KPZ IN A MULTIDIMENSIONAL RANDOM GEOMETRY OF MULTIPLICATIVE CASCADES

I.F. BAILLEUL

Abstract

We show in this note how the one-dimensional KZP formula obtained by Benjamini and Schramm in [BS09] can be extended to a multidimensional setting.

1. Hausdorff dimension in a nested measure space

1.1. Dimension. Let (S, \mathcal{S}, μ) be a measure space and suppose given a nested family of countable σ-algebras $\mathcal{S}_{n}=\sigma\left(A_{n}^{i} ; i \geqslant 1\right)$, with $A_{n}^{i} \in \mathcal{S}$ disjoint up to μ null sets, and $\mu\left(A_{n}^{i}\right)>0$ for each $i \geqslant 1$ and $n \geqslant 1$. Suppose further that $\epsilon_{n}:=\sup \mu\left(A_{n}^{i}\right)$ decreases to 0 as n goes to infinity. Given $s \geqslant 0$ and $\delta>0$, set for any measurable $E \in \mathcal{S}$

$$
\mathcal{H}_{\delta}^{s}(E)=\inf \sum \mu\left(A_{n_{\alpha}}^{i_{\alpha}}\right)^{s}
$$

where the infimum is over the set of coverings $E \subset \bigcup_{\alpha \in \mathcal{A}} A_{n_{\alpha}}^{i_{\alpha}}$ of E, indexed by a subset \mathcal{A} of $\mathbb{N}^{*} \times \mathbb{N}^{*}$, and such that $\epsilon_{n_{\alpha}} \leqslant \delta$ for all $\alpha \in \mathcal{A}$. The quantity $\mathcal{H}_{\delta}^{s}(K)$ increases as δ decreases to 0 . Set

$$
\mathcal{H}^{s}(E)=\lim _{\delta \downarrow 0} \mathcal{H}_{\delta}^{s}(E)
$$

Like in the usual definition of the Hausdorff dimension of a set, it is easy to see that if

- $\mathcal{H}^{s_{0}}(E)<\infty$ then $\mathcal{H}^{t}(K)=0$ for any $s_{0}<t$,
- $\mathcal{H}^{s_{0}}(E)=\infty$ then $\mathcal{H}^{s}(K)=0$ for any $s<s_{0}$,
so it makes sense to define the dimension $\zeta_{\mu}(E)$ of E as $\sup \left\{s \geqslant 0 ; \mathcal{H}^{s}(E)=\infty\right\}=\inf \{t \geqslant$ $\left.0 ; \mathcal{H}^{t}(E)=0\right\}$. As \mathcal{H}^{1} coincides with μ, it follows that $\zeta_{\mu}(E) \leqslant 1$, for any $E \in \mathcal{S}$. So only sets with null μ-measure have a dimension smaller than 1 .

Open question. Let us work in the space $S=\mathcal{C}([0,1], \mathbb{R})$, with its Borel σ-algebra and Wiener measure. Define $A_{n}^{(j, k)}$ as $\left\{\omega \in \mathcal{C}([0,1], \mathbb{R}) ; \omega\left((j+1) 2^{-n}\right)-\omega\left(j 2^{-n}\right) \in\left[k 2^{-n},(k+\right.\right.$ 1) $\left.\left.2^{-n}\right)\right\}$, for $0 \leqslant j \leqslant 2^{n}-1$ and $k \in \mathbb{Z}$, and set $\mathcal{S}_{n}=\sigma\left(A_{n}^{(j, k)} ; 0 \leqslant j \leqslant 2^{n}-1, k \in \mathbb{Z}\right)$. Let us call Wiener-Hausdorff dimension the above dimension of a measurable subset of $\mathcal{C}([0,1], \mathbb{R})$. Compute the Wiener-Hausdorff dimension of the set of α-Hölder continuous paths, for $\alpha \geqslant \frac{1}{2}$.
1.2. Frostman lemma. If (S, \mathcal{S}) is \mathbb{R}^{d} with its Borel σ-algebra, and \mathcal{S}_{n} is the σ-algebra generated by the dyadic cubes of side 2^{-n}, then the above definition of dimension coincides with the usual Hausdorff dimension, up to a multiplicative constant $\frac{1}{d}$; see section 2.4, Chap. 2, in [Fal03]. We adopt the above definition of dimension for the sequel. Like its classical counterpart, the above set function $\mathcal{H}^{s}(\cdot)$ can be shown to be an $\left(\mathbb{R}_{+} \cup\{\infty\}\right)$-valued measure

Date: April 15, 2011.
on $\left(\mathbb{R}^{d}, \operatorname{Bor}\left(\mathbb{R}^{d}\right)\right)$. The Euclidean background will not appear anymore except under the form of the nested family $\left(\mathcal{S}_{n}\right)_{n \geqslant 0}$.

Given two points $x, y \in \mathbb{R}^{d}$, define the ball $B(x, y)$ as the smallest dyadic cube containg x and y, and define their "distance" as $\mu(B(x, y))$. Define accordingly the ball $B_{r}(x)=\{y \in$ $\left.\mathbb{R}^{d} ; \mu(B(x, y)) \leqslant r\right\}$. Working exactly as in theorem 4.10 and proposition 4.11 in [Fal03], one can prove the following proposition.

