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Abstract. We give a short essentially self-contained treatment of the fundamental analytic and algebraic
features of regularity structures and its applications to the study of singular stochastic PDEs.
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1 – Introduction

The class of singular stochastic partial differential equations (PDEs) is charactarised by the
appearance in their formulation of ill-defined products due to the presence in the equation of
distributions with low regularity, typically realisations of random distributions. Here are three
typical examples.

- The 2 or 3-dimensional parabolic Anderson model equation (PAM)
pBt ´∆xqu “ uξ, (1.1)

with ξ a space white noise. It represents the evolution of a Brownian particle in a 2 or
3-dimensional white noise environment in the torus. (The operator ∆x stands here for the
2 or 3-dimensional Laplacian.)

- The scalar Φ4
3 equation from quantum field theory

pBt ´∆xqu “ ´u
3 ` ζ, (1.2)

with ζ a 3-dimensional spacetime white noise and ∆x the 3-dimensional Laplacian in the
torus or the Euclidean space. Its invariant measure is the scalar Φ4

3 measure from quantum
field theory.

- The generalized (KPZ) equation
pBt ´ B

2
xqu “ fpuqζ ` gpuq|Bxu|

2, (1.3)
with ζ a 1-dimensional spacetime white noise. In a more sophisticated form, it provides
amongst others a description of the random motion of a rubber on a Riemannian manifold
under a random perturbation of the mean curvature flow motion.

A d-dimensional space white noise has Hölder regularity ´d{2´κ, and a d-dimensional spacetime
white noise has Hölder regularity ´d{2´ 1´κ under the parabolic scaling, almost surely for every
positive κ. Whereas one expects from the heat operator that its inverse regularizes a distribution
by 2, this is not sufficient to make sense of any of the products uξ, u3, fpuqζ, |Bxu|

2, gpuq|Bxu|
2

above, as the product of two Hölder distributions is well-defined if and only if the sum of their
1
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regularity exponents is positive. Why then bother about such equations? It happens that they
appear as scaling limits of a number of microscopic nonlinear random dynamics where the strength
of the nonlinearity and the randomness balance each other. Many microscopic random systems
exhibit this feature as you will see from reading Corwin & Shen’s nice review [24] on singular
stochastic PDEs.

A typical statement about a singular stochastic PDE takes the following informal form, stated
here in restricted generality. Consider a subcritical singular stochastic PDE

pBt ´∆xqu “ fpu, Buqζ ` gpu, Buq “: F pu, Bu; ζq (1.4)
driven by a possibly multi-dimensional irregular random noise ζ that is almost surely of spacetime
regularity α´ 2, for a deterministic constant α P R. (The notion of ‘subcriticality’ will be properly
defined later in the text.) We talk of the sufficiently regular function F as a ‘nonlinearity’ – even
though a particular F could depend linearly or affinely of one or all of its arguments. Denote by
F the space of nonlinearities that are affine functions of the noise argument. Denote also by ζε a
regularized version of the noise, obtained for instance by convolution with a deterministic smooth
kernel. Write

Solpζε;F q
for the solution to the well-posed parabolic equation

pBt ´∆xqu “ F pu, Bu; ζεq

started at time 0 from a given (regular enough) fixed initial condition.

Meta-theorem 1. (What it means to be a solution) – The following three points hold true.
‚ One can associate to each subcritical singular stochastic PDE a finite dimensional un-

bounded Lie group called the renormalization group. Denote by k its generic elements.

‚ This group acts explicitly on the right on the nonlinearity space F
`

k, F
˘

ÞÑ F pkq P F. (1.5)
‚ There exists diverging elements kε of the renormalization group such that the solutions

Sol
´

ζε; pF
pkεqqpkq

¯

to the well-posed stochastic PDE

pBt ´∆xqu “
`

F pkεq
˘pkq

pu, Bu; ζεq

with given initial condition, converge in probability in an appropriate function/distribution
space, for any element k of the renormalization group, as ε goes to 0.

A solution to a singular stochastic PDE is not a single function or distribution, but rather a family
of functions/distributions indexed by the renormalization group.

We stick to the tradition and talk about any of the above limit functions/distributions as a
solution to equation (1.4). We talk of the family of solutions. To have a picture in mind, consider
the family of maps

Sεpxq “
`

x´ 1{ε
˘2
, (1.6)

on R. It explodes in every fixed interval as ε goes to 0, but remains finite, and converges, in a
moving window Sεpx` 1{εq, where it is equal to x2. It also converges in the other moving window
Sεpx ` 1{ε ` 1q, where it is equal to px ` 1q2. No given moving window is a priori better than
another. In this parallel, the function Solpζε; ¨q plays the role of Sε, with the infinite dimensional
nonlinearity space F in the role of the state space R. The role of the translations x ÞÑ x ` 1{ε, is
played by the group action (1.5) of kε on the space of nonlinearities F. The explicit action of kε
on the space of nonlinearities gives formulas of the form

F pkεqpu, Bu; ξq “ fpu, Buqξ ` gpu, Buq ` hεpu, Buq,

so Sol
`

ζε;F
pkεq

˘

is the solution to the equation
pBt ´∆xqu “ fpu, Buqζε ` gpu, Buq ` hεpu, Buq, (1.7)
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with given initial condition, for an explicit function hε built from f, g and their derivatives. We
talk of the function hε as a counterterm; it diverges as ε goes to 0. Note that the convergence
involved in Meta-theorem 1 is in the probabilistic sense, not almost surely.

In a robust solution theory for differential equations a solution to a differential equation ends
up being a continuous function of the parameters in the equation. In the case of equation (1.4)
the parameters are the functions f, g, the noise ζ and the initial condition of the equation. While
it is unreasonable and wrong to expect that the solutions from Meta-theorem 1 are continuous
functions of each realization of the noise, they happen to be continuous functions of a measurable
functional of the latter build by probabilistic means. We talk about that functional of the noise as
an enhanced noise.
Meta-theorem 2 (Continuity of a solution with respect to the enhanced noise) – For ζ in a
class of random noises including space or spacetime white noises, there is a measurable functional
Π of the noise taking values in a metric space and such that any individual solution of equation
(1.4) is a continuous function of Π.

This is a fundamental point to be compared with the fact that in the stochastic calculus approach
to stochastic (partial) differential equations, the solutions to the equations are only measurable
functionals of the noise. In a setting where both approaches can be used and coincide, the regularity
structures point of view provides a factorization of the measurable solution map of stochastic
calculus under the form of the composition of a measurable function Π of the noise with a continuous
function of Π. A number of probabilistic statements about Π are then automatically transfered
to the solution of the equation, by continuity. The support of the law of the random variable Π
determines for instance the support of the law of the solution to the equation. Large deviation
results for a family of random Π’s is also automatically transported by continuity into a large
deviation result for the corresponding family of solutions of the equation.

The functional Π is built as a limit in probability of elementary functionals of the noise. This is
in the end the reason why the convergence result in Meta-theorem 1 holds in probability.

How is it that one can prove such statements? The point is that solutions of singular stochas-
tic PDEs are not expected to be any kind of Hölder functions or distributions. Rather, under
an assumption on the equation captured by the notion of subcriticality, we expect possible so-
lutions to be described locally in terms of a finite number of equation-dependent reference func-
tions/distributions that are polynomials functionals of the noise. The theory of regularity struc-
tures provides a complete description of the local structure of these possible solutions, in terms of
their local expansion properties with respect to the preceding polynomial functions of the noise.
It actually turns the problem upside down by reformulating singular stochastic PDEs as equations
in spaces of functions/distributions characterised by their local behaviour. The product problem
is isolated along the way in the problem of making sense of the reference functions/distributions
that are used as ingredients in the local description of a possible solution. This is the very point
where the fact that the noise is random plays a crucial role. It allows indeed to build the reference
functions/distributions not as functions of the noise but rather as random variables jointly defined
with the noise on a common probability space. This realizes a wonderful decoupling of probability
and analysis. To the former the task of building the enhanced noise: Functions or distribution-
valued random variables that play the role of ill-defined products of equation-dependent quantities
involving the noise only. This is done by a limiting procedure called renormalization, after sim-
ilar procedures used in quantum field theory to tackle similar problems. To the latter the task
of solving uniquely an equation in a side space built from the enhanced noise, regardless of any
multiplication problem.

The fundamentals of the theory of regularity structures were built gradually by M. Hairer and his
co-authors in four groundbreaking works [44, 16, 20, 13]. In paper [44], M. Hairer sets the analytic
framework of regularity structures and provides an ad hoc study of the renormalization problem for
the parabolic Anderson model equation (1.1) and scalar Φ4

3 equation (1.2). The algebra involved
in the renormalization process of a large class of singular stochastic PDEs was unveiled in Bruned,
Hairer and Zambotti’s work [16]. The proof that the renormalization algorithm provided in [16]
converges was done by Chandra & Hairer in [20]. Last, the fact that the renormalization can be
‘implemented’ at the level of the equation was proved in Bruned, Chandra, Chevyrev and Hairer’s
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work [13], giving a wonderful analogue of the equivalence of the “substraction scheme” versus
“counterterms” approaches to renormalization problems in quantum field theory. Altogether, these
four works provide a black box for the local well-posedness theory of subcritical singular stochastic
PDEs. This work gives an essentially self-contained short treatment of the fundamental analytic
and algebraic features of regularity structures and its applications to the study of singular stochastic
PDEs that contains the essential points of the works [44, 16, 13]. It is intended for readers who
already have an idea of the subject and who wish to understand in depth the mechanics at work.
We hope nonetheless that even a newcomer to the field may grasp the matter by following the
road taken here. Regularity structures and the fundamental tools are developed in generality
within a highly abstract setting. No trees are in particular involved in the analysis before we
actually construct an example of regularity structure adapted to the study of the generalized
(KPZ) equation (1.3) in Section 9. When it comes to applying these tools to singular stochastic
PDEs, we trade generality for the concrete example of the generalized (KPZ) equation (1.3), that
involves all the difficulties of the most general case. We do not treat about Chandra & Hairer’s
work [20] constructing the measurable functional Π of the noise involved in Meta-theorem 2 using
Bruned, Hairer and Zambotti’s renormalization process [16].

We stress here that Hairer’s approach to singular stochastic PDEs is somewhat orthogonal to
the purely probabilistic approaches of stochastic PDEs pioneered by Pardoux, Walsh or da Prato
& Zabczyk, using martingale technics. No knowledge of these approaches is needed to understand
what follows.

It is our aim here to give a concise self-contained version of what seems to us to be the most
important features of the 437 pages of the works [44, 16, 13]. A number of comments about different
statements, concepts, other works, are deferred to Appendix D so as to keep focused in the main
body of the text. The reader is invited to read this section at any point along her/his reading. We
expect that the reader will see from the present work the simplicity that governs the architecture
of the theory. The climb may be hard but the view after the walk is stunning.

Besides the original articles [44, 16, 20, 13], Hairer’s lectures notes [45, 47], the book [33] by Friz
and Hairer, and Chandra & Weber’s article [21], provide other accessible accounts of part of the
material presented here. The work [24] of Corwin and Shen provides a nice non-technical overview
of the context in which singular stochastic PDEs arise.

We will introduce the different pieces of the puzzle one after the other to arrive at a clear
understanding of the mathematical form of the above meta-theorems. This will be done along the
following lines. We will first set the scene to talk of the local behaviour of functions/distributions

fp¨q „
ÿ

τ

fτ pxqpΠ
g
xτqp¨q, (1.8)

near each spacetime point x, giving a generalisation of the notion of jet, in terms of reference
functions/distributions pΠg

xτqp¨q. This will involve the setting of (concrete) regularity structures
T “

`

pT`,∆`q, pT,∆q
˘

, and models M “ pg,Πq, from which the reference functions/distributions
pΠg

xτqp¨q are built. In the same way as a family of functions pf1, . . . , fnq on Rd needs to satisfy a
quantitative consistency condition for a function f satisfying

fp¨q „
ÿ

kPNd

fkpxqp¨ ´ xq
k, near all x,

to exist, a collection of functions pfτ qτ needs to satisfy a quantitative consistency condition for
a distribution f satisfying (1.8) to exist. This condition will involve the notion of modelled dis-
tribution and reconstruction operator RM, with a notion of consistency that will depend on the
component g of the model M. At that stage, given a regularity structure and a model on it, we will
have a convenient way of representing a class of functions/distributions on the state space – not
all of them. Given a (system of) singular stochastic PDE(s), a good choice of concrete regularity
structure will allow to represent the set of functions/distributions that appear in a naive analysis
of the equation via a Picard iteration. Unlike what happens in the study of controlled ordinary
differential equations driven by an `-dimension control, there is no universal concrete regularity
structure for the set of all singular stochastic PDEs. One associates to each (system of) subcritical
singular stochastic PDE(s) a specific regularity structure. The regularity structure associated with
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equation (1.4) is built from a noise symbol and operators pInqnPNd`1 that play the role in the
regularity structure of the operators BnpBt´∆xq

´1, involved in the Picard fixed point formulation
of the equation. (The letter B “ pBt, Bxq stands here for the time/space derivative operator.) One
proceeds then by formulating the equation as a fixed point problem in the space of consistent jets
of distributions/functions, encoded in the notion of modelled distribution. This will require to
introduce a tweaked version KM of the operator I, as the latter does not produce consistent jets
from consistent jets – the notion of consistency depends on g whereas the operator I does not. The
equation on the jet space will happen then to have a unique solution in small time under proper
mild conditions; this solution will be a continuous function of all the parameters in the equations,
the model in particular. Along the way, we will turn the initial analytical multiplication problem
into the problem of defining models with appropriate properties – the so called admissible models.
It is straightforward to construct what is called the canonical lift of a regularized version ζε of the
noise ζ as an admissible model Mε; this can be done for any smooth noise. In those terms, the
solution uε to a well-posed (system of) singular stochastic PDE(s) with smooth noise ζε can be
written as the reconstruction

uε “ RMε
puεq (1.9)

of a consistent jet uε obtained as the fixed point
uε “ Φ

`

Mε,uε
˘

(1.10)

of a map Φ that depends continuously on its model argument. So does the reconstruction map RMε .
However the model Mε does not converge in the appropriate space as the positive regularization
parameter ε goes to 0, so a solution to the (system of) singular stochastic PDE(s) under study
cannot be defined as the limit of the uε as ε goes to 0. The situation is similar to what happens
to the function Sε from (1.6). One has to look at Mε in a moving window to obtain a finite limit.
The renormalization group will provide us precisely with this possibility, and will provide a family
of renormalized canonical models kεMε. To make the final step from here to the meta-theorems,
we will see that this action of the renormalization group on models has a dual action on the space
F of nonlinearities. The kεMε-reconstruction uε of the unique kεMε-dependent fixed point equation
in the space of jets will happen to solve a ‘renormalized’ version of the singular equation (1.4),
with additional ε-dependent terms diverging as the regularization parameter ε tends to 0, as in
(1.7). The continuity of both the solution of the fixed point equation and the reconstruction map,
as functions of the underlying model, will ensure the convergence of uε to a limit u for converging
renormalized models kεMε with limit M. The limit function u will satisfy a system

u “ RM
puq, u “ Φ

`

M,u
˘

,

similar to the system of equations (1.9) and (1.10) satisfied by uε. It is in this sense that u
will deserve to be called a solution of the singular stochastic PDE under study. Think of u as
a function/distribution defined from its ’Taylor’ jet u, with the latter solution of a fixed point
problem.

A word about algebra. It is one of the features of the theory of regularity structures that algebra
plays an important role, unlike what one usually encounters in the analytic study of PDEs. This is
partly due to the choice of description of the objects involved in the analysis, in terms of “jets-like”
quantities. Elementary consistency requirements directly bring algebra into play, under the form
of Hopf algebras and actions of the latter on vector spaces. This is what regularity structures are.
The appearance of algebra in the study of singular stochastic PDEs is also due to the fact that
the renormalization algorithm used to define the random variables that play the role of a number
of ill-defined polynomial functionals of the noise is conveniently encoded in an algebraic structure
that we call renormalization structure; it differs from a regularity structure. These two points
involve Hopf algebras. A last piece of algebra is also needed under the form of pre-Lie algebras.
This is an algebraic structure that behaves as the differentiation operation pf, gq ÞÑ g1f , derivative
of g in the direction of f . Using an algebraic language sheds a gentle light on the meaning of the
renormalization process at the level of the equation. Pre-Lie algebras are the ingredient we need
to understand how to build hε in Meta-theorem 1 and equation (1.7).

The analysis or probability-oriented reader should not be frightened by the perspective of work-
ing with algebraic tools; we will hardly need anything more than a few definitions and elementary
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facts that are direct consequences of the latter; everything else is proved. We refer the reader
to Manchon’s lecture notes [59], or the first four chapters of Sweedler’s book [65], for accessible
references on Hopf algebras, and to Foissy’s work [31] for basics on pre-Lie algebras; all we need is
elementary and recalled below. Appendix B contains in any case all the results from algebra that
we use without proving them, with precise pointers to the litterature.

The work has been organized as follows. Basics on regularity structures are introduced in Section
2, under the form of concrete regularity structures. The reconstruction theorem, that ensures that
a consistent jet describes a distribution in the state space is proved there, in Theorem 4. This allows
to formulate in Section 4 a singular PDE as an equation in a space of modelled distributions over
a regularity structure associated with the singular PDE. A fixed point argument is used in Section
4 to prove a local in time well-posedness result in a space of modelled distributions. Despite their
possible differences, the regularity structures built for the study of different subcritical elliptic or
parabolic singular PDEs all involve the construction of the counterpart of a (or several) regularizing
convolution operator(s) and the proof of its (/their) continuity properties in spaces of modelled
distributions. This is done in Section 3. Section 5 sets the scene of renormalization structures.
They encode the renormalization algorithm used to build the random variables whose realisations
play the role of a finite number of reference functions/distributions. The renormalization algorithm
is described in Section 7. The dual action of the renormalization operation on the genuine singular
PDE is clarified by the introduction of pre-Lie structures; this is done in Section 6. Nothing so far
requires a deep understanding of how the regularity or the renormalization structure associated
with a given singular stochastic PDE are built. It suffices to assume that they satisfy a small
number of simple assumptions to run the analysis. Section 9 is dedicated to constructing explicitly
such structures in the concrete example of the generalized (KPZ) equation. A summary of notations
is given in Appendix A. Appendix B contains a number of elementary facts from algebra that we
use. Precise pointers to the proofs of these facts are given. Appendix C contains the proof of
technical results that were not given in the body of the text to keep concentrated on the essential
features of the method. A number of comments about the notions, the statements or the litterature
are collected in Appendix D. The reader is invited to read them at any time.

Notations – We use a number of greek letters with different meanings. As a rule, α, β, γ stand for
real numbers, while τ, σ, µ, ν, η, ϕ, ψ stand for elements of regularity or renormalization structures.

‚ Given two statements a and a`, we agree to write ap`q to mean both the statement a and
the statement a`.

‚ Denote by ei “ p0, . . . , 0,
i
1, 0, . . . , 0q P Rd the i-th basis vector of Rd.

All the notations introduced along the way are gathered in Appendix A, with pointers to the section
where they are introduced.

2 – Basics on regularity structures

This section introduces the main actors of the play: Regularity structures in Section 2.2, models,
modelled distributions and their reconstructions in Section 2.3, and the fundamental operations of
product and derivatives in a regularity structure setting in Section 2.4.

Hairer’s theory of regularity structures builds on Gubinelli’s approach [38] to T. Lyons’ theory of
rough paths and rough differential equations [58]. This is a theory of controlled ordinary differential
equations

dzt “ V pztqdXt, zt P Rk,

driven by irregular controls X. Gubinelli’s notion of ‘path controlled by a rough path X’ gives a
Taylor-like description of a path around each time s in terms of ‘monomials’ given by the different
components of the increments of the rough path X between the running time and time s. This
notion of controlled path turns out to be stable by nonlinear maps and by a map defining the
integral against the reference rough path X. These facts allow to formulate controlled ordinary
differential equations driven by a rough path as an integral equation in a space of controlled paths
and to prove local well-posedness of the equation under regularity assumptions on the vector fields
involved in the dynamics by fixed point arguments.
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Hairer chooses a similar angle to build his theory of singular stochastic PDEs. He provides a
setting whose rough path analogue not only gives a pointwise description of a potential solution
path z, but also a ‘local’ description of the Rk-valued distribution V pztqdXt on a time interval,
around each time s, sticking to a differential formulation of the problem. We start this section by
explaining in Section 2.1 in simple terms why this strategy of local expansion devices automatically
brings algebra into play, independently of any problem of dynamical nature.

2.1 Algebra as the mechanics of local expansion devices

Regularity structures are the backbone of expansion devices for the local description of functions
and distributions in (an open set of) a Euclidean space, say Rd. The usual notion of local description
of a function near a point x P Rd involves Taylor expansion and amounts to comparing a function
to a polynomial centered at x

fp¨q »
ÿ

n

fnpxq p¨ ´ xq
n, near x. (2.1)

The sum over n is finite, the approximation quantified and we end up describing the class of Hölder
functions with positive regularity exponents. One gets a local description of f near another point
x1 writing

fp¨q »
ÿ

`ďn

fnpxq

ˆ

n

`

˙

p¨ ´ x1q`px1 ´ xqn´` »
ÿ

`

˜

ÿ

n;`ďn

fnpxq

ˆ

n

`

˙

px1 ´ xqn´`

¸

p¨ ´ x1q`. (2.2)

A more general local description device involves an Rd-indexed collection of functions or distribu-
tions pΠxτqp¨q, with labels τ in a finite set B. Consider the real vector space T spanned freely by
B. Functions or distributions are locally described as

fp¨q »
ÿ

τ

fτ pxqpΠxτqp¨q, near each x P Rd.

This implicitly assumes that the coefficients fτ pxq are function of x. One has B “ Nd and
pΠxkqp¨q “ p¨ ´ xqk, in the usual, Taylor, polynomial setting. Like in the former setting, in a
general local description device the reference objects

pΠx1τqp¨q “
`

ΠxpΓxx1τq
˘

p¨q (2.3)
at a different base point x1 are linear combinations of the Πxσ, for a linear map

Γxx1 : T Ñ T,

and one can switch back and forth between local descriptions at different points. The same thing is
encoded in equation (2.2), in the Taylor polynomial setting. The linear maps Γxx1 are thus invertible
and one has a group action of an Rd ˆ Rd-indexed group on the local description structure T .

Whereas one uses the same polynomial-type local description for the fn as for f itself in the
usual Hölder setting Ca, there is no reason in a more general local description device to use the
same reference objects for f and for its local coefficients. This is in particular the case if the
pΠxτqp¨q are meant to describe distributions, among others, while it makes sense to use functions
only as reference objects to describe the functions fτ . A simple setting consists in having all the
fτ locally described by a possibly different finite collection B` of labels µ, in terms of reference
functions gyxpµq, with

fτ pyq »
ÿ

µPB`
fτµpxqgyxpµq, near x. (2.4)

Note that we take care not to write pΠxτqpyq as the Πxτ may be distributions. It would be
consistent to write gxpµpyqq but we stick to the established and convenient notation gyxpµq. With
this notation, one has both

fp¨q »
ÿ

τPB
fτ pxqpΠxτqp¨q »

ÿ

τPB, µPB`
fτµpyqgxypµqpΠxτqp¨q (2.5)

and
fp¨q »

ÿ

σPB
fσpyqpΠyσqp¨q.
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Consistency dictates that the two expressions coincide, giving in particular the fact that the coef-
ficients fτµpyq are linear combinations of the fσpyq. Write T` for the vector space spanned freely
by B`. Re-indexing identity (2.5) and using the notation σ{τ for the µ corresponding to τµ » σ,
one then has

fp¨q »
ÿ

σPB,τPB
fσpyq gxypσ{τqpΠxτqp¨q. (2.6)

The transition map Γxy : T Ñ T , from (2.3) is thus given in terms of the splitting map

∆ : T Ñ T b T`, ∆σ “
ÿ

τ

τ b pσ{τq

that appears in the above decomposition, with
Πyσ “

ÿ

τPB
gxypσ{τqΠxτ

so the transition maps
Γxyσ “

ÿ

τPB
gxypσ{τqτ

for the reference distributions Πxτ involve the same ingredients gyxp¨q as those that appear in the
local expansion of the coefficients fτ of f . If one further expands fσpyq in (2.6) around another
reference point z, one gets

fp¨q »
ÿ

τ,σ,νPB
fνpzq gyzpν{σqgxypσ{τqpΠxτqp¨q

»
ÿ

νPB
fνpzqpΠzνqp¨q »

ÿ

τ,νPB
fνpzq gxzpν{τqpΠxτqp¨q.

(2.7)

Here again, consistency requires that the two expressions coincide, giving the identity
ÿ

σPB
gyzpν{σqgxypσ{τq “ gxzpν{τq

in terms of another splitting map
∆` : T` Ñ T` b T`

satisfying
∆`pν{τq “

ÿ

σ

σ{τ b ν{σ,

and, by construction, the identity
p∆b Idq∆ “ pIdb∆`q∆ (2.8)

encoded in identity (2.7). Developing fνpzq in (2.7) in terms of another reference point leads by
consistency to the identity

pIdb∆`q∆` “ p∆` b Idq∆`.
If we insist that the family of reference functions gyxpµq, µ P B`, be sufficiently rich to describe
locally an algebra of functions, it happens to be convenient to assume that the linear span T`

of B` has an algebra structure and the maps gyx on T` are characters of the algebra, that is
multiplicative maps. Building on the example of the polynomials, it is also natural to assume
that T` has a grading structure. Using the assumed invertibility of the transition maps Γxy, an
elementary fact from algebra then leads directly to the Hopf algebra structure that appears below
in the definition of a concrete regularity structure. (The curious reader can see Proposition 45 in
Appendix B. We do not need to understand the details of its simple proof now.)

Note that the dimension d of the state space plays no role in this discussion.
We choose to record the essential features of this discussion in the definition of a ‘concrete’

regularity structure given below; this is a special form of the more general notion of regularity
structure from Hairer’ seminal work [44]. The reader should keep in mind that the entire algebraic
setting can be understood at a basic level from the above consistency requirements on a given
local description device. We invite the reader to look at Appendix B for definitions and basics on
bialgebras, Hopf algebras, and comodules, and read this appendix in the light of the preceeding
discussion.
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2.2 Regularity structures

We define in this section a particular form of regularity structure that turns out to be sufficient
for the study of (systems of) singular stochastic PDE(s). A number of notations are fixed here.
The following definition is to be read in the light of the discussion of Section 2.1 and will be best
understoof by recall first from Appendix B the definition of a Hopf algebra and the meaning of
connectedness in this setting.

Definition – A concrete regularity structure T “ pT`, T q is the pair of graded vector spaces
T` “

à

αPA`

T`α , T “
à

βPA

Tβ

such that the following holds.

‚ The vector spaces T`α and Tβ are finite dimensional.

‚ The vector space T` is a connected graded bialgebra with unit 1`, counit 11`, coproduct
∆` : T` Ñ T` b T`, and grading A` Ă r0,8q.

‚ The index set A for T is a locally finite subset of R bounded below. The vector space T is a
right comodule over T`, that is T is equipped with a splitting map ∆ : T Ñ T b T` which
satisfies

p∆b Idq∆ “ pIdb∆`q∆, and pIdb 11`q∆ “ Id. (2.9)
Moreover, for any β P A

∆Tβ Ă
à

αě0

Tβ´α b T
`
α . (2.10)

We denote by
T :“

`

pT`,∆`q, pT,∆q
˘

a concrete regularity structure.

The different elements that appear in the definition of a concrete regularity structure will acquire
later a concrete meaning. The elements of T and T` will index expansion devices for the study of
a given (system of) singular stochastic PDE(s) – remember each equation has its own regularity
structure. We saw in Section 2.1 the meaning of the splitting maps ∆ and ∆` and their intertwining
relation (2.9) in terms of expansion devices. Recall from the definition of the graded bialgebra
given in Appendix B that T`0 “ x1`y and T`α T

`
β Ă T`α`β , for any α, β P A`. By Proposition

45, the bialgebra T` is indeed a Hopf algebra; we denote by S` its antipode. Denoting by
M : T` b T` Ñ T` the multiplication operator Mpa b bq :“ ab, and by 11` the counit of T` –
think of it as a dual vector to the vector 1`, the antipode S` is characterized by the identity

MpIdb S`q∆`τ “MpS` b Idq∆`τ “ 11`pτq1`.

Moreover, its coproduct ∆` satisfies ∆`1` “ 1` b 1`, and

∆`τ P

#

τ b 1` ` 1` b τ `
ÿ

0ăβăα

T`β b T
`
α´β

+

, (2.11)

for any τ P T`α with α ą 0. Similarly, it is straightforward from (2.9) and (2.10) to check that

∆τ P

#

τ b 1` `
ÿ

βăα

Tβ b T
`
α´β

+

(2.12)

for any τ P Tα. This identity will later imply for a set Πxτ of reference functions/distributions
that Πx1τ » Πxτ , up to terms of smaller ‘homogeneity’ β ă α.

Note that we do not assume any relation between the linear spaces T`α and Tβ at that stage.
Note also that the homogeneity function | ¨ | takes values in R, and that the parameter β in (2.12)
can be non-positive, unlike in (2.11). For an arbitrary element τ in T , set

τ “
ÿ

βPA

τβ P
à

βPA

Tβ .
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We use a similar notation for elements of T`. An element τ of T p`qα is said to be homogeneous and
is assigned homogeneity |τ | :“ α. The homogeneous spaces Tβ and T`α being finite dimensional,
all norms on them are equivalent; we use a generic notation } ¨}β or } ¨}α for norms on these spaces.
For simplicity, we write

}τ}α :“ }τα}α. (2.13)

Notations. ‚ Let B`α and Bβ be bases of T`α and Tβ, respectively. Set

B` :“
ď

αPA`

B`α , B :“
ď

βPA

Bβ .

