
THE INVERSE PROBLEM FOR ROUGH CONTROLLED DIFFERENTIAL

EQUATIONS

I. BAILLEUL AND J. DIEHL

Abstract. We provide a necessary and sufficient condition for a rough control driving a dif-
ferential equation to be reconstructable, to some order, from observing the resulting controlled
evolution. Physical examples and applications in stochastic filtering and statistics demonstrate
the practical relevance of our result.

1. Introduction

It is a classical topic in control theory to consider differential equations of the form

ẋt =
∑̀
i=1

Vi(xt)u
i
t,

with nice enough vector fields Vi : Rd → Rd, say bounded and Lipschitz for the moment, and
the controls ui : [0, T ] → R, i = 1, . . . , ` are integrable functions that represent data that can
usually be tuned on demand in a real-life problem. It will pay off to consider the controls ui as
the time-derivative of absolutely continuous functions Xi, and reformulate the above dynamics
under the form

dxt = Vi(xt)dX
i
t ,(1)

with the usual convention for sums. In this work we consider the inverse problem, of recovering
the control X using only the knowledge of the dynamics generated by the above equation, and
assuming that we know the vector fields Vi.

With a view to applications involving noisy signals such as Brownian paths, we are particularly
interested in the setting where X is not absolutely continuous, but only α-Hölder continuous, for
some α ∈

(
1
3 ,

1
2

]
, say. Although equation (1) seems non-sensical in this case, it is given meaning

by the theory of rough paths, as invented by T. Lyons [28], and reformulated and enriched
by numerous works since its introduction. We recall the essentials of this theory in Section 2
so as to make it accessible to a large audience; it suffices for the moment to emphasize that
driving signals in this theory do not consist only of R`-valued α-Hölder continuous paths X,
rather they are pairs (X,X), where the R` × R`-valued second object X, is to be thought of as
the collection of ”iterated integrals

∫
XjdXk”. The point here is that the latter expression is

a priori meaningless if we only know that X is α-Hölder, for α ≤ 1
2 , as one cannot make sense

of such integrals without additional structure. So these iterated integrals have to be provided
as additional a priori data. The enriched control (X,X) is what we call a rough path . Lyons’
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main breakthrough in his fundamental work [28] was to show that equation (1) can be given
sense, and is well-posed, whenever X is understood as a rough path, provided the vector fields
Vi are sufficiently regular. Moreover the solution map which associates to the starting point x0,
and the rough path (X,X), the solution path x• is continuous. This is in stark contrast with
the fact that solutions of stochastic differential equations driven by Brownian motion are only
measurable functions of their drivers, with no better dependence as a rule. Section 2 offers a
short review of rough paths theory sufficient to grasp the core ideas of the theory and for our
needs in this work.

From a practical point of view, it may be argued that there are no physical examples of real-life
observable paths which are truely α-Hölder continuous paths; rather, all paths can be seen as
smooth, albeit with possibly very high fluctuations that make them appear rough on a macro-
scopic scale. However, the invisible microscopic fluctuations might lead to macroscopic effects
when the path (the control) is acting on a dynamical system. A rough path somehow pro-
vides a mathematical abstraction of this fact by recording this microscopic scale effects that a
highly-oscillatory smooth signal may have on a dynamics system in the second order object X.

While rough paths theory could originally be thought of as a theoretical framework for the study
of controlled systems, its core notions and tools have proved extremely useful in handling a
number of practical important problems. As an example, Lyons and Victoir’s cubature method
on Wiener space [32] has led to efficient numerical schemes for the simulation of various partial
differential equations, such as the HJM or CIR equations, and related quantities of interest in
mathematical finance. Let us mention, as another example, that the use of the core concept
of signature of a signal in the setting of learning theory is presently being investigated [27, 22],
and may well bring deep insights into this subject. In a different direction, in [15], it was shown
that the optimal filter in stochastic filtering, which is in general not a continuous function on
path space, can actually be defined as a continuous functional on the rough path space; see
Section 6 for details. This result motivated the present work, since it leaves the practitioner with
the task of ”observing a rough path”, if she/he wants to use this continuity result to provide
robust approximations for the optimal filter, by feeding her/his approximate rough path into the
continuous function that gives back the optimal filter. It should be clear from the above heuristic
picture of a rough path that the only way to uncover the ’microscopic’ second level component of
a rough path is to let that rough path act on a dynamical system, a rough differential equation.

After introducing the reader with the essentials of rough paths theory in section 2, we give as our
main result, section 3, a necessary and sufficient condition for the reconstruction of a rough path
to be possible from the observation of the dynamics generated by a rough differential equation
with that rough path as driver. Its proof is given in section 4. Section 5 provides several examples
of physical systems that satisfy our assumptions, and section 6 offers applications of our result
to problems in filtering and statistics.

2. Rough controlled differential equations

As a first step in rough paths theory, let us consider the controlled ordinary differential equation

dxt = Vi(xt)dX
i
t
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driven by a smooth (or bounded variation) R`-valued control X. It is elementary to iterate the
formula

Vi(xt) = Vi(xs) +

∫ t

s
∂jVi(xr)V

j
k (Xr)dX

k
r =: Vi(xs) +

∫ t

s
VkVi(xr)dX

k
r ,

to obtain a kind of Taylor-Euler expansion of the solution path to the above equation, under the
form

xt = xs +
∑

n=1,...,N−1

∑
i1,...,in=1,...,`

(∫ t

s

∫ rn

s
. . .

∫ r2

s
dXi1

r1 . . . dX
in
rn

)
Vi1 . . . Vin(xs)

+
∑

i1,...,iN=1,...,`

∫ t

s

∫ rN

s
. . .