Proposition 1. For any Borel set E with $0<\mathcal{H}^{s}(E)<\infty$, there exists a constant c and a compact set $K \subset E$ with $\mathcal{H}^{s}(K)>0$ such that

$$
\mathcal{H}^{s}\left(K \cap B_{r}(x)\right) \leqslant c r^{s}
$$

for all $x \in \mathbb{R}^{d}$ and $r>0$.
It follows classically that the following version of Frostman lemma holds in our setting. Given any non-negative measure ν on $\left(\mathbb{R}^{d}, \operatorname{Bor}\left(\mathbb{R}^{d}\right)\right)$, define its s-energy as

$$
I_{s}(\nu)=\iint \frac{\nu(d x) \nu(d y)}{\mu(B(x, y))^{s}}
$$

Theorem 2. If E is a Borel set with $0<\mathcal{H}^{s}(E)$, then there exists a non-negative measure ν with support in (a compact subset of) E such that $I_{t}(\nu)<\infty$, for all $t<s$. This is in particular the case if $s<\zeta_{\mu}(E)$.

Remark. The work [RV10] contains in section 5.1 a similar, though different, notion of dimension in a metric measure space.

2. A dimension-free KPZ formula

Let $\mathcal{D}_{n}=\bigcup_{k=1}^{2^{2 n}} A_{k}^{n}$ be the dyadic "partition" of the unit cube of \mathbb{R}^{d} by closed dyadic cubes of side length 2^{-n}. Given $m<n$, each A_{k}^{n} is a subset of a unique $A_{k(m)}^{m}$. Let W be a positive real-valued random variable with $\mathbb{E}[W]=1$, and let $\left\{\left(W_{i}^{n}\right)_{i=1}^{2 n d} ; n \geqslant 1\right\}$ be an iid sequence of random variables with common law the law of W. Define the measure μ_{n} by its density $w_{n}(x)$ with respect to Lebesgue measure. It is constant, equal to $\prod_{m=0}^{n} W_{k(m)}^{m}$, on each A_{k}^{n}. We adopt as in [BS09] the notation ℓ for $\mu\left([0,1]^{d}\right)$. It has expectation no greater than 1 .

Proposition 3. Almost-surely, the measures μ_{n} converge weakly to some random measure μ, which does not charge any dyadic hyperplane. It is almost-surely non-null if $\mathbb{E}[W \log W]<d$.
Proof - The proof works exactly as in the 1-dimensional proof, with 2^{d} independent copies of ℓ rather than only two.
The next result generalizes Benjamini and Schramm's result [BS09] obtained in a onedimensional setting.
THEOREM 4. Let E be any Borel set of $[0,1]^{d}$. Denote by ζ_{0} its dimension as defined above using Lebesgue measure, and let η be its dimension using the random measure μ. Suppose that $\mathbb{E}[W \log W]<d$, and $\mathbb{E}\left[W^{-s}\right]<\infty$, for all $s \in[0,1)$. Then ζ is almost-surely a constant and satisfies the identity

$$
2^{\zeta_{0}}=\frac{2^{\zeta}}{\mathbb{E}\left[W^{\zeta}\right]}
$$

The above conditions are satisfied by an exponential of Gaussian with a small enough variance.
Proof - The proof mimicks word by word the proof of [BS09]. Write $|A|$ for the Lebesgue measure of a Borel set A. Set, for $s \in[0,1], \phi(s)=s-\ln _{2} \mathbb{E}\left[W^{s}\right]$. Note that since the notion of dimension introduced in section 1 is no greater than 1 the function ϕ is an increasing homeomorphism from $[0,1]$ to itself.
a) Lemma 3.3 becomes here: $\mathbb{E}\left[\mu(B(x, y))^{s}\right] \leqslant|B(x, y)|^{\phi(s)}$, for all $x, y \in[0,1]^{d}$. Note that the balls $B(x, y)$ are always dyadic balls; suppose the given ball belongs to \mathcal{D}_{n}, so $|B(x, y)|=2^{-n d}$. Then, we have by the independence in the construction of μ

$$
\mathbb{E}\left[\mu(B(x, y))^{s}\right]=2^{-n d} \mathbb{E}\left[W^{s}\right]^{n d} \mathbb{E}\left[\ell^{s}\right] \leqslant\left\{2^{-n d}\right\}^{\phi(s)}=|B(x, y)|^{\phi(s)},
$$

as $0 \leqslant s \leqslant 1$, so $\mathbb{E}\left[\ell^{s}\right] \leqslant \mathbb{E}[\ell]^{s}=1$. It follows directly that we have almost-surely $\phi(\zeta) \leqslant \zeta_{0}$. b) The proof that $\phi(\zeta) \geqslant \zeta_{0}$, theorem 3.5, works identically, replacing the usual energy of a measure by its above modification, and using the version of Frostman lemma provided in theorem 2. A straightforward adaptation of the proof that $\mathbb{E}\left[\ell^{-s}\right]<\infty$ if $\mathbb{E}\left[W^{-s}\right]<\infty$, given in [BS09], gives the same result in our setting. Note also that a different choice of Hölder coefficient is needed to prove that the sequence $\nu_{n}([0,1])$ is uniformly bounded in some \mathbb{L}^{p}.
Note that the above theorem does not come as a surprise and should actually hold on much more general state spaces than $[0,1]^{d}$. It should be interesting in particular to investigate what happens on random trees like Galton-Watson trees, and tree-like objects like random fractals.

References

[BS09] I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys., 289(2):653-662, 2009.
[Fal03] K. Falconer. Fractal geometry. John Wiley \& Sons Inc., Hoboken, NJ, second edition, 2003. Mathematical foundations and applications.
[RV10] R. Rhodes and V. Vargas. Multidimensional multifractal random measures. Electron. J. Probab., 15:no. 9, 241-258, 2010.

Statistical Laboratory, Center for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WB, UK

E-mail address: i.bailleul@statslab.cam.ac.uk
URL: http://www.statslab.cam.ac.uk/~ismael/