‚ Recall from the end of Section 1 our convention about statements of the form sp`q. Given
σ, τ P Bp`q, we use the notation σ ďp`q τ to mean that σ “ τ or |σ| ă |τ |; we write τ{p`qσ for the
element of T` defined by the expansion

∆p`qτ “
ÿ

σPBp`q, σďp`qτ

σ b pτ{p`qσq.

Write σ ăp`q τ to mean further that σ is different from τ . The notations τ{p`qσ and σ ăp`q τ are
only used for τ and σ in Bp`q.

Interpreting the splitting maps ∆ and ∆` as chopping elements into pieces, keep in mind that
τ{p`qσ can be a sum of elements of T`, in case σ appears ‘at different places’ as an element of
τ . This will be particularly clear in formula (2.15) below for the polynomial regularity structure,
where the binomial coefficient

`

n
`

˘

will account for the number of X` inside Xn, for 0 ď ` ď n.
Note that for σ ăp`q τ in Bp`q, we have

∆`pτ{p`qσq “
ÿ

σďp`qηď`τ

pη{p`qσq b pτ{`ηq

“ pτ{p`qσq b 1` ` 1` b pτ{
p`qσq `

ÿ

σăp`qηăp`qτ

pη{p`qσq b pτ{p`qηq.
(2.14)

These two identities are direct consequences of the co-associativity properties
p∆p`q b Idq∆p`q “ pIdb∆`q∆p`q,

of the coproduct ∆p`q, obtained by identifying the corresponding terms in the left and right hand
sides. In the setting of singular stochastic PDEs where the elements of T are (decorated) trees,
τ{σ will be a product of trees, and each of these trees will eventually be involved in the action of
re-centering the corresponding analytic objects to a given running point, while leaving the trunk
tree σ untouched. The definition of a model given in Section 2.3 illustrates exactly this picture.
Here are two examples of regularity structures.

– Let symbols X1, . . . , Xd be given. For n P Nd, set Xn :“ Xn1
1 ¨ ¨ ¨Xnd

d ; this is an element
of the free commutative algebra with unit 1p“: X0q generated by the Xi. We can see that
TX :“ span

 

Xn;n P Nd
(

is a bialgebra with the coproduct

∆polX
n :“

ÿ

`ďn

ˆ

n

`

˙

X` bXn´`, (2.15)

with ` ď n if `i ď ni for all 1 ď i ď d. Let s “ psiq P pNzt0uqd an integer-valued fixed
vector, called a scaling. This vector accounts for the natural scaling properties in the
different directions of Rd for the problem at hand. If for instance Rd does not stand for
the isotropic Euclidean space but rather for a non-isotropic space with topology Rd, as a
Lie group, different directions will naturally have different homogeneities, depending on the
geometry of the space. We define the scaled degree of n P Nd by

|n|s “
d
ÿ

i“1

sini.
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Then the definition Tα “ spantXn; |n|s “ αu gives a grading for the bialgebra TX . Since
T0 “ spant1u, the space TX is a connected graded bialgebra. Thus it is indeed a Hopf
algbera; the antipode is actually given by S`X

n “ p´Xqn. The polynomial regularity
structure is given by

TX :“
`

pTX ,∆polq, pTX ,∆polq
˘

.

– To have another picture in mind, think of T and T` as sets of possibly labelled rooted
trees, with T` consisting only of trees with positive tree homogeneities – a homogeneity is
assigned to each labelled tree. This notion of homogeneity induces the decomposition (2.13)
of T into linear spaces spanned by trees with equal homogeneities; a similar decomposition
holds for T`. The coproduct ∆`τ is typically a sum over subtrees σ of τ with the same
root as τ , and τ{σ is the quotient tree obtained from τ by identifying σ with the root; this
quotient tree is better seen as a product of trees. One understands the splitting ∆τ of an
element τ P T in similar terms. See Section 9 for constructions of regularity structures
of this sort associated with singular stochastic PDEs. For such regularity structures, the
minimum regularity of the elements of T is given by the minimum regularity of the noises
in the equation. One can leave aside trees by the time we arrive at Section 9 and work in
the abstract setting of this section throughout.

A character g on the Hopf algebra T` is a linear map g : T` Ñ R, such that gp1`q “ 1 and
gpτ1τ2q “ gpτ1qgpτ2q, for any τ1, τ2 P T

`. The antipode S` of the Hopf algebra T` turns the set
of characters of the algebra T` into a group G` for the convolution law ˚ defined by

pg1 ˚ g2qτ :“ pg1 b g2q∆
`τ, τ P T`.

Think of the usual convolution product pf ˚ gqpxq “
ş

fpyqgpx´ yqdy, where one first splits x into
y and x ´ y, then apply f and g to each piece, before taking the product and summing over all
possible splittings. The convolution inverse of a character g of T` is g ˝ S`. One associates to a
character g of T` the map

pg :“ pIdb gq∆ : T Ñ T,

from T to itself. For g P G`, the map pg is denoted by Γg in Hairer’s work [44]; we prefer the
former Fourier-like notation, which is consistent with the fact that the ‘hat’ map defines a linear
representation of G` into LpT q. We have indeed

{g1 ˚ g2 “ pg1 ˝ pg2

for any g1, g2 P G
`, as a direct consequence of the comodule property (2.8). Also, for any τ P Tβ ,

´

pgpτq ´ τ
¯

P
à

β1ăβ

Tβ1 ,

as a consequence of the structural identity (2.12). Similarly, one defines the action of G` on T`

by
pg` :“ pIdb gq∆` : T` Ñ T`.

for g P G`.

2.3 Models and modelled distributions

The preceding section contains the algebraic backbone of regularity structures. Its analytic flesh
is introduced in this section on models and modelled distributions. This analytic setting depends
on which (system of) singular stochastic PDE(s) one studies. We will not use the same function
spaces to analyse a class of equations involving only the heat operator pBt ´∆xq and a system of
two equations involving pBt ´∆xq for one and an operator with a different scaling for the other,
like pBt ` p´∆xq

aq, or simply p´∆xq
a, with 0 ă a ‰ 1, for the other. We choose to concentrate

in the present work on parabolic equations involving the heat operator only. We will thus work
throughout with the parabolic space R ˆ Rd, with generic point x “ px0, x

1q “ pxiq
d
i“0, equipped

with the distance function
dpx, yq “ d

`

px0, x
1q, py0, y

1q
˘

“
a

|x0 ´ y0| ` |x
1 ´ y1|.
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The Hölder spaces introduced in the first paragraph of this section will play a prominent role. They
are used in the second paragraph to define models over a given regularity structure. Models give us
the reference functions/distributions pΠxτqp¨q and gyxpµq that we will use in our expansion devices
to describe potential solutions of given singular stochastic PDEs. Expansion devices associate
to each spacetime point a distribution meant to give the local description of a globally defined
distribution. There is however no reason that such a globally defined distribution exists if no
condition on its local ‘jets’ is imposed. The appropriate consistency condition is encoded in the
definition of a modelled distribution. Under this consistency condition, it is a fundamental fact that
all these local descriptions can be patched together to define a unique globally defined distribution
locally that is close to its local description, everywhere. This is what the reconstruction theorem
does for us. We end this section with a paragraph on the special properties of modelled distributions
representing functions.

§ Function spaces

Set
s :“ p2, 1, . . . , 1q P Nˆ Nd,

and define, for any multi-index n “ pn0, n1, . . . , ndq P Nˆ Nd, the scaled degree of n by
|n|s :“ 2n0 ` n1 ` ¨ ¨ ¨ ` nd.

We define a non-positive elliptic operator on Rˆ Rd

G :“ B2
x0
´∆2

x1

and denote by
Pt :“ etG

its heat semigroup, and by ptpx, yq its kernel with respect to Lebesgue measure. It is a symmetric
function of px, yq that satisfies the scaling property

ptpx, yq “ t´pd`2q{4p

ˆ

´

t´sj{4pxj ´ yjq
¯

0ďjďd

˙

for a Schwartz function p P SpRˆ Rdq. The estimate
ż

ˇ

ˇBnxptpx, yq
ˇ

ˇ dapx, yq dy À t
a´|n|s

4 , (2.16)

holds as a consquence for any multiindex n P N ˆ Nd and any positive exponent a. For a fixed
positive integer N P N, we define operators QpNqt and P

pNq
t setting

Q
pNq
t :“ p´tGqNetG , P

pNq
t :“

ż 8

t

QpNqs

ds

s
.

This implies that P pNqt “ pp´tGqetG , for a polynomial p of degree N , with constant coefficient 1.
One has in particular P p1qt “ Pt, and

P
pNq
t “

ż 1

t

QpNqs

ds

s
` P

pNq
1 . (2.17)

(Those who know a little about Littlewood-Paley decomposition will recognise in Q
pNq
t the coun-

terpart of the Littlewood-Paley projectors ∆i and in the integral with respect to the measure ds{s
the counterpart of the uniform measure on the integers; the integral operator associated with P pNq1

plays the role of ∆´1; this is an infinitely smoothing operator.)

Definition – Fix N ě 1 and pick a real number α ă 4N . We define the α-Hölder space CαpRˆRdq
as the set of distributions on Rˆ Rd with finite Cα-norm defined by

}Λ}Cα :“
›

›P
pNq
1 pΛq

›

›

L8pRˆRdq
` sup

0ătď1
t´

α
4

›

›Q
pNq
t pΛq

›

›

L8pRˆRdq
. (2.18)

The constraint on α comes from the fact that all polynomials of scaled degree no greater than
4N are in the kernel of the operator QpNqt . The above definition of the Hölder spaces depends on N ,
for the range of regularity exponents considered; write momentarily CαN pRˆ Rdq. We remark that
if α{4 ă N ă N 1 are given then on can prove that the N and N 1-dependent norms are equivalent
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on CαN pR ˆ Rdq – this is a classical fact, worked out e.g. in Appendix A of [3]. In the sequel,
the exponent N is fixed once and for all to a large enough value depending on the problem at
hand, so we do not record it in the notations for the Hölder spaces. More generally, one can define
Hölder spaces using other elliptic operators than G; the spaces will be identical and the different
norms equivalent. We will use this remark only in the proof of Proposition 11 on the classical
Schauder estimates. One can also show that for a positive non-integer regularity exponent a the
space CapR ˆ Rdq coincides with the usual space of a-Hölder functions, for the parabolic distance
d, with equivalent norms. See e.g. the proof of Proposition 2.5 in [3].

Note that, if α ă 0, then the equivalence
}Λ}Cα » sup

0ătď1
t´

α
4 }PtpΛq}L8pRˆRdq (2.19)

holds. The left hand side is bounded by the right one, because P p1q1 “ P1 and Q
p1q
t “ ϕptGqPt{2,

with a uniformly bounded operator ϕptGq. The other direction follows from identity (2.17) relating
the operators P and Qp1q.

§ Models

Recall from the introduction of Section 2 the intuitive motivation for introducing regularity
structures. Whereas the algebra involved in the use of local description devices is captured by the
notion of regularity structure, the actual family of functions and distributions involved in these
local descriptions is captured by the notion of model over a regularity structure.

Definition 1. A model over a regularity structure T is a pair pΠ, gq of maps
g : Rˆ Rd Ñ G`, Π : T Ñ S 1pRˆ Rdq

with the following properties.

‚ Set gyx :“ gy ˚ g´1
x , for each x, y P Rˆ Rd. For each exponent γ P R, one has

}g}γ :“ sup
τPB`,|τ |ăγ

sup
x,yPRˆRd

|gyxpτq|

dpy, xq|τ |
ă 8. (2.20)

‚ The map Π is linear. Set
Πg
x :“ pΠb g´1

x q∆

for each x P Rˆ Rd. For each exponent γ P R, one has

}Πg}γ :“ sup
σPB,|σ|ăγ

sup
xPRˆRd, 0ătď1

t´
|σ|
4

ˇ

ˇ

@

Πg
xσ, ptpx, ¨q

D
ˇ

ˇ ă 8. (2.21)

In the class of problems we consider, it is sufficient in each problem to fix γ P R to a large enough
value; we omit as a consequence this parameter from the notations, unless necessary. In Hairer’s
original work [44], the notations Πx and Γyx are used instead of Πg

x and xgyx, respectively. We
emphasize the dependence of Πx on g using our notation. We stress that Πτ is only an element
of S 1pR ˆ Rdq. Think of Π as an interpretation operator for the symbols τ , with τ encoding the
structure of the analytic object Πτ . One can think of Πg

xτ “ pΠb g´1
x q∆τ , as Πτ ‘fully recentered’

at x, to give it a concrete meaning. The splitting map ∆ identifies the different sets of internal
pieces of τ that can be ‘recentered’ to the point x by the action of the map g´1

x , with the full
recentering operation on Πτ being the result of all these recentering operations. Condition (2.21)
conveys the idea that Πg

xτ behaves at point x like an element of C|τ |pRˆRdq, as a result of this full
recentering operation. We will see in Section 9 concrete examples of recentering operations that
can be understood as replacing a function by its Taylor remainder of a certain degree.

Emphasize that g acts on T`, while Π acts on T , and note that g plays on T` the same role as
Π on T : For τ P T` and σ P T , one has

gyxpτq “
´

gyp¨q b g´1
x

¯

∆`τ, pΠg
xσqpyq “

´

Πp¨qpyq b g´1
x

¯

∆σ, (2.22)

in a distributional sense for the latter. Note also the fundamental relation
Πg
y “ Πg

x ˝ xgxy, (2.23)
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for all x, y P RˆRd; it comes directly from the comodule property (2.8). The following consequence
of the bound (2.21) will be useful in the next section.

Proposition 2. One has

sup
xPRˆRd, 0ătď1

t´
|τ|´|n|s

4

ˇ

ˇ

@

Πg
xτ, B

n
xptpx, ¨q

D
ˇ

ˇ ă 8,

for any model pΠ, gq on T , τ P B, and n P Nˆ Nd.

Proof – By the semigroup property,

B
n
xptpx, yq “

ż

B
n
xp t

2
px, zqp t

2
pz, yqdz.

We need to apply the distribution Πg
xτ to the kernel p t

2
pz, ¨q. Using relation (2.23) to write Πg

xτ in
terms of Πg

zτ , one has
ˇ

ˇ

@

Πg
xτ, p t

2
pz, ¨q

Dˇ

ˇ “

ˇ

ˇ

ˇ

ÿ

σďτ

gzxpτ{σq
@

Πg
zσ, p t

2
pz, ¨q

D

ˇ

ˇ

ˇ
À

ÿ

σďτ

dpz, xq|τ |´|σ| t
|σ|
4

from the bound (2.21) in the definition of a model. Using the bound (2.16) on the moments of the
heat kernel, we then have

ˇ

ˇ

ˇ

@

Πg
xτ, B

n
xptpx, ¨q

D

ˇ

ˇ

ˇ
À

ÿ

σďτ

t
|σ|
4

ż

ˇ

ˇB
n
xp t

2
px, zq

ˇ

ˇ dpz, xq|τ |´|σ|dz

À
ÿ

σďτ

t
|σ|
4 t

|τ|´|σ|´|n|s
4 À t

|τ|´|n|s
4 .

B

If ever all the Πτ happen to be a continuous function, then it follows from the bound on
@

Πg
xτ, ptpx, ¨q

D

, and the fact that ptpx, ¨q is converging to a Dirac mass at x, that the function Πg
xτ

satisfies pΠg
xτqpxq “ 0, for all τ P T such that |τ | ą 0. This will be the case of the smooth (possibly

renormalized) models from Section 6. We close this paragraph by defining a pseudo-distance on
the space of models over a given regularity structure setting for each γ P R

dγpM,M1q :“ sup
τPB`,|τ |ăγ
σPB,|σ|ăγ

sup
x,yPRˆRd

˜

ˇ

ˇgyxpτq ´ g1yxpτq
ˇ

ˇ

dpy, xq|τ |
` sup

0ătď1
t´

|σ|
4

ˇ

ˇ

ˇ

@

Πg
xσ ´ Π1

g1

x σ, ptpx, ¨q
D

ˇ

ˇ

ˇ

¸

.

(2.24)

§ Modelled distributions and their reconstruction

Think of a T -valued function f on Rˆ Rd as the data needed to associate with each spacetime
point x P R ˆ Rd the local description Πg

xfpxq of a possibly globally defined distribution close to
Πg
xfpxq near each x. There is no reason that such a globally defined object exists if one does not

impose relations between the different components of f . This is what the next definition does. For
γ P R, set

Tăγ :“
à

βăγ

Tβ , T`ăγ :“
à

αăγ

T`α .

Recall from (2.13) the meaning of the notation }h}α, for α P A and h P T .

Definition 3. Let g : R ˆ Rd Ñ G` satisfy (2.20). Fix a regularity exponent γ P R. One defines
the space DγpT, gq of distributions modelled on the regularity structure T , with transition g,
as the space of functions f : Rˆ Rd Ñ Tăγ such that

rsf rsDγ :“ max
βăγ

sup
xPRˆRd

›

›fpxq
›

›

β
ă 8,

}f}Dγ :“ max
βăγ

sup
x,yPRˆRd

›

›fpyq ´ xgyxfpxq
›

›

β

dpy, xqγ´β
ă 8.

Set |||f |||Dγ :“ rsf rsDγ ` }f}Dγ .

For a basis element σ P B Ă T , and an arbitrary element h in T , denote by hσ its component
on σ in the basis B. For a modelled distribution fp¨q “

ř

σPB fσp¨qσ in DγpT, gq, and σ0 P B, we
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have
`

fpyq ´ xgyxfpxq
˘

σ0
“ fσ0

pyq ´
ÿ

τěσ0

gyxpτ{σ0q fτ pxq

“ fσ0pyq ´ fσ0pxq ´
ÿ

τąσ0

gyxpτ{σ0q fτ pxq.
(2.25)

Note that we use xgyx to compare fpxq and fpyq in the definition of a modelled distribution while
we use xgxy to relate the interpretation operators Πg

y and Πg
x in (2.23).

Examples ‚ The archetype of a modelled distribution is given by the lift

fpxq :“
ÿ

|n|săγ

f pnqpxq

n!
Xn, (2.26)

in the polynomial regularity structure of a γ-Hölder real valued function f on Rˆ Rd with a positive
regularity exponent γ. The identities (2.25) become in that case the Taylor expansions

f pnqpyq ´ f pnqpxq ´
ÿ

|`|săγ´|n|s

1

`!
f pn``qpxqpy ´ xq` “ O

´

dpy, xqγ´|n|s
¯

(2.27)

satisfied by each f pnq. Note here that the classical and elementary fact that a family pfnqnPNˆNd , |n|s ă

γ of functions on R ˆ Rd is γ-Hölder for the parabolic metric iff the functions fn satisfy (2.27) with
fn in the role of f pnq. So the notion of modelled distribution with values in the polynomial regularity
structure captures exactly the classical notion of regularity.
‚ Given a basis element τ P B, set

hτ pxq :“
ÿ

σăτ

gxpτ{σqσ. (2.28)

It follows from identity (2.10) in the definition of a concrete regularity structure that hτ takes values
in Tă|τ |. It follows also from identity (2.14) giving ∆`

pτ{σq, that

ygyx
`

hτ pxq
˘

“
ÿ

ηďσăτ

gyxpσ{ηqgxpτ{σqη “
ÿ

ηăτ

´

gypτ{ηq ´ gyxpτ{ηq
¯

η

“ hτ pyq ´
ÿ

ηăτ

gyxpτ{ηqη.

The size estimate
ˇ

ˇgyxpτ{ηq
ˇ

ˇ À dpy, xq|τ |´|η| required from the g-component of a model, then shows
that hτ is a modelled distribution in D|τ |pTă|τ |, gq.

‚ If fp¨q “
ř

σPB fσp¨qσ, is an element of Dγ
pT, gq, then, for each τ P B, the T`-valued function

f{τp¨q :“
ÿ

σěτ

fσp¨qσ{τ.

is an element of Dγ´|τ |
pT`, gq.

The next statement says that the consistency condition encoded in the notion of modelled
distribution f ensures the existence of a globally defined object close to Πg

xfpxq near each x P RˆRd,
and gives condition for uniqueness. Recall A stands for the index set in the grading of T and set

β0 :“ minA.

Theorem 4. (Reconstruction theorem) Let T be a concrete regularity structure and M “ pΠ, gq
be a model over T . Fix a regularity exponent γ P Rzt0u. There exists a linear continuous operator

RM : DγpT, gq Ñ Cβ0^0pRˆ Rdq

satisfying the property
ˇ

ˇ

ˇ

@

RMf ´ Πg
xfpxq, ptpx, ¨q

D

ˇ

ˇ

ˇ
À }Πg}

›

›f
›

›

Dγ t
γ
4 , (2.29)

uniformly in f P DγpT, gq, x P Rˆ Rd and 0 ă t ď 1. Such an operator is unique if the exponent γ
is positive.

A distribution RMf satisfying identity (2.29) is called a reconstruction of the modelled dis-
tribution f . When γ “ 0, the existence of a reconstruction is not ensured by (2.29) in general.
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See Example 5.5 in [18]. We will see as a particular case of Corollary 6 that the lift (2.26) of a
γ-Hölder function f in the polynomial regularity structure has indeed f as a reconstruction.

Notice from the definition of Πg
x that the constraint

ˇ

ˇ

@

Πg
xτ, ptpx, ¨q

D
ˇ

ˇ À t|τ |{4, that needs to be
satisfied by a model, is equivalent to the estimate

ˇ

ˇ

ˇ

@

Πτ ´ Πg
xh

τ
pxq, ptpx, ¨q

D

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

@

Πτ ´
ÿ

σăτ

gxpτ{σqΠ
g
xσ, ptpx, ¨q

D

ˇ

ˇ

ˇ
À t|τ |{4, (2.30)

says that Πτ is a/the reconstruction of the modelled distribution hτ from (2.28), depending on
whether |τ | ď 0 or |τ | ą 0. Since, for |τ | ă 0, the difference p˚q of two reconstructions of hτ satisfy

ˇ

ˇxp˚q, ptpx, ¨qy
ˇ

ˇ À t|τ |{4

for all x P RˆRd, this difference is a C|τ |pRˆRdq distribution from identity (2.19). So the estimate
(2.30) shows in particular that we could require from scratch that the Π map of a model of T
takes values in Cβ0^0pRˆRdq rather than D1pRˆRdq. The case |τ | “ 0 does not cause any problem
as we assume that the only element of T of null homogeneity is 1.

We will only work with DγpT, gq-spaces with positive regularity exponents γ in our study of
singular stochastic PDEs. We only give a proof of the reconstruction theorem in that setting,
following Otto & Weber’s nice approach [61]. See Friz and Hairer’s lecture notes [33] for another
treatment along these lines. See Hairer’s original work [44] or the references given in Appendix D
for a proof of Theorem 4 when γ ď 0.

Proof – Existence – We construct explicitly a reconstruction operator. Note first that since
´

Πg
yfpyq ´ Πg

xfpxq
¯

p¨q “

´

Πg
y

`

fpyq ´ygyxfpxq
˘

¯

p¨q

“
ÿ

τPB

`

fpyq ´ygyxfpxq
˘

τ

`

Πg
yτ

˘

p¨q

one has
ˇ

ˇ

@

Πg
yfpyq ´ Πg

xfpxq, ptpy, ¨q
D
ˇ

ˇ À
ÿ

τPB,|τ |ăγ

dpy, xqγ´|τ |t
|τ|
4 ,

from the bounds on models and modelled distributions. For 0 ă s ď t ď 1 and x P Rˆ Rd, set

Itspxq :“

ż

pt´spx, yq
@

Πg
yfpyq, pspy, ¨q

D

dy.

We will obtain the distribution RMf from Its under the form limtÓ0 limsÓ0 Its, with the limits taken
in that order, with s sent to 0 first, and then t send to 0. First, from the bounds on modelled
distributions, we have

Ittpxq “
@

Πg
xfpxq, ptpx, ¨q

D

and
ˇ

ˇIttpxq
ˇ

ˇ ď
ÿ

τPB
|fτ pxq|

ˇ

ˇ

@

Πg
xτ, ptpx, ¨q

D
ˇ

ˇ À t
β0
4 ,

and moreover, for 0 ă s1 ă s ă t ď 1, we have from the semigroup property of the kernel p the
x-uniform estimate

ˇ

ˇIts1pxq ´ Itspxq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ż

pt´spx, zqps´s1pz, yq
@

Πg
yfpyq ´ Πg

zfpzq, ps1py, ¨q
D

dzdy

ˇ

ˇ

ˇ

ˇ

ď
ÿ

τPB,|τ |ăγ

ż

pt´spx, zqps´s1pz, yq dpy, zq
γ´|τ |

ps1q
|τ|
4 dzdy

À
ÿ

τPB,|τ |ăγ

ps´ s1q
γ´|τ|

4 ps1q
|τ|
4 .

For s1 P rs{2, sq, this implies
ˇ

ˇIts1pxq ´ Itspxq
ˇ

ˇ À s
γ
4 . (2.31)

For s1 P p0, s{2q, by taking n P N such that s1 P
“

s{2n`1, s{2n
˘

, we have

ˇ

ˇIts1pxq ´ Itspxq
ˇ

ˇ ď

n´1
ÿ

m“0

ˇ

ˇIts{2mpxq ´ Its{2m`1pxq
ˇ

ˇ`
ˇ

ˇIts{2npxq ´ Its1pxq
ˇ

ˇ

À

n´1
ÿ

m“0

ps{2mq
γ
4 ` ps{2nq

γ
4 À s

γ
4 .
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Thus the bound (2.31) holds uniformly over 0 ă s1 ă s. Hence the (locally in t) uniform limit
It0pxq :“ lim

sÑ0
Itspxq

exists, since γ is positive. As the identity Pt1 I
t
0 “ It`t

1

0 follows from the semigroup property, we see
that tIt0u0ătď1 is bounded in the space Cβ0pRˆRdq. (Note that all of the above estimates on Its holds
over 0 ă s ď t ď 2, since the bounds on Πg

xτ can be extended to 0 ă t ď 2 by a similar argument to
Proposition 2.) Hence tIt0u0ătď1 has a subsequence tItn0 u converging in Cβ0´εpRˆRdq as tn goes to 0,
for any ε ą 0. Denote its limit by RMf . Since

@

RMf , ptpx, ¨q
D

“ lim
tnÑ0

@

Itn0 , ptpx, ¨q
D

“ lim
tnÑ0

It`tn0 pxq “ It0pxq,

we have actually RMf P Cβ0pR ˆ Rdq from the x-uniform bound |It0pxq| À tβ0{4. Letting s “ t and
sending s1 to 0 in (2.31), we can check that RMf satisfies the bound (2.29).
Uniqueness – To prove uniqueness of the reconstruction operator on Dγ

pT, gq when the regularity
exponent γ is positive, we start from the identity

ˇ

ˇ

@

RMf ´ pRM
q
1f , ptpx, ¨q

Dˇ

ˇ À tγ{4,

satisfied uniformly in x P R ˆ Rd by any other reconstruction operator pRM
q
1. As for any Schwartz

function ϕ P SpRˆ Rdq the convolutions
ş

ϕpxqptpx, zqdx, converge to ϕ in the smooth topology, one
has from the symmetry of the kernels pt and the fact that γ is positive

@

RMf ´
`

RM
˘1
f , ϕ

D

“ lim
tÑ0

ż

A

RMf ´ pRM
q
1f , ptpx, ¨q

E

ϕpxqdx “ lim
tÑ0

O
`

tγ{4
˘

“ 0.

B

One can use Proposition 2 to improve estimate (2.29) under the form
ˇ

ˇ

ˇ

@

RMf ´ Πg
xfpxq, B

n
xptpx, ¨q

D

ˇ

ˇ

ˇ
À t

γ´|n|s
4 , (2.32)

uniformly in x P Rˆ Rd, for each n P NˆNd. It is important that the reconstruction operator RM

is a local operator. The following fact implies that
@

RMf , ϕ
D

depends only on the restriction of f
to the support of ϕ. This fact is used to define the reconstructions of modelled distributions which
are given in p0, tq ˆ Rd with t P p0,8s, not in Rˆ Rd. SeeTheorem 20 and Section 4.3.

Corollary 5. Pick γ positive. If f P DγpT, gq is null on an open set U Ă Rˆ Rd, then RMf “ 0
on U .

Proof – Since f and Πg
xfpxq are null on U , it follows from estimate (2.29) that

|
@

RMf , ptpx, ¨q
D

| À tγ{4,

for all x P U . For a smooth function ϕ with compact support in U , one can use the uniform convergence
of

ş

ϕpxqptpx, zqdx to ϕ as t ą 0 goes to 0, to get
@

RMf , ϕ
D

“ lim
tÑ0

ż

ϕpxq
@

RMf , ptpx, ¨q
D

dx “ 0.

B

The following fact is an immediate consequence of uniqueness in the reconstruction theorem; it
is used in Section 4 and implies in particular that the the lift (2.26) of a γ-Hölder function f in
the polynomial regularity structure has indeed f as a reconstruction.

Corollary 6. Pick γ positive and f P DγpT, gq. If the model pΠ, gq takes values in the space of
smooth functions on R ˆ Rd, then the mapping x ÞÑ

`

Πg
xfpxq

˘

pxq is itself a continuous function
and

`

RMf
˘

pxq “
´

Πg
xfpxq

¯

pxq. (2.33)

Remark – One may wonder for which class of T -valued functions the reconstruction theorem holds.
Caravenna and Zambotti proved in [18] that a slightly modified notion of modelled distribution is
actually necessary and sufficient for that. So the notion of modelled distribution captures (almost)
exactly the notion of ‘jet’ of a distribution.
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§ Function-like comodules

Throughout we will work with regularity structures satisfying the following assumption saying
that T and T` contain the polynomial regularity structure.