∫ r2

s
Vi1 . . . ViN (xr1)dXi1

r1 . . . dX
in
rN
,

provided the vector fields are sufficiently regular for this expression to make sense. If V and its
first N derivatives are bounded, the last term is of order |t − s|N . So the following numerical
scheme

(2)

{
xn0 := x0

xnti := xnti−1
+
∑

n=1,...,N−1
∑

i1,...,in=1,...,` Vi1 . . . Vin(xnti=1
)
∫ t
s

∫ rn
s . . .

∫ r2
s dXi1

r1 . . . dX
in
rn ,

written here for any partition τ = (ti) of [0, T ], is of order |τ |N−1, where |τ | denotes the meshsize
of the partition. See for example Proposition 10.3 in [17] for more details.

In the mid-90’s T. Lyons [28] understood that one can actually make sense of the controlled
differential equation (1) even if X is not of bounded variation, if one provides a priori the values
of sufficiently many iterated integrals

∫
. . .
∫
dX . . . dX, and one defines a solution path to the

equation as a path for which the above scheme is exact up to a term of size
∣∣ti+1− ti

∣∣a, for some
constant a > 1.

Definition 1. Fix a finite time horizon T , and let α ∈
(
1
3 ,

1
2

]
. An α-Hölder rough path

X = (X,X) consists of a pair (X,X), made up of an α-Hölder continuous path X : [0, T ]→ R`,
and a two parameter function X : {(t, s) ; 0 ≤ s ≤ t ≤ T} → (R`)⊗2 ' R`×`, such that the
inequality

|Xs,t| ≤ C|t− s|2α

hold for some positive constant C, and all 0 ≤ s ≤ t ≤ T , and we have

(3) Xjkts − Xjktu − Xjkus = Xj
s,uX

k
u,t,

for all 0 ≤ s ≤ u ≤ t ≤ T . The rough path X is said to be weakly geometric if the symmetric
part of Xts is given in terms of Xts by the relation

Xjks,t + Xkjs,t = Xj
s,tX

k
s,t.

We define a norm on the set of α-Hölder rough path setting

‖X‖ := ‖X‖∞ + ‖X‖α + ‖X‖2α,
where ‖ · ‖γ stands for the γ-Hölder norm of a 1 or 2-index map, for any 0 < γ < 1.

To make sense of these conditions, think of Xjkts as
∫ t
s (Xr −Xs)

j dXk
r , even though this integral

does not make sense in our setting. (Young integration theory [36, 29] can only make sense of
such integrals if X is α-Hölder, with α > 1

2 .) When X is smooth its increments have size (t− s),
and the increments Xts have size (t − s)2. Convince yourself that relation (3) comes in that
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model setting from Chasles’ relation
∫ u
s +

∫ t
u =

∫ t
s . The symmetry condition satisfied by weak

geometric rough paths is satisfied by the rough paths lift of any smooth path. We invite the
reader to check that if B stands for a Brownian motion and 1

3 ≤ α < 1
2 , we define an α-Hölder

rough path setting

Bts =

(
Bt −Bs,

∫ t

s
(Br −Bs)⊗ dBr

)
,

where the above integral is an Itô integral. This rough path is not weakly geometric however,
while we would define a weakly geometric rough path by using a Stratonovich integral in the
above definition of B. See for example Chapter 3 in [19] for more background in this direction.

Let denote by V the collection of some vector fields
(
V1, . . . , V`

)
on Rd.

Definition 2. Fix a finite time horizon T , and let X be a weak geometric α-Hölder rough path,
with α ∈

(
1
3 ,

1
2

]
. A path x• : [0, T ]→ Rd is said to solve the rough differential equation

dxt = V(xt)X(dt),(4)

if we have the following Taylor-Euler expansion

xt = xs + Vi(xs)X
i
ts + VjVk(xs)Xjkts +O

(
|t− s|3α

)
,(5)

with ∣∣∣O(|t− s|3α)∣∣∣ ≤ c(X, V ) |t− s|3α,

for some positive constant c(X,V) depending only on X and the Lip3 norm of the V.

As a sanity check, one can easily verify that if the vector fields Vi are constant, the solution path
to the above rough differential equation, started from x0, is given by just xt = x0 +Xi

tsVi.

It can be proved that if (X,X) is the rough path above Brownian motion introduced above, but
with a Stratonovich integral rather than an Itô integral, then a solution path to the above rough
differential equation is a solution path to the Stratonovich differential equation

dxt = Vi(xt) ◦dBi
t.

This is what makes rough paths theory so appealing for applications to stochastic calculus. See
e.g. [19].

Rather than solving the rough differential equation (4) for each fixed starting point, we can
actually construct a flow of maps (ϕts)0≤s≤t≤T with the property that the path

(
ϕ•0(x)

)
is for

each starting point x the solution to equation (4) started from x. Given a bounded Lipschtiz
continuous vector field W on Rd we denote by exp(W ) the time 1 map of W , that associates
to any point x ∈ Rd the value at time 1 of the solution to the ordinary differential equation
ẏ = W (y), started from x. Fix 0 ≤ s ≤ t ≤ T , and denote by Ats the antisymmetric part of Xts.
Setting

µts := exp

∑̀
i=1

Xi
tsVi +

∑
1≤j<k≤`

Ajkts
[
Vj , Vk

] ,

an elementary Taylor-Euler expansion [2], using the weak geometric character of X, shows that
µts satisfies the kind of Taylor-Euler expansion we expect from a solution path to the above
rough differential equation, as we have∣∣∣f ◦ µts − (f +Xi

ts Vif + Xjkts VjVkf
)∣∣∣ ≤ c(X, f) |t− s|3α.
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Theorem 3 is the cornerstone of the theory of rough differential equations. It was first proved
in a different form by Lyons [28], and was named ’Lyons’ universal limit theorem’ by Malliavin.
Its present form is a mix of Lyons’ original result, Davie’s approach [10] and the first author’s
approach [2] to rough differential equations. A vector field of class C2b ,with Lipschitz second

derivative is said to be Lip3 in the sense of Stein.

