 6
(
ϕδ,

∣∣σN
T (ω)

∣∣)

is arbitrarily small provided δ is small enough, and bounded above uniformly in t ∈
[0, T ], N > 1 and δ ∈ (0,∞].

Proceed now as in [4] and write K as the sum of a kernel K1 with compact support
and a kernel K2 with support in

F1 ∪ F2 ∪ F3 :=
{
(x, y) ; x 6 δ

} ∪ {
(x, y) ; y 6 δ

} ∪
{

(x, y) ; max{x, y} > 1
δ

}
.

There is no problem in justifying the convergence of the integral in (2.11) correspond-
ing to K1. For K2 write, with {g}(x, y) := g(x + y)− g(x)− g(y),

∣∣∣∣
∫
{g}(x, y) K2(x, y)

(
µN

s (dx)σN
s (dy)− µs(dx) σ∞s (dy)

)∣∣∣∣

6
∣∣∣∣
∫
{g}(x, y)K2(x, y)

(
µN

s − µ∞s
)
(dx)σN

s (dy)
∣∣∣∣

+
∣∣∣∣
∫
{g}(x, y)K2(x, y) µs(dx)

(
σN

s − σ∞s
)
(dy)

)∣∣∣∣

and deal with each term of the right hand side separately. The �rst term is bounded
above by d0

(
ϕµN

s (ω), ϕµs

)(
ϕ,

∣∣σN
s (ω)

∣∣), up to a multiplicative constant. As the �rst
factor converges to 0 (and is no greater than 2C) while the second is uniformly
bounded above, one can apply dominated convergence in the corresponding integral
with respect to s. To deal with the second term, use the pointwise bounds8

∥∥K21F1µs ⊕ σN
s (ω)

∥∥
0

6 γδ C
(
ϕ,

∣∣σN
s

∣∣(ω)
)
,∥∥K21F2µs ⊕ σN

s (ω)
∥∥

0
6 C

(
ϕδ,

∣∣σN
s

∣∣(ω)
)
,∥∥K21F3µs ⊕ σN

s (ω)
∥∥

0
6

(
ϕδ, µs

)(
ϕ,

∣∣σN
s

∣∣(ω)
)
,

where γδ = max
{

K(x,y)
ϕ(x)ϕ(y) ; (x, y) ∈ F3

}
converges to 0 as δ decreases to 0. As(

ϕ,
∣∣σN

s (ω)
∣∣) is uniformly bounded above by a constant, and both

(
ϕδ,

∣∣σN
s (ω)

∣∣) and(
ϕδ, µs

)
can be made arbitrarily small for small enough δ, we have enough control to

apply dominated convergence.
3. Algorithm. We describe in this section the algorithm used to simulate the

particle system studied above; the numerical results are to be found in section 4.
Two points of computational interest are �rst put forward in sections 3.1 and 3.2; the
algorithm itself is described in section 3.3.

3.1. Coupling. The basic algorithm to simulate the sensitivity σt is given by
the dynamics of the process ΘN described in section 2.1. A fresh look at it reveals
a potential computational drawback of this approach: It is seen from the explicit
expression (2.3) of the generator of ΘN that the mean number of particles inside
σN satis�es a Grönwall-type inequality, which implies an exponential growth of this

8‖ · ‖0 denotes total variation norm.
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quantity. One should see in this exponential growth of the number of particles a good
feature for the approximation qualities of our estimator σN

t of σt, especially regarding
accuracy and variance. This should be opposed to what happens for the weighed
and coupled particles systems described in the introduction, for which the number of
particles in the system decreases with time9.

As an exponential growth of the quantity of information to consider is non-
desirable for simulations, three kinds of tricks are used in order to reduce it.

(i) Cancellation. As we are only interested in the di�erence σ+,N
t −σ−,N

t any
particle which appears in both particle systems will be removed from both of them.

(ii) Coupling. A particle δx of µN coagulates with any particle of σ+,N
t at rate

1
N K

(
x, σ+,N

t

)
= 1

N

∫
K(x, y)σ+,N

t (dy); it also coagulates with any particle of σ−,N
t at

rate 1
N K

(
x, σ−,N

t

)
. This particle is thus used in both systems at rate 1

N K
(
x, σ+,N

t

)∧
K

(
x, σ−,N

t

)
, in which case a cancellation removes the particles δx added to σ−,N

t and
σ+,N

t . This operation leaves the total number of particles in σN constant. The rest
of the time δx is used in only one of the systems.