Assumption (A1) – The concrete regularity structure
`

pT`,∆`q, pT,∆q
˘

contains the polynomial
regularity structure in the following sense.

paq One has B`α “
 

Xn
` ; |n|s “ α

(

, for a symbol X` P T` and any integer α P N, and

∆`Xn
` “

ÿ

`ďn

ˆ

n

`

˙

X`
` bX

n´`
` .

pbq One has Bα “
 

Xn ; |n|s “ α
(

, for a symbol X P T and any integer α P N, and

∆Xn “
ÿ

`ďn

ˆ

n

`

˙

X` bXn´`
` .

The notation Xn
` allows to distinguish the elements in B` and B. Set

B`X :“
 

Xn
` ; n P Nˆ Nd

(

, BX :“
 

Xn ; n P Nˆ Nd
(

,

and write
1` “ X0

`, 1 “ X0.

Note the use of X` in the formula for ∆Xn. The space
T`X :“ spanpB`Xq

with ∆` is isomorphic to a polynomial regularity structure, while the space
TX :“ spanpBXq

with ∆ is a right comodule over T`X . These polynomials are the only elements of T or T` with
integer homogeneities. One defines a canonical model over the polynomial regularity structure

TX :“
`

pT`X ,∆
`q, pTX ,∆q

˘

setting for all x, y P Rˆ Rd

pΠXnqpyq :“ yn, gxpX
n
`q :“ xn.

We see that gyxpX
n
`q “ py ´ xq

n and pΠg
xX

nqpyq “ py ´ xqn, so pΠ, gq is indeed a model over TX .

Assumption (A2) – Under Assumption (A1), we only consider models pΠ, gq whose restriction to
TX is the canonical model.

We only work from now on with regularity structures satisfying assumptions (A1) and (A2).
It is useful, to deal with sub-regularity structures of a given regularity structure, to introduce the
following notion. A linear subspace V of T is called a subcomodule if, defining Vα :“ V X Tα, the
pair

`

pT`,∆`q, pV,∆q
˘

is a regularity structure, that is if ∆V Ă V b T`. A subcomodule V is
said to be function-like, if V satisfies assumptions (A1) and (A2) and if Vβ “ 0 whenever β ă 0.
Given a subcomodule V , set

α0pV q :“ min
!

α P A ; Vα ‰ 0, α R N
)

.

Corollary 7. Let V be a function-like comodule. For a positive regularity exponent γ ě α0pV q

and f P DγpV, gq, one has RMf P Cα0pV qpRˆ Rdq and for all x P Rˆ Rd
`

RMf
˘

pxq “ f1pxq.

Proof – We write in the proof aą0 to denote an element of the form ab, with a positive constant b
whose value is irrelevant and may change from place to place.
The uniqueness part of the proof of the reconstruction theorem, Theorem 4, makes it clear that the
reconstruction RMf of f P Dγ

pT, gq, with γ ą 0, is characterized by the estimate
ˇ

ˇ

ˇ

@

RMf ´ Πg
xfpxq, ptpx, ¨q

D

ˇ

ˇ

ˇ
À tγ

1

,
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whatever positive exponent γ1 appears in the upper bound. Set f :“ f ´ f11. It is elementary to see
that f1 is a usual α0pV q-Hölder function, from the fact that f P Dγ

pV, gq. Since
Πg
x

`

fpxq
˘

p¨q ´ f1p¨q “ f1pxq ´ f1p¨q ` Πg
x

`

fpxq
˘

p¨q,

the result follows from the fact that one has
ˇ

ˇ

@

f1pxq ´ f1p¨q, ptpx, ¨q
Dˇ

ˇ À

ż

dpx, yqą0
|ptpx, yq|dy À tą0,

from (2.16), and
ˇ

ˇ

@

Πg
x

`

fpxq
˘

p¨q, ptpx, ¨q
Dˇ

ˇ À tą0,

from the bound of a model and the fact that f takes values in
À

βěα0pV q^1 Vβ . B

2.4 Products and derivatives

Other regularity structures than the polynomial regularity structure can be used to ‘model’
functions. In good cases, they come equipped with a bilinear operation that plays the role plaid
by multiplication in the usual setting, and allows to define the image of a modelled distribution by
a nonlinear map. This is what this section is about.

Let V,W be subcomodules of T and set
Vα :“ V X Tα, Wα :“W X Tα.

Definition – A product on V ˆ W is a continuous bilinear map ‹ : V ˆ W Ñ T , such that
Vα ‹Wβ Ă Tα`β, for all α, β P A. The product is said to be regular if

∆pτ ‹ σq “ p∆τqp∆σq

for all τ P V and σ P W . In the right hand side, the product pV b T`q ˆ pW b T`q Ñ T b T` is
canonically defined from ‹ and the product of T` setting pτ b µqpσ b νq “ pτ ‹ σq b pµνq.

The regularity structures used in the study of singular PDEs have elements that are decorated
rooted trees. The product is given as a tree product in that setting, and such a product is regular
in the above sense. You will find the details in Section 9. A regular product ‹ satisfies

pgpτ ‹ σq “ pgpτq ‹ pgpσq, (2.34)
for any character g on T`. For regularity structures containing the polynomial regularity structure,
one asks the following consistency assumption.

Assumption (A3) – Under Assumption (A1), the product between TX and T is always defined
and satisfies

1 ‹ τ “ τ ‹ 1 “ τ, for all τ P T, Xk ‹X` “ Xk``, for all k, ` P Nˆ Nd.

Assumptions (A1), (A2), and (A3) are jointly called assumption (A). The proof of the next
statement is elementary and left to the reader. See the proof of Theorem 4.6 in [44] if needed. For
α ď 0 ă γ, denote by Dγ

α the space of modelled distributions of the form

f “
ÿ

αď|τ |ăγ

fττ

and write
Qăγ : T Ñ Tăγ

for the canonical projection.

Proposition 8. Let ‹ : V ˆW Ñ T be a regular product. Given f1 P Dγ1
α1
pV, gq and f2 P Dγ2

α2
pW, gq,

set γ “ pγ1 ` α2q ^ pγ2 ` α1q. Then one has
Qăγpf1 ‹ f2q P D

γ
α1`α2

pT, gq.

The mapping pf1,f2q ÞÑ Qăγpf1 ‹ f2q is continuous.

Let V be a function-like comodule of T equipped with an associative product
‹ : V ˆ V Ñ V.
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Then ‹ is naturally extended to the multilinear map from V n to V , for any n ě 1. For any
f P DγpV, gq with γ ą 0 and a smooth function F : R Ñ R, we define

F ‹pfq :“ Qăγ

˜

8
ÿ

n“0

F pnqpf1q

n!
f
‹n

¸

, f :“ f ´ f11.

The sum contains only finitely many terms since the sector V is function-like, so f P Dγ
α1
pV, gq for

an α1 ą 0 and f‹n P Dγ
nα1
pV, gq, so Qăγ

`

f
‹n˘

“ 0, for nα1 ě γ. The proof of the next proposition
is elementary and left to the reader; see Theorem 4.15 in [44] for a proof.

Proposition 9. Pick a positive regularity exponent γ. For any f P DγpV, gq and a smooth function
F , one has F ‹pfq P DγpV, gq. Moreover, the mapping f ÞÑ F ‹pfq is locally Lipschitz continuous.

Definition – A derivative is a continuous linear map D : T Ñ T , such that DTα Ă Tα´1 for all
α P A, and

∆pDτq “ pD b Idq∆τ
for any τ P T – by an abuse of notation, we mean Tα´1 “ t0u if α´ 1 R A.

The assumption on D implies
pgpDτq “ Dpgpτq

for any character g on T`. From this property, it is straightforward to show the following statement.

Proposition 10. The mapping DγpT, gq Q f ÞÑ Df P Dγ´1pT, gq is continuous. Moreover, if
Π ˝D “ D ˝ Π, holds for a first order differential operator D then

RM
pDfq “ D

´

RMf
¯

for any f P DγpT, gq with γ ą 1.

3 – Regularity structures built from integration operators

The regularity structures used for the study of singular stochastic PDEs have a particular
structure that comes from the fixed point formulation of the (system of) PDE(s) under study. We
concentrate here on the case where only one second order differential operator is involved, typically
Bt ´∆x. (See Section 9 and Appendix D for comments on the general case.) We work then with
regularity structures equipped with an operator that plays the role of the convolution operator
pBt ´∆xq

´1, involved in the fixed point formulation of the equation under study. This operator is
called an abstract integration map; it is introduced in Section 3.2. One can associate to any given
model pΠ, gq on T a notion of admissible Π-maps; this is done in Section 3.3. They essentially
intertwin the abstract integration map with the convolution operator pBt ´∆xq

´1. They are used
in Section 3.4 to lift the latter into a map sending continuously DγpT, gq into Dγ`2pT, gq, for any
positive non-integer γ, which the abstract integration map fails to do. Section 3.5 is dedicated to
constructing admissible models. We set the scene in Section 3.1.

We will restrict our study to regularity structures for which the minimum homogeneity of its
elements satisfies

β0 “ minA ą ´2. (3.1)
This condition ensures that elements of the form Ipτq that appear in the expansion of solutions
to the regularity structure lift of the considered class of singular stochastic PDE are of positive
homogeneity. (So if I were increasing the homogeneity of all symbols by a we would require
β0 ą ´a.) While the generalized (KPZ) equation satisfies for instance this assumption, not all
singular stochastic PDEs satisfy it. This is for instance the case of the Φ4

2,Φ
4
3 or sine-Gordon

equations. This kind of equations can nonetheless by studied within the setting of regularity
structures by writing their solutions as the sum of an explicit functional of the noise and a remainder
term that solves an equation that can be formulated in a regularity structure satisfying condition
(3.1) – the so-called da Prato-Debussch trick, after similar operation was used in their work [25].
We consider as an example the case of the Φ4

3 equation
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pBt ´∆xqu “ ´u
3 ` ζ,

set on the 3-dimensional torus, with ζ a spacetime white noise of Hölder regularity p´5{2q´. We
decompose a priori the solution u into u “ X ` v, where

pBt ´∆xqX “ ζ,

pBt ´∆xqv “ ´v
3 ´ 3v2X ´ 3vX2 ´X3.

The polynomial functions pXnq1ďnď3 can directly be defined as elements of Cp´n{2q´ by probabilis-
tic means. The above equation for v can then be formulated in a regularity structure with three
noise symbols for X,X2 and X3, in which β0 “ p´3{2q´ ą ´2. The interested reader will find
more details on this matter for a general class of singular stochastic PDEs in Section 5 of Bruned,
Chandra, Chevyrev and Hairer’s work [13].

3.1 Operators on Rˆ Rd

We will be interested in (systems of) singular stochastic PDEs that involve possibly two types
of differential operators. The derivatives Bi in the directions of the canonical basis of Rˆ Rd, and
the second order differential operators

L :“ Bx0
´∆x1 ` 1

Denote by L´1 the resolution operator associating to a Schwartz function v P SpRˆRdq the solution
u P SpRˆ Rdq to the equation

Lu “ v.

The strictly positiveness of ´∆`1 ensures uniqueness of a solution u P SpRˆRdq to the preceding
equation. (This is the reason why we work with L rather than the heat operator.) The operator
L´1 can be represented using a variant of the elliptic operators G introduced in Section 2.3. Indeed,
we have

`

Bx0
´∆x1 ` 1

˘´1
“ ´

`

Bx0
`∆x1 ´ 1

˘ `

´ B2
x0
` p∆x1 ´ 1q2

˘´1

“ ´

ż 8

0

pBx0 `∆x1 ´ 1q erpB
2
x0
´p∆x1´1q2qdr.

Write
L´1 “ ´

ż 8

0

pBx0
`∆x1 ´ 1q erpB

2
x0
´p∆x1´1q2q dr “:

ż 8

0

Kr dr.

We thus use the inhomogeneous operator
rG :“ B2

x0
´ p∆x1 ´ 1q2

instead of the operator G considered in Section 2.3. One has rG “ G ` 2∆x1 ´ 1, so the smooth
kernel of er rG is up to the multiplicative constant e´r the space convolution of the kernel pr of erG
with the classical heat kernel at time 2r. It follows from this fact that Proposition 2 holds for the
kernel of er rG . Hence the kernel qrpx, yq of the operator Kr satisfies the x-uniform bounds

ˇ

ˇ

@

Πg
xτ, B

n
xqrpx, ¨q

D
ˇ

ˇ À r
|τ|´|n|s´2

4 (3.2)

for any τ P B, r P p0, 1s, and n P N ˆ Nd, with the exponent |n|s ` 2 coming from the derivative
operators Bnx and pBx0 ` ∆x1 ´ 1q applied to er

rG . It is convenient, for technical purposes, to
decompose L´1 under the form

L´1 “ K`K1,

with
K :“

ż 1

0

Kr dr ´ pe´ 1qK1, K1 :“

ż 8

1

Kr dr ` pe´ 1qK1.
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It is elementary to see that the operators K1 maps CγpRˆ Rdq into C8pRˆ Rdq, for any regularity
exponent γ P R. We concentrate on the operator K in the remainder of this section. Denote by

Kpx, yq :“

ż 1

0

qrpx, yq dr ´ pe´ 1qq1px, yq (3.3)

its kernel. Since K1 is a smoothing operator, the second term in the definition of the kernel K
does not matter in the arguments of this section. The compensation of K ensures that

ż

RˆRd
Kpx, yqdy “ 0,

ż

RˆRd
yiKpx, yqdy “ 0, p|ei|s “ 1q, (3.4)

which follows from
ş

RˆRd qrpx, yqdy “ e´r. These identities are not used in this section, but they
are important in Section 7; see Assumption (E).

Proposition 11. (Schauder estimates for L´1) The operators L´1 and K are continuous operators
from CγpRˆ Rdq into Cγ`2pRˆ Rdq, for all non-integer regularity exponents γ P R.

Proof – It is sufficient to show the estimate for rK “
ş1

0
Kr dr. Note that Kt “ ´e

t rGpBx0
`

∆x1 ´ 1q, as rG and pBx0
`∆x1 ´ 1q commute. We use the freedom on the choice of the elliptic

operator used to define the Hölder spaces, while giving equivalent norms, to work with the
norm associated with the operator rG rather than the operator G. We emphasize that fact by
writing rQpNqs the operators built from rG in the same way as QpNqs is built from G. Given a
distribution Λ P CγpRˆ Rdq, with γ P R non-integer, we read on the identity

rQpNqs

`

rKpΛq
˘

“

ż 1

0

rQpNqs

`

KrpΛq
˘

dr “ ´

ż 1

0

´ s

s` r

¯N
rQpNqs`r

´

pBx0 `∆x1 ´ 1qΛ
¯

dr,

the estimate
›

›

›
QpNqs

`

rKpΛq
˘

›

›

›

8
À s

γ´2
4 `1 `OpsN q.

The result follows for all γ ` 2 ă 4N . The equivalence of the different Hölder norms corre-
sponding to different choices of N gives the conclusion. B

(We refer the reader to the second edition of Friz & Hairer’s lecture notes [33] for a particularly
nice proof of the classical Schauder estimates using different tools.) For a regularity structure T
for which β0 “ minA ą ´2, and a model pΠ, gq on it, Schauder estimates imply in particular that
all the distributions KpΠτqp¨q, hence all the distributions KpΠg

xτq, are actually defined pointwise,
for any x P R ˆ Rd, making sense of KpΠg

xτqpxq, or even BnKpΠg
xτqpxq, for |n|s ă β0 ` 2. The

following lemma allows to take profit from the fact that Πg
xτ behaves near x “as” an element of

C|τ |pRˆ Rdq, to give meaning to BnKpΠg
xτqpxq, for all multiindices n such that |n|s ă |τ | ` 2.

Lemma 12. Assume β0 ą ´2. Given τ P B and n P Nˆ Nd, the integral
`

BnKpΠg
xτq

˘

pxq :“
@

Πg
xτ, B

n
xKpx, ¨q

D

:“

ż 1

0

@

Πg
xτ, B

n
xqrpx, ¨q

D

dr ´ pe´ 1q
@

Πg
xτ, B

n
xq1px, ¨q

D

(3.5)

converges for all x P Rˆ Rd, provided |n|s ă |τ | ` 2.

Proof – It follows from (3.2) that the first term of the right hand side of (3.5) is integrable over
t P p0, 1q if

|τ | ´ |n|s ą ´2.

B

The RˆRd-indexed distributions RMf´Πg
xfpxq satisfy a similar bound to (3.2) for any modelled

distribution f P DγpT, gq. We can then define properly BnK
`

RMf´Πg
xfpxq

˘

pxq, for all multiindices
n such that |n|s ă γ ` 2, as in the preceding lemma.

3.2 Regularity structures with abstract integration operators

Recall assumption (A) essentially says that we consider regularity structures containing the
canonical polynomial structure and models that behave naturally on the latter. The regularity
structures that are used for the study of singular stochastic PDEs have a special structure that is
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described in details in Section 9. Presently, we only need to know that they satisfy in addition to
assumption (A) the following set of assumptions. Recall we denote by te0, e1, . . . , edu the canonical
basis of Nˆ Nd.

Assumption (B1) – (a) The basis B` of T` is a commutative monoid with unit 1`, freely
generated by the symbols

tXei
` u0ďiďd Y

 

I`n τ
(

τPB, nPNˆNd, |τ |`2´|n|są0
,

Each element has homogeneity
ˇ

ˇXei
`

ˇ

ˇ :“ si,
ˇ

ˇI`n τ
ˇ

ˇ :“ |τ | ` 2´ |n|s.

The operators ∆ and ∆` are related by the intertwining relations

∆`pI`n τq “ pI`n b Idq∆τ `
ÿ

`PNˆNd, |`|să|τ |`2´|n|s

X`
`

`!
b I`n``τ, (3.6)

for any τ P B.

(b) For n P te1, . . . , edu, there are operators In : T Ñ T , with
ˇ

ˇInτ
ˇ

ˇ :“ |τ | ` 1, τ P B.
One has for any τ P B

∆pInτq “ pIn b Idq∆τ `
ÿ

`PNˆNd, |`|să|τ |`2´|n|s

X`

`!
b I`n``τ. (3.7)

Recall from the definition of a model the meaning of the splitting maps ∆ and ∆` as backbone of
‘recentering’ operations. Assumption (B1) identifies in T a subset of elements built from operators
In. Identity (3.7) specifies the action of the recentering operations on these elements: Up to a
Taylor-type term, the recentered version of Inτ is obtained by applying In to the recentered version
of τ . A similar remark holds for T`, with the difference that T` is entirely constructed from the
I`n operators and the polynomials, and has no other elements. Note that identity (3.7) identifies
I`n``τ as `!pInτ{X`q. We let the readers check that identity (3.6) ensures the comodule property

p∆b Idq∆pInτq “ pIdb∆`q∆pInτq
on elements of T of the form Inτ . The operator In is an abstract version of the convolution
operator BnK. The restriction |n|s ď 1 on n means that we only consider K or BiK; this is
sufficient for the study of all (systems of) singular stochastic PDEs whose solutions are functions
involving second order differential operators satisfying the above classical Schauder estimate.

Recall we denote by M` the multiplication operator in the algebra T` and recall from Appendix
B the defining property (B.1) of the antipode S` on T`. As an example of computation using
identity (3.6) we check that the antipode S` on T` satisfies the inductive relation

S`
`

I`τ
˘

“ ´
ÿ

`PNˆNd

p´Xq`

`!
M`

`

I`k`` b S`
˘

∆τ. (3.8)

Together with the relation S`pX`q “ ´X`, such a formula defines indeed a unique algebra
morphism. Since it is clear the M`

`

Idb S`
˘

∆`Xk
` “ 0 for all k P Nˆ Nd, it suffices to see that

M`

`

Idb S`
˘

∆`
`

I`k τ
˘

“ 0

for all k P Nˆ Nd and τ P T . This relation follows from (3.8) and (3.6) writing

M`

`

Idb S`
˘

∆`
`

I`k τ
˘

“M`

`

I`k b S`
˘

∆τ `
ÿ

`PNˆNd

X`

`!
S`

`

I`k``τ
˘

“

!

M`

`

I`k b S`
˘

´
ÿ

`,jPNˆNd

X`

`!

p´Xqj

j!
M`

`

I`k```j b S`
˘

)

∆τ
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“

!

M`

`

I`k b S`
˘

´
ÿ

nPNˆNd

pX ´Xqn

n!
M`

`

I`k`n b S`
˘

)

∆τ

“ 0.

Write
I :“ I0,

and remark that the image by the operator I of a modelled distribution is not a modelled dis-
tribution. The next two sections are dedicated to constructing a model-dependent map KM that
maps continuously all DγpT, gq into Dγ`2pT, gq when γ is a positive non-integer real number – the
analogue of part of Schauder estimates, and is intertwined to the convolution operator K

K ˝ RM
“ RM

˝KM

via the reconstruction operator RM associated with M. We say that KM is a lift of K. The
construction of this operator requires the introduction of the notion of admissible model.

3.3 Admissible models

In this section we consider only the operator I “ I0 : T Ñ T . The following notion plays a
key role in the proof of the existence of a lift of the convolution operator K. Recall that Kpζq is
well-defined pointwise for any distribution ζ P CβpRˆ Rdq with β ą ´2, by Lemma 12.

Definition – Assume β0 ą ´2. A Π-map on T is said to be K-admissible if it satisfies
ΠpIτq “ KpΠτq, (3.9)

and
ΠpXn ‹ τqpxq “ xnpΠτqpxq, (3.10)

for any τ P B and n P N ˆ Nd. A model pΠ, gq on T is said to be K-admissible if its Π-map is
K-admissible.

The notion of admissible Π-map gives flesh to the idea that the operator I is the regularity
structure counterpart of the convolution operator K. The importance of the notion of K-admissible
model comes from Theorem 17 in the next section. It shows that when working with K-admissible
models M, one can upgrade the intertwining relation (3.9) into an intertwining relation between K

and an operator KM on modelled distributions, via the reconstruction map RM associated with M.
While for a general model as in Definition 1 defining a g-map satisfying the constraint (2.20) is

decorrelated from the task of defining a Π-map satisfying the constraint (2.21) it will turn out that
imposing the intertwining relation (3.9) on Π will constrain strongly g. Unlike general models,
admissible models on a regularity structure satisfying assumptions (A-B1) will turn out to be
partly defined by their Π map; this will be proved in Proposition 15. The g-map of an admissible
model on a regularity structure satisfying further a mild assumption (B2) will turn out to be
entirely defined by its Π map.

We worked so far with models that are not constrained by anything else than their defining
properties (2.20) and (2.21) and it is not clear that one can further impose additional conditions
like (3.9). We will construct in Section 3.5 a whole class of admissible models with values in the
set of smooth functions. This is all we need for the study of singular stochastic PDEs, as the
nonsmooth admissible models involved in this setting are limits of smooth admissible models, and
limits of admissible models are admissible. As for now, we keep going and see what can be done
with admissible models.

Recall from Lemma 12 the definition of BnKpΠg
xσqpxq, for any x P Rˆ Rd and n P Nˆ Nd such

that |n|s ă |σ| ` 2, and define the model-dependent polynomial-valued function on T

JMpxqτ :“
ÿ

|n|să|τ |`2

Xn

n!
BnKpΠg

xτqpxq P TX ,

for any τ P B and x P Rˆ Rd.
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Proposition 13. For a K-admissible model M on T one has, for any x P Rˆ Rd, τ P T ,
Πg
x

`

Iτ ` JMpxqτ
˘

“ KpΠg
xτq

Proof – Using identity (3.7) and the admissibility of the model, one has indeed

Πg
xpIτq “

`

Πb g´1
x

˘

p∆Iτq “
ÿ

σďτ

`

Πb g´1
x

˘

pIσ b τ{σq `
ÿ

|`|să|τ |`2

p¨q
`

`!
g´1
x pI`` τq

“: KpΠσqg´1
x pτ{σq ` Pxpτ, ¨q “ K

`

Πg
xτ

˘

` Pxpτ, ¨q,

so Πg
xpIτq and K

`

Πg
xτ

˘

differ by a polynomial Pxpτ, ¨q of degree at most |τ | ` 2. We identify this
polynomial with ´JM

pxqτ noting that Πg
xpIτq has null derivatives at x up to the order r|τ |`2s, from

condition (2.21). B

Corollary 14. For a K-admissible model M on T one has, for any x, y P Rˆ Rd,
xgyx

`

I ` JMpxq
˘

“
`

I ` JMpyq
˘

xgyx. (3.11)

Proof – Given τ P T and x, y P RˆRd, one has both
`

ygyx
`

I`JM
pxq

˘

´
`

I`JM
pyq

˘

ygyx
˘

τ P TX , and

Πg
y

´

ygyx
`

I ` JM
pxq

˘

τ ´
`

I ` JM
pyq

˘

ygyxτ
¯

“ Πg
x

``

Iτ ` JM
pxqτ

˘

´ Πg
y

``

I ` JM
pyq

˘

ygyxτ
˘

“ K
`

Πg
xτ

˘

´K
`

Πg
yygyxτ

˘

“ 0,

from Proposition 13. This implies that
ygyx

`

I ` JM
pxq

˘

´
`

I ` JM
pyq

˘

ygyx “ 0.

B

Proposition 15. Let T be a regularity structure satisfying assumption (A) and assumption (B1).
The g-map of a K-admissible model pΠ, gq on T satisfies

gxpI`0 τq “ KpΠτqpxq,

for any τ P B and all x P Rˆ Rd.

Proof – We show that there is at most one choice of gpI`k τq such that pΠ, gq is an admissible model.
Applying Πb g´1

x to the identity (3.7) with n “ 0, one gets from the K-admissibility of Π

Πg
xpIτq “ K

`

Πg
xτq `

ÿ

|`|să|τ |`2

p¨q
`

`!
g´1
x pI`` τq

“ K
`

Πg
xτq `

ÿ

|`|să|τ |`2

p¨ ´ xq`

`!
fxpI`` τq,

(3.12)

where f and g are related by the formulas

fxpI`` τq :“
ÿ

|m|să|τ |`2´|`|s

xm

m!
g´1
x pI```mτq, g´1

x pI`n τq “
ÿ

|m|să|τ |`2´|n|s

p´xqm

m!
fxpI`n`mτq.

As in the proof of Proposition 13, since the derivatives of Πg
xpIτq up to order |τ | ` 2 vanish at x, we

have
fxpI`n τq “ ´BnKpΠg

xτqpxq,

hence

g´1
x pI`n τq “ ´

ÿ

|m|să|τ |`2´|n|s

p´xqm

m!
B
n`mK

`

Πg
xτ

˘

pxq. (3.13)

This implies another inductive formula

gxpI`k τq “
ÿ

σďτ ;|k|să|σ|`2

gxpτ{σq B
kKpΠg

xσqpxq, (3.14)

which is proved by applying g´1
x b gx to the identity (3.6) and using (3.13). Since β0 ą ´2, if k “ 0

the condition |k|s ă |σ| ` 2 can be removed. Hence we have gxpI`0 τq “ KpΠτqpxq, by the comodule
identity (2.9). B
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Set
JM`pxqτ :“

ÿ

|n|să|τ |`2

Xn
`

n!
BnKpΠg

xτqpxq P T
`
X Ă T`,

for any τ P B and x P R ˆ Rd. The following statement is proved exactly as Proposition 13 and
Corollary 14; it will be used in the proof of Theorem 18.

Proposition 16. Given a regularity structure satisfying assumptions (A-B1) and a K-admissible
model pΠ, gq on it then one has, for any x, y P Rˆ Rd,

gyx

´

I`0 τ ` JM`pxqτ
¯

“ KpΠg
xτqpyq,

and
xgyx
`
´

I`0 ` JM`pxq
¯

“

´

I` ` JM`pyq
¯

xgyx. (3.15)

3.4 Lifting K as a continuous map from DγpT, gq into Dγ`2pT, gq

For a given K-admissible model M “ pΠ, gq we define in this section a continuous map KM from
DγpT, gq into Dγ`2pT, gq, for any positive non-integer regularity exponent γ, intertwined to K via
the reconstruction operator

K ˝ RM
“ RM

˝KM. (3.16)

To get a grasp on what KM could be one keeps from the reconstruction theorem, Theorem 4, the
image that for g P Dγ`2pT, gq and x P Rˆ Rd, the distribution RMg ´ Πg

xgpxq behaves near x like
the function dp¨, xqγ`2. For f P DγpT, gq, since we have

K
`

RMf
˘

´ Πg
x

´

`

I ` JMpxq
˘

fpxq
¯

“ K
´

RMf ´ Πg
xfpxq

¯

,

from Proposition 13, it then looks natural to add to
`

I ` JMpxq
˘

fpxq the polynomial expansion
`

NMf
˘

pxq :“
ÿ

|`|săγ`2

X`

`!

`

B`K
˘

´

RMf ´ Πg
xfpxq

¯

pxq

of K
`

RMf ´ Πg
xfpxq

˘

at point x, at order γ ` 2, and expect that

K
`

RMf
˘

´ ΠM
x

´

`

I ` JMpxq
˘

fpxq `
`

NMf
˘

pxq
¯

behaves like dp¨, xqγ`2 near x. (The remark after Lemma 12 justifies the good definition of the
quantities pB`Kq

`

RMf ´ Πg
xfpxq

˘

in
`

NMf
˘

pxq, for |`|s ă γ ` 2.) This does not guarantee that
the T -valued map

`

KMf
˘

pxq :“
`

I ` JMpxq
˘

fpxq `
`

NMf
˘

pxq, x P Rˆ Rd, (3.17)
is a modelled distribution, but this turns out to be the case! Note that unlike I or JMpxq, the
TX -valued function NMf is a non-local function of f – i.e. not a function of fpxq only. Note also
that one has formally

`

KMf
˘

pxq “ Ifpxq `
ÿ

|`|săγ`2

X`

`!
B`K

`

RMf
˘

pxq.