Theorem 3 (Lyons’ universal limit theorem). Let X be an α-Hölder rough path, α ∈
(
1
3 ,

1
2

]
. Let

V = (Vi)i=1,...,` be a collection of Lip3 vector fields on Rd.

(1) There exists a unique flow of maps (ϕts)0≤s≤t≤T on Rd such that the inequality∥∥ϕts − µts∥∥∞ ≤ c(X) |t− s|3α

holds for some positive constant c(X) depending only on X, for all times 0 ≤ s ≤ t ≤ T .
(2) Given any starting point x ∈ Rd, there exists a unique solution path x• to the rough

differential equation (4); this solution path is actually given, for all 0 ≤ t ≤ T , by

xt = ϕt0(x0).

(3) The solution path x• ∈
(
C
(
[0, T ],Rd

)
, ‖ · ‖∞

)
depends continuously on X.

The crucial point in the above statement is the continuous dependence of the solution path as
a function of the rough signal X, in stark contrast with the fact that solutions of stochastic
differential equations are only measurable functionals of the Brownian path, while rough dif-
ferential equations can be used to solve Stratonovich differential equations. The twist here is
that theonly purely measurable operation that is done here is in defining the iterated integrals∫ t
s (Br −Bs)⊗ ◦dBr; once this is done, the machinery for solving the rough differential equation

(4) is continuous with respect to the Brownian rough path. This continuity result was used
for instance to give streamlined proofs of deep results in stochastic analysis such as Stroock-
Varadhan support theorem for diffusion processes, or the basics of Freidlin-Wentzell theory of
large deviations for diffusion processes [26].

Parts (2) and (3) of this theorem can be proved in several ways.The original approach of Lyons
[28] was to recast it under a fixed point problem involving a rough integral, which has to be
defined first. (This argument has been streamlined by Gubinelli in [20], see also the monograph
[19].) Existence and well-posedness results using second-order Milstein type scheme of the form
(2) were introduced in that setting by Davie in [10], and generalized in the work [2] of the first
author to deal with rough differential equations driven by weak geometric α-Hölder rough paths,
for any 0 < α < 1, using a geometric approach with roots in the work [35] of Strichartz and the
novel tool of approximate flows. Part (1) of the above theorem is from [2].

We refer the reader to the textbooks [30] of Lyons and Qian, or [18] of Friz and Victoir, for
a thorough account of the theory, and to the lecture notes [13, 19, 1] for shorter pedagogical
accounts.

3. The inverse problem

We would like to propose the examples of application of rough paths theory given above, and
many others, as an illustration of one of T. Lyons’ leitmotivs: Rough paths are not mathematical
abstractions, they appear in Nature. Starting form this postulate, and keeping in mind that
rough paths can be understood as a convenient mathematical setting for describing both the
macroscopic and microscopic scales of highly oscillating signals, the aim of this work is to answer
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an important question that comes with this postulate: Can one observe and record a rough
path? We shall handle this problem in the model setting of a physical system associated with
a rough differential equation, which leads to the following question. Under what conditions on
the driving vector fields can one recover the driving rough path by observing the solution flow to
that equation? It is indeed not always possible to reconstruct the driving signal; as an example,
take a rough differential equation with constant vector fields, where the second level of the rough
path has no influence on the solution, as made clear after definition 2.

To give a motivating example, assume that two dynamics are described by two rough differential
equations driven by the same rough path. Think for instance to two multi-dimensional assets. It
may happen that one is interested in one of these assets while one can only observe the other.
How should we proceed then if one wants to make a trade only when the unobservable asset
is in some given region of its state space? If we could reconstruct approximatively the rough
signal from the observation of the first asset dynamics, we could use the continuity statement
in Lyons’ universal limit theorem, theorem 3, to plug this approximate signal into the dynamics
of the second asset and get an approximate path whose distance to the true second asset path
is quantifiable, leading to a trading strategy. Although we whall not develop this example of
optimal stopping problem with incomplete information, we shall give other examples where the
approximate (or ideally, exact) reconstruction of a rough signal allows to compensate an a priori
lack of information.

To be more specific, our problem reads as follows. Given some sufficiently regular vector-field
valued 1-form V = (V1, . . . , V`) on R`, and a weak geometric α-Hölder rough path X over R`,
with α ∈

(
1
3 ,

1
2

]
, defined on the time interval [0, 1] say, denote by

(
ϕts
)
0≤s≤t≤1 the solution flow

[2] to the rough differential equation

(6) dxr = V(xr) X(dr)

in Rd. (This equation is the correct form that equation (1) takes when the control h is a rough
path X. Not only can it be solved for each fixed initial condition, but it also defines a flow
of maps, as we have seen in Section 2. The map ϕts associates to x the solution at time t of
equation (6) started at time s from x.) Assume we observe increments of the different solution
paths, started from c distinct points xj , j = 1, . . . , c; that is, we have access to the data

zx1,...,xcts :=
(
ϕts
(
x1
)
, . . . , ϕts

(
xc
))
.

Our goal is to reconstruct the driving signal X using uniquely this information. As the counter-
example of constant vector fields shows, the ability to do so depends on the 1-form V.

We first make precise, what we mean by saying that “reconstruction is possible”. Fix α ∈
(1/3, 1/2] for the rest of the paper.