(iii) Re-sampling. A more drastic control of the number of particles in σN can
be obtained using re-sampling. Let M and m be two integers depending on N , with
m 6 M . Each time σ+,N

t or σ−,N
t has M particles, replace it by an iid sample of itself

of size m; this way the total number of particles in σN remains no greater than 2M .
3.2. Majorant kernel. In order to treat information in a computationally e�-

cient way, we have organized the data using tree structures. The use of a majorant
kernel with a simple algebraic structure together with an acceptance/rejection step
lead to an e�cient updating of the data tree.

The choice of a majorant kernel K̂(·, ·) is made so that K̂ is symmetric, no less
than K and has the form

K̂(xi, xj) =
∑

β

K̂β(xi, xj) :=
∑

β

fβ(xi) gβ(xj) (3.1)

for β in a �nite set of indices [14]. This form of kernel leads to simple generation of
probabilities of the form

K̂(xi, xj)∑
a 6=b K̂(xa, xb)

=
∑

β

∑
a 6=b fβ(xa) gβ(xb)∑

a 6=b

∑
β′ fβ′(xa) gβ′(xb)

fβ(xi)∑
a fβ(xa)

gβ(xj)∑
b ; b 6=a gβ(xb)

, (3.2)

where a and b run in possibly di�erent �nite sets of indices. Identity (3.2) corresponds
to choosing �rst an index β according to the probability speci�ed by the �rst term of
the right hand side and then choosing each particle xi, xj separately. The choice of a
pair (xi, xj) according to the probability given the left hand side of formula (3.2) can
thus be done in O(N) operations rather than O(N2). All the required information
can be held in binary tree structures (as described in [15]) whilst allowing an even

9This decrease is of the same order for the weighted particle system and for Marcus-Lushnikov's
dynamics; it is worse for the coupled system. In this approach, σt is approximated by the ratio
(µ

λ+ 1
2 δλ ; N

t −µ
λ− 1

2 δλ ; N

t )/δλ, where µ
λ+ 1

2 δλ ; N

t and µ
λ− 1

2 δλ ; N

t are two coupled Markus-Lushnikov
processes. So, the smaller δλ is, the more µ

λ+ 1
2 δλ

t and µ
λ− 1

2 δλ

t (and µ
λ+ 1

2 δλ ; N

t and µ
λ− 1

2 δλ ; N

t

with it) look the same. This means that the `real' number of particles in the di�erence µ
λ+ 1

2 δλ ; N

t −
µ

λ− 1
2 δλ ; N

t is a `function' fδλ(N) 6 N of δλ that decreases as δλ goes to 0, a necessary condition
for the ratio to be a good estimate of σt.
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further reduction in the number of operations to choose each particle from O(N) to
O(log N). Updating this information also requires O(log N) operations. Further, the
sums in the �rst fractions of the right hand side of (3.2) are automatically contained
in the tree structure without further computation.

Note that in the theoretical framework used in section 2, the function ϕ(x) ϕ(y)
can be used as a unique majorant kernel. We have yet chosen to present the above
general procedure as we shall consider situations in which the above theory does not
apply directly.

3.3. Algorithm description. Recall ΘN
t is of the form

(
1
N Xt,

1
N Yt,

1
N Zt

)
for

a Markov process Θt =
(
Xt, Yt, Zt

)
whose components are sums of Dirac masses and

whose dynamics was described in section 2.1. What the algorithm really simulates is
the discrete measure-valued process Θt; a rescaling gives the time evolution of ΘN

t .
The algorithm is described in Algorithms 1 and 2 below.

Note that there may be up to three di�erent majorant kernels � for K, K
′
+ and

K
′
−. Therefore, we slice up the total majorant rates according to the event type

α ∈ {0, 1+, 1−, 2+, 2−} to occur. We then have K̂αβ such that
∑

β K̂αβ = K̂α (from
eq. 3.1), where K̂α ∈ {K̂, K̂

′
+, K̂

′
−}. This gives the corresponding rates ρ̂αβ and ρ̂α.