This identity gives the intuitive meaning of the polynomial part of
`

KMf
˘

pxq. Decomposition
(3.17) is needed to make sense of

`

KMf
˘

pxq in a rigorous way.

Theorem 17. Let the regularity structure T satisfy assumptions (A-B1) and pΠ, gq be a K-
admissible model on it. For any positive non-integer regularity exponent γ, the map KM sends
continuously DγpT, gq into Dγ`2pT, gq, and satisfies the intertwining identity (3.16).
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Proof – We use the interwining relation (3.11) to write

pKMfqpyq ´ygyxpKMfqpxq “ pKMfqpyq ´ygyx
`

I ` JM
pxq

˘

fpxq ´ygyxpNMfqpxq

“ pKMfqpyq ´
`

I ` JM
pyq

˘

ygyxfpxq ´ygyxpNMfqpxq

“ I
´

fpyq ´ygyxfpxq
¯

` JM
pyq

´

fpyq ´ygyxfpxq
¯

`

´

pNMfqpyq ´ygyxpNMfqpxq
¯

.

For the I term, one has the elementary estimate
›

›I
`

fpyq ´ygyxfpxq
˘›

›

β
À

›

›fpyq ´ygyxfpxq
›

›

β´2
ď }f}Dγ dpy, xq

γ`2´β

for any β P A. The JM and NM terms take values in the polynomial part TX of T . Decompose Kpx, yq
into the integral of qr by (3.3), and let JM

“:
ş1

0
JM
r dr´pe´1qJM

1 , and NM
“:

ş1

0
NM
r dr´pe´1qNM

1 ,
stand for the corresponding operators. Since q1 has a smoothing property, it is sufficient to consider
the integral part only. Fix n P N , and write pτqXn for the component of τ P T in the direction of
Xn. We have for

paq :“
´

JM
r pyq

`

fpyq ´ygyxfpxq
˘

`
`

NM
r fqpyq ´ygyxpNM

r fqpxq
¯

Xn

the two decompositions

paq “
ÿ

βPA,|n|săβ`2

1

n!

A

Πg
y

`

fpyq ´ygyxfpxq
˘

β
, Bny qrpy, ¨q

E

`

! 1

n!

A

RMf ´ Πg
yfpyq, B

n
y qrpy, ¨q

E

´
ÿ

|k|săγ`2´|n|s

py ´ xqk

k!

A

RMf ´ Πg
xfpxq, B

n`k
x qrpx, ¨q

E)

“: p˚q1r ` p˚q
2
r,

and

paq “
ÿ

βPA,|n|săβ`2

1

n!

A

Πg
y

`

fpyq ´ygyxfpxq
˘

β
, Bny qrpy, ¨q

E

`
1

n!

A

RMf ´ Πg
xfpxq, pB

nqrq
γ`2´|n|s
y,x

E

`
1

n!

A

Πg
xfpxq ´ Πg

yfpyq, B
n
y qrpy, ¨q

E

“
1

n!

A

RMf ´ Πg
xfpxq, pB

nqrq
γ`2´|n|s
y,x

E

´
ÿ

βPA,|n|sěβ`2

1

n!

A

Πg
y

`

fpyq ´ygyxfpxq
˘

β
, Bny qrpy, ¨q

E

“: p‹q1r ` p‹q
2
r,

where

pB
nqrq

γ`2´|n|s
y,x pzq :“ Bny qrpy, zq ´

ÿ

|k|săγ`2´|n|s

py ´ xqk

k!
B
n`k
x qrpx, zq.

Choose r0 P p0, 1s such that r
1
4
0 » dpy, xq ^ 1. We use the p˚q-decomposition to estimate the integral

over 0 ă r ă r0, and the p‹q-decomposition to estimate the integral over r0 ď r ď 1.
‚ For r P p0, r0s, we have from the bound (3.2) the estimate

ż r0

0

ˇ

ˇp˚q
1
r

ˇ

ˇdr À
ÿ

βPA,|n|săβ`2

dpy, xqγ´β
ż r0

0

r
β´|n|s´l

4 dr

À
ÿ

βPA,|n|săβ`2

dpy, xqγ´βr
β´|n|s`2

4
0 À dpy, xqγ`2´|n|s .

Since |n|s ă γ ` 2, from the bound (2.32) in the reconstruction theorem, we get

ż r0

0

ˇ

ˇp˚q
2
r

ˇ

ˇdr À

ż r0

0

r
γ´|n|s´l

4 dr `
ÿ

|k|săγ`2´|n|s

dpy, xq|k|s
ż r0

0

r
γ´|n|s´|k|s´l

4 dr

À r
γ´|n|s`2

4
0 `

ÿ

|k|săγ`2´|n|s

dpy, xq|k|sr
γ´|n|s´|k|s`2

4
0 À dpy, xqγ`2´|n|s .

‚ To deal with the integral over r P pr0, 1s, we use the p‹q-decomposition. Since this integral does
not make sense if r0 ě 1, we assume dpy, xq ď 1. For p‹q1r, we have the (anisotropic) integral Taylor
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formula for the remainder

pB
nqrq

γ`2´|n|s
y,x pzq “

ÿ

γ`2´|n|să|`|s

py ´ xq`

`!

ż 1

0

ϕ`pr
1
qB
n``qrpxr1 , zqdr

1,

where ` runs over a finite set, xr1 :“ x` r1py´ xq, and ϕ`pr1q are bounded functions of r1. Note that
no index n with γ ` 2´ |n|s “ |`|s exists, because γ R Z. By decomposing

RMf ´ Πg
xfpxq “ RMf ´ Πg

xr1
fpxr1q ` Πg

xr1

`

fpxr1q ´ zgxr1xfpxq
˘

,

and using the bounds (2.32) and (3.2), we have
ż 1

t0

ˇ

ˇp‹q
1
r

ˇ

ˇ dr À
ÿ

γ`2´|n|să|`|s

dpy, xq|`|s
ż 1

r0

#

r
γ´|n|s´|`|s´l

4 `
ÿ

βPA, βăγ

dpy, xqγ´βr
β´|n|s´|`|s´l

4

+

dr

À
ÿ

γ`2´|n|să|`|s

dpy, xq|`|s

#

r
γ´|n|s´|`|s`2

4
0 `

ÿ

βPA, βăγ

dpy, xqγ´βr
β´|n|s´|`|s`2

4
0

+

À dpy, xqγ`2´|n|s .

We obtain the same bound for the p‹q2r-term by a similar argument.
Uniqueness of the reconstruction operator when a is positive gives identity (3.16). B

Note that the intertwining relation (3.16) between K and KM provides indeed an ‘upgraded’
version of the defining identity (3.9) for a K-admissible model in so far as the former reduces to
the latter when applied to the modelled distribution fpxq “ hτ pxq “

ř

σăτ gxpτ{σqσ. Indeed, on
the one hand we have RMhτ “ Πτ . On the other hand KMhτ has positive regularity and takes its
values in a function-like sector where the model takes values in the space of continuous functions,
so Corollary 6 applies and identifies the reconstruction of KMhτ as Πg

x

`

KMhτ pxq
˘

pxq, equal to
ΠpIτq, as all the x-indexed polynomial terms are null when evaluated at x.

Note also the following fact that will be used in the proof of Theorem 19 describing a whole
class of smooth admissible models. For a regularity structure T “ pT`, T q and a model pΠ, gq on
it, the data

T ` :“
`

pT`,∆`q, pT`,∆`q
˘

define a regularity structure and setting
`

Πpgqσ
˘

pxq :“ gxpσq, x P Rˆ Rd, σ P T`,

one defines a model
`

Πpgq, g
˘

on T `. Denote by DγpT`, gq the space of modelled distributions on
the regularity structure T `. For f P DγpT, gq, set

´

NM`f
¯

pxq :“
ÿ

|`|săγ`2

X`
`

`!
pB`Kq

´

RMf ´ Πg
xfpxq

¯

pxq P T`X Ă T`, (3.18)

and
pKM`fqpxq :“

´

I` ` JM`pxq
¯

fpxq `
`

NM`f
˘

pxq P T`.

Using identity (3.15) in Proposition 16, one can repeat verbatim the proof of Theorem 17 and
obtain the following continuity result for the operator KM`.

Theorem 18. Assume we are given a regularity structure and a model pΠ, gq on it, with a K-
admissible map Π. Then for any non-integer positive exponent γ, the map KM` sends continuously
DγpT, gq into Dγ`2pT`, gq, and

K ˝ RM
“ Rg

˝KM`, (3.19)
where Rg is the reconstruction operator on T ` associated with the model

`

Πpgq, g
˘

on T`.

Pay attention to the fact that KM` takes an element of DγpT, gq and gives back an element of
Dγ`2pT`, gq.

3.5 Building admissible models

We left aside in Section 3.3 the non-elementary question of existence of non-trivial admisible
models to concentrate on their properties. We construct in this section a large class of admissible
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models for which all pΠτqτPT and
`

gpσq
˘

σPT`
are smooth functions. In applications to singular

stochastic PDEs, such models can be built from regularized realizations of the noise(s) in the
equation.

Recall assumption (B1) describes the action of the ‘recentering operator’ ∆ on elements of T of
the form Ikτ . We single out for our needs an assumption on ∆ that provides a crucial induction
structure; it is satisfied by the regularity structures used for the study of singular stochastic PDEs
– see Section 9.

Assumption (B2) – For any τ, σ P B, the element τ{σ P T` is generated by the symbols
tXei

` u0ďiďd Y
 

I`n η
(

ηPB, |η|ă|τ |, nPNˆNd
.

Assumptions (B1) and (B2) are jointly called assumption (B). Under assumptions (A-B), formula
(3.14) in the proof of Proposition 15 shows that the g-map of an admissible model pΠ, gq is uniquely
determined by its Π-map.
Theorem 19. Let T be a regularity structure satisfying assumption (A-B). One can associate to
any family

`

rτ s; τ P B, |τ | ă 0
˘

of smooth functions on Rˆ Rd a unique K-admissible model pΠ, gq
on T such that Πτ “ rτ s, for all τ P B with |τ | ă 0.

Proof – We set the scene for an inductive proof of the statement, taking profit of the induction
structure given by assumption (B2). For α P A, define T`

păαq as the subalgebra of T` generated by

tXei
` u0ďiďd Y

 

I`k τ
(

τPB, kPNˆNd, |τ |ăα
.

The ∆` map sends the space T`
păαq into T`

păαq b T
`

păαq, and

Tăα :“
`

T`păαq, Tăα
˘

,

equipped with the restrictions of the ∆` and ∆ maps, is a regularity structure for any α P A, from
assumption (B2). We define inductively on α P A maps

Πăα : Tăα ÞÑ C8pRˆ Rdq,

and
gα : T`păαq ÞÑ C8pRˆ Rdq,

such that
Πăβ |Tăα “ Πăα, gβ |

T`
păαq

“ gα

for any α ă β. We define gβ0x pX
ei
` q “ xi, initializing the induction. Write Măα for the model

pgα,Πăαq on Tăα, and assume it is K-admissible. If α is positive, denote by RMăα the reconstruction
operator on Dα

`

Tăα, g
α
˘

associated with the model Măα.
Set

β :“ min
 

α1 ą α ; α1 P A
(

.

We now define an extension pgβ ,Πăβq of pgα,Πăαq on Tăβ ; the new elements of Tăβ are the elements
of Tα and I`n pTαq. Note for that purpose that given a basis vector τ P Bα the function

hτ :“
ÿ

σăτ

gαpτ{σqσ

is an element of Dα
pTăα, g

α
q. Given that gα and Πăα take values in smooth functions, any smooth

function is a reconstruction of hτ for the model Măα, if |τ | “ α ă 0. (Recall the reconstruction
operator is defined uniquely only when acting on modelled distributions of positive regularity. We are
here working with a modelled distribution of negative regularity when α ă 0.) Define Πăβτ as equal
to rτ s, if |τ | “ α ă 0. If |τ | ą 0, define Πăβτ as equal to RMăαphτ q; this is a smooth function in both
cases. (Recall that X0 is the only element of T of null homogeneity.) The map Πăβ coincides with
Πăα on Tăα. The size requirement

ˇ

ˇ

@

pΠăβq
gβ

x τ, ptpx, ¨q
Dˇ

ˇ “
ˇ

ˇ

@

pΠăβq
gα

x τ, ptpx, ¨q
Dˇ

ˇ À tα{4

on pΠăβqg
β

x τ is then a reformulation of the fact that Πăβτ is in both cases a reconstruction of hτ for
Măα – regardless of the fact that we have not yet extended gα into gβ .
Define then an extension gβ of gα to T`

păβq by requiring that it is multiplicative, and by setting

gβxpI`k τq :“
ÿ

σďτ ;|k|să|σ|`2

gαx pτ{σq B
kK

´

`

Πăβ
˘gα

x
σ
¯

pxq,
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for all τ P Bα, in view of (3.14). Closing the induction step amounts to proving that
ˇ

ˇgβyxpI`k τq
ˇ

ˇ À dpy, xq|τ |`2´|k|s , (3.20)

for every k P N with |k|s ă |τ | ` 2. Look for that purpose at KpMăαq`hτ ; this is an element of
Dα`2

`

T`
păαq, g

α
˘

, from Theorem 18. Recall the definition (3.18) for N pMăαq` and that

RMăαphτ q ´ Πg
x

`

hτ pxq
˘

“ pΠăβqτ ´ Πg
xph

τ
pxqq “ pΠăβq

gα

x τ.

Hence
`

N pMăαq`hτ
˘

pxq “
ÿ

|k|să|τ |`2

Xk
`

k!
B
kK

`

pΠăβq
gα

x τ
˘

pxq,

so one has
`

KpMăαq`hτ
˘

pxq “ I`0
`

hτ pxq
˘

`
ÿ

|k|să|τ |`2

gβxpI`k τq
Xk
`

k!
.

The Xk
`-component of

´

KpMăαq`hτ
¯

pyq ´ygαyx
`
´

KpMăαq`hτ
¯

pxq

is then equal to

gαy pI`k τq ´
ÿ

ηăτ

gαx pτ{ηqg
α
yxpI`k ηq ´

ÿ

m

gαx pI`k`mτq
py ´ xqm

m!
“ gβyxpI`k τq,

and of size dpy, xq|τ |`2´|k|s , since KpMăαq`hτ P Dα`2
`

T`
păαq, g

α
˘

. This shows the bound (3.20).
It remains to show that Π is K-admissible. Given that we assume β0 “ minA ą ´2, the elements
of T of the form Iτ have positive homogeneity. So the definition of Π on Iτ comes under the form
of the reconstruction of a modelled distribution hIτ . Since hIτ is function-like, by Corollary 7, it
follows from Theorem 18 that

ΠpIτqpxq “ RM
phIτ

qpxq “ gxpI`0 τq “ KpΠτqpxq.

B

4 – Solving singular PDEs within regularity structures

In this section, we formulate singular stochastic PDEs in the sense of modelled distributions.
We trade in this section the generality of the above results for the simplicity of an example that
contains the main difficulties of the general case. The reader can consult [44] or [13] for a description
of the general case. We consider the generalized (KPZ) equation

`

Bx0
´∆x1 ` 1

˘

u “ fpuqζ `
d
ÿ

i,j“1

gij2 puqpBxiuqpBxjuq `
d
ÿ

i“1

gi1puqpBxiuq ` g0puq

“: fpuqζ ` g2puqpBx1uq
2 ` g1puqBx1u` g0puq

“: fpuqζ ` gpu, Bx1uq

(4.1)

with a noise ζ P Cβ0 . (Remember that the minimum homogeneity in a regularity structure associ-
ated with a singular stochastic PDE coincides with the minimum of the regularities of the noises
in the equation.) This type of equation appears in a number of problems. If d “ 1 and ζ is a
space-time white noise, then (4.1) contains the KPZ equation, which appears in the large scale
picture of one-dimensional random interface evolutions. Here u is a scalar valued, but a vector
valued case appears in the description of the random motion of a rubber on a manifold [46], a
random perturbation of the harmonic flow map on loops. If d “ 2, 3 and ζ is a space white noise,
then (4.1) contains the generalized PAM

pBt ´∆xqu “ fpuqζ.

Given any positive real number γ, denote by pK1γqM the lift of the K1 operator in the polynomial
part of the regularity structure

`

pK1γqMf
˘

:“
ÿ

|`|săγ

B`K1
`

RMf
˘ X`

`!
P TX ,
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for f P DγpT, gq. Under such settings, the generalized (KPZ) equation (4.1) is lifted to the equation
of S-valued modelled distributions v P DγpT, gq

v “
`

KM ` pK1γqM
˘

´

f‹
`

v
˘

Ξ` g‹
`

v, Bv
˘

¯

` p (4.2)

with some TX -valued modelled distribution p. This section is dedicated to showing that equation
(4.2) has a unique solution on a small time interval p0, t0q; this is the content of Theorem 22.

The restriction to each band r0, t0s ˆ r´R,Rs of spacetime white noise has a norm growing
indefinitely as R goes to infinity for each fixed t0 ą 0. To avoid working with unbounded spacial
domains and functional spaces involving spacial weights we will assume that all the objects are
Zd-periodic in space. The function p in (4.2) plays the role of the regularity structure lift of the
propagator of the initial condition u0. The use of time weights to take care of the free propagation
petp∆´1qu0qtą0 of the initial condition in a regularity structures setting is made necessary by the
classical sharp estimate

›

›Bkxe
tp∆´1qu0

›

›

8
À t´

α`|k|s
2 }u0}CαpRdq (4.3)

Theorem 22 is proved under spacial periodic boundary condition and in the space of modelled
distributions involving temporal weights exploding in t “ 0`. We introduce the former in Section
4.1 and the latter in Section 4.2. We examine in Section 4.3 the notion of non-anticipative operator,
involved in the analysis of equation (4.2).

The letter E will stand for the remainder of this section for
Rˆ Td.

4.1 Spatially periodic models

We work on the models and modelled distributions spacially Zd-periodic. All the results and
estimates proved above hold true in the periodic case. For any x “ px0, x

1q P Rˆ Rd and m P Zd,
denote by x`m :“ px0, x

1 `mq.

Definition – A model M “ pg,Πq is said to be Zd-periodic if for any m P Zd,

gmyx :“ gy`m,x`m “ gyx,
@

Πgm

x`m , ϕp¨ `mq
D

“
@

Πg
x , ϕp¨q

D

,

for all x, y P Rˆ Rd and all ϕ P SpRˆ Rdq.

The canonical model pΠ, gq on the polynomial regularity structure pT`X , TXq is Zd-periodic in
the above sense. Note that gxpX

n
`q “ xn and pΠXnqpxq “ xn are not Zd-periodic functions. This

is the reason why we do not impose periodic conditions on g and Π. It is elementary to see that if
M is a Zd-periodic model on T and f P DγpT, gq is Zd-periodic, with γ positive, then RMf is also
Zd-periodic, in the sense that

@

RMf , ϕp¨ `mq
D

“
@

RMf , ϕp¨q
D

,

for all m P Zd and ϕ P SpR ˆ Rdq – see Proposition 3.38 in [44]. All objects in remainder of this
section are implicitly assumed to be Zd-periodic.

4.2 Modelled distributions with singularity at x0 “ 0

We use a time weight to treat the boundary condition at x0 “ 0.

Definition – Fix two exponents η ď γ P R. One defines the space Dγ,ηpT, gq of modelled distri-
butions with singularity of weight η at x0 “ 0, as the space of functions f from Rˆ Rdztx0 “ 0u
into Tăγ such that

rsf rsDγ,η :“ max
βăγ

sup
aą0

!

ap
β´η
2 _0q sup

|x0|ěa

›

›fpxq
›

›

β

)

ă 8,

}f}Dγ,η :“ max
βăγ

sup
aą0

"

a
γ´η
2 sup
|x0|,|y0|ěa

›

›fpyq ´ xgyxfpxq
›

›

β

dpy, xqγ´β

*

ă 8.

(4.4)
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Set |||f |||Dγ,η :“ rsf rsDγ,η ` }f}Dγ,η .

One also talks of singular modelled distributions. An example of singular modelled distributions
is obtained as follows. Given η P R and v P CηpTdq, the TX -valued function

pP γvqpxq :“ 1x0ą0

ÿ

|k|săγ

Bk
`

ex0p∆x1´1qv
˘

pxq
Xk

k!
(4.5)

belongs to Dγ,ηpT, gq for any γ ě η. This is a consequence of the Schauder estimates satisfied
by the heat semigroup recalled in (4.3) – see e.g. [44, Lemma 7.5]. The reconstruction theorem,
Theorem 4, is extended to singular modelled distributions as follows. See Appendix C.1 for a
detailed proof.

Theorem 20. Let M “ pΠ, gq be a model over T such that ´2 ă β0 ă 0. Assume that ´2 ă η ď γ,
with γ ‰ 0. Then there exists a continuous linear operator

RM : Dγ,ηpT, gq Ñ Cη^β0pRˆ Rdq

such that, for any f P Dγ,ηpT, gq, the bound
ˇ

ˇ

ˇ

@

RMf ´ Πg
xfpxq, ptpx, ¨q

D

ˇ

ˇ

ˇ
À }Πg} |||f |||Dγ,η p|x0| _ t

1{4qpη^β0q´γtγ{4, (4.6)

holds uniformly in f P Dγ,ηpT, gq, x P R ˆ Rd and 0 ă t ď 1. Such an operator is unique if the
exponent γ is positive.

The operators discussed in previous sections can be extended to the spaces Dγ,ηpT, gq, as fol-
lows. All of the following maps are locally Lipschitz continuous. For the detailed proofs, see [44,
Propositions 6.12, 6.13, 6.15, and 6.16]. Denote by Dγ,η

α pT, gq the space of modelled distributions
f P Dγ,ηpT, gq of the form

f “
ÿ

αď|τ |ăγ

fττ. (4.7)

‚ (Proposition 8’) If a regular product ‹ : V ˆW Ñ T is given, then
Dγ1,η1
α1

pV, gq ˆDγ2,η2
α2

pW, gq Q pf1,f2q ÞÑ Qăγpf1 ‹ f2q P D
γ,η
α1`α2

pT, gq,

where γ “ pγ1 ` α2q ^ pγ2 ` α1q and η “ pη1 ` α2q ^ pη2 ` α1q ^ pη1 ` η2q.
‚ (Proposition 9’) Let 0 ď η. If an associative regular product ‹ : V ˆ V Ñ V and a smooth

function F is given, then
Dγ,ηpT, gq Q f ÞÑ F ‹pfq P Dγ,ηpT, gq.

‚ (Proposition 10’) Let γ ą 1. If a derivative D : T Ñ T is given, then
Dγ,ηpT, gq Q f ÞÑ Df P Dγ´1,η´1pT, gq.

‚ (Theorem 17’) Let ´2 ă η ^ β0. If Π is K-admissible,
Dγ,ηpT, gq Q f ÞÑ KMf P Dγ`2,η^β0`2pT, gq.

4.3 Non-anticipative operators

We consider the modelled distributions defined on the domain
Ep0,tq :“ p0, tq ˆ Td,

for given a positive time t. Denote by Dγ,η
p0,tqpT, gq the set of functions f : Ep0,tq Ñ Tăγ such that

the bounds (4.4) hold with the domain of x, y restricted to Ep0,tq. Denote by
|||f |||Dγ,η

p0,tq
:“ rsf rsDγ,η

p0,tq
` }f}Dγ,η

p0,tq

the associated norms. From the definition of quantities (4.4), the estimate
|||f |||Dγ,η´κ

p0,tq
À max
βăη´κ

sup
xPEp0,tq

›

›fpxq
›

›

β
` tκ{2 |||f |||Dγ,η

p0,tq
(4.8)
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follows for any κ ą 0 small enough. The small factor tκ{2 is used in the fixed point problem in the
next section.

A function f on pR ˆ Rdq2 is said to be non-anticipative if f
`

px0, x
1q, py0, y

1q
˘

“ 0, whenever
x0 ă y0. The kernel KL of the resolution operator L´1 is of the form

KLpx, yq “ 1x0ąy0 px0´y0px
1 ´ y1q,

where pt is the kernel of etp∆´1q, thus KL is non-anticipative. That property makes the space of
modelled distributions on RˆRd

p0,tq stable under the integration map. For any f P Dγ,η
p0,tqpT, gq, we

call rf P Dγ,ηpT, gq a positive time extension of f if
rf “ f on Ep0,tq, and rf “ 0 on p´8, 0q ˆ Td.

Such an extension rf always exists, and in fact, one can construct a continuous linear extension
map on Dγ,η

p0,tqpT, gq, taking values in Dγ,ηpT, gq, as proved in Martin’s work [60, Theorem 5.3.16].
See also Theorem 48 in Appendix C.1 for the sketch of a proof.

Proposition 21. Pick ρ ą 0 and ´2 ă η ď β0 ă 0. Then one has, for any w P Dρ,η
t pT, gq,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

KM ` pK1ρ`2q
M
˘

prwq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dρ`2,η`2
p0,tq

À |||w|||Dρ,η
p0,tq

.

In the left hand side, the restriction of
`

KM`pK1ρ`2q
M
˘

prwq to Ep0,tq does not depend on the choice
of positive time extensions rw. Hence we are allowed to write

`

KM ` pK1ρ`2q
M
˘

prwq
ˇ

ˇ

Ep0,tq
“
`

KM ` pK1ρ`2q
M
˘

pwq.

If further η is sufficiently near to ´2 so that AX p0, η ` 2s “ H, then one has
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

KM ` pK1γ`2q
M
˘

pwq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dρ`2,η`2´κ
p0,tq

À tκ{2 |||w|||Dρ,η
p0,tq

(4.9)

for any κ P p0, η ` 2q. Finally, if the reconstruction of w happens to be continuous on Ep0,tq, then
one has

RM
´

KM ` pK1ρ`2q
M
¯

pwq “

ż

Ep0,tq
KLpx, yqRMwpyq dy (4.10)

Proof – By Theorem 20, one has RM
rw P CηpEq. Since K1 maps CηpEq into Cρ`2pEq, one has

pK1ρ`2q
M
rw P Dρ`2,ρ`2pT, gq Ă Dρ`2,η`2pT, gq. Thus one has

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

KM ` pK1ρ`2q
M
˘

prwq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dρ`2,η`2
À |||rw|||Dρ,η .

Choosing a continuous extension rw ofw as in Theorem 48 in Appendix C.1, the right hand side
is bounded above by |||w|||Dρ,η

p0,tq
. It remains to show that the restriction of

`

KM`pK1ρ`2q
M
˘

prwq

to Ep0,tq does not depend on the choice of extensions rw. By definition, one has
´

KM`pK1ρ`2q
M
¯

prwqpxq “ I
`

rwpxq
˘

` JMpxqrwpxq

`
ÿ

|`|săρ`2

Xk

k!
K1

`

Πg
x rwpxq

˘

pxq `
ÿ

|`|săρ`2

X`

`!
B`KL

´

RM
rw ´ Πg

x rwpxq
¯

pxq.

Since KL is non-anticipative, the quantity B`KLp¨ ¨ ¨ qpxq above happens to depend on the
restriction of rw to p´8, ts ˆ Td, from Corollary 5. Since rw “ 0 on p´8, 0s ˆ Rd, the above
quantity does not depend on the choice of rw.

Next we prove (4.9). In view of (4.8), it is sufficient to consider the 1-component of f “
`

KM ` pK1ρ`2q
M
˘

prwq. In the above computation, we see that

f1pxq “ KL

`

RM
rw
˘

pxq.

Since RM
rw P CηpEq, we have f1 P Cη`2pEq by Schauder estimate, so it is Hölder continuous.

Since f1 “ 0 on p´8, 0q ˆ Rd from the non-anticipativity of KL, it also vanishes at x0 “ 0
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and we have
sup

xPEp0,tq

›

›fpxq
›

›

0
À sup
xPEp0,tq

›

›f1pxq ´ f1p0, x
1q
›

›

0
À tpη`2q{2.

B

4.4 Fixed point solution

Definition – A regularity structure T is said to be associated with equation (4.1) if it satisfies
assumptions (A-B) and contains subcomodules S, BS, F,N of T satisfying assumption (A1) and
the following constraints.

‚ The symbol Ξ and the set BS are contained in N .
‚ The sector S is function-like and regular products

S ˆ ¨ ¨ ¨ ˆ S Ñ F, BS ˆ BS Ñ N, F ˆN Ñ T

are given and satisfy assumption (A3). We denote them all by the same symbol ‹.
‚ Abstract integration operators

I : T Ñ S, Iei : T Ñ BS, p1 ď i ď dq

are given and satisfy Assumption (B).
‚ Derivative operators

Bi : S Ñ BS, p1 ď i ď dq

are given and satisfy
Π ˝ Bi “ Bxi ˝ Π, and BiX

k “ kiX
k´ei1kěei , and BiIτ “ Ieiτ.

The element Ξ represents the noise ζ. The spaces S and BS are used to represent the solution u
and its derivative Bx1u, respectively. (The letter S is chosen for ‘solution’.) The space F are used
to represent fpuq and gnpuq, with n “ 0, 1, 2. (The letter F is chosen for ‘function’.) The space
N is used to represent the ‘singular’ elements ζ, Bx1u, and pBx1uq2. (The letter N is chosen for
‘noise’.) The only role played by the intermediate spaces BS, F,N is to clarify on which spaces the
product ‹ is defined; they play no other role. We will see in Section 9 how to construct explicitly
a regularity structure associated with the generalized (KPZ) equation. The ‹ product is used to
define nonlinear images of singular modelled distributions as in Section 2.4. In this setting, the
regularity structure lift of the generalized (KPZ) equation is formulated under the form

v “
`

KM ` pK1γqM
˘

´

f‹
`

v
˘

Ξ` g‹
`

v, Bv
˘

¯

` p

“: ΦpM,vq.
(4.11)

Pick a K-admissible model M “ pΠ, gq on T and p P Dγ,ηpTX , gq. Assume that ΦpM, ¨q sends
Dγ,ηpS, gq into itself, which turns out to be the case as proved below under the conditions of
Theorem 22.