Definition 4. The 1-form V is said to have the reconstruction property if one can find an
integer c ≥ 1, points x1, . . . , xc ∈ Rd, a constant a > 1, and a function X : Rcd → T 2(R`) ∼=
Rd⊕ (Rd)⊗2, with components X 1 and X 2, such that one can associate to every positive constant
M another positive constant CM such that the inequalities

(7)
∣∣∣X 1

(
zx1,...,xcts

)
−Xts

∣∣∣ ≤ CM |t− s|a, ∣∣∣X 2
(
zx1,...,xcts

)
− Xts

∣∣∣ ≤ CM |t− s|a
hold for all weak geometric α-Hölder rough paths X with ‖X‖α ≤M , for all times 0 ≤ s ≤ t ≤ 1
sufficiently close.
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These inequalities ensure that the T 2(R`)-valued functional X
(
zx1,...,xcts

)
is almost-multiplicative

[29], with associated multiplicative functional X. Hence, by a fundamental result of Lyons
[28, 30], one can - in principle - completely reconstruct Xts from the knowledge of the X

(
zx1,...,xcba

)
,

with s ≤ a ≤ b ≤ t.

Remark 5. Since X is weak-geometric, the symmetric part of Xts is equal to 1
2Xts ⊗ Xts. So

the essential information in the rough path X is given by Xts and the antisymmetric part Ats of

Xts. This pair lives in R
`(`+1)

2 . For the reconstruction property to hold one can alternatively find
a function R such that ∣∣∣R(zx1,...,xcts )− (Xts,Ats)

∣∣∣ ≤ C|t− s|a;
this is actually what we shall do in the proof of the main theorem below.

Our main result takes the form of a sufficient and necessary condition on the 1-form V for
equation (6) to have the reconstruction property. Only brackets of the form

[
Vj , Vk

]
, with j < k,

appear in the matrix below.

Theorem 6 (Reconstruction). Let V = (V1, . . . , V`) be a Lip3(Rd)-valued 1-form on R`.Set

m :=
`(`+ 1)

2
.

Then equation (6) has the reconstruction property if and only if there exists an integer c and
points x1, . . . , xc in Rd such that the (cd×m) matrix

M =

V1(x1) · · · V`(x1) [V1, V2](x1) · · · [V`−1, V`](x1)
...

...
...

...
V1(xc) · · · V`(xc) [V1, V2](xc) · · · [V`−1, V`](xc)


has rank m. In this case a in the definition of the reconstruction property can be chosen to be
equal to 3α. We call M the reconstruction matrix.

The above rank condition will hold for instance if ` = 2 and
(
V1, V2,

[
V1, V2

])
forms a free family

at some point – for which we need d ≥ 3. One can actually prove, by classical transversality

arguments, that if x1, . . . , xm are any given family of m = `(`+1)
2 distinct points in Rd, then

the set of tuples
(
V1, . . . , V`

)
of Lip3-vector fields on Rd for which the reconstruction matrix has

rank m is dense in
(
Lip3

)`
. This means that one can always reconstruct the rough signal in a

“generic” rough differential equation from observing its solution flow at no more than m points.
(See the books by Hirsch [25] or Zeidler [37] for a gentle introduction to transversality-type
arguments.) This genericity result obviously does not mean that any tuple

(
V1, . . . , V`

)
of vector

fields enjoys that property, as the above example with the constant vector fields corresponding
to the canonical basis shows.

Examples. Here are a few illustrative examples where Theorem 6 applies and reconstruction is
possible.

(1) Note that the above condition on the reconstruction matrix is unrelated to Hörmander’s
bracket condition, and that there is no need of any kind of ellipticity or hypoellipticity for
Theorem 6 to apply. If a Lip3(Rd)-valued 1-form on R` has the reconstruction property, its

trivial extension Ṽ =
(
Ṽ1, . . . , Ṽ`

)
to vector fields on Rd+1 ' Rd×R, with the Ṽi = (Vi, 0),

does not involve a hypoelliptic system while is still has the reconstruction property. As
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another example of a non-elliptic control system satisfying the assumptions of Theorem
6, consider in R3, with coordinates (x, y, z), the following three vector fields

V1(x, y, z) = yz∂x, V2(x, y, z) = xz∂y, V3(x, y, z) = xy∂z.

Then[
V1, V2

]
= z2(y∂y − x∂x),

[
V1, V3

]
= y2(x∂x − z∂z),

[
V2, V3

]
= x2(z∂z − y∂y).

Here m = 6, and it is easily checked that taking two observation points (i.e. c = 2), such
as the points with coordinates (1, 1, 1) and (1, 2, 3), the reconstruction matrix has rank
6.

(2) Hypoellipticity (or ellipticity) is also not sufficient for Theorem 6 to hold. Indeed consider

Xi = ∂xi + 2yi ∂t, Yi = ∂yi − 2xi ∂t,

in R2d+1 with coordinates x ∈ Rd, y ∈ Rd and t ∈ R, used in a sub-Riemannian setting

to define the Kohn Laplacian
∑d

i=1

(
X2
i + Y 2

i

)
. They satisfy[

Xi, Xj

]
= 0,

[
Yi, Yj

]
= 0,

[
Xi, Yj

]
= −4δji ∂t,

so the reconstruction matrix is always degenerate.

Our method of proof is best illustrated with the example of the rolling ball – see [8] for a
thorough treatment and [30] for its introduction in a rough path setting. This equation describes
the motion of a ball with unit radius rolled on a table without slipping. The position of the ball
at time t is determined by the orthogonal projection xt ∈ R2 of the center of the ball on the
table (i.e. the point touching the table, with the latter identified with R2), and by a (3 × 3)
orthonormal matrix Φt ∈ O(R3) giving the orientation of the ball. Set

A1 =

 0 0 1
0 0 0
−1 0 0

 and A2 =

 0 1 0
−1 0 0
0 0 0

 .

We define right invariant vector fields V1, V2 on O(R3) by the formula

V1(M) = A1M, V2(M) = A2M,

for any M ∈ O(R3). The non-slipping assumption on the motion of the ball relates the evolution
of the path x• to that of Φ•, when the path x• is C1, as follows

(8) dΦt = V1(Φt) dx
1
t + V2(Φt) dx

2
t .