To order to describe numerical results it provides, we shall denote by L the number
of simulations with the same initial conditions and by trun the computational time
taken to run the algorithm (CPU time in seconds).

4. Numerical Results. We have chosen to illustrate our approach in situa-
tions where the theoretical results of section 2 do not apply, so as to show its ro-
bustness. The main motivation of this article is to produce a stochastic estimate
of the sensitivity σt whose variance is smaller than that given by existing methods.
One step in this direction was done in [9], where σt was approximated by the ratio
(µλ+ 1

2 δλ ; N
t − µ

λ− 1
2 δλ ; N

t )/δλ, for two Marcus-Lushnikov processes with slightly dif-
ferent parameters. The method there called for coupling them so as to reduce the
variance of this estimator as much as can be done; this was done in the same spirit as
the coupling used above. We shall refer to this algorithm as the CD algorithm (for
central di�erence). The variance reduction obtained by this method is signi�cant;
we shall thus compare our results with those given by the CD algorithm. As our
algorithm simulates σt directly, it will be called Exact; and depending on whether
or not we use the coupling step we shall talk of the ExactCoupling or ExactIndep
algorithm.

The data presented deal with the additive kernel K(x, y) = λ(x+ y) and a kernel
that is used in modelling soot formation in a free molecular regime [16, 17, 18], thus
we shall call it the `Soot Kernel':

K(x, y) =
(

1
x

+
1
y

) 1
2 (

x
1
λ + y

1
λ

)2

;

both are considered in the discrete setting where masses are integers. The reference
value of λ for the additive kernel will be 1 and for the soot kernel 2.1. We shall
always take as initial condition for the Marcus-Lushnikov process N particles with
mass equal to 1, and σ+,N

0 = σ+,N
0 = 0.
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Smoluchowski equation has an explicit analytic solution for an additive interaction
(see the review by Aldous [19] for instance) we can compare our results with it; it will
be convenient to write σ∞t for σt in this case. No analytic solution of Smoluchowski
equation or its sensitivity equation is available for the soot kernel; we shall thus
compare our estimators σN

t with what the ExactCoupling algorithm gives us for very

Algorithm 1: The ExactCoupling algorithm - Part 1
Set t = 0. while t < tend do1

Generate a realisation of the holding time ∆t with exponential law2
of parameter 1

N

∑
α ρ̂α, and set t ← t + ∆t.

Choose event type α ∈ {0, 1+, 1−, 2+, 2−} to occur with distribution3
ρ̂α∑
α ρ̂α

.
Choose process β with distribution ρ̂αβ

ρ̂α
.4

Given α and β, choose a pair of particles using the index5
distribution

K̂αβ(xi, xj)
ρ̂αβ

=
fαβ(xi)∑
a fαβ(xa)

gαβ(xj)∑
b gαβ(xb)

(3.3)

where (xi, xj) are the masses of particles sampled from the
appropriate ensembles (µN , σ+,N or σ−,N ) depending on α.
Perform the coagulation step which depends on α:6
switch the value of α chosen do

case α = 0; this part is the original Marcus-Lushnikov process.7
The chosen pair of particles is of the form (xi, xj).
With probability Kα

K̂α
make the jump8

∆ΘN =
(
δxi+xj − δxi − δxj

)⊕ 0⊕ 0.

case α = 1+or 1−9
The chosen pair of particles is of the form (xi, xj). Set10

p = max{K2+ ,K2−}
K̂2++K̂2−

, and generate a realisation of a uniform
random variable U in (0, 1).
if U 6 p then

if K2+ > K2− then
make the jump ∆ΘN = 0⊕ δxi+xj ⊕ δxi + δxj .11

else
make the jump ∆ΘN = 0⊕ δxi + δxj ⊕ δxi+xj .12

else Go to Step 15.13

case α = 2+or 2−; Go to Algorithm 2.14

For each particle of σN that has just been involved in a coagulation15
or newly formed, do a cancellation operation if it can be done.