Definition – A solution to equation (4.2) on the time interval p0, t0q is a fixed point of the map
ΦpM, ¨q : Dγ,η

p0,t0q
pS, gq Ñ Dγ,η

p0,t0q
pS, gq.

Theorem 22. Let T be a regularity structure associated with the generalized (KPZ) equation
satisfying conditions (A-B), with β0 P p´2,´1q. Pick η P p0, β0 ` 2s and γ ą ´β0. Then for any
p P Dγ,ηpTX , gq, there exists a positive time t0 such that equation (4.2) has a unique solution u on
the time interval p0, t0q. The time t0 can be chosen to be a lower semicontinuous function of M
and p.

Proof – Recall that Dγ,η
α pT, gq denotes the set of modelled distributions of the form (4.7). Starting

from v P Dγ,η
pS, gq, we show that

f‹pvqΞ` g‹pv, Bvq P Dγ`β0,2η´2
pT, gq.

From the singular version of Proposition 9 given at the end of Section 4.2, one has f‹pvq, g‹i pvq P
Dγ,η

0 pF, gq for i “ 0, 1, 2. Since Ξ P D8,8β0
pN, gq, one has f‹pvqΞ P Dγ`β0,η`β0pT, gq Ă Dγ`β0,2η´2

pT, gq
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from the singular version of Proposition 8 given at the end of Section 4.2. Noting that the small-
est homogeneity in the subcomodule BS is β0 ` 1 ă 0 (which is the homogeneity of BIΞ), one has
Bv P Dγ´1,η´1

β0`1 pBS, gq and pBvq‹2 P Dγ`β0,2η´2
2β0`2 pN, gq. Thus g‹pv, Bvq P Dγ`β0,2η´2

pT, gq. From
Proposition 21, one has

|||ΦM
pvq|||Dγ,η

p0,tq
À tη{2|||f‹pvqΞ` g‹pv, Bvq|||Dγ`β0,2η´2

p0,tq

` |||p|||Dγ,η
p0,tq

À tη{2F
´

|||v|||Dγ,η
p0,tq

¯

` |||p|||Dγ,η
p0,tq

for some locally bounded function F . Then one can associate with each positive radius λ a time
horizon tpλq such that ΦpM, ¨q sends the ball of Dγ,η

p0,tpλqqpS, gq of radius λ into itself. From the local
Lipschitz continuity result and inequality (4.8), the map ΦpM, ¨q is also a contraction on the ball of
Dγ,η
p0,tpλqqpT, gq of radius λ. As such, it has a unique fixed point on the ball of radius λ. An elementary

argument gives the uniqueness of a global fixed point, as in the proof of Theorem 4.7 in [43]. B

Thinking of p as the regularity structure lift of the free propagation of an initial condition on
Td, assuming in p P Dγ,ηpTX , gq allows us to work with an initial condition of Hölder regularity
η – recall the constraint η P p0, β0 ` 2s. Note that the map is uniformly contracting on a small
enough time interval for g P C4 ranging in a bounded set. Denote by t0pp,Mq the time horizon
from Theorem 22. In order to compare fixed points of ΦpM, ¨q associated with different admissible
models on T – hence different maps on different spaces, we introduce the following distance. For
the usual modelled distributions on Rˆ Rd, given two models M “ pΠ, gq and M1 “ pΠ1, g1q on T ,
a regularity exponent γ P R, and f P DγpT, gq and f 1 P DγpT, g1q, set

d
`

f ,f 1
˘

:“ sup
x,yPRˆRd

max
βăγ

$

’

&

’

%

›

›fpxq ´ f 1pxq
›

›

β
`

›

›

›

!

fpyq ´ xgyxfpxq
)

´

!

f 1pyq ´ xg1yxf
1
pxq

)
›

›

›

β

dpy, xqγ´β

,

/

.

/

-

.

The associated distance between an element of Dγ,η
p0,tqpT, gq and an element of Dγ,η

p0,tqpT, g
1q is defined

similarly. One can then prove the following statement in terms of this metric by making explicit in
the reconstruction theorem and the lifting theorem that the operators RM and KM`pK1γqM depend
in a locally Lipschitz way on M with respect to the pseudo-distance dγ on the space of models over
T introduced in (2.24). We do not give the details here and refer the reader to the corresponding
results in [44], Theorem 3.10 and Theorem 5.12 therein.

Proposition 23. Given any time t10 ă t0pp,Mq, the restriction to r0, t10s ˆ Td of u defines locally
a continuous function of the K-admissible model M.

This result holds more generally for all the equations that can be treated using regularity
structures. Emphasize that this continuity result is fundamental. In a random setting where the
noise is random and the models of interest are constructed as measurable functionals of the noise
the continuity allows to transport automatically support theorems or large deviation results about
random models into corresponding results about the solutions of the regularity structure lifts of
the equations under study. See Hairer & Schönbauer’s work [50] on support theorems, Hairer &
Weber’s work [51] on large deviation results, or Hairer & Mattingly’s work [49] on the strong Feller
property for solutions of singular stochastic PDEs, for a sample.

The last statement of this section makes the link between solving equation (4.1) with a smooth
noise ζ and the corresponding problem in the regularity structure equipped with the canonical
model Mζ associated with the smooth noise. The latter is constructed in Section 6.1 and the only
thing we presently need to know about it is that its reconstruction map RMζ is multiplicative and
sends the noise symbol Ξ on the smooth function ζ. For positive exponents γ P p´β0, 2q and
η P p0, β0 ` 2s, pick v P CηpTdq and denote by P γv the lift in the polynomial structure of the heat
propagator acting on v, defined by (4.5).

Proposition 24. Let u P Dγ,η
p0,t0q

pT, gq stand for the solution in a sufficiently small time interval
r0, t0s of the fixed point problem

u “
´

KMζ ` pK1γqM
ζ
¯´

f‹puqΞ` g‹
`

u, Bu
˘

¯

` P γv. (4.12)
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Then RMζu coincides with the solution to the well-posed equation (4.1) with initial condition v.

Proof – As in (4.10), the function u :“ RMζu satisfies the equation

upzq “

ż

p0,tqˆTd
KLpz, wqR

Mζ
´

fpuqΞ` g
`

u, Bu
˘

¯

pwq dw `
`

Pv
˘

pzq,

with Pv the free propagation of the initial condition. We take advantage of the fact that Mζ is a
smooth model to write

RMζ
pwqpzq “ Πζz

`

wpzq
˘

pzq

for any modelled distributionw P Dα
pT, gζq with α ą 0 – see identity (2.33). We use the multiplicative

character of the map RMζ to write

RMζ
´

fpuqΞ` g
`

u, Bu
˘

¯

“

´

RMζfpuq
¯

ζ `
´

RMζg2puq
¯´

RMζ
Bu

¯2

`

´

RMζg1puq
¯´

RMζ
Bu

¯

` RMζ
`

g0puq
˘

.

The conclusion then follows as a consequence of Corollary 7 and Proposition 10, which give

RMζ
`

fpuq
˘

“ f
`

RMζu
˘

, RMζ
pBuq “ BxRMζu.

B

Arrived at that stage we have a model-dependent notion of solution u to the generalized (KPZ)
equation, under the form

u “ RM
puq, u “ ΦpM,uq,

indexed by the set of K-admissible models on the regularity structure T associated with the
equation. Theorem 19 gives us a whole family of smooth K-admissible models which we can use.
However the K-admissible models of interest are not smooth as we wish they satisfy the identity
ΠΞ “ ζ for a non-smooth noise ζ. The combinatorial structure of the elements of T detailled in
Section 9 allow to associate to any regularized version ζε of ζ a model Πε such that ΠεΞ “ ζε, in
a canonical way. However, these models diverge as ε ą 0 goes to 0. The tools needed to construct
ε-dependent smooth models that have limits as ε goes to 0 are developed in the next section at
the same level of generality as Section 2 and Section 3. The so called renormalization operation
involved in the construction of these converging K-admissible models will be given a dynamical
meaning in Section 6.

5 – Renormalization structures

We introduce in this section the fundamental notion of renormalization structure, and a notion
of compatibility between regularity and renormalization structures. We emphasized in the previous
paragraph that it is generically not possible to define canonical K-admissible models Πζ as limits
of canonical K-admissible models Πε associated with regularized noises ζε, if the noise(s) is (are)
not sufficiently regular. On a technical level, the non-convergence of the models Πε is related to
the fact that the canonical model is defined by convolution of kernels that explode on the diagonal.
Limit models need to be constructed by probabilistic means as limits in probability of models
built from regularized noises, using a moving window, as in Meta-Theorem 1 in Section 1. The
implementation of this moving window picture involves renormalization structures. Note that we
do not need to know the details of the renormalization operation; the only properties that we
need are encoded in the definition of a renormalization structure and the compatibility condition
with a regularity structure given below. An example of renormalization structure will be given in
Section 9, where the renormalization operation will be intimately related to the Taylor expansion
procedure.

Renormalization structures are defined in Section 5.1. If we call the concrete regularity struc-
tures from Section 2.2 right regularity structures, then renormalization structures

U “
`

pU´, δ´q, pU, δq
˘

look like left regularity structures, with the difference that elements of the space U´ have non-
positive homogeneities. A fundamental notion of compatibility between renormalization and reg-
ularity structures is introduced in Section 5.2; it accounts for the fact that the renormalization
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operation induces a renormalization operation on T` and ‘commutes’ with the recentering opera-
tors ∆ and ∆`. This property allows to associate with each model M on T and each character k
on U´ a new model kM on T . This is the main result of Section 5.2, Theorem 26. A large class
of characters k produces K-admissible models kM if M is K-admissible.

5.1 Definition

A renormalization structure is made up of two ingredients. First, it is a vector space U with a
basis whose elements are built by induction from elementary elements and multilinear operators
giving new elements. The use of the symbol τ for a generic basis vector emphasizes this recursive,
tree-like, definition. Each basis vector τ is a placeholder for a function rτ s from p0, 1s into a Banach
space, typically R,C, a Hölder space or an algebra, whose structure as an element of the target
space is encoded in the structure of τ . In the cases of interest, the functions rτ s have no limit in
0` and the basic problem is to remove in a ‘consistent’ way the diverging pieces of these rτ s so
as to end up with a collection of functions parametrized by ε ą 0 having a limit where ε goes to
0. The functions rτ s are then said to have been renormalized. What ‘consistent’ means is part of
what follows.

Roughly speaking, the basic operation for renormalizing a placeholder τ consists in removing
from τ its different diverging pieces, in all possible sensible ways. This is the second ingredient
of a renormalization structure. Tuples of pieces of elements of U are not necessarily elements of
U ; we store them in a side space U´. Endowing U´ with an algebra structure allows to store the
removed pieces of τ as an element of U´ under the form of a product. We require nonetheless that
any τ amputated from diverging pieces is an element of U ; this is a restriction on which pieces of
any τ P U can be removed. We thus have a splitting map

δ : U Ñ U´ b U,

with δτ the sum of all the elements from U´ b U corresponding to removing from τ all possible
diverging allowed pieces, possibly several at a time. The removed pieces may themselves have
diverging subpieces, and it makes sense to assume we have another splitting map

δ´ : U´ Ñ U´ b U´,

that extracts them on the left hand side of the tensor product U´bU´. That the remaining piece
is still in U´ rather than in another space is a consistency requirement.

Definition – A renormalization structure is a pair of graded vector spaces
U “:

à

βPB

Uβ , U´ “:
à

αPB´

U´α

such that the following holds.

‚ The vector spaces U´α and Uβ are finite dimensional.
‚ The space U´ is a connected graded bialgebra with unit 1´, counit 11´, coproduct

δ´ : U´ Ñ U´ b U´,

and grading B´ Ă p´8, 0s.
‚ The index set B for U is a locally finite subset of R bounded below. The space U is a left

comodule over U´, that is U is equipped with a splitting map δ : U Ñ U´ b U , which
satisfies

pIdb δqδ “ pδ´ b Idqδ, and p11´ b Idqδ “ Id. (5.1)
Moreover, for any β P B, one has

δUβ Ă
à

αď0

U´α b Uβ´α. (5.2)

We denote by
U :“

´

pU, δq, pU´, δ´q
¯

a renormalization structure.
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Similarly to the regularity structure, let U´α and Uβ be bases of U´α and Uβ , respectively, and
set

U´ :“
ď

αPB´

U´α , U :“
ď

βPB

Uβ .

Note that, unlike in the definition of a concrete regularity structure satisfying Assumption (A1),
we do not require that U0 is one dimensional in the definition of a renormalization structure. Since
all α P B´ are non-positive, one has β ´ α ě β in (5.2). Proposition 45 in Appendix B can be
applied to the negative grading B´ of U´, and says that U´ is a Hopf algebra; we denote by S´
its antipode. Write

δτ “:
ÿ

ϕĲτ

ϕb τ{´ϕ; (5.3)

we call δ a renormalization splitting. Similarly to what we saw in Section 2.2 for the Hopf algebra
pT`,∆`q, the δ´ splitting of the Hopf algebra pU´, δ´q induces a convolution group law on the
set G´ of characters on U´

pk1 ˚ k2qτ :“ pk1 b k2qδ
´τ, pτ P U´q.

The inverse of a character k for the convolution product is explicit and given by k ˝ S´. Given a
character k on U´, we define a function rk : U Ñ U , setting

rk :“ pk b Idqδ.
This is a representation of the group G´ in GLpUq, as a direct consequence of the comodule
property in (5.1).

5.2 Compatible renormalization and regularity structures

We introduce a ‘compatibility’ property between regularity and renormalization structures. We
use the notations from Appendix B. In particular, given an algebra A and two spaces E,F , we
define a linear map Mp13q from the algebraic tensor product AbEbAbF to the algebraic tensor
product Ab E b F setting

Mp13q
´

a1 b eb a2 b f
¯

:“ pa1a2q b eb f.

Recall we write T “
`

pT`,∆`q, pT,∆q
˘

for a regularity structure and S` for the antipode map
on T`.

Definition 25. A regularity structure T is said to be compatible with a renormalization structure
U if the following three compatibility conditions hold true.

(a) The spaces T and U coincide as linear spaces and the bases B and U coincide. (Each
element τ P B is in particular homogeneous in both T and U , but it may belong to Bβ1 and
Uβ2

with β1 ‰ β2.) Moreover,
δTβ Ă U´ b Tβ , for all β P A. (5.4)

(b) There exists an algebra morphism
δ` : T` Ñ U´ b T`

such that
`

Idb δ`
˘

δ` “
`

δ´ b Id
˘

δ`, and
`

11´ b Id
˘

δ` “ Id (5.5)
and

δ`T`α Ă U´ b T`α , for all α P A`. (5.6)

(c) The compatibility conditions
`

Idb∆p`q
˘

δp`q “Mp13q
`

δp`q b δ`
˘

∆p`q (5.7)
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and
`

Idb 11`
˘

δ` “ 11`p¨q1´ (5.8)
hold.

This definition captures the fact that the renormalization procedure encoded in U induces a
renormalization operation on T` and commutes with the recentering operators ∆ and ∆`. We
will see at the end of this section that the six conditions from Definition 25 hold iff condition (5.4)
and condition (5.7), in its form without the p`q labels, hold, under a reasonable assumption on
δ` that holds true for the regularity and renormalization structures associated with (systems of)
singular stochastic PDEs.

Compare conditions (5.4) and (5.2). Emphasize here as in item (a) that the notion of homogene-
ity is relative to the the grading used to define it. An element of T “ U may thus have different
homogeneities, depending on whether it is considered as an element of T or U . By condition (a),
the space T is a left U´-comodule. The map δ` in (b) accounts for the effect in T` of the renor-
malization process. By (5.5), the space T` is also a left U´-comodule. Hence for given a character
k on U´, we can define linear maps rk : T Ñ T and rk` : T` Ñ T`, by

rk “
`

k b Id
˘

δ, and rk` “
`

k b Id
˘

δ`.

Identities (5.4) and (5.6) ensure that homogeneities of elements of T and T` are stable under these
actions. Condition (c), read with the ` labels, somehow says that the renormalization operation
encoded in rk commutes with the Taylor expansion operation on the coefficients of any modelled
distribution, encoded in ∆`. Condition (c), read without the ` labels, says something similar
for modelled distributions. Note that the Hopf algebra T` is a left U´-comodule bialgebra. By
Proposition 46, we have the following compatibility condition on the antipode

δ` ˝ S` “
`

Idb S`
˘

˝ δ`. (5.9)

Recall that given a model M “ pg,Πq on T , the anchored interpretation operator Πg
x associated

with M is given for any x P Rd, by
Πg
x “ pΠb g´1

x q∆.

The next statement and its proof are part of Theorem 6.15 in Bruned, Hairer and Zambotti’s work
[16] on the algebraic renormalization of regularity structures. It tells us that the rk and rk` maps
have jointly a natural and simple action on the space of models on T .

Theorem 26. Let a renormalization structure U “ pU,U´q be compatible with a regularity struc-
ture T “ pT`, T q. Given any character k on U´, and any model M “ pg,Πq on T , define
kM “ pkΠ, kgq, on T setting

kM :“
´

g ˝ rk`,Π ˝ rk
¯

. (5.10)
One has

`

gy ˝ rk
`
˘

˚
`

gx ˝ rk
`
˘´1

“ gyx ˝ rk
`, (5.11)

and
´

`

Π ˝ rk
˘

b
`

gx ˝ rk
`
˘´1

¯

∆ “ Πg
x ˝

rk, (5.12)

for any x, y P Rd. Moreover, the size conditions (2.20) and (2.21) hold for kM “ pkg, kΠq, so kM
is a model.

Proof – One has
`

gy ˝ rk
`
˘

˚
`

gx ˝ rk
`
˘´1

“
`

pk b gyqδ
`
˘

b

´

pk b gxqδ
`
˝ S`

¯

∆`

(5.9)
“

`

pk b gyqδ
`
˘

b
`

pk b g´1
x qδ

`
˘

∆`

“
`

gy b g´1
x

˘

˝
`

rk` b rk`
˘

∆`

(5.7)
“

`

gy b g´1
x

˘

˝ pk b∆`
qδ`

“ gyx ˝ rk
`.
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and
´

`

Π ˝ rk
˘

b
`

gx ˝ rk
`
˘´1

¯

∆
(5.9)
“

´

pk b Πqδ b pk b g´1
x qδ

`
¯

∆

“
`

Πb g´1
x

˘

˝
`

rk b rk`
˘

∆

(5.7)
“

`

Πb g´1
x

˘

˝ pk b∆qδ

“ Πg
x ˝

rk.

The size conditions (2.20) and (2.21) on kM follow now from formulas (5.11) and (5.12), and from
the fact that the maps rk and rk` preserve the spaces Tβ and T`α , respectively, as a consequence of the
stability conditions (5.4) and (5.6). B

Together with Corollary 6 this statement implies in particular that if the model M takes values
in the space of continuous functions then the reconstruction operator kR associated with the
renormalized model is related to the reconstruction operator R associated with the unrenormalized
model by the relation

kR “ R ˝ rk.

This point will be used crucially in Section 6.3, where we will give a dynamical picture of the
renormalization of models.

We consider in the remainder of this section the case of interest for the study of (systems of)
singular stochastic PDE(s) where the regularity structure T is built from integration operators
and satisfies Assumption (B). Unfortunately, even if a model M is K-admissible, kM is not always
K-admissible for any k P G´. We put forward an assumption under which one builds K-admissible
models using elements k of a non-trivial subgroup G´ad of G´. Assume B “ U and let F stand for
the family of operators

F :“ tIpu|p|sď1 Y tX
n‹unPNd`1zt0u,

acting on the basis B “ U .

Assumption (C1) – The regularity structure T is built from integration operators and satisfies as-
sumption (B1) and the renormalization structure U is compatible with T . Moreover, the following
holds.

‚ The algebra U´ is generated by the basis elements Uă0 :“
Ť

αă0 Uα and the unit 1´.
‚ Let J´ be the ideal of U´ generated by the set

`

FpUq
˘

XUă0. The linear map δ : U Ñ U´bU
satisfies, for any operator F P F and τ P U ,

δpFτq ´ pIdb F qδτ P J´ b U. (5.13)
‚ We define a projection operator P´ : U Ñ U´ setting P´τ :“ τ1τPUă0 , for any τ P U . The

linear map δ´ : U´ Ñ U´bU´ is defined by δ´ “ pIdbP´qδ on Uă0 and its multiplicative
extension.

Define the subset G´ad of G´ by

G´ad :“
!

k P G´ ; k
`

F pτq
˘

“ 0 for any F pτq P
`

FpUq
˘

X Uă0

)

.

Proposition 27. The set G´ad is a subgroup of G´, and for any k P G´ad and any K-admissible
model M, one has kM is also K-admissible. The group G´ad is called the renormalization group.

The definition of the group G´ad gives the meaning to assumption (5.13). Up to irrelevant
terms for k P G´ad, the renormalization operations in U´ or U of an ‘integral’ is the integral of its
renormalized integrand, and multiplication by a polynomial has no effect on the renormalization
process.

Proof – Note that kpJ´q “ 0 for any k P G´ad. Let τ be an element of Uα such that Fτ P Uă0 for
some F P F .
(a) Given k, h P G´ad and τ P U´, since identity (5.13) ensures that pk ˚ hqpFτq “ pkb hqδ´pFτq “ 0,
for all F P F , we have k ˚ h P G´ad. Next we show that k´1

“ k ˝ S´ P G´ad. Denote by M´
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the multiplication operator in U´. Since δτ P 1´ b τ `
ř

αăβ U
´
α´β b Uβ , by applying the operator

M´
pIdb S´P´q to (5.13), we have

S´pFτq P
ÿ

αăβ

M´
´

U´α´β b S´
`

P´FUβq
˘

¯

` J´,

which implies k´1
pFUαq “ kpS´FUαq “ 0, by an induction on α.

(b) Let F “ Ip. By (5.13),
kΠpIpτq “ pk b ΠqδIpτ “ pk b ΠIpqδτ “ BpKpk b Πqδτ “ BpKpkΠτq.

Since we have a similar identity for F “ Xn
‹, we obtain that kM is admissible. B

We end this section by showing that the definition of compatible renormalization and regularity
structures takes then a simple form under the following additional mild assumption. It essentially
says that multiplication by a polynomial is not the source of renormalization problems and it is
only the integrand of an integral that needs to be renormalized.

Assumption (C2) – The algebra morphism δ` : T` Ñ U´ b T`, is determined by the identities
δ`X`

` “ 1´ bX
`
`, δ`pI`p τq “ pIdb I`p qδτ. (5.14)

Proposition 28. Under assumption (C2), assume T satisfies identity (5.4) and the version of
identity (5.7) without the ` labels. Then the other conditions in Definition 25 follow automatically.

Proof – The comodule property (5.5) follows from (5.1) and the definition (5.14). Indeed,
`

Idb δ`
˘

δ`I`n τ “
`

Idb δ`I`n
˘

δτ “
`

Idb Idb I`n
˘

pIdb δqδτ

“
`

Idb Idb I`n
˘

pδ´ b Idqδτ “
`

δ´ b Id
˘`

Idb I`n
˘

δτ

“
`

δ´ b Id
˘

δ`pI`n τq.
The counit part of (5.5) and (5.8) are left to readers. The condition (5.6) follows from (5.4) and the
definition (5.14). The p`q-labelled version of (5.7) is checked for I`n τ P B` as follows.

Mp13q
`

δ` b δ`
˘

∆`
pI`n τq “Mp13q

¨

˝

`

δ`I`n b δ`
˘

∆τ `
ÿ

`PNˆNd

δ`
X`
`

`
b δ`pI`n``τq

˛

‚

“Mp13q

¨

˝

`

pIdb I`n qδ b δ`
˘

∆τ `
ÿ

`PNˆNd

1´ b
X`
`

`
b pIdb I`n``qδτ

˛

‚

“
`

Idb I`n b Id
˘

Mp13q
pδ b δ`q∆τ `

ÿ

`PNˆNd,ϕĲτ

ϕb
X`
`

`!
b I`n``pτ{

´ϕq

“
`

Idb I`n b Id
˘

pIdb∆qδτ `
ÿ

`PNˆNd,ϕĲτ

ϕb
X`
`

`!
b I`n``pτ{

´ϕq,

and
`

Idb∆`
˘

δ`pI`n τq “ pIdb∆`I`n qδτ

“
ÿ

ϕĲτ

ϕb

¨

˝pI`n b Idq∆pτ{´ϕq `
ÿ

`PNˆNd

X`
`

`!
b I`n``pτ{

´ϕq

˛

‚,

hence we have
Mp13q

`

δ` b δ`
˘

∆`
pI`n τq “

`

Idb∆`
˘

δ`pI`n τq.
B

6 – Multi-pre-Lie structure and renormalized equations

We now turn to the application of the results of the preceding sections to the study of singular
stochastic PDEs. We will concentrate in this section on the study of the generalized (KPZ) equation

`

Bx0
´∆x1 ` 1

˘

u “ fpuqζ ` g2puqpBx1uq
2 ` g1puqpBx1uq ` g0puq

“ fpuqζ ` gpu, Bx1uq,
(6.1)
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with a given initial condition. It already involves the main difficulties of the most general situation,
with the advantage of leaving aside a number of purely technical and notational matters compared
to the most general situation. We saw in Section 4 that a modelled distribution

u “
ÿ

τPB
uττ P Dγ,η

p0,t0q
pT, gq,

with γ P p´β0, 2q and η P p0, β0 ` 2s, is a solution to the lift in the regularity structure T of
equation (6.1) if, and only if, it satisfies the fixed point problem

u » I
´

fpuqΞ` g2puqpBuq
2 ` g1puqBu` g0puq

¯

»
f pkqpuq

k!
uτ1 ¨ ¨ ¨uτk I

`

τ1 ¨ ¨ ¨ τkΞ
˘

`
g
pkq
2 puq

k!
uτ1 ¨ ¨ ¨uτkuσ1

uσ2
I
`

τ1 ¨ ¨ ¨ τkBσ1Bσ2

˘

`
g
pkq
1 puq

k!
uτ1 ¨ ¨ ¨uτkuσ1

I
`

τ1 ¨ ¨ ¨ τkBσ1

˘

`
g
pkq
0 puq

k!
uτ1 ¨ ¨ ¨uτk I

`

τ1 ¨ ¨ ¨ τk
˘

,

(6.2)

up to model-dependent non-trivial polynomial components, with τi, σj monomials or trees, and
implicit sums. We see on this identity that T needs at least to be stable by the operations

`

τ1, . . . , τk, σ1, σ2

˘

ÞÑ I
`

τ1 ¨ ¨ ¨ τk
˘

, I
`

τ1 ¨ ¨ ¨ τkΞ
˘

, I
`

τ1 ¨ ¨ ¨ τkBσ1

˘

, I
`

τ1 ¨ ¨ ¨ τkBσ1Bσ2

˘

;

this naturally endows the elements of T with a tree/inductive structure. This fact is common to all
the equations that can be treated by the methods of regularity structures. This leads us to set the
framework of rooted decorated trees as a convenient encoding of the elements of T in Section 6.1.
The importance of this algebraic setting comes from the fact that the vector space V spanned by
the set of all rooted trees with vertex and edge decorations in given sets happens to be a universal
object in a class of algebraic structures called multi-pre-Lie algebras. Morphisms of such multi-pre-
Lie algebras defined on V are thus determined by their restrictions to a set of generators. We show
in Section 6.2 that the modelled distribution solution of the regularity structure lift of equation
(6.1) involves precisely such a morphism, with values in the space of vector fields; see Proposition
33.

The regularity structure associated with equation (6.1) is built from V , with T and T` subsets
of V . The canonical K-admissible model Mε “

`

Πε, gε
˘

associated with a regularized noise ζε is
defined from a naive interpretation of each decorated tree τ in Πτ . The model takes values in
the space of smooth functions and one shows in Proposition 24 of Section 6.2 that u is a solution
to equation (6.1) with ζε in the role of ζ, over a time interval p0, t0q, if, and only if, u is the
Mε-reconstruction of u P Dγ,η

p0,t0q
pT, gεq, solution of the regularity structure lift of (6.1) associated

with the model Mε. (Note, en passant, that all the model-dependent terms in the lifted equation
are in the polynomial part of the equation; we do not see them on equation (6.2).)

Building T within V , any renormalization structure U compatible with T and satisfying
assumption (C) will also be built within V , with U and U´ subsets of V . We saw in Section 5 how
to construct a family of K-admissible models associated with elements k of the renormalization
group G´ad, from a single K-admissible model, Mε “ pΠε, gεq for instance. It is not clear however
that the kMε-reconstruction of the solution u P Dγ,η

p0,t0q
pT, kgεq to the kMε-dependent regularity

structure lift of equation (6.1) is the solution of a PDE driven by ζε. Theorem 40 shows that this
is indeed the case. This is the main result of this section, first proved in the seminal work [13] of
Bruned, Chandra, Chevyrev and Hairer, as everything else in this section. The proof builds on the
fact that the dual renormalization maps rk˚ that one can associate to any k P G´ad happens to be
multi-pre-Lie morphisms under a compatibility condition on the multi-pre-Lie structure and the
renormalization operator δ, found here under the form of Assumption (D2).