This equation makes perfect sense when x• is replaced by a rough path X and the equation is
understood in a rough path sense. Set V = (V1, V2). Working with invariant vector fields, the
solution flow to the rough differential equation

(9) dϕt = V(ϕt) X(dt)

is given by the map
ϕ• : g ∈ O(R3) 7→ Φ0

• g,

where Φ0
• is the solution path to the rough differential equation (9) started from the identity.

We know from the work of Strichartz [35] on the Baker-Campbell-Dynkin-Hausdorff formula
that the solution to the time-inhomogeneous ordinary differential equation (8) is formally given
by the time-1 map of a time-homogeneous ordinary differential equation involving a vector field
explicitly computable in terms of V1, V2 and their brackets, and the iterated integrals of the signal
x•, under the form of an infinite series. Truncating this series provides an approximate solution
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whose accuracy can be quantified precisely under some mild conditions on the driving vector
fields. This picture makes perfect sense in the rough path setting of equation (9) and forms the
basis of the flow method put forward in [2]. In the present setting, given a 2-dimensional rough
path X, with Lévy area process A•, and given 0 ≤ s ≤ t ≤ 1, denote by ψts the time-1 value of
the solution path to the ordinary differential equation

dzu = X1
tsV1(zu) +X2

tsV2(zu) + Ats
[
V1, V2

]
(zu), 0 ≤ u ≤ 1,

in O(R3) started from the identity; that is

ψts = exp
(
X1
tsA1 +X2

tsA2 + Ats
[
A2, A1

])
.

Write ϕts for ϕtϕ
−1
s . Then it follows from the results in [2] that there exists some positive

constant c1 such that the inequality

(10)
∥∥ϕts − ψts∥∥∞ ≤ c1|t− s|3α

holds for all 0 ≤ s ≤ t ≤ 1. Since the vectors A1, A2,
[
A2, A1

]
form a basis of the vector space A3

of anti-symmetric (3× 3) matrices, and the exponential map is a local diffeomorphism between
a neighbourhood of 0 in A3 and a neighbourhood of the identity in O(R3), we get back the
coefficient X1

ts, X
2
ts and Ats from the knowledge of ϕts and relation (10), up to an accuracy of

order |t− s|3α. This shows that one can reconstruct X from ϕ•, in the sense of Definition 4, as
the diagonal terms of Xts are given in terms of Xts (see Remark 5). One could argue that perfect
knowledge of ϕts may seem unrealistic from a practical point of view. Note that the above proof
makes it clear that it is sufficient to know ϕts up to an accuracy of order |t − s|3α to get the
reconstruction result.

4. Proofs of the reconstruction theorem

4.1. Proof I. The first proof we give is based on the basic approximation method put forward
in [2] to construct the solution flow to a rough differential equation, and used independently later
in [7] and [33]. As in the rolling ball example, it rests on the fact that one can obtain a good
approximation of the solution flow ϕts to the rough differential equation (6) by looking at the
time-1 map of an auxiliary time-homogeneous ordinary differential equation constructed from
the vector fields Vi, their brackets and Xts. More specifically, let ψts stand for the time 1 map
of the ordinary differential equation

(11) dzu =
∑̀
i=1

Xi
tsVi(zu) +

∑
1≤j<k≤`

Ajkts
[
Vj , Vk

]
(zu), 0 ≤ u ≤ 1,

that associates to any x ∈ Rd the value at time 1 of the solution to the above equation started
from x. Then, by Theorem 3, there exists a positive constant c1 such that one has

(12)
∥∥ϕts − ψts∥∥∞ ≤ c1|t− s|3α,

for all 0 ≤ s ≤ t ≤ 1. The constant c1 depends only on ||V ||Lip3 and any upper bound M on the
rough path norm of X. We write formally

ψts = exp
(
Xi
tsVi + Aj<kts

[
Vj , Vk

])
,

and set m = `(`+1)
2 . Working with s and t close to each other, we expect the coefficients of Xts

appearing in equation (11) to lie in any a priori given compact neighbourhood U of 0 in Rm.
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The simplest idea to get them back from the knowledge of ϕts is then to try and minimize over
U the quantity ∥∥∥ϕts − exp

(
AiVi +Bj<k

[
Vj , Vk

])∥∥∥
∞
.(13)

Remark 7. Note that the “approximation scheme” ψts is equal to ϕts itself in the very special
case where d = 1 and ` = 1 (Actually only ` = 1 is necessary ..), by the well-known Doss-
Sussmann representation. So if in that case there is a point y ∈ R with V1(y) 6= 0, the map
f : a ∈ R 7→ exp

(
aV1
)
(y), is a local diffeomorphism between a neighbourhood of 0 in R and a

neighbourhood V of y in R. One thus has Xts = f−1
(
ϕts(y)

)
, for s and t close enough for ϕts(y)

to be in V. The reconstruction is perfect in that case. (Note that a 1-dimensional rough path
does not have an “area”.)

Proof of Theorem 6. Sufficiency. Assume for the moment d ≥ m, and suppose that at some
point y ∈ Rd the vectors(

V i(y),
[
Vj , Vk

]
(y) ; 1 ≤ i ≤ `, 1 ≤ j < k ≤ `

)
,

are independent. Define a map Ψy from Rm to Rd setting

Ψy(A,B) = exp
(
AiVi +Bj<k

[
Vj , Vk

])
(y).