STOP.16
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Algorithm 2: The ExactCoupling algorithm - Part 2 (Cases
α = 2+, 2− only)

case α = 2+ or α = 2−1
The chosen ordered pair of particles contains one particle of
µN and one particle of σN , in either order.
if the pair is of the form (xi, ·) where xi is the mass of a
particle from µN then

if the second particle belongs to σ+,N then
Choose a particle of σ−,N according to the2
distribution

gαβ(·)∑
`∈J1,...,qK gαβ(z`)

. (3.4)

else
Choose a particle of σ+,N according to the
distribution

gαβ(·)∑
k∈J1,...,pK gαβ(yk)

. (3.5)

Set3

r+ :=
∑

k∈J1,...,pK
gαβ(yk) , r− :=

∑

`∈J1,...,qK
gαβ(z`) (3.6)

.
else

Do the symmetrical operation, swapping gαβ with fαβ .4

The preceding steps produce a triple (xi, yk, z`) of particles5
from µN ⊕ σ+,N ⊕ σ−,N . Set

pmin =
min{r+, r−}

r+ + r−

K

K̂
, pmax =

max{r+, r−}
r+ + r−

K

K̂
. (3.7)

Generate realisation of a uniform random variable U in6
(0, 1).
if 0 < U 6 pmin then

make the jump7
∆ΘN = 0⊕ (

δxi+yk
− δyk

)⊕ (
δxi+z`

− δz`

)
.

else if pmin < U 6 pmax then
if r+ > r− then

make the jump ∆ΘN = 0⊕ (
δxi+yk

− δyk

)⊕ δxi .8
else

make the jump ∆ΘN = 0⊕ δxi ⊕
(
δxi+z`

− δz`

)
.9

else
Go to Step 15 of Algorithm 1.10

Go to Step 15 of Algorithm 1.11
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(a) ExactCoupling, t = 0.5
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(b) CD (δλ = 0.05), t = 0.5
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(c) ExactCoupling, t = 3.0
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(d) CD (δλ = 0.05), t = 3.0

Figure 4.1. Sensitivity for additive kernel, λ = 1.0, N = 103, L = 1000. The con�dence
intervals for the larger particle sizes are omitted for pictorial clarity.

high settings, say N = 3× 106 and L = 103 simulations. Given any N , the lth run of
the algorithm produces an estimator of σt which we shall denote by σl,N

t . We shall
set σ∞t := 10−3

∑

l=1,...,103

σl,106

t . Figures 4.1 and 4.2 show the empirical estimate of σt

given after L runs, at di�erent times. The line represents σ∞t . For comparison, the
results given by the CD algorithm for the same setting, with δλ = 0.05, are plotted
using stars. Also, Figure 4.3 shows what the solution to the original Smoluchowski
equation looks like.

To quantify the convergence of the empirical sensitivity

σ̄L ; N
t :=

1
L

∑

l=1..L

σl,N
t

to σ∞t as N increases we have plotted in Figure 4.4 the quantity

dvar(N) =
∑

j

∑

i>1

∣∣∣
(
σ̄L ; N

tj
− σ∞tj

)
(i)

∣∣∣,

where σ̄t
L ; N (i) and σ∞t (i) represent the empirical and real sensitivities at particle

mass i ∈ N respectively, and dvar(N) represents the total variation distance between
the empirical sensitivity and the sensitivity itself summed over some chosen time
points10 {tj}. These results empirically con�rm Theorem 2.2 (in this case where it
does not apply), and quantify the speed of convergence as being of order 1

N . The
analogue result for the CD algorithm is given in [9].

10For Figure 4.4, the times points {tj} were chosen to be 0.125j for j = 1, . . . , 56
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(a) ExactCoupling, t = 0.5
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(b) CD (δλ = 0.05), t = 0.5
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(c) ExactCoupling, t = 3.0

0 1 2 3 4

0.
00

0
0.

00
2

0.
00

4
0.