The assumptions (D1-D3) to be found in this section are all met in the case of a general
subcritical system of singular stochastic PDEs, and we verify them by hand in Section 9 where
we construct the regularity and renormalization structures associated with the generalized (KPZ)
equation. We emphasize them here as ‘assumptions’ to stress the mechanics at work in the most
general case.
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6.1 Free E-multi-pre-Lie algebra generated by N

We introduce in the first paragraph the space of edge and node decorated trees. Decoration
spaces are associated to any given a system of singular stochastic PDEs and the associated space of
decorated trees provides the background scene from which one defines the regularity and renormal-
ization structures associated with the system. The multi-pre-Lie structure of the space of decorated
trees is introduced in another paragraph and its dual operator described explicitly.

§ Decorated trees

Definition – Let Tn (called a node type set) and Te (called an edge type set) be abstract sets.
‚ A rooted tree τ is a finite connected tree without loops, with a node set Nτ and an edge

set Eτ , and with a distinguished node ρτ , called the root. The root defines a natural order
on each edge, from the root to the leaves. In particular, each edge e P Eτ is written as the
form e “ pu, vq, where u, v P Nτ are endpoints of e and v is a child of u.

We identify two trees τ and σ if they are graph isomorphic, so we always write a graph
by putting ancestors lower and descendants upper. The root is put at the bottom. Here is
an example.

ρτ

‚ A typed rooted tree is a rooted tree with type maps tn : Nτ Ñ Tn and te : Eτ Ñ Te.
Moreover, a rooted decorated tree is a typed rooted tree τ with two maps

n : Nτ Ñ Nd`1, e : Eτ Ñ Nd`1.

We denote a generic typed rooted tree by Greek letters like τ , and a generic rooted decorated
trees with two decorations n, e by τne or a bold letter τ .

We will consider later rooted trees τ equipped with three decorations n, o, e – see Section 9.1
for the precise definitions. In this section, we hide the o-decoration in the node type map, so we
consider the type sets

Tn “ t‚, ˝u Y t‚
¨,αuαPR.

The node type ‚ represents the monomial 1 “ X0, and ˝ represents the noise Ξ. The third
node type ‚¨,α is a node with the o-decoration α. The set Te labels the set of differential operators
involved in the system of equations under study. There is a single operator Bx0´∆x1 in the example
of the generalized (KPZ) equation (6.1), so the set Te consists of only one element, associated with
the integration operator I in that case. Would we consider a system of singular stochastic PDEs
involving different operators, different operators I’s would be associated with each of them and
the set Te would collect them all.

An element Xn P T is denoted by ‚n, that is a graph with only node with the type ‚ and the
n-decoration n P Nd`1. An edge with e-decoration p P Nd`1 represents the operator Ip, with the
notations of Section 3.2, for one of the operators I involved in the equation.

All operations appearing in the equation (6.2) are graphically defined as follows. In the following
pictures, types and decorations are omitted unless necessary, and the root is denoted by a square.

‚ The integration τ ÞÑ Ippτ q is given by the map connecting the root of τ with a new
node, which becomes a root of the tree Ippτ q, and giving the e-decoration p P Nd`1 to the
connecting edge.

Ip
`

τ
˘

“

τ

p

‚ The product tn ‹ τ for τ with tnpρτ q “ ‚ is given changing the node type of ρτ to tn. For
example,

˝ ‹ τ “ τ
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‚ The product of trees Ipj pτ jq (j “ 1, . . . ,m) is given by the tree product, that is joining
their roots.

τ 1

p1
‹

τ 2

p2
‹ ¨ ¨ ¨ ‹

τm

pm
“

τ 1

p1

τ 2

p2
¨ ¨ ¨

τm

pm

Thus we see that the rooted trees obtained by the above operations are sufficient to describe the
fixed point problem (6.2). The symbol ‚¨,α does not come from the fixed point problem (6.2), but
its use is made clear in Section 6.3. As we concentrate in this section on the generalized (KPZ)
equation the edge type set Te will consist of a single element, suggestively denoted by I. There is
no difficulty in working with a finite edge type set.

Definition – Let V be the set of all rooted decorated trees with type sets Tn “ t‚, ˝u Y t‚
¨,αuαPR

and Te “ tIu, and let V be the vector space spanned by V. Moreover, denote by
`

τ˚ : V Ñ R
˘

τPV
the dual basis of V and let V ˚ be the vector space spanned by tτ˚uτPV .

Throughout this section, we view each element of V as the rooted tree τ with the composite
decorations ptn, nq : Nτ Ñ N and pte, eq : Eτ Ñ E, where

E :“ Te ˆ Nd`1 » Nd`1, N :“ Tn ˆ Nd`1.

The set N is considered as a subset of V consisting of simple trees
N “ ttnutPTn,nPNd`1 “

 

˝`, ‚m, ‚n,α
(

`,m,nPNd`1,αPR
.

Write N0 :“ tt0utPTn » Tn. We introduce a few notations. Note that each τ P V has a decomposi-
tion of the form

τ “ tn ‹
a

‹
i“1

Ipipτ iq “ tn ‹ Ip1pτ 1q ‹ ¨ ¨ ¨ ‹ Ipapτ aq (6.3)

with tn P N, p1, . . . , pa P Nd`1, and τ 1, . . . , τ a P V. Taking care of the number of automorphisms
of τ that live it fixed, for τ of the form

τ “ tn ‹
b

‹
j“1

`

Iqj pσjq
˘‹mj

, (6.4)

with pqi,σiq ‰ pqj ,σjq for any i ‰ j, define inductively

Spτ q :“ n!
b
ź

j“1

Spσjq
mj mj !.

Then we define the paring xx¨, ¨yy between V and V ˚ by
xxτ ,σ˚yy :“ Spσqσ˚pτ q (6.5)

for τ ,σ P V. We see V ˚ as a part of the algebraic dual of V . (As V is infinite-dimensional V ˚ is
not equal to the full algebraic dual of V .) The ‘copy’ space V ˚ will play an important role in the
second half part of this section.

§ Canonical model

Given a smooth noise ζ P C8pR ˆ Rdq, we define the canonical operator Πζ on the whole of V
requiring that it is multiplicative and setting, for all z “ pt, xq P Rˆ Rd,

Πζp˝nqpzq “ znζpzq, Πζp‚nqpzq “ Πζp‚n,αqpzq “ zn,

and
pΠζqpIpτ q “ BpKpΠζτ q,

for all n, α, τ , p. The regularity structures we will work with have spaces T and T` that are subsets
of V . Since all functions Πζτ are smooth, the restriction of Πζ to Tă0 defines the canonical model

Mζ “
`

Πζ , gζ
˘
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on the regularity structure T , from Theorem 19. Things are explicit here as the multiplicativity and
the K-admissibility properties fix the definition of Πζ on all decorated trees in V . Emphasize the
fact that since the map Πζ is multiplicative its associated reconstruction map is also multiplicative.

§ Multi-pre-Lie algebras

We first recall the definition of a multi-pre-Lie algebra, refering the reader to Foissy’s article [31]
for basics on multi-pre-Lie algebras. All we need to know on the subject is the following definition
and the result of Proposition 30 below.

Definition – Let E be a set. A vector space W , equiped with a family p3eqePE of bilinear maps
from W ˆW into W , is called an E-multi-pre-Lie algebra if one has

pa3e bq3e1 c´ a3e pb3e1 cq “ pb3e1 aq3e c´ b3e1 pa3e cq,

for all a, b, c PW , and e, e1 P E.

The two arguments of a pre-Lie product a3e b do not play a symmetric role, and we think here
of a as acting on b via the operator 3e; we read a 3e b from left to right. Here is an example
of E-multi-pre-Lie algebra. Take E finite, identified with t1, . . . , |E|u, and consider the space of
smooth functions on R|E|. Then the family of differentiation operators

GŹe H :“ GBxeH

defines an E-multi-pre-Lie algebra. If E consists of a single element 3, this operator is called a
pre-Lie product, and a vector space equipped with a pre-Lie product is called a pre-Lie algebra.
Any pre-Lie algebra is Lie-admissible, in the sense that the map pa, bq ÞÑ a 3 b ´ b 3 a defines a
Lie bracket. The relevance of the multi-pre-Lie structure in the study of singular stochastic PDEs
comes from Proposition 33 in the next section, as it identifies the components uτ of solutions
u “

ř

uττ regularity structures lifts of a singular stochastic PDEs as E-multi-pre-Lie algebra
morphisms. The next statement is fundamental, and can be proved as Corollary 9 in Foissy’s work
[31] – it was first proved in Proposition 4.21 of Bruned, Chandra, Chevyrev and Hairer’s work [13].
A proof can be found in Appendix C.2.

Proposition 29. The space V ˚ with the operators t e
ñuePE is the free E-multi-pre-Lie algebra

generated by N.

Any morphism from V ˚ into an E-multi-pre-Lie algebra is thus determined by its restriction to
the generators N of V ˚. This is the universal property of the free E-multi-pre-Lie algebra with
generators N. In particular, if two E-multi-pre-Lie morphisms from V ˚ into another E-multi-pre-Lie
algebra coincide on the generators of V ˚ then they are equal.

We define now the multi-pre-Lie structure in the space V ˚. The reason for working on V ˚

rather than on V will appear clearly in Section 6.2 and Section 6.3. The spaces V and V ˚ being
infinite dimensional, the symbol b denotes below the algebraic tensor product of these spaces with
themselves, with no reference to any completion.

Definition – Given e P E, a node v of a decorated tree σ P V, and τ P V, denote by
τ

e
Ñpvq σ,

the element of V obtained by grafting τ on the node v of σ, along an edge of e-decoration e. Define
also

τ
e
ñpvq σ

n
e :“

ÿ

mPNd`1;mďnpvq^e

ˆ

npvq

m

˙

τ
e´m
ÝÝÝÑpvq σ

n´m1v
e P V,

τ
e
ñ σn

e :“
ÿ

vPNσ

τ
e
ñpvq σ

n
e P V,

where 1v is the indicator function of v. Finally, define a linear map e
ñ: V ˚ b V ˚ Ñ V ˚ by

τ˚
e
ñ σ˚ :“ pτ

e
ñ σq˚, τ ,σ P V,

where the map p¨q˚ : V Ñ V ˚ is the linear extension of the map V Q τ ÞÑ τ˚ P V .
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Here is an example
˜

e
ñpvq

n

¸˚

“
ÿ

mďe^n

ˆ

n

m

˙

¨

˝

e ´m

n ´m

˛

‚

˚

,

where v is colored in green.

The space T “ U of the regularity and renormalization structures associated with the generalized
(KPZ) equation is a subspace of V with each space Tβ , T`α , Uβ1 , U´α1 spanned by finitely many rooted
decorated trees. Denote by πU : V Ñ U the canonical projection. The next assumption essentially
means that a piece of a basis element τ P B is also a basis element and that the project map πU
behaves consistently with respect to all the grafting products e

ñ.

Assumption (D1) – The homogeneous basis B of T and U is a subset of V with the following
properties.

‚ If τ “ τne P B, then τme P B for any m : Nτ Ñ Nd`1.
‚ If τ “ tn ‹‹

a
i“1 Ipipτ iq P B, then t, τ 1, . . . , τ a P B.

‚ For any τ ,σ P V and e P E,
πU

`

τ
e
ñ pπUσq

˘

“ πU
`

pπUτ q
e
ñ σ

˘

“ πU
`

τ
e
ñ σ

˘

Set
U˚ :“ span

 

τ˚ ; τ P B
(

and denote by πU˚ : V ˚ Ñ U˚ be the canonical projection. Then we define the map
e
ñ5 : U˚ b U˚ Ñ U˚

setting
τ˚

e
ñ5 σ

˚ :“ πU˚
`

τ˚
e
ñ σ˚

˘

.

The proof of the following statement is proved in Appendix C.2.

Proposition 30. Under Assumption (D1), the space U˚ with the operators t e
ñ5uePE is the E-multi-

pre-Lie algebra generated by NX B.

Finally we define an operator playing the role of ‘antiderivative’.

Definition – For each i P t0, 1, . . . , du, define the linear map Òi: V ˚ Ñ V ˚ by

Òi pτ
n
e q
˚ “

ÿ

vPNτ

pτn`ei1ve q˚.

The map Òi sends U˚ into itself under Assumption (D1). We denote by
Ói: V Ñ V

the dual map of Òi: V ˚ Ñ V ˚ under the pairing (6.5), that is,
xx Ói τ ,σ

˚yy “ xxτ , Òi σ
˚yy.

Moreover, we extend the pairing (6.5) into a pairing between V b V and V ˚ b V ˚ setting
xxτ 1 b τ 2,σ

˚
1 b σ

˚
2 yy :“ xxτ 1,σ

˚
1 yy xxτ 2,σ

˚
2 yy.

Under such pairings, denote by
êe: V Ñ V b V,

the dual map of e
ñ : V ˚ b V ˚ Ñ V ˚, that is,

xxêe η, τ
˚ b σ˚yy :“ xxη, τ˚ ñe σ

˚yy, (6.6)
for any τ ,σ,η P V and e P E. The following explicit formulas for Òi and êe are helpful to get a
graphical image. It is used only in the proof of Theorem 44 giving an explicit construction of the
regularity and renormalization structures associated with the generalized (KPZ) equation.
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Lemma 31. For any i P t0, 1, . . . , du and any τ “ τne P V, one has

Ói
`

τne
˘

“
ÿ

vPNτ , eiďnpvq

npvq τn´ei1ve .

Moreover, for any τ “ τne P V and any e P E, one has

êe pτ
n
e q “

ÿ

e“pv,wqPEτ ;epeqďe

1

pe´ epeqq!
pCeτq

n
e b pPeτq

n`pe´epeqq1v
e ,

where Ceτ and Peτ are the two connected components of the graph τzteu, with Peτ containing the
root of τ . The decoration 1v is an indicator function on Nτ .

Proof – We show that the equation (6.6) holds for the map êe defined by second formula. The first
formula is proved by a similar argument. Note that, for any elements τ “ tn ‹‹

a
i“1 Ipipτ iq P V and

σ “ um ‹‹
b
j“1 Iqj pσjq P V, one has

xxτ ,σ˚yy “ 1t“u,n“m,a“b n!
ÿ

sPSa

a
ź

i“1

1pi“qspiqxxτ i,σ
˚
spiqyy, (6.7)

where Sa is the symmetric group of the set t1, 2, . . . , au. For η of the form η “ tn ‹‹
a
i“1 Ipipηiq, by

definition one has

êe η “
ÿ

i

1

pe´ piq!
ηi b tn`e´pi ‹ ‹

j:j‰i

Ipj pηjq `
ÿ

i

ÿ

η1
i b tn ‹ Ipipη

2
i q ‹ ‹

j:j‰i

Ipj pηjq

“:ê1
e η` ê

2
e η,

where êe ηi “
ř

η1
i b η

2
i in the first equality. Hence it is sufficient to show that

xxη, τ˚
e
ñ1 σ

˚
yy “ xxê

1
e η, τ

˚
b σ˚yy, (6.8)

xxη, τ˚
e
ñ2 σ

˚
yy “ xxê

2
e η, τ

˚
b σ˚yy. (6.9)

It is not difficult to show (6.8) directly from (6.7). For (6.9), it is sufficient to consider σ “ tn ‹

‹
a
i“1 Iqipσiq, and for such σ one has

xxη, τ˚
e
ñ2 σ

˚
yy “ n!

d
ÿ

i“1

ÿ

sPSa

1qspiq“pixxηi, τ
˚ e
ñ σ˚spiqyy

ź

j;j‰i

1qspjq“pj xxηj ,σ
˚
spjqyy

and

xxê
2
e η, τ

˚
b σ˚yy “ n!

d
ÿ

i“1

ÿ

sPSI

xxη1
i , τ

˚
yy1qspiq“pixxη

2
i ,σ

˚
spiqyy

ź

j;j‰i

1qspjq“pj xxηj ,σ
˚
spjqyy.

Since
ÿ

xxη1
i , τ

˚
yy xxη2

i ,σ
˚
spiqyy “ xxêe η, τ

˚
b σ˚spiqyy,

the identity (6.9) follows if (6.6) holds for σ “ σi, which leads an induction on the number of edges
contained in σ. The case σ “ tn P N is an easy exercise. B

6.2 Modelled distributions solutions of singular PDEs

The approximate description (6.2) of the fixed point problem (4.12) leads to an explicit formula
for the coefficients of the solution u. Noting that γ ă 2, the solution u of (6.2) is of the form

u “ u11`
d
ÿ

i“1

uXiXi `
ÿ

τPBXTă0

uIpτ q Ipτ q. (6.10)

Inserting such an expansion into (6.2), we see that all coefficients uIpτ q are functions of

u0 :“ u1 P R, and u1 :“ puXiq
d
i“1 P Rd.

Define a derivation D on functions G of pu0, u1q setting
D0G :“ 0, DiG :“ uXiBu0

G p1 ď i ď dq,

and Dn :“
śd
i“0D

ni
i for n “ pniqdi“0 P Nd`1.
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Definition – Define the linear map F from V ˚ to the space of functions of pu0, u1q as follows. For
the primitive trees in N0 set

F p˝˚q :“ fpu0q,

F p‚˚q :“ gpu0, u1q :“ g2pu0qpu1q
2 ` g1pu0qu1 ` g0puq,

F
`

p‚0,αq˚
˘

:“ 0.

(6.11)

For a generic tree

τ “ tn ‹
a

‹
i“1

Ipipτ iq,

define inductively

F pτ˚qpu0, u1q :“

#

a
ź

i“1

F pτ˚i qpu0, u1q

+#

Dn
a
ź

i“1

Bupi

+

F
`

pt0q˚
˘

pu0, u1q, (6.12)

where Bup denotes the derivative with respect to the Xp-component uXp of u – hence Bup :“ 0 if
|p|s ě 2.

Lemma 32. If the modelled distribution u of the form (6.10) solves the fixed point problem (4.12),
then one has

uIpτ q “
1

Spτ q
F pτ˚qpu0, u1q. (6.13)

Proof – We consider here

τ “ ˝n ‹
b

‹
j“1

`

Ipσjq
˘‹mj ;

the other cases are proved by similar arguments. The element τ appears in the term f‹puq ‹Z in the
right hand side of (4.12). Inserting the expansion (6.10) into f‹puq ‹Z, its τ -component is calculated
as

ÿ

τ1,...,τa,

˝n‹‹bj“1pIpσjqq
‹mj“‹ai“1 τ i

f paqpu0q

a!
uτ1 . . . uτa “

f p|n|`m1`¨¨¨`mbqpu0q

n!m1! ¨ ¨ ¨mb!
pu1q

num1
Ipσ1q

¨ ¨ ¨u
mb
Ipσbq

“
1

n!m1! ¨ ¨ ¨mb!
um1
Ipσ1q

¨ ¨ ¨u
mb
Ipσbq

Dn
B
m1`¨¨¨`mb
u0

F p˝˚q.

This should be equal to uτ from identity (4.12). Assuming uIpσjq “ F pσ˚j q{Spσjq inductively, we
have

uIpτq “
1

Spτ q
F pτ˚q.

B

Modelled distributions satisfying identity (6.13) are called ‘coherent’ in [13].

Recall E » Nd`1, and define the family of differential operators
GŹe H :“ G BueH pe P Eq,

acting on smooth functions of pu0, u1q, with u1 “ puXiq
d
i“1. The family tŹeuePE defines an E-multi-

pre-Lie algebra structure.

Proposition 33. The map F is an E-multi-pre-Lie algebra morphism: For any e P E and any
decorated trees τ ,σ in B, one has

F
`

τ˚
e
ñ σ˚

˘

“ F pτ˚q Źe F pσ
˚q. (6.14)

Proof – Assume σ is of the form

σ “ tn ‹
a

‹
i“1

Ipipσiq.
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Then by definition,

τ
e
ñ σ “

ÿ

`

˜

n

`

¸

tn´` ‹ Ie´`pτ q ‹
a

‹
i“1

Ipipσiq `
a
ÿ

i“1

tn ‹ Ipi
`

τ
e
ñ σi

˘

‹ ‹
j;j‰i

Ipj pσjq

“: τ
e
ñ1 σ ` τ

e
ñ2 σ.

Hence
F
`

τ˚
e
ñ σ˚

˘

“ F
`

τ˚
e
ñ1 σ

˚
˘

` F
`

τ˚
e
ñ2 σ

˚
˘

,

where τ˚ e
ñi σ

˚
“

`

τ
e
ñi σ

˘˚. On the other hand, by Leibniz rule,

F pτ˚q Źe F pσ
˚
q “ F pτ˚q

#

a
ź

i“1

F pσ˚i q

+

BueD
n

a
ź

i“1

BupiF pt
˚
q

` F pτ˚q
a
ÿ

i“1

BueF pσ
˚
i q

#

ź

j;j‰i

F pσ˚i q

+

Dn
a
ź

i“1

BupiF pt
˚
q.

It is elementary to show that BueD
nF “

ř

`

`

n
`

˘

Dn´`
Bue´`F . Hence the first term of the right hand

side coincides with F pτ˚
e
ñ1 σ

˚
q. The second term turns out to coincides with F

`

τ˚
e
ñ2 σ

˚
˘

if
(6.15) holds for τ˚ and σ˚i , which leads an induction on the number of edges contained in σ˚. B

Assumption (D1) is a necessary condition for the basis B. The next assumption means that B
is sufficiently large to describe all terms in the right hand side of (6.2).

Assumption (D2) – The homogeneous basis B of T and U contains all strongly conform trees –
see Section 9.1 for the definition.

Assumptions (D1) and (D2) is jointly called assumption (D). Assumption (D2) ensures that
F pτ q “ 0 for any τ P VzB. Indeed, if τ is not strongly conform and does not have any node with
‚¨,α decoration, then τ have an edge Ip with |p|s ě 2 or have a node with at least three leaving
edges Ip with |p|s “ 1. Since F p‚˚q is at most quadratic with respect to u1, we have F pτ q “ 0.
We define

Υ :“ F |U˚ .

By assumption 2, we can conclude that Υ is E-multi-pre-Lie algebra morphism on the E-multi-pre-
Lie algebra pU˚, t e

ñ5uePEq.

Proposition 34. The map Υ is an E-multi-pre-Lie algebra morphism: For any e P E and any
decorated trees τ ,σ in B, one has

Υ
`

τ˚
e
ñ5 σ

˚
˘

“ Υpτ˚q Źe Υpσ˚q. (6.15)

Proof – Since Υ ˝ πU˚ “ F ˝ πU˚ “ F ,
Υ
`

τ˚
e
ñ5 σ

˚
˘

“ F
`

τ˚
e
ñ σ˚

˘

“ F pτ˚q Źe F pσ
˚
q “ Υpτ˚q Źe Υpσ˚q.

B

The next proposition is proved by an induction similar to the induction used in the proof of
Proposition 33, noting that Di satisfies Leibniz rule.

Proposition 35. For any i P t0, 1, . . . , du and τ P V, one has
F p Òi τ

˚q “ DiF pτ
˚q.

and for τ P B,
Υp Òi τ

˚q “ DiΥpτ
˚q. (6.16)

6.3 Renormalization structure over a multi-pre-Lie algebra

We now come to the main result of [13] giving a dynamical meaning to the renormalization
operations on models associated with elements k P G´ad of the renormalization group and more
generally to elements k P G´. We keep working on the example of the generalized (KPZ) equation.
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In Theorem 44 in Section 9, we show that one can choose U stable under all the splitting maps
êe, that is

êe pUq Ă U b U (6.17)
for any e P E. The restricted map

ê5e:“ pêeq|U : U Ñ U b U

is then the dual of the map e
ñ5. The following assumption is thus to be understood as a constraint

on which renormalization schemes δ can be used.

Assumption (D3) – For any e P E, the space U is stable under êe, and one has
`

Idb ê5e
˘

δ “Mp13q
`

δ b δ
˘

ê5e . (6.18)
and

δ ˝ Ói“
`

Idb Ói
˘

δ (6.19)

Identity (6.18) is the E-multi-pre-Lie version of the compatibility condition (5.7) between the
splitting map ∆ of a regularity structure and a renormalization splitting δ. Recall that any char-
acter k of U´ defines a linear map rk “ pkb Idqδ : U Ñ U . Denote by rk˚ : U˚ Ñ U˚ the dual map
of rk under the pairing (6.5). Anticipating over Section 9, say here that ‚0,α is used to denote the
result of extracting from a decorated tree τ the entire tree, but keeping track of the homogeneity
α “ |τ | of the tree that was removed. Using the duality relation defining rk˚ and the definition of
rk we see that

rk˚p˝˚q “ ˝˚, rk˚p‚˚q “ ‚˚,

and
rk˚

`

‚0,α
˘

“ 0

for α ą 0, and
rk˚

`

‚0,α
˘

“
ÿ

τPB,|τ |“α

kpτq

Spτq
τ˚,

for α ă 0. The following result is part of Proposition 4.18 in Bruned, Chandra, Chevyrev and
Hairer’s work [13]. It is the reason why we insisted on making a difference between U and U˚, to
emphasize the dual action of rk.

Proposition 36. Under the compatibility assumption (D3), given any character k on U´, the map
rk˚ is an E-multi-pre-Lie morphism: For any edge type e P E, and any τ ,σ P B, one has

rk˚pτ˚q
e
ñ5

rk˚pσ˚q “ rk˚pτ˚
e
ñ5 σ

˚q,

and
rk˚˝ Òi“Òi ˝rk

˚ p1 ď i ď dq. (6.20)

Proof – We prove the dual identities writing

êe ˝ rk “ pkb êeqδ
(6.18)
“

´

k b Idb Id
¯

Mp13q
`

δ b δ
˘

êe“

´

`

k b Id
˘

δ b
`

k b Id
˘

δ
¯

êe“
`

rk b rk
˘

êe,

and
Ói ˝ rk “ pkb Óqδ

(6.19)
“ pk b Idqδ ˝ Ói“ rk ˝ Ói .

B

Pick a character k on U´. For primitive trees t P N0 define

F pkqpt˚q :“ F
´

rk˚pt˚q
¯

, (6.21)

so we have

F pkqp˝˚q “ fpu0q, F pkqp‚˚q “ gpu0, u1q, F pkq
`

p‚0,αq˚
˘

“ 1αă0

ÿ

τPBXUα

kpτ q

Spτ q
F pτ˚q.

For a tree
τ “ tn ‹

a

‹
i“1

Ipipτ iq,
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define inductively the functions of pu0, u1q

F pkqpτ˚qpu0, u1q :“

#

a
ź

i“1

F pkqpτ˚i qpu0, u1q

+#

Dn
a
ź

i“1

Bupi

+

F pkqpt˚qpu0, u1q, (6.22)

similarly to (6.12). The map F pkq is an E-multi-pre-Lie morphism with respect to t e
ñuePE by the

same proof as the proof of Proposition 33. Recall from Section 2.4 the definition of the nonlinear
image of a T -valued function. We remark in the following proposition that the family tF pkqpτ˚quτPB
is essentially contained in the original family tF pτ˚quτPB. The notations in the next statement
are all defined in Section 9.2; the reader can skip it now and come back to it later.

Proposition 37. Let k be a character of U´. For any τ P B, the function F pkqpτ˚q is represented
as a linear combination of the functions F pσ˚q, where σ “ σn

e runs over all elements of B without
‚¨,α decorations and such that

τ “ pσ{redϕq
rn´nϕsϕ,opnϕ`πe

1
Bϕ,eq

e`e1
Bϕ

for some subforest ϕ of σ, nϕ : Nϕ Ñ Nd`1 with nϕ ď n, and e1Bϕ : BϕÑ Nd`1.

Proof – It is sufficient to consider τ of the form

τ “ ‚n,α ‹
a

‹
i“1

Ipipτ iq.

Then by definition, F pkqpτ˚q is a linear combination of the functions of the form
#

a
ź

i“1

F pσ˚i q

+

Dn
a
ź

i“1

BupiF pη
˚
q,

where η P BXUα. By an elementary formula Dn
Bup “

ř

`ďp^np´1q`
`

n
`

˘

Bup´`D
n´` and by Proposition

35, the above function is a linear combination of the functions
#

a
ź

i“1

F pσ˚i q

+

a
ź

i“1

Bupi´`i
F pÒn´

řa
i“1 `i η˚q.

By a similar proof to that of Proposition 33, we can show that the above function is equal to

F
´

ÿ

v1,...,vaPNη

`

τ 1
p1´`1
ñ pv1q pτ 2

p2´`2
ñ pv2q ¨ ¨ ¨ pτ a

pa´`a
ñ pvaq ηq ¨ ¨ ¨ q

˘˚
¯

The trees inside F produce τ when we contract η as in the explicit formula of D´ in Section 9.2. B

As a result of Proposition 37, we have that F pτ q “ 0 for any τ P VzB, since τ is an element of
B if and only if τ is a contraction of a strongly conform trees without ‚¨,α decoration. This ensures
that the map

Υpkq :“ F pkq|U˚ ,

is an E-multi-pre-Lie morphism on U˚ with respect to t e
ñ5uePE. Moreover, denoting by S the

subspace of T spanned by t‚nunPNd`1 Y IpBq, we have that for any t P N0 and any function
u : Rd`1 Ñ S, the function

`

F pkqpt˚q
˘‹
pu, Buq ‹ t : Rd`1 Ñ V

is actually T -valued.

Corollary 38. One has Υ ˝ rk˚ “ Υpkq, for all k P G´.

Proof – It follows from Propositions 33 and 36 that the map Υ ˝ rk˚ is an ( e
ñ5 vs Źe) E-multi-pre-Lie

morphism. Because of Proposition 37, the map Υpkq is also an ( e
ñ5 vs Źe) E-multi-pre-Lie morphism.