By Lemma 12 there exists two explicit positive constants ε1, ε2, depending only on the Lip3-norm
of V1, . . . , V`, such that for for any two points a,a′ in the ball U := Bε1(0) of Rm, we have∥∥Ψy(a)−Ψy(a

′)
∥∥ ≥ ε2‖a− a′‖.(14)

We claim that any minimizer (A,B) in U of the expression

(15)
∣∣∣ϕts(y)− exp

(
AiVi +Bj<k

[
Vj , Vk

])
(y)
∣∣∣

satisfies the identity

(16) (A,B)−
(
Xts,Xts

)
= O

(
|t− s|3α

)
,

for t− s small enough, with a constant in the O(·) term independent of the minimizer. Assume,
by contradiction, the existence for every M > 0 and δ > 0, of times (s, t) with 0 ≤ t − s ≤ δ,
and some minimizer

(
Ats,Bts

)
in U such that∣∣∣(Ats,Bts)− (Xts,Xts

)∣∣∣ ≥M |t− s|3α.
Then the inequality ∣∣∣Ψy

(
Ats,Bts

)
−Ψy

(
Xts,Xts

)∣∣∣ ≥ ε2M |t− s|3α
would follow from (14), giving, for a choice of M = 2c1

ε2
, the conclusion∣∣∣Ψy

(
Ats,Bts

)
− ϕts(y)

∣∣∣ > c1 |t− s|a,

contradicting identity (12), where
(
Xts,Xts

)
belongs to U for δ small enough, and the fact that(

Ats,Bts
)

is a minimizer. This proves Theorem 6 in the special case where d ≥ m and where for

some y ∈ Rd the family
(
V i(y),

[
Vj , Vk

]
(y) ; 1 ≤ i ≤ `, 1 ≤ j < k ≤ `

)
is free.
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To handle the general case, identify
(
Rd
)c

and Rcd, and denote by z = (y1, . . . , yc) a generic

element of Rcd, with yi ∈ Rd. Introduce the vector fields Vi on Rcd, given by the formula

Wi(z) =

Vi(y1)...
Vi(yc)

 .

These vector fields satisfy, under the assumptions of Theorem 6, the restricted assumptions under
which we have proved Theorem 6 above. So this special case applies and implies the general
case. The above proof shows in particular that∣∣∣(Ats,Bts)− (Xts,Xts

)∣∣∣ ≤ 2c1
ε2
|t− s|3α.

Necessity.

Define

Z := span
{
V i
1 (y), . . . , V i

` (y), [V1, V2]
i(y), . . . , [V`−1, V`]

i(y) : i = 1, . . . , d, y ∈ Rd, i = 1, . . . , d
}
.

If the assumption of the theorem is not satisfied then Z 6= Rm. Hence pick v ∈ ZT , v 6= 0. Then
for every a ∈ Rm, every y ∈ Rd

Ψy(a) = Ψy(a + v).

Hence the null rough path (X,X) := (0, 0) and the rough path

(X̄ts, X̄ts) :=


 v1

. . .
v`

 (t− s),


0 v`+1 . . . v`+d−1

−v`+1 0 . . . . . .
. . . . . . . . . vm

−v`+d−1 . . . −vm 0

 (t− s)

 ,

have the same effect on the rough differential equation. Hence reconstruction is not possible. �

Remarks 8. 1. The above proof shows that any minimizer to problem (15) satisfies identity
(16) if 0 ≤ t− s ≤ δ, provided δ > 0 is chosen such that

(
Xts,Xts

)
∈ U . The results of [2] show

that δ is of order
(
1 + ‖X‖α

)−3
; this quantity is a priori unknown since X itself is unknown. In

practice, one should work with a sufficiently small a priori given δ and refine it if necessary.

2. Note that the use of ordinary differential equations as a tool makes the above method perfectly
suited for dealing with rough differential equations (6) with values in manifolds. This would
not have been the case if we had replaced the exponential map used to define ψt by a Taylor
polynomial (as we shall do below, in the second proof of Theorem 6), which does not have any
intrinsic meaning on a manifold. Denote by V f the derivative of a function f in the direction
of a vector field V . In the manifold setting, the reconstructability condition takes the following
form. There exists a (smooth) function on the manifold and some points x1, . . . , xc such that the
following matrix has rank m,

(
V1f

)
(x1) · · ·

(
V`f
)
(x1)

(
[V1, V2]f

)
(x1) · · ·

(
[V`−1, V`]f

)
(x1)

...
...

...
...(

V1f
)
(xc) · · ·

(
V`f
)
(xc)

(
[V1, V2]f

)
(xc) · · ·

(
[V`−1, V`]f

)
(xc)

 .

With an eye back on the rolling ball example, it suffices in that case to observe the flow at
only one point and to take as function f the logarithm map, from O(R3) to the linear space of
antisymmetric (3× 3) matrices.
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4.2. Proof II. The proof of Theorem 6 relied on the flow approximation to rough differential
equations. In this paragraph we show that the same result can be obtained using an Euler-type
approximation, which leads to a computationally less expensive solution.

Second proof of Theorem 6. Sufficiency.

Assume d ≥ m and the existence of a point y ∈ Rd where the vectors
(
V i(y),

[
Vj , Vk

]
(y) ; 1 ≤ i ≤

`, 1 ≤ j < k ≤ `
)

form a free family. Instead of approximating the flow of the rough differential
equation by the time 1 map Ψy we use the Taylor approximation

Φy(A,B) := y +AiVi(y) +
(
Bj<k [Vj , Vk] +

1

2
AiAjViVj

)
(y).

By Lemma 13, there exist some positive constants ε1, ε2 such that we have∣∣∣Φy(x)− Φy(x
′)
∣∣∣ ≥ ε2|x− x′|,

for any pair of points x,x′ in the ball U := Bε1(0) of Rm. The proof then follows the exact same
steps as above. �

4.3. The reconstruction algorithm. Based on Proof II, each step of the reconstruction scheme
can be described in the following simple terms.

1. Observe the solution increments φts(x1), . . . , φts(xc) started from the points x1, . . . xc as given in
the statement of Theorem 2.