00
6

log(size)

se
ns

iti
vi

ty

(d) CD (δλ = 0.05), t = 3.0

Figure 4.2. Sensitivity for soot kernel, λ = 2.1, N = 103, L = 1000. The con�dence intervals
for the larger particle sizes are omitted for pictorial clarity.
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(c) Soot kernel, t = 1.0
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(d) Soot kernel, t = 3.0

Figure 4.3. µt as a function of log(particle size)
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(a) Additive kernel
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Figure 4.4. Convergence in N of the ExactCoupling algorithm, N = 100× 2i for i = 0, . . . , 5,
NL = 2× 108.
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(a) Additive kernel, t = 1.0
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(b) Additive kernel, t = 5.0
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(c) Soot kernel, t = 1.0
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(d) Soot kernel, t = 5.0

Figure 4.5. logVarN (t) as a function of N . The meaning of the symbols are as follows: Circles
= ExactCoupling, Diamonds = ExactIndep, Triangles = CD(δλ = 0.10), Crosses = CD(δλ = 0.05),
Pluses = CD(δλ = 0.01).

4.1. Variance. To analyse the variance of the random output of the algorithm
we shall de�ne the empirical variance at particle mass i ∈ N and time t as

VarN (i, t) :=
1

L− 1

L∑

l=1

((σl,N
t − σ̄L ; N

t )(i))2
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and shall take as a measure of the variance the quantity

VarN (t) :=
∑

i>1

VarN (i, t). (4.1)

Figure 4.5 represents its graph as a function of N using di�erent algorithms. It
shows that the ExactCoupling algorithm achieves a variance reduction by a factor
103 compared to the CD algorithm. The plots also show that VarN (t) is proportional
to 1

N , a fact that should be related to a central limit theorem.

4.2. Computational e�ciency. Although section 4.1 indicates that the Ex-
actCoupling algorithm produces very accurate estimators of the sensitivity, it comes
at the price of a computational time greater than the one needed by the CD algo-
rithm. This comes from the fact that the latter algorithm being essentially a Marcus-
Lushnikov algorithm, it uses a generally decreasing amount of information, as the
number of sensitivity particles decreases with time. On the other hand, the Ex-
actCoupling algorithm has to deal with more and more sensitivity particles, whose
number tends to grow exponentially. To see whether the gain of accuracy given by
the ExactCoupling algorithm is worth the e�ort we propose two criteria.

4.2.1. CPU time to reach a certain level of accuracy. Fix the observation
time t (we choose large enough t so that the particle system has experienced many
jumps, and therefore the variances are expected to be larger - see Figure 4.3. Given a
certain level of accuracy, v, �nd for each algorithm the smallest N for whichVarN (t) is
smaller than v. See what computational time is needed to run the algorithm for this N
(during an evolution time t for the particle system). Tables 4.1 and 4.2 show that the
ExactCoupling algorithm remains mostly better than the CD algorithm. It also shows
that it converges much quicker to the true sensitivity than the CD algorithm does.
Note that for the soot kernel the CD algorithm with δλ = 0.1, 105 initial particles are
not su�cient to reach the given level of accuracy; this setup already requires a CPU
time equal to 1058.91 seconds. The comparison with the corresponding time for the
ExactCoupling algorithm is greatly in favour of the latter.

Table 4.1
Additive kernel, v = 1.43× 10−4

t 1.0 1.0 3.0 3.0
algorithm ExactCoupling CD (δλ = 0.10) ExactCoupling CD (δλ = 0.10)
N 6500 55000 2100 16250
trun (secs) 281.15 593.99 99.22 213.34

Table 4.2
Soot kernel, v = 2.57× 10−5

t 1.0 1.0 3.0 3.0
algorithm ExactCoupling CD (δλ = 0.10) ExactCoupling CD (δλ = 0.10)
N 10000 100000 6350 55000
trun (secs) 379.01 1058.91 382.15 1104.24

(v not reached)
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4.2.2. Gain factor. Eibeck and Wagner introduced in [14] another quantity to
compare the relative e�ciency of two algorithms. Fix the observation time t. Given
a setup (K(·, ·), N, L), denote by TEC(t) and TCD(t) the empirical mean CPU time
needed by the ExactCoupling and CD algorithms to be run up to time t. Denote
also by VarECN (t) and VaralgN (t) the empirical variances given by formula (4.1) when
computed using ExactCoupling and the given algorithm `alg' respectively. The gain
factor of an algorithm over ExactCoupling, similar to that as introduced by Eibeck
and Wagner, is de�ned here by the ratio