Hence it is sufficient to show that they are equal on the generators of U˚, that is,
F
`

rk˚ptnq˚
˘

“ F pkq
`

ptnq˚
˘
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for any pt, nq P Tn b Nd`1. The case n “ 0 is given by definition (6.21). For n “ pniqdi“0 P Nd`1, by
writing Òn:“

śd
i“0 Ò

ni
i , we have

F
`

rk˚ptnq˚
˘

“ F
`

rk˚pÒn t˚q
˘ (6.20)
“ F

`

Ò
n
prk˚t˚q

˘ (6.16)
“ DnF

`

rk˚t˚
˘ (6.21)
“ DnF pkqpt˚q

“ F pkq
`

ptnq˚
˘

,

using (6.16) and (6.20) in the last equality. B

Given a modelled distribution u P Dγ,ηpT, gq with γ ą 0, set

Fpuq :“ Qď0

˜

ÿ

tPN0

F ptqpu, Buq t

¸

“ f‹puq ‹ Ξ` g‹pu, Buq

and

F pkqpuq :“ Qď0

˜

ÿ

tPN0

`

F pkqpt˚q
˘‹
pu, Buq ‹ t

¸

. (6.23)

Note the appearance in (6.23) of a number of noise symbols ‚0,α, with α ă 0, that have no
counterpart in Fpuq.

Lemma 39. If u is a solution of equation (4.12) then
rk
`

Fpuq
˘

“ F pkq
`

rkpuq
˘

. (6.24)

Proof – Lemma 32 implies that xxFpuq, τ˚yy “ Υpτ˚q, for any τ P B X Tď0. Noting that rk and rk˚

preserve the grading of T , as a consequence of the compatibility condition (5.4), we have

xxrk
`

Fpuq
˘

, τ˚yy “ xxFpuq, rk˚pτ˚qyy “ Υ
`

rk˚pτ˚q
˘

“ Υpkqpτ˚q

for any τ P B X Tď0. Note that assumption (C) yields rkpXn
q “ Xn, and rk

`

Ipτ q
˘

“ I
`

rkpτ q
˘

. Hence

rkpuq “ rk

#

u01`
d
ÿ

i“1

uXiXi ` I
`

Fpuq
˘

+

“ u01`
d
ÿ

i“1

uXiXi `
ÿ

τ

1

Spτ q
Υpkqpτ 1q Ipτ q.

Then by a similar computation as in the proof of Lemma 32, we see that, for trees τ of the form (6.4),
the τ -component of F pkq

`

rkpuq
˘

is obtained by
´

F pkq
`

rkpuq
˘

¯

τ
“

1

n!m1! ¨ ¨ ¨ma!

a
ź

j“1

`

rkpuq
˘mj

Iqj pσjq

#

Dn
a
ź

j“1

B
mj
uqj

+

Υpkqpt˚q “
1

Spτ q
Υpkqpτ˚q,

where the last equality is from the definition (6.22) of Υpkq. This yields

xxF pkq
`

rkpuq
˘

, τ˚yy “ Υpkqpτ˚q,

hence
xxrk

`

Fpuq
˘

, τ˚yy “ xxF pkq
`

rkpuq
˘

, τ˚yy

for any τ P B X Tď0. B

The next statement provides a dynamical picture of the renormalization operation on models. As
its proof will make it clear, it is a consequence of identity (6.24) and Theorem 26, giving in particular
the reconstruction operator of a renormalized smooth model in terms of the unrenormalized smooth
model, together with the multiplicativity property of the canonical model associated with a smooth
noise.

Theorem 40. Let ζ be a smooth noise with canonical model Mζ “ pΠζ , gζq. Given a character
k P G´ad, denote by kMζ “

`

Πζ ˝ rk, gζ ˝ rk`
˘

its associated renormalized K-admissible model. Pick
η P p0, β0` 2s and γ ą ´β0. Given an initial condition v P CηpTdq, let upkq P Dγ

`

T, gζ ˝ rk`
˘

stand
for the solution on p0, t0q to the equation

upkq “
´

K
kMζ ` pK1γq

kMζ
¯´

f
`

upkq
˘

Ξ` g
`

upkq, Bupkq
˘

¯

` Pγv.

Then
upkq :“ R

kMζ
pupkqq
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is the solution on p0, t0q to the well-posed equation
`

Bt ´∆x ` 1
˘

upkq “ f
`

upkq
˘

ζ ` g
`

upkq, Bxu
pkq

˘

`
ÿ

τPBXUα, αă0

kpτ q

Spτ q
F pτ q

`

upkq, Bxu
pkq

˘

started from v.

Proof – The proof is similar to the proof of Proposition 24. The function upkq satisfies the equation

upkqpzq “

ż

p0,tqˆTd
KLpz, wqR

kMζ
´

fpupkqqΞ` g
`

upkq, Bupkq
˘

¯

pwqdw `
`

Pv
˘

pzq,

Since kMζ is a smooth model one has
R
kMζ

pwqpzq “ Πζz

´

rk
`

wpzq
˘

¯

pzq.

for any modelled distribution w P Dα
`

T, gζ ˝ rk`
˘

with α ą 0. Applying Lemma 39 to upkq one has

R
kMζ

”

fpupkqqΞ` g
`

upkq, Bupkq
˘

ı

pzq “ Πζz

”

rk
´

Fpupkqpzq
¯ı

pzq “ Πζz

”

F pkq
´

rk
`

upkqpzq
˘

¯ı

pzq.

We see from the definition of the F pkq that the term F pkqpwq is a sum of functions of the form
HpwqRpBwq,

for smooth functions H : R Ñ R and polynomials R that are at most quadratic. We now use the fact
that since the map Πζ is multiplicative so is its associated reconstruction operator. The latter has
value Πζzp¨qpzq at point z, so we have

Πζz

”

H
`

wpzq
˘

R
`

Bwpzq
˘

ı

pzq “ Πζz
“

Hpwpzqq
‰

pzqΠζz
“

RpBwqpzq
‰

pzq,

with wpzq “ rk
`

upkqpzq
˘

. So Corollary 7 tells us that

Πζz

”

H
´

rk
`

upkqpzq
˘

¯ı

pzq “ H
´´

rk
`

upkqpzq
˘

¯

1

¯

“ H
`

u
pkq
1 pzq

˘

“ H
`

upkqpzq
˘

,

and
Πζz

”

rk
`

Bupkq
˘

ı

pzq “
´

R
kMζ

pBupkqq
¯

pzq “
´

BxR
kMζupkq

¯

pzq “
`

Bxu
pkq

˘

pzq,

giving in the end
Πζz

”

F pkq
´

rk
`

upkqpzq
˘

¯ı

pzq “ F pkq
´

upkq, Bxu
pkq

¯

pzq.

B

Remark – The preceding proof underlines the fundamental role played by the multiplicative property
of the centered naive interpretation operators Πζx. The canonical smooth model Πζ is not the only
multiplicative model that one can associate with a smooth noise ζ and the class of models associated
with ‘preparation maps’ introduced by Bruned in [12] provides a general setting where to obtain the
renormalized equation for a class of renormalization procedures including the procedure implemented
here [6].

7 – The BHZ character

Among all the characters k on U´ that can be used to build a renormalization map rk, Bruned,
Hairer and Zambotti proved in [16] that there is a unique random character that is centered and
translation invariant, in a probabilistic sense, when the smooth noise ζ in the preceding section
is random, centered and translation invariant. We describe it in this section and name it ‘BHZ
character’, after the initials of Bruned, Hairer and Zambotti.

We assume throughout this section that we work with regularity and renormalization structures
satisfying assumptions (A-C). To have a picture in mind, think of the structures associated with
the generalized (KPZ) equation (6.1). Elements of T “ U are thus given by node and edge
decorated trees. Recall from Assumption (C1) that U´ is an algebra generated by Uă0 and a
unit 1´, and if one extends first the splitting map δ : U Ñ U´ b U into an algebra morphism
δ̂ : RrU s Ñ U´ b RrU s, then the splitting map δ´ satisfies

δ´ “ pIdb P´qδ̂|U´ ,
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for an algebra morphism projection map P´ : RrU s Ñ U´. (See Section 9.3 for the details; this
projection map sends in particular ‚ and all the ‚0,α to 1´). Denote by 1U the unit of RrU s, seen
as the empty graph. (We use a distinct notation for 1U and 1´ to emphasize that they do not live
in the same space.) For basis elements τ “ τne and σ “ σm

f of RrU s, we write
σ ă τ

if σ is a strict subgraph of τ , or σ “ τ and m ď n with m ‰ n. (Do not get misled by the notation, σ
may be a product of disjoint subtrees of τ .) Recall from Section 5.2 the notation F for the family of
integral operators and multiplication by a non-null monomial. The following assumption describes
the properties from the splitting map δ that are relevant here. The renormalization structure built
in Section 9 for the generalized (KPZ) satisfies it.

Assumption (E) –

(a) For any τ P Uă0, one has the splitting formula
δτ P P´pτ q b ‚

0,|τ | ` U´τ b U,

where
U´τ :“ span

!

P´pσq P U
´ ; σ ă τ

)

.

(b) For any τ P Uă0 and F P F such that F pτ q P Uă0, one has
δ
`

F pτ q
˘

P pIdb F qδτ ` P´
`

F pτ q
˘

b ‚0,|F pτq| ` J´τ b U,

where J´τ is the ideal of U´ generated by
!

P´
`

F pσq
˘

; F P F , σ P Uă0, σ ă τ
)

.

Property (b) is a refinement of the property (5.13) in Assumption (C1). Note that ‚0,β P Bβ ,
for any β P R. Basis elements of U with 0-homogeneity are not necessarily unique, unlike in
Assumption (A1) on concrete regularity structures. Condition (b) above ensures the existence of
the following map, defined by induction on the order relation ă. Each element τ of U´ has by
definition a unique representative τU in RrU s. Denote by M the multiplication operator on RrU s
and extend it naturally on U´ b RrU s setting Mpτ b σq “MpτU b σq; it takes values in RrU s.

Definition – Under assumption (E), the negative twisted antipode is an algebra morphism
S1´ : U´Ñ RrU s

given recursively by S1´1´ “ 1U and, for every basis element τ P Uă0 by

S1´
`

P´pτq
˘

“ ´M´

`

S1´ b Id
˘

´

δτ ´ P´pτq b ‚
0,|τ |

¯

. (7.1)

The P´pτq generating U´ as an algebra for τ ranging in Uă0, identity (7.1) characterizes indeed
uniquely an algebra morphism. The intuitive meaning of this recursive definition should be clear.
One extracts from τ all possible subdiverging quantities ϕ1, but also extracts from ϕ1 all its
subdiverging quantities, and so on. This formula is close to the Dyson-Salam renormalization
formula for the antipode in Hopf algebras [29]; like the latter, it can be rewritten as a sum over
forests of diverging sub-forests, as in Zimmermann forest formula. This will not be useful here,
and the only thing that matters here is property (7.1). The forest representation is however useful
for the analysis of the convergence of renormalized models [20].

Do not be mislead by the name of S1´: This is not the antipode of a Hopf algebra structure.
Bruned, Hairer and Zambotti named it like that because its defining relation (7.1) looks like the
defining relation (B.1) for the antipode in a Hopf algebra.

Recall from Section 6.2 the definition of the naive interpretation operator Πζ corresponding to
a smooth noise ζ in R ˆ Rd. We consider a random smooth noise ζ, invariant by translation and
centered. Define the character hζ on RrU s by setting hζp1Uq :“ 1 and

hζpτq :“ E
“

Πζτ
‰

p0q (7.2)
for τ P U , and define a character on U´ setting

kζ :“ hζ ˝ S1´.
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The associated ‘BPHZ renormalized’ interpretation operator kζΠζ is defined on U by
kζΠζτ “

`

kζ b Πζ
˘

δτ “
´

phζ ˝ S1´q b Πζ
¯

δτ.

The acronym BPHZ stands for Bogoliubov, Parasiuk, Hepp and Zimmermann, who made deep
contributions to the renormalization problem in quantum field theory. We call ‘BHZ character’,
after Bruned, Hairer and Zambotti, the character kζ on U´. The reason for introducing the
negative twisted antipode operator lies entirely in the following simple computations used in the
proof of the next statement claiming that the BPHZ renormalization associated with the BHZ
character recenters probabilistically the Π map at all points in spacetime. Its proof is taken
from the proof of Theorem 6.17 in Bruned, Hairer and Zambotti’s work [16] on the algebraic
renormalization of regularity structures.

Theorem 41. We work with compatible regularity and renormalization structures under assump-
tions (A-C) and Assumption (E). The character kζ belongs to G´ad, and one has

E
”

`

kζΠζτ
˘

pxq
ı

“ 0 (7.3)

for any τ P Uă0 and x P Rˆ Rd.

Proof – First we show that kζ P G´ad. Let F P F and τ P Uă0 be such that Fτ P Uă0. If F “ Xn
‹

then Fτ is of the form τne and it follows from the definition of the canonical model that ErΠζτne spxq
is a monomial of x with non-null degree

ř

vPNτ
npvq; so it is null at point 0 and hζpFτ q “ 0. Recall

from Section 3.1 that we defined the operator K so that
ż

RˆRd
ypKpx, yq dy “ 0

for all p P Nˆ Nd with |p|s ď 1. This fact was not used so far. We use it here to have
hζ

`

Ipτ
˘

“ 0,

for all p P Nˆ Nd with |p|s ď 1; so hζpFτ q “ 0 for all F P F . Since assumption (E) guarantees that
we have

S1´pFτ q P ´M´

`

S1´ b F
˘

δτ `M´

`

S1´Jτ b U
˘

,

we can conclude that hζ
`

S1´pFτ q
˘

“ 0, by an induction on the size of the graph τ . Hence kζ P G´ad.
– The negative twisteed antipode S1´ is defined so as to have identity (7.3) for x “ 0. Indeed, since
Πζp‚0,β

q ” 1 for all β, one has from the defining relation (7.1) for the twisted antipode, for any
τ P Uă0,

E
”

`

kζΠζτ
˘

p0q
ı

“
ÿ

ϕĲτ

hζ
`

S1´pϕq
˘

E
“`

Πζpτ {´ϕq
˘

p0q
‰

“
ÿ

ϕĲτ

hζ
`

S1´pϕq
˘

hζpτ {´ϕq

“ hζ
´

M
`

S1´ b Id
˘

δτ
¯

“ hζ
`

S1´τ
˘

´

hζp‚0,|τ |
q ´ 1

¯

“ 0.

Recall the homogeneity and grading notions on U and T are different. It is the homogeneity of τ ,
seen as an element of T , that appears in ‚0,|τ |. It is elementary to go from E

“`

kζΠζτ
˘

p0q
‰

“ 0, to
E
“`

kζΠζτ
˘

pxq
‰

“ 0, for all x P R ˆ Rd, using the probabilistic translation invariance property of Πζ .
B

Remark – There is no other character k on U´ than hζ ˝S1´, such that the renormalized naive inter-
pretation operator kΠζ :“ pk b Πζqδ, has property (7.3) of Theorem 41. Note that the cointeraction
identity between δ and δ´ implies that we have

k1‹k2Πζ “ k1p
k2Πζq, (7.4)

for any two characters k1, k2 on U´. The uniqueness claim then amounts to proving that for any
non-null character k ‰ 1, there exists an element τ P U such that E

“`k‹kζ

Πζτ
˘

p0q
‰

‰ 0. See the
second part of the proof of Theorem 6.18 in [16].

Assume now that ζ “ ξε is the regularized version of a random irregular noise ξ, centered and
translation invariant, and write Πε for Πξε . The BHZ character h from (7.2) becomes ε-dependent
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as well. Set
kε :“ hξε ˝ S1´ (7.5)

Identity (7.4) tells us that if the maps kεΠε converge to a limit when ε goes to zero, then for any
character k on U´, the renormalized interpretation map k‹kεΠε is also converging. There is thus
a whole class of converging renormalization schemes indexed by the group of characters of U´, if
there is a single converging renormalization scheme. If we insist on building K-admissible models,
this provides a family of convergent models indexed by the renormalization group G´ad.

Recall the notation Solpξε;F q for the solution to the PDE (1.4) driven by the smooth noise ξε,
associated with a given initial condition. The renormalization group aquires a dynamical meaning
from Theorem 40 if one notices that

!

Sol
´

ξε; Υpk˚kεq
¯)

kPG´
“

!

Sol
´

ξε;
`

Υpkεq
˘

pkq
¯)

kPG´

“

!

Sol
´

ξε;
`

Υpk
1
q
˘

pkεq
¯)

k1PG´
,

for any fixed positive ε, since one has Čk ˚ kε “ rkε ˝ rk1, for k1 “ pkεq´1 ˚ k ˚ kε. This remark tells
us that the family of solutions of the singular stochastic PDE (1.4) is parametrized by the subset
`

Υpkq
˘

kPG´
of the space F of nonlinearities. This remains true at the limit when ε goes to 0. We

will see in the Section 8 that this subset is actually a finite dimensional immersed manifold.

Arrived at that stage, the only piece of the story that is missing to complete a proof of the meta-
theorems from Section 1 is a proof of the fact that one can indeed construct regularity structures
satisfying the different assumptions that we put forward in the course of obtaining the above
results, and to prove that the BHZ renormalized smooth K-admissible models associated with a
regularized noise ξε and the element kε from (7.5) converge in probability to a limit model as the
regularization parameter tends to 0. We tackle the first point in Section 9. The second point is
the object of Chandra & Hairer’s work [20]; we do not treat it here.

8 – The manifold of solutions

We take for granted in this section the convergence result of Chandra & Hairer from [20], and
work with the limit random admissible model pΠ, gq “ M, obtained as a limit in probability of the
renormalized naive models hεMε when ε ą 0 goes to 0. Recall from equality (6.23) the expression
of F pkqpuq, for k P G´ad. Pick η P p0, β0 ` 2s, γ ą ´β0 and an initial condition u0 P CηpTdq. Write
upkq P DγpT, gq for the solution to the equation

upkq “
´

KM ` pK1γqM
¯´

F pkqpupkqq
¯

` Pγu0 “: Ψk

`

upkq
˘

,

and set
upkq :“ RM

`

upkq
˘

.

The family of functions
`

upkq
˘

kPG´ad
coincides with the limit of the family
´

Sol
`

ξε;F
pk˚hεq

˘

¯

kPG´ad

.

Note that Ψk depends linearly, hence smoothly, on k. We saw in Theorem 22 in Section 4 that
given a bounded set of nonlinearities in C4, there exists a positive time horizon t0 such that the
‘integral’ map Ψk is a contraction from Dγ,η

p0,t0q
pT, gq, uniformly with respect to the nonlinearities

in the given bounded set. So the continuous linear map
`

Id ´ BuΨk

˘

, from the Banach space
Dγ,η
p0,t0q

pT, gq into itself has a continuous inverse, given under the form of the classical Neumann
series. The map

`

Id´BuΨk

˘

is thus a continuous isomorphism of Dγ,η
p0,t0q

pT, gq by the open mapping
theorem. It is then a direct consequence of the implicit function theorem that the unique fixed
point upkq of the equation

upkq “ Ψk

`

upkq
˘

defines a smooth function of k P G´ad.
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Proposition 42. The family
 

upkq
(

kPG´ad
forms a finite dimensional immersed submanifold of

CαpRˆ Rdq.

Proof – It suffices from the implicit function theorem to see that Dku has constant rank; this
follows from the linearity of the reconstruction map if we can see that Dku is injective. (The
reconstruction map is not injective without further assumptions.) The linear map Dku sends
TIdG

´
ad into DγpT, gq. But picking h P TIdG

´
ad, and setting v :“ pDkuqphq P DγpT, gq, the

modelled distribution v cannot be null unless h “ 0, since v is the solution to the affine
equation

v “
´

KM ` pK1γqM
¯

ˆ

pF pkqq1puqv `
ÿ

τPBXUα, αă0

hpτ q

Spτ q
F pτ qpu, Buq

˙

.

B

Remark – The use of the implicit function theorem actually shows that the solution u of the equation

u “
´

KM
` pK1γqM

¯´

fpuqΞ` g
`

u, Bu
˘

¯

` Pγu0, (8.1)

is a C1 function of f, g P C4, and a smooth function of f, g, if f, g P C8. This gives a direct access
to Taylor expansions in small noise, where f is replaced by af , for a small positive parameter a, or
if f is the value at a “ 0 of a smooth family fpa, ¨q P C8, as the solution u happens then to be a
smooth function of the expansion parameter a. Elementary classical calculus is used to see that the
derivatives of u with respect to the parameter a are solutions of affine equations obtained by formal
differentiation of equation (8.1) with respect to the parameter. This kind of questions has a long
history, under the name ‘stochastic Taylor expansion’ in a stochastic calculus setting – after seminal
works by Azencott [1] and Ben Arous [11], where it was used together with the stationary phase
method on Wiener space to get heat kernel estimates for elliptic and sub-elliptic diffusions. Inahama
& Kawabi extended the approach to a rough paths setting in [53], and Friz, Gassiat and Pigato made
a first use of this type of ideas in a regularity structures setting in [32]. The present result holds for
all subcritical singular stochastic PDEs, with the above straightforward proof.

9 – Building regularity and renormalization structures

In the end, for the above results to hold, we require from the regularity structure T and the
renormalization structure U that they satisfy the different assumptions introduced above along
the way for different purposes. We summarize them here, with a quick description of what they
are useful for.

Assumption Section What it is useful for

(A1-2) 2.3 Inclusion of the polynomial structure in our regularity structures.
(A3) 2.4 Product between TX and T .
(B1) 3.2 Actions of ∆p`q on Ip`qn .
(B2) 3.5 Induction structure on ∆ for building admissible models.
(C) 5.2 Compatibility between the maps δp`q and Ip`qn .
(D) 6.3 Compatibility between multi-pre-Lie and renormalization structures.
(E) 7 Structure assumption on U´, and induction structure on δ.

Following Bruned, Hairer and Zambotti [16], we describe in this section a setting tailor made
for the study of the generalized (KPZ) equation where all these conditions hold true. We introduce
a homogeneity map on the decorated trees from Section 6.1.

Definition – Let Tn and Te be abstract finite sets, equipped with homogeneity maps |¨| : Tn,Te Ñ R.
‚ On the sets N :“ Tn ˆN and E :“ Te ˆN , the homogeneity maps are extended by

#

|k|n :“ |n| ` |k|s, pn, kq P N,

|`|e :“ |e| ´ |`|s, pe, `q P E.
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‚ The naive homogeneity of a decorated tree τne is defined by

|τne |
1 :“

ÿ

ePEτ

|epeq|tepeq `
ÿ

nPNτ

|npnq|tnpnq.

We start from the sets
Tn “ t‚, ˝u, Te “ tIu,

for an abstract symbol I – we use on purpose the same symbol as the abstract integration map
from Section 3.2. The node type set Tn is enlarged later. The two elements ‚ and ˝ of Tn represent
the monomial 1 “ X0 and the noise Z, respectively. The set Te consists of only one integration
operator I. Each element has homogeneity

| ‚ | “ 0, | ˝ | “ β0, |I| “ 2,

where β0 P p´2, 0q is the regularity of the noise ζ in the equation. (Would the equation under
study involve several noises with different regularities we would introduce several ˝ symbols with
the corresponding homogeneities.) Given that the polynomial structure is needed to encode at a
regularity structure level the term Pu0 describing the propagation of the initial condition, and the
piece of KM ` pK1qM taking values in the polynomial regularity structure, the use of trees with a
node decoration encoding multiplication by polynomials appears as natural. On the other hand,
the use of edge decorations for equations that do not involve derivatives of the solution in their
formulation, like the generalized (PAM) equation

pBt ´∆xqu “ fpuqζ,

may look strange. The necessity to use edge decorations to encode derivatives of quantities of the
form Ip¨q, even in such a case, comes from the renormalization process implemented in this setting,
as the latter involves Taylor expansions.

As said in section 6, the final form of a generic element of our regularity structures will be the
datum of a decorated tree together with a coloring and an additional decoration o : Nτ Ñ Zrβ0s,
which plays an important role in the compatibility condition between regularity and renormaliza-
tion structures from Definition 25. In a nutshell, this additional decoration will keep track of the
naive homogeneity of the ‘diverging’ trees that will be extracted by the renormalization map δ.
This is what will allow to have a δ map satisfying he fundamental conditions

δT
p`q

β Ă U´ b T
p`q

β pβ P Ap`qq

involved in the definition of compatible regularity and renormalization structures. So one should
not be surprised that we will use the naive homogeneity to define the gradings in U and U´ and a
different notion of homogeneity in T and T`, taking into account the o-decorations. The discussion
will be general enough for the reader to see what needs to be added to deal with the general case.

9.1 Rules and extended decoration

Working with the set of all decorated trees as a candidate for a regularity structure is not
reasonable and we first identify a few notions that help clarifying the matter. Recall the abstract
self-explaining formulation

v “ I
´

f‹
`

v
˘

Ξ` g‹
`

v, Bv
˘

¯

` pTXq (9.1)

of the generalized (KPZ) equation. In the present tree setting the ‹ product is given by the joining
operator J on trees. If one wants to make sense of Picard iteration within the concrete regularity
structure, one needs to make sense of a number of recursive relations – recall the subcomodules
introduced in Section 4 and see the pictures in Section 6.1. General constraints of this type come
under the name of rule, that is the definition for each node type n, of constraints on which kind
of tuples of edges tei “ pei´, ei`qui can have tnodepe

i
´q “ n, for all i, in a tree allowed by the rule.

The choice of a rule is determined by the equation under consideration. Consider the right hand
side of equation (9.1). Making sense of the nonlinear term f‹pvqΞ ` g‹0pvq requires that one can
find J

`

Ip¨q, . . . , Ip¨q
˘

Xn or J
`

Ip¨q, . . . , Ip¨q
˘

XnΞ, within the trees allowed by the rule, that is
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the corresponding nodes are of the form

or .

Making sense of the other terms g‹2pvqpBvq2 ` g‹1pvqpBvq requires that one can find
J

`

Ip¨q, . . . , Ip¨q, Ieip¨q
˘

Xn, or J
`

Ip¨q, . . . , Ip¨q, Ieip¨q, Iej p¨q
˘

Xn for some i, j “ 1, . . . , d within
the trees allowed by the rule, so each node of the corresponding elements of C has the form

or .

The operators Iei are represented by the double line in the above picture. Given a rule, a decorated
conform tree is a tree such that all nodes of the tree, except perhaps the root, satisfy the rule.
Denote by

C

the set of conform trees. If all node of the tree satisfy the rule, the tree is called strongly conform.
We denote by

SC

the set of strongly conform trees. A rule is said to be normal if any subtree of a strongly conform
tree is also strongly conform.

To construct regularity and renormalization structures, the rooted decorated trees obtained
from the above iterations are not sufficient. Another important operation is the contraction of
rooted trees, involved in the definition of the splitting maps ∆ and δ. Given a typed rooted tree
τ and a family ϕ of disjoint typed subtrees of τ , we use the notation

τ{redϕ

to denote the typed rooted tree obtained by identifying each subtree τi with a single node ‚ with
red color in the quotient tree. Here is an example, with ϕ in green,

τ “ , τ{redϕ “ .

We allow such an operation for the set SC of strongly conform trees. Precisely, if each connected
component of ϕ belongs to SC, then we assume that τ{redϕ P SC. Hence each element of SC is a
rooted decorated tree with a node type set

TSCnode “ t‚, ‚, ˝u.

The analytic role of ‚ is the same as that of ‚. In particular, the homogeneity of ‚ is 0. This is an
example of the coloring of the tree. Only decorated trees without red color appear in the analysis
of the well-posedness problem (9.1), but colors are used in the definition of the splitting maps in
the renormalization structure.

Recall from assumption (B1) and Section 3.5 that the algebra T` is spanned by elements of
the form

Xn
N
ź

i“1

I`kipτiq, (9.2)

where n P N ˆ Nd, k1, . . . , kN P N , and τ1, . . . , τN P SC. It is convenient to consider an element
like (9.2) as a tree by interpreting I`k as the planting operator like Ik and the product

ś

as the
tree product J . To distinguish such trees from elements of SC, we give a blue color to their roots,
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encoding in this way the ` sign in I`.

k1 kN

n (9.3)
The set C consists of such trees, where we see that the rule is broken at the root. This is because
C is only conform, not strongly conform. Each element of C is thus a rooted decorated tree with
a node type set

TCnode “ t‚, ‚, ‚, ˝u.

A node of a conform tree has the type ‚ if and only if it is a root. The homogeneity of ‚ is 0. The
trees with a blue root will only be involved in the description of the space T`.

A rule is said to be subcritical if for any γ P R, only finitely many elements of SC have naive
homogeneity less than γ. A complete rule will guarantee that a rooted decorated tree obtained
from the contraction of a strongly conform tree by extracting ‘diverging’ pieces, and changing the
decorations accordingly, will still be strongly conform. Proposition 5.21 in [16] ensures that any
normal subcritical rule can be extended into a normal subcritical complete rule. We take this result
for granted and do not reprove it here. The above rule on the set of decorated trees is normal,
subcritical and complete.

To construct compatible regularity and a renormalization structures we introduce an additional
decoration. Denote by N red

τ the subset of Nτ consisting of the nodes with type ‚.
Definition – A tree with extended decoration is a rooted decorated tree τne with a map

o : N red
τ Ñ Zrβ0s.

We write τ “ τn,oe for a generic tree with extended decoration. The extended homogeneity of
such a tree is defined by

ˇ

ˇτn,oe

ˇ

ˇ :“
ÿ

ePEτ

ˇ

ˇepeq
ˇ

ˇ`
ÿ

nPNτ

ˇ

ˇnpnq
ˇ

ˇ`
ÿ

nPNred
τ

opnq.

We extend the naive homogeneity to the set of decorated trees with an extended decoration setting
ˇ

ˇτn,oe

ˇ

ˇ

1
:“

ˇ

ˇτne
ˇ

ˇ

1
.