2. Minimize the quadratic target function

sup
`=1,...,c

∣∣∣φt,s(x`)− {AiVi(x`) +
(
Bj<k [Vj , Vk] +

1

2
AiAjViVj

)
(x`)

}∣∣∣.
The minimizer A,B is an approximation for Rs,t (defined in Remark 5).

5. Examples

We present some examples of dynamical systems where the conditions of Theorem 6 hold. The
examples are physical, in the sense that they model dynamics that can be realized as concrete
machines.

5.1. Rolling ball and its implementations. The rolling ball was already considered at the
end of Section 3.

Another incarnation is available in the field of quantum control. In fact the problem studied in
[6] is of the same form (see equation (13) ibid). We should point out a caveat in this case: due to
quantum effect the dynamics of the system are only well-described by the differential equation
of the rolling ball for forcing signals with derivative of small amplitude .1 This is of course not
the case for a general rough path.

5.2. Continuously variable transmission. The uncontrolled dynamics of the system illus-
trated in Figure 1 is studied in [34]. The controlled setting is as follows. The statespace is given
by θ1, θ2 the rotation angles of the two cones, B the vectical position of the belt and Q the

1Personal communication with Ugo Boscain.
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Figure 1. An implementation of the continuously variable transmission. The image is
from [34], with kind permission of the authors.

translation of the belt, constrained to be in an interval, say (0, 1). The controller acts directly
on B and Q and so for Q(t) ∈ (0, 1) the corresponding equations are given by

dθ1(t) =
1

Q(t)
dB(t),

dθ2(t) =
1

1−Q(t)
dB(t),

dB(t) = dX1(t),

dQ(t) = dX2(t).

With x := (θ1, θ2, B,Q) this reads as

dxt = Vi(xt)dX
i
t ,

where

V1(x) =


1
q
1

1−q
1
0

 , V2(x) =


0
0
0
1.

 ,

We calculate

[V1, V2] (x) =


1
q2

− 1
(1−q)2
0
0

 .

The condition of Theorem 6 is hence satisfied with c = 1 and any point x = (θ1, θ2, q, b) with
q ∈ (0, 1).

5.3. Unicycle. Consider a unicycle on the sphere with position (x1, x2) and orientation x3

sketched in Figure 2. The controller acts by changing the orientation x3 and by moving the
unicycle foward or backward along the current orientation. The dynamics hence reads as (see
Example 4.3.2 in [4])

dxt = V1(xt)dX
1
t + V2(xt)dX

2
t ,
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Figure 2. The unicycle.

where

V1(x) :=

cos(x3)
sin(x3)

0

 , V2(x) :=

0
0
1

 .

Then

[V1, V2] (x) =

 sin(x3)
− cos(x3)

0

 .

The condition of Theorem 6 is hence satisfied with c = 1 and any point.

6. Applications

We describe in this section two applications of the reconstruction Theorem 6.

6.1. Filtering and maximum likelihood estimator. We give a brief overview on two recent
results in the area of stochastic filtering and maximum likelihood estimation which both em-
phasize the need in different practical situations to measure signals in a rough path sense. The
point of the present work is that if these real life signals can be used as input to an additional
physical system that is modelled by a rough differential equation satisfying the assumptions of
our reconstruction theorem, then one can indeed have a good approximation of the rough signal,
which suffices for practical purposes.

a) Filtering. Consider the following multi-dimensional two-component stochastic differential
equation

xt = x0 +

∫ t

0
V (xr, yr)dr +

∫ t

0
Vj(xr, yr) ◦dBj

r

+

∫ t

0
V ′k(xr, yr) ◦dykr ,

yt =

∫ t

0
h(xr, yr) dr +Wt,

where the path y• is observed and the path x• is unobserved. The letters W and B stand here
for independent Brownian motions. The stochastic filtering problem consists in calculating the
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best guess (in L2 sense) of the signal given the observation

πt = E
[
f(xt)

∣∣σ(ys : s ≤ t)
]
.

Here f is some smooth nice enough function. (More generally one is interested in the distribution
of xt given the past of y•.) From a practitioner’s point of view it is highly desirable that the
estimation procedure be continuous in the observation path [9]. If the vector fields V ′k are null
(the uncorrelated case) or if y• is 1-dimensional, it has been shown that this in fact the case: πt
is continuous with respect to the path y[0,t], where distance is measured in supremum norm (see
[9, 11]). Counterexamples show that in the general case this is not true. As recalled above in
section 2, Stratonovich integrals with continuous semimartingale integrand and the corresponding
rough paths integrals against the rough path lift of the integrand coincide whenever both make
sense. So one can recast the above equation for the path x• as a rough differential equation
involving the rough path lift y• of the observed path y•.

Theorem 9 (Theorems 6 and 7 in [15]). Under appropriate assumptions on the vector fields2,
there exists a continuous deterministic function f on the rough path space such that

πt = f
(
y[0,t]

)
,

where y• is the Stratonovich lift of y• to a rough path.

Note that even if we had an observation model

dy = h(x)dt+ σ(y)dW,

with σ satisfying the assumptions of Theorem 6 in the ideal case where c = 1, (for which we
need dY ≥ dW (dW + 1)/2), observing just Y is still not enough. This comes from the fact that
the (random!) drift term introduces an error of order |t − s|1. It is therefore indeed necessary
to have an additional “measuring device”, which is fed the observation y and is modelled as an
RDE satisfying the assumptions of Theorem 6.

b) Statistics. Consider now the problem of estimating the parameter A ∈ L(Rd) in the sto-
chastic differential equation

dyt = Ah (yt) dt+ Σ (yt) dBt

driven by a Brownian motion B or other Gaussian process, by observing y• on some fixed time
interval. Under appropriate conditions, the measures on path space for different A are mutually
absolutely continuous, so one can use the method of maximum likelihood estimation, leading to

an estimator ÂT for A. Denote by y• the Stratonovich lift of y• into a rough path.