TEC(t)VarECN (t)

T alg(t)VaralgN (t)

It is related in some way to the analysis made in section 4.2.1. See section 5 of [14].
Figures 4.6 and 4.7 plot the reciprocal gain (its logarithm) as a function of time.
Triangles, pluses and crosses represent data of the CD algorithm, for δλ = 0.01, 0.05
and 0.10 respectively, circles represent data of the ExactIndep algorithm, and the
horizontal line at zero represents the threshold for ExactCoupling.
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(a) N = 103
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(b) N = 104
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(c) N = 105

Figure 4.6. Additive kernel: log(Gain factor−1) as a function of t. The meanings of the
symbols are as follows: Circles = ExactIndep, Crosses = CD(δλ = 0.10), Pluses = CD(δλ = 0.05),
Triangles = CD(δλ = 0.01). The horizontal line is the threshold value 1.0 for ExactCoupling.
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Figure 4.7. Soot kernel: log(Gain factor−1) as a function of t. The meanings of the symbols
are as follows: Circles = ExactIndep, Crosses = CD(δλ = 0.10), Pluses = CD(δλ = 0.05), Triangles
= CD(δλ = 0.01). The horizontal line is the threshold value 1.0 for ExactCoupling.
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Figures 4.6 and 4.7 show good results. By and large, the CD algorithms appear
to be considerably inferior to the ExactCoupling algorithm for the Soot kernel, and
the ExactIndep algorithm in either performs slightly better than the CD (δλ = 0.10).
There appears to be little to moderate di�erence in behaviour over di�erent values of
N .

The picture is di�erent for the Additive kernel. For N = 1000, we �nd that the
CD (δλ = 0.1) is better than the ExactCoupling, at least for very small or large times.
This disadvantage gradually disappears over larger N � this is due to the increased
probability of cancellations for larger N which reduces the number of particles in
the ensembles and therefore the CPU times. Other than this, the ExactCoupling
algorithm maintains a substantial lead over the other algorithms.

5. Conclusions. A stochastic particle system approximation to the parametric
sensitivity in Smoluchowski's coagulation equation was introduced. Rather than tak-
ing a �nite di�erence approach to calculating sensitivities, we considered the direct
parametric derivative of (1.2), and developed a Monte-Carlo algorithm which would
approximate its solution. The particle system approximation was proved to converge
weakly to the solution of the sensitivity equation (1.2), as the number of particles
increases inde�nitely.

The �rst algorithm developed (ExactIndep) allows for an exponential increase in
the number of sensitivity particles. We sought to reduce this increase using several
tricks: Cancellation removes `unnecessary' sensitivity particles which are needed to
describe it, whilst coupling prevents their creation. These make a signi�cant reduction
to the number of particles in the ensemble. Furthermore, the resampling method puts
a cap on the total number of sensitivity particles, thus stopping their exponential
escalation. This gives us the ExactCoupling algorithm.

In the Numerical Results section, it was empirically con�rmed that the order of
convergence is O(1/N) where N is the number of initial particles. We then compared
the Exact algorithms with those found in [9], named here CD algorithms. It was shown
that the variance of the sensitivity estimators were orders of magnitude smaller for
the ExactCoupling algorithm than for the CD algorithms. However this came at the
price of longer CPU run times. Two measures of e�ciency, taking both the variance
and the CPU time into account, were then considered. The ExactCoupling algorithm
happens to require much smaller time to to reach a �xed level of error than any CD
algorithm, and the gain factor, as de�ned in [14], also happens to be in favour of the
ExactCoupling algorithm, most of the time. This de�nitely gives a clear advantage
of our approach over �nite di�erence methods.

However, both methods have some inherent drawback: unlike the adjoint method
[8], they are unidimensional in nature and compute sensitivity only for a �xed value of
the parameter. It would be useful to construct a particle system approximation which
do not have these weaknesses. Also, although the convergence theorem established
in section 2 in a general framework is quite encouraging, it is not clear whether the
algorithm will be as e�cient as above if particles's masses can take any positive value.
We leave the investigation of these questions for future work.
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