Theorem 10 (Theorem 2 in [12]). Under appropriate assumptions on the functions h and Σ,
there exists a subset D of the space of weak geometric α-Hölder rough paths and a continuous
deterministic function AT : D → L(Rd) such that y• belongs almost-surely to D and AT (y•) is

almost-surely equal to ÂT .

Again, there exist counterexamples that show that taking only the path of the observation as an
input does not yield a robust estimation procedure.

In both examples the practitioner is hence left with the task of actually recording the rough path
Y in order to implement on a practical basis the above theoretical results. The reconstruction

2This refers to boundedness and sufficient smoothness; no bracket assumption as in Theorem 6 is needed for
this result.
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theorem provides conditions under which this can be done. This requires from the practitioner
to observe another system where the signal of interest serves as an input.

7. Appendix

We gather in this appendix a few elementary lemmas that were used in the proof of the recon-
struction theorem. We start with a basic result that is used in the two lemmas below.

Lemma 11. Let W : Rp × Rd → Rd be a function of class C2 such that the vector field W (a, ·)
is Lipschitz continuous for any fixed a ∈ Rp. Let φt(a, ·) be the flow at time t started at time 0
to the ordinary differential equation

dxt = W (a, xt)dt.

Then

c0 := sup
|a|≤1,x∈R`

∣∣D2
aφt(a, x)

∣∣ <∞.
Proof – Note that φt is the projection on the last ` coordinates of the flow ψt to the enlarged

equation

dat = 0

dxt = W (at, xt)dt.

Hence, for k = 1, . . . d, i = 1, . . . , p,

d∂aiφ
k
t = ∂yhW

k(at, xt)∂aiφ
h
t dt+ ∂arW

k(at, xt)dt

d∂aj ,aiφ
k
t = ∂yg ,yhW

k(at, xt)∂ajφ
g
t ∂aiφ

h
t dt+ ∂as,yhW

k(at, xt)∂aiφ
h
t dt+ ∂yhW

k(at, xt)∂aj ,aiφ
h
t dt

+ ∂yg ,arW
k(at, xt)∂ajφ

g
t dt+ ∂as,arW

k(at, xt)dt;

see for example [17, Chapter 4]. An application of Grönwall’s lemma now gives the desired
result. B

Lemma 12 (Non-degeneracy of the flow approximation). Let N ≥ n and W1, . . . ,Wn ∈ Lip3 be
vector fields that are linearly independent at some point some y ∈ RN . Then the function

Ψy : Rn → RN

a = (a1, . . . , an) 7→ exp
(
a1W1 + · · ·+ anWn

)
(y),

is C2 and there is a neighbourhood U of 0 in Rn and a positive constant ε1 such that for a,a′ ∈ U
we have ∣∣Ψy(a)−Ψy(a

′)
∣∣ ≥ ε1|a− a′|.

The proof below makes it clear that one can choose

ε1 :=
∥∥∥ (DΨy(0)TDΨy(0)

)−1
DΨy(0)T

∥∥∥−1
ε2 :=

1

2c0
,

with the constant c0 of Lemma 11.
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Proof – From classical results by Grönwall, see for example [24, Theorem 14.1], we know that
Ψy ∈ C2 (see also Lemma 11). By Taylor’s theorem we have∣∣∣exp

(
a1W1 + · · ·+ anWn

)
(y)−

(
y + a1W1 + · · ·+ anWn

)
(y)
∣∣∣

≤ C||W ||Lip3
(
|a1|2 + · · ·+ |an|2

)
,

for some positive constant C that depends only on n. Hence

D0Ψy = (W1 · · ·Wn) ∈ RN×n,
has rank n, by assumption. Now

Ψy(a)−Ψy(a
′) = D0Ψy(a− a′) +

(
DΨy(a

′)−DΨy(0)
)(

a− a′
)

+O
(
|a− a′|2

)
,

where the last term is of the form

|a− ā|2 max
z∈U

∣∣D2Ψy(z)
∣∣,

for a,a′ ∈ U . Now, since D0Φy has rank n, we have∣∣DΨy(0)(a− ā)
∣∣ ≥ 2ε1|a− ā|

with ε1 :=
∥∥∥ (D0Ψ

T
yD0Ψy

)−1
D0Ψ

T
y

∥∥∥−1 > 0. Note that by Lemma 11, ‖D2
aΦy‖ ≤ c0. Then

choosing U := Bε2(0), with

ε2 =
1

2c0
,

the second and third terms are dominated by ε1
2 |a− a′|, which yields the desired result. B

Last, we provide a version of the previous lemma adapted to the ’numerical scheme’ put forward
in Section 4.2.

Lemma 13 (Non-degeneracy of Taylor approximation). Let V1, . . . , V` ∈ Lip3(Rd). Assume that
d ≥ m := `+ `(`− 1)/2 and that moreover at some point y ∈ Rd, the vectors

Vi(y) : i = 1, . . . , `

[Vi, Vj ] (y) : i < j

are independent. Then

Φy : Rm → Rd(
a1, . . . , a`, a1,2, . . . a`−1,`

)
7→ y +

(
a1V1 + · · ·+ a`V`

)
(y) +

∑
i<j

aij [Vi, Vj ] (y)

+
∑
i,j

aiaj
1

2
ViVj(y),

is C∞.

Moreover there is a neighborhood U of 0 and ε1 > 0 such that for a, ā ∈ U we have∣∣Φy(a)− Φy(ā)
∣∣ ≥ ε1|a− ā|.

We can choose ε1 = 1/||Dφy(0)−1|| and U = Bε2(0) with ε2 = 1
2
∑

i,j |ViVj(y)|
.

Remark 14. The statement is really about a set of some vectors, not about vector fields.
Nonetheless we state it in this form, since this is how we need it in the main text. Its proof
is almost-identical to the previous one, so we omit it.
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