Note here that only trees without decoration, that is o “ 0, appear in the analysis of the well-
posedness problem (9.1). Indeed, the trees without o-decoration are stable under the coproducts
p∆`,∆q defined below. The o-decoration is only involved in the analysis of the renormalization
procedure and the associated convergence problem. We define the set

SC
of strongly conform trees with o-decoration as the minimal set which contains SC and such that
the vector space spanned by SC is stable under all the coproducts defined below. (One could also
consider SC as a set of rooted decorated trees with node type set

TSC
node “ t‚, ˝u Y t‚

¨,αuαPZrβ0s.

We used such an identification in Section 6. In the present section we treat o as a decoration,
rather than as part of a node type.) Similarly, we define

C
as the set of decorated trees with extended decorations of the form (9.2), where τ1, . . . , τN P SC.
We use the bold symbol τ to denote a generic element of SC or C. The above rule on the set of
extended decorated trees is normal, subcritical and complete. (The subcriticality of the rule on this
set of trees with extended decorations comes from the fact that, for any fixed γ P R, the decoration
α of trees with extended homogeneity less than γ, will only range in the set of homogeneities of
subtrees of strongly conform trees τne with homogeneity less than γ.)
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9.2 Coproducts

We define coproducts in the spaces of rooted decorated trees. This requires first that we define
what we mean by ‘subtrees’ and ‘subforests’. Recall that the type sets

TSCnode “ t‚, ‚, ˝u, TCnode “
 

‚, ‚, ‚, ˝
(

, Tedge “ tIu
are fixed. Given a typed rooted tree τ , a nonempty connected subgraph of τ is called a subtree
if it inherits from τ its type map. Any possibly empty family of disjoint subtrees of τ is called a
subforest. Given a rooted tree τ and a subforest ϕ “

 

τ1, . . . , τm
(

, we use the notation
τ{ϕ

to denote the rooted tree obtained by identifying each subtree τi with a single node with node type
‚ in the quotient tree. Precisely, writing y „ϕ z if y and z are in the same connected component of
ϕ, we define τ{ϕ as the tree consisting of the node set Nτ { „ϕ and the edge set Eτ zEϕ. Moreover,
we write

τ{redϕ, or τ{blueϕ

if we give a corresponding color to the nodes of ϕ in the quotient tree.
‚ For any function f : Nτ Ñ Nˆ Nd, define the function rf sϕ on Nτ{ϕ by

rf sϕ
`

rxs
˘

:“
ÿ

y„ϕx

fpyq,

where rxs denotes the equivalence class of x P Nτ .
‚ Denote by Bϕ the leaves of ϕ, that is, the set of edges px, yq P Eτ such that x P Nϕ and
y P Nτ zNϕ. For any function g : BϕÑ Nˆ Nd, define the function πg on Nτ by setting

pπgqpxq :“
ÿ

e“px,yqPBϕ

gpeq.

‚ For any decorations nϕ and eϕ on ϕ, define the function opϕ, nϕ, eϕq : Nτ{ϕ Ñ Zrβ0s by

o
`

ϕ, nϕ, eϕ
˘`

rτjs
˘

“

ˇ

ˇ

ˇ
pτjq

nϕ|τj
eϕ|τj

ˇ

ˇ

ˇ

1

for each 1 ď j ď m, and opϕ, nϕ, eϕq “ 0 outside rϕs.
Define

T :“ spanpSCq,
T` :“ spanpCq,
U´ :“ RrSCs.

Note that T` is an algebra with the tree product and unit 1` :“ ‚0, and U´ is an algebra with
the forest product and unit 1´ :“ H. The space T` will be built from the side space T` and
the space U´ from the side space U´. Similarly, the different splitting maps defining a regularity
structure and a renormalization structure are built from splitting maps taking values in, or defined
on, the spaces T,T`,U´.

Definition – We introduce three splitting operators.
1. The linear map

D : T Ñ T b T`

is defined for τn,oe P SC by

Dτn,oe :“
ÿ

µ

ÿ

nµ,e1Bµ

1

e1Bµ!

ˆ

n

nµ

˙

µ
nµ`πe

1
Bµ,o|µ

e b
`

τ{blueµ
˘rn´nµsµ,o|τzµ
e`e1

Bµ

, (9.4)

where the first sum is over all subtrees µ of τ which contains the root of τ , and the second
sum is over functions n : Nµ Ñ NˆNd, with nµ ď n and functions e1Bµ : BµÑ NˆNd. The
algebra morphism

D` : T` Ñ T` b T`,
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is defined by formula (9.4) for τn,oe P C.

2. The algebra morphism
D´ : U´ Ñ U´ b U´

is defined by D´p1´q :“ 1´ b 1´, and for τn,oe P SC

D´
`

τn,oe

˘

:“
ÿ

ϕ

ÿ

nϕ,e1Bϕ

1

e1Bϕ!

ˆ

n

nϕ

˙

tMϕu
nϕ`πe

1
Bϕ,o|ϕ

e b
`

τ{redϕ
˘rn´nϕsϕ,rosϕ`opϕ,nϕ`πe

1
Bϕ,eq

e`e1
Bϕ

,

where the first sum is over all subforests ϕ of τ which contains all red nodes of τ , and the
sum over nϕ and e1Bϕ is taken as in item 1 of the present definition.

3. The algebra morphism
D
´

: T` Ñ U´ b T`

is defined by the same formula as D´, with the first sum restricted to subforests ϕ which
are disjoint from the root of τ .

As suggested by the target spaces of the preceding maps, the splitting map ∆ will be constructed
from D and the map ∆` from D`, the maps δ and δ´ from D´, and the map δ` from D

´. Only
trees with blue roots appear in the right hand side of the tensor products defining D. This is
consistent with the fact that the trees with blue roots will represent later elements of T`. The
restriction on the choice of ϕ in the definition of D

´ ensures that it takes values in U´ b T` –
recall that the root of a conform tree is ‚, and that the multiplicative property

D
´
pτσq “

`

D
´
τ
˘`

D
´
σ
˘

holds. This reflects the fact that the product of two functions
gpτ q gpσq, τ ,σ P C

does not cause any new renormalization.

Remark – Keep in mind that the elements of U´ are meant to be evaluated by characters of U´,
and turned to numbers, while elements of U are meant to be turned to distributions. This is done
jointly in a renormalized naive model pk b Πζqδ. Recall that the problem of renormalization comes
from the fact that the kernel of the operator K explodes on the diagonal. The building block of
the renormalization operations δ and δ´ is best understood in the light of the following archetype
problem. Let g : pr0, 1sdqn Ñ R be a function that is smooth outside the deep diagonal diag :“

 

z “

pz1, . . . , znq P pr0, 1s
d
q
n; z1 “ ¨ ¨ ¨ “ zn

(

, near which it behaves as |z´ pz1, . . . , z1q|
´a, for an exponent

a ą d. The function g is not integrable in any neighbourhood of the deep diagonal, so it only makes
sense as a distribution on pr0, 1sdqnzdiag

ż

pr0,1sdqn
gpzqfpzqdz,

for f smooth, with support with empty intersection with the deep diagonal. Can we define a distri-
bution Λ on pr0, 1sdqn that extends this distribution? This can be done defining Λ on pr0, 1sdqn

pΛ, ψq “

ż

pr0,1sdqn
gpzq

ˆ

ψpzq ´ ψpz1q ´ ¨ ¨ ¨ ´
pz´ z1q

ra´ds

ra´ ds!
ψpra´dsqpz1q

˙

dz,

for any smooth function ψ on pr0, 1sdqn. This formula defines indeed a distribution, which coincides
with the distribution associated with g outside the deep diagonal, since the ψr`spz1q are null for
functions with compact support with null intersection with diag. Taylor expansion appears as the
building block of this extension procedure. In this parallel, τ has two pieces, g and f , so the role of
ϕ in D´ would be played by either of them, and the role of the projector p´ in δ´, defined below,
would select only the diverging term. The term ϕn b pτ{ϕqn in δ´τ would precisely correspond to a
term gpzq pz´z1q

n

n!
f pnqpz1q in the integral defining Λ. A formula like the above defining relation for

D´ appears if one deals with a multiple integral where several subintegrals define functions of their
external variables of the same kind as g, and one uses a similar kind of extension procedure as above.

The following lemma is proved in Appendix C.3.
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Lemma 43. One has the coassociativity formulas
pDb IdqD “ pIdb D`qD,

pD` b IdqD` “ pIdb D`qD`,

pD´ b IdqD´ “
`

Idb D´
˘

D´,

pD´ b IdqD´
“
`

Idb D
´˘

D
´
.

Moreover, one has the cointeraction formulas

Mp13q
`

D´ b D
´˘

D “ pIdb DqD´,

Mp13q
`

D
´
b D

´˘

D` “ pIdb D`qD
´
.

9.3 Regularity and renormalization structures

We define the Hopf algebra parts of regularity and renormalization structures, from the side
spaces T` and U´. We use the shorthand notation I`n pτq to denote the tree Inpτq with a blue
root, with Inpτq standing for Ipτq with decoration n on the edge outgoing from the root. We
define subsets C` Ă C and SC´ Ă SC, by

C` :“
!

XnJ
`

I`m1
pτ 1q, . . . , I`mN pτ bq

˘

P C ;
ˇ

ˇI`mj pτ jq
ˇ

ˇ ą 0, for any j “ 1, . . . , b
)

,

SC´ :“
!

τ P SC ; |τ |1 ă 0
)

and set
T “ U “ spanpSCq,
T` :“ spanpC`q,
U´ :“ RrSC´s.

Note the use of the two notions of homogeneity in these definitions, the extended homogeneity
| ¨ | for T and T`, and the naive homogeneity | ¨ |1 for U and U´. Denote by

p` : T` Ñ T`

the canonical projection, and define an algebra morphism
p´ : U´ Ñ U´

setting

p´pτ q :“

$

’

&

’

%

1´, for τ “ 1´, ‚
0,α,

τ , for τ P SC´,
0, for τ P SCz

!

SC´ Y t‚0,αuαPZrβ0s

)

.

Definition – Define the linear map s
∆ :“

`

Idb p`
˘

D : T Ñ T b T`,

and
∆` :“

`

p` b p`
˘

D
`
|T` : T` Ñ T` b T`.

Define the linear maps
δ :“

`

p´ b Id
˘

D´|U : U Ñ U´ b U,

and
δ´ :“

`

p´ b p´
˘

D´|U´ : U´ Ñ U´ b U´.

Finally set
δ` :“ pp´ b IdqD´

|T` : T` Ñ U´ b T`.

It follows from the multiplicativity of p˘ that ∆` and δ˘ are algebra morphisms. The assump-
tion p´p‚

0,oq “ 1´, is needed to ensure the formulas
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δτ “ 1´ b τ `
ÿ

|ϕ|ă0

ϕb pτ {ϕq,

δ´σ “ 1´ b σ ` σ b 1´ `
ÿ

|σ|ă|ψ|ă0

ψ b pσ{ψq

for τ P SC and σ P SC´. Excluding planted trees from SC´ ensures the identity
δIkpτ q “ pIdb Ikqδτ .

This is a requirement of assumption (C), which ensures the admissibility of the renormalized model.

Theorem 44. Set
T :“

`

pT`,∆`q, pT,∆q
˘

,

U :“
`

pU´, δ´q, pU, δq
˘

.

(a) T is a regularity structure satisfying assumptions (A) and (B), with the grading | ¨ |.
(b) U is a renormalization structure satisfying assumption (E), with the grading | ¨ |1.
(c) T and U are compatible and satisfy assumption (C).
(d) The compatibility assumption (D) between the splittings ê5e and δ holds true.

Proof – Write as shorthand
Dτ or D`τ “

ÿ

i

σi b ηi,

D´τ or D
´
τ “

ÿ

j

ϕj bψj ,

and note that the following stability formulas of the naive and extended homogeneities. One has
|τ | “ |σi| ` |ηi|, (9.5)
|τ |1 “ |ϕj |

1
` |ψj |

1, |τ | “ |ψj | (9.6)

for each i and j. Here we define |1´|1 :“ 0.

(a) By the first identity of (9.5),
pp` b p`qD

`p` “ pp` b p`qD
`

holds on T`. Then one has the comodule property of ∆ as follows.
p∆b Idq∆ “

`

Idb p` b Id
˘

pDb IdqpIdb p`qD
“

`

Idb p` b p`
˘

pDb IdqD

“
`

Idb p` b p`
˘

pIdb D`qD

“
`

Idb p` b p`
˘

pIdb D`qpIdb p`qD

“ pIdb∆`
q∆.

The coassociativity of ∆` is obtained similarly. One gets for free the existence of an antipode on T`
from the fact that T` is a connected graded bialgebra – see Proposition 46 in Appendix B.

(b) The comodule properties of δ and δ´ are obtained by the similar way to (a), since
pp´ b p´qD

´p´ “ pp´ b p´qD
´

holds on U´, by identity (9.6). By definition, 1´ is the only element in U´ of 0 homogeneity, so U´
is a connected graded bialgebra.

(c) We prove the cointeraction property

Mp13q
pδ b δ`q∆ “ pIdb∆qδ;

the proofs of other properties are left to readers. See also Proposition 28. The second identity of (9.6)
yields

δ` ˝ p` “ pIdb p`qδ`
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on T`. Thus we have
Mp13q

pδ b δ`q∆ “Mp13q
`

δ b pδ` ˝ p`q
˘

D

“Mp13q
´

p´ b Idb p´ b p`
¯

`

D´ b D
´˘

D

“
`

p´ b Idb p`
˘

Mp13q
`

D´ b D
´˘

D

“
`

p´ b Idb p`
˘

pIdb DqD´

“
`

Idb∆
˘

δ.

(d) Recall the explicit formula for the map êe, from Lemma 31. It is obvious that U is stable under
êe. Define

ê pτn,oe q :“
ÿ

σPApτq

ÿ

nσ,e
1
Bσ

1

e1
Bσ!

˜

n

nσ

¸

pτ{σq
n´nσ,o|τzσ

e`e1
Bσ

b σ
nσ`e1Bσ,o
e ,

where Apτq :“ tPeτuePEτ . Comparing this with the definition of ∆`, it is not difficult to show the
equality

Mp13q
`

δ b δ
˘

ê“ pIdb êqδ
proceeding as in the proof of point (c). Note that the contracted tree τ{σ is always planted. Let pe
be the canonical projection on the set of planted trees η with

npρηq “ 0, epeηq “ e,

where eη is the only one edge leaving the root ρη, and let c be the map sending the tree of the form
Inpτq to τ . Then

ê
5
e“ pc ˝ pe b Idq ê .

on U . Since it is elementary to show
pIdb cqδ “ δ ˝ c,

pIdb peqδ “ δ ˝ pe,

the compatibility condition follows by writing

Mp13q
pδ b δq ê5e “Mp13q

´

`

Idb c ˝ pe
˘

δ b δ
¯

ê

“
`

Idb c ˝ pe b Id
˘

Mp13q
pδ b δq ê

“
`

Idb c ˝ pe b Id
˘`

Idb ê
˘

δ “ pIdb ê5eqδ.

B

9.4 Examples

Some examples are provided in this section.

– The renormalization of the singular PDE. For simplicity, consider the equation
pBt ´∆x ` 1qu “ fpuqζ ` gpuqpBxuq

2

with the noise ζ P C´1´κ for sufficiently small κ ą 0. Theorem 40 yields that, for any k P G´ad one
has the renormalized equation

pBt ´∆x ` 1qupkq “ fpupkqqζ ` gpupkqqpBxu
pkqq2

` kp˝qfpupkqq ` kp˝1qf 1pupkqqBxu
pkq ` 2k

´ ¯

fpupkqqgpupkqqBxu
pkq

` k
´ ¯

fpupkqqf 1pupkqq ` k
´ ¯

f2pupkqqgpupkqq.

More terms are needed when ζ P C´3{2´κ.

– The table below is the list of strongly conform trees associated with the generalized (KPZ)
equation (6.1), without red nodes. Fix d “ 1 for simplicity. Fix also β0 “ ´3{2´ κ for sufficiently
small κ ą 0. The double line || represents the edge with e-decoration p0, 1q P N ˆ N. The dots ˝1

and ‚1 represent the nodes with n-decoration p0, 1q P Nˆ N.
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– Here are some examples of the actions of splitting map D´. The dot ‚pαq represents the node
with o-decoration α P Zrβ0s.

D´˝ “ 1´ b ˝ ` ˝ b ‚pβ0q,

D´ “ 1´ b ` ˝ b
pβ0q

` ‚ b p0q ` ˝ ‚ b
pβ0q

p0q ` b ‚pβ0 ` 1q.

For larger trees, it is inconvenient to write down all possible terms. Note that some of them
vanishes by the application of p´ or Πζ . Omitting them by p¨ ¨ ¨ q, one has for example

D´ “ 1´ b ` b p2β0 ` 3q ` b
p2β0 ` 3q

` b ‚p4β0 ` 6q` p¨ ¨ ¨ q.

Homogeneity Rooted decorated trees

β0 “ ´3{2´ κ

2β0 ` 2 “ ´1´ 2κ

3β0 ` 4 “ ´1{2´ 3κ

β0 ` 1 “ ´1{2´ κ 1

4β0 ` 6 “ ´4κ

2β0 ` 3 “ ´2κ
1

1 1

1
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A – Summary of notations

The following is a summary of notations used in several sections.

Notations Section Meaning

T “
`

pT`,∆`q, pT,∆q
˘

2.2 (Concrete) regularity structure.
B`, B 2.2 Bases of T` and T .
S` 2.2 Antipode of T`.
G`, ph 2.2 Character group of T`, and an action of h P G` on T .
Rˆ Rd, N 2.3 Space or spacetime domain and multi-index set.
dp¨, ¨q, | ¨ |s 2.3 Scaled metric and scaled degree.
`

T`X , TX
˘

,
`

B`X ,BX
˘

2.3 Polynomial regularity structure and their bases.
Dγ,η
p0,tq 4.3 Singular modelled distributions on the time interval p0, tq.

U “
`

pU´, δ´q, pU, δq
˘

5.1 Renormalization structure.
G´, rk 5.1 Character group of U´, and an action of k P G´ on U .
kM 5.2 Renormalized model.
τ , Nτ , Eτ , ρτ 6.1 Rooted tree, node set, edge set, and root.
V , V 1 6.1 Set of all rooted decorated trees, and its copy set.
e
ñ, e

ñ5 6.1 Grafting operator V ˚ b V ˚ Ñ V ˚, and its projection on U˚.
Mζ “

`

Πζ , gζ
˘

6.2 Canonical model associated with a smooth noise ζ.
êe, ê5e 6.3 Dual map of ñe, and its restriction to U .
S1´ : U´ Ñ RrU s 7 Twisted negative antipode.
SC 9.1 Strongly conform fully decorated trees.
C 9.1 Conform fully decorated trees.

B – Basics from algebra

We recall some basics of bialgebras, Hopf algebras, and comodules without proofs. See [65, 59,
30] for details. Note that, for any two algebras A and B with units 1A and 1B respectively, the
tensor space AbB is also an algebra with the product

pa1 b b1q ¨ pa2 b b2q :“ pa1a2q b pb1, b2q, pa1, a2 P A, b1, b2 P Bq

and with unit 1A b 1B .

Definition – A Bialgebra pB,M,1,4, θq is a 5-tuple of the following components.
‚ An algebra B with product M : B bB Ñ B, and unit 1.
‚ An algebra morphism 4 : B Ñ B bB satisfying the coassociativity

p4b Idq4 “ pIdb4q4.
‚ An algebra morphism θ : B Ñ R, satisfying

pθ b Idq4 “ pIdb θq4 “ Id,
where we identify ab τ “ τ b a “ aτ , for any a P R and τ P B.

The map 4 is called a coproduct, and the map θ is called a counit. An algebra morphism
S : B Ñ B, such that

MpIdb Sq4 “MpS b Idq4 “ θp¨q1 (B.1)
is called an antipode. A bialgebra equipped with an antipode S is called a Hopf algebra.

The counit θp¨q is traditionally denoted εp¨q. We use a different letter as ε already stands for
a regularisation parameter in this work. The following result gives a sufficient condition for a
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bialgebra to be a Hopf algebra. A bialgebra B is called graded if it is a direct sum
À

λPΛBλ of
vector spaces such that

‚ Λ be a locally finite subset of r0,8q such that 0 P Λ and Λ` Λ Ă Λ.
‚ 1 P B0 and Bλ ¨Bµ Ă Bλ`µ, for any λ, µ P Λ.
‚ 4Bλ Ă

ř

µ,νPΛ, µ`ν“λBµ bBν .
We call Λ a grading in this paper. A graded bialgebra with B0 “ x1y is said to be connected.

Proposition 45. [65, Exercises pages 228 and 238], [59, Proposition II.1.1 and Corollary II.3.2]
Any connected graded bialgebra is a Hopf algebra. Moreover, one has the following properties.

‚ θp1q “ 1 and θpτq “ 0 for any τ P
À

λą0Bλ.
‚ 41 “ 1b 1, and for any τ P Bλ with λ ą 0,

4τ P
"

τ b 1` 1b τ `
ÿ

µ,νPΛ

µ`ν“λ, 0ăµăλ

Bµ bBν

*

.

Based on the first assertion, we denote by 11 the counit θ of a connected graded bialgebra. The
preceding formula for ∆τ gives an inductive formula for the antipode. For τ ‰ 1 and ∆τ “
τ b 1` 1b τ `

ř

τ1 b τ2, one has

Spτq “ ´τ ´
ÿ

Spτ1qτ2.

On the dual space B1 of the bialgebra B, the convolution product is defined by
pf ˚ gqτ :“ pf b gq∆1τ,

for all f, g P B1, τ P B, where we identify a b b “ ab for any a, b P R. The coassociativity of ∆1

implies the associativity of the convolution
pf ˚ gq ˚ h “ f ˚ pg ˚ hq,

for all f, g P B1, and the counit θ is indeed a unit of the convolution product
f ˚ θ “ θ ˚ f “ f,

for all f P B1. Hence the triplet pB1, ˚, θq is a unital ring. Moreover, the subset G Ă B1 of algebra
morphisms g : B Ñ R is stable under the convolution product. The existence of an antipode S
implies that G is a group. Indeed, the inverse of g P G is given by g´1 “ g ˝ S. Each element of G
is called a character, and when B is a Hopf algebra, the set G is called the character group.

We recall comodules and comodule bialgebras. Given an algebra A and two spaces E,F , we
define on the algebraic tensor product Ab E bAb F the Ab E b F -valued map

Mp13q
`

a1 b eb a2 b f
˘

:“ pa1a2q b eb f.

Definition – Let pB,M,1,4, θq be a bialgebra.
‚ A linear space M equipped with a linear map δ : M Ñ B bM , with the properties

pIdB b δqδ “ p4b IdM qδ, and pθ b IdM qδ “ IdM ,
is called a left B-comodule. Similarly, a linear space N is called a right B-comodule if a
linear map ρ : N Ñ N bB, exists and satisfies

pρb IdBqρ “ pIdN b4qρ, and pIdN b θqρ “ IdN .
‚ A bialgebra M is called a left B-comodule bialgebra if M is a left B-comodule by an algebra

morphism δ : M Ñ B bM , such that
Mp13qpδ b δq4M “ pIdb4M qδ, pIdb θM qδ “ θM p¨q1,

where 4M is a coproduct of M , and θM is a counit of M .

Proposition 46. [30, Proposition 2] Let M be a B-comodule bialgebra. If M has an antipode SM ,
then

δ ˝ SM “ pIdB b SM qδ.
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C – Technical proofs

This section is dedicated to proving Theorem 20 and Lemma 43.

C.1 Proof of Theorem 20

In this section pt denotes the heat kernel of the operator G “ B2
x0
´ ∆2

x1 on R ˆ Rd. For any
x P RˆRd, and λ P p0, 1s, denote by ϕ ÞÑ ϕλx the transformation of functions on RˆRd defined by

ϕλxpyq :“ λ´d´2ϕ
´

λ´2py0 ´ x0q, λ
´1py1 ´ x1q

¯

.

The following bound appears in the Hairer’s original paper [44]. Recall β0 “ minA.

Lemma 47. Let M “ pg,Πq be a model over the regularity structure T and f P DγpT, gq with
γ P R. Assume β0 ą ´2. Then for any Schwartz function ϕ P SpRˆRdq, x P RˆRd, and λ P p0, 1s,
one has the bound

ˇ

ˇ

ˇ

@

RMf ´ Πg
xfpxq, ϕ

λ
x

D

ˇ

ˇ

ˇ
ď Cϕ}Π

g} }f}Dγ λ
γ ,

where the constant Cϕ depends on the size sup|k|s,|`|sďN }x
kB`ϕ}L8pRˆRdq for N ą 0 large enough.

Proof – Write Λx :“ RMf ´ Πg
xfpxq, to shorten notations. Using p0 “

şλ4

0
Gptdt ` pλ4 and the

semigroup property,

xΛx, ϕ
λ
xy “

ż

RˆRd

ż λ4

0

@

Λx,Gptp¨, yq
D

ϕλxpyq dtdy `

ż

RˆRd

@

Λx, pλ4p¨, yq
D

ϕλxpyq dy

“

ż

RˆRd

ż λ4

0

@

Λx, pt{2p¨, zq
D @

Gpt{2pz, ¨q, ϕλx
D

dtdz `

ż

RˆRd

@

Λx, pλ4p¨, yq
D

ϕλxpyq dy “: pAq ` pBq.

Using the properties of models as in Proposition 2, one has
ˇ

ˇxΛx, pt{2p¨, zqy
ˇ

ˇ À tγ{4 `
ÿ

βăγ

tβ{4dpz, xqγ´β .

This implies |pBq| À λγ . To consider (A), note that all polynomials with isotropic order less than 2
vanishes by G. Thus one has

ˇ

ˇ

ˇ

@

Gpt{2pz, ¨q, ϕλx
D

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

A

Gpt{2pz, ¨q, ϕλx ´ ϕλxpzq ´∇pϕλxqpzqp¨ ´ zq
E
ˇ

ˇ

ˇ

À Cϕ

ż

RˆRd

ˇ

ˇGpt{2pz, yq
ˇ

ˇ pλ´1dpy, zqq2ε
!

`

|ϕ|1´ε
˘λ

x
pyq `

`

|ϕ|1´ε
˘λ

x
pzq

`
`

λ´2
|y0 ´ z0|

˘1´ε`
|Bx0ϕ|

1´ε
˘λ

x
pzq `

`

λ´1
|y1 ´ z1|

˘1´ε`
|∇x1ϕ|

1´ε
˘λ

x
pzq

)

dy

for any ε P p0, 1q. Recall β0 ă 2. Choosing ε such that ´β0 ă 2ε, one has the estimate
ż

RˆRd

ˇ

ˇxΛx, pt{2p¨, zqy
ˇ

ˇ

ˇ

ˇ

ˇ
xGpt{2pz, ¨q, ϕλxy

ˇ

ˇ

ˇ
dz À

ÿ

aą0

t
a´4
4 λγ´a,

where a runs over finite number of positive constants. This implies |pAq| À λγ . B

We recall now from J. Martin’s work [60, Theorem 5.3.16] the existence of a ‘Whitney extension’
map on locally defined modelled distributions. Assume that the regularity structure T satisfies
assumption (A1). Let t ą 0 and Rˆ Rdt :“ p´8, ts ˆ Rd. Denote by Dγ

t pT, gq the set of functions
f : R ˆ Rdt Ñ Tăγ which satisfies the bounds of rsf rsDγt and }f}Dγt as in Definition 3 with R ˆ Rd

replaced by Rˆ Rdt .

Theorem 48. Let M “ pg,Πq be a model over T with a regular product ‹ satisfying assump-
tion (A3). Then there exists a continuous liner operator E : Dγ

t pT, gq Ñ DγpT, gq such that
pEfq|RˆRdt

“ f , and the bound
|||Ef |||Dγ ď C|||f |||Dγt

holds for a positive constant C independent of t ą 0 and f P Dγ
t pT, gq. A similar result holds for

the modelled distributions defined on Ft “ rt,8q ˆ Rd.
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Proof – We consider a different construction from Martin’s work [60], but the proof uses the same
mechanics. We provide only the sketch of the proof here.
Without loss of generality, we consider t “ 0. Let hpx0, x

1
q “ hx0px

1
q be the kernel of the operator

ex0∆x1 with x0 ą 0. We define the function

hpxq “
ÿ

|k|săγ

B
khpxq

k!
Xk

on p0,8q ˆ Rd, and set pEfqpxq :“ fpxq if p´8, 0s ˆ Rd and

pEfqpxq :“

ż

Rd
h
`

x´ p0, y1q
˘

‹ {gxp0,y1qfp0, y
1
q dy1

if x P p0,8q ˆ Rd. The bounds of
›

›pEfqpxq
›

›

β
for each β P A follows from the estimate of Bkh like

(2.16). For the bounds of
›

›pEfqpyq ´ygyxpEfqpxq
›

›

β
, it is sufficient to consider the case y0 ě x0 ě 0.

If y0 ą x0 “ 0, then by the property
ş

Rd hpy ´ p0, z
1
qqdz1 “ 1 and assumption (A3),

pEfqpyq ´ygyxfpxq “

ż

Rd
h
`

y ´ p0, z1q
˘

‹ {gyp0,z1q

´

fp0, z1q ´ {gp0,z1qxfpxq
¯

dz1.

From the estimate of Bkh, one has the required bounds. If y0 “ x0 ą 0, by property (2.34) and using
the (anisotropic) integral Taylor remainder formula

pEfqpyq ´ygyxpEfqpxq “

ż

Rd

´

h
`

y ´ p0, z1q
˘

´ygyxh
`

x´ p0, z1q
˘

¯

‹ {gyp0,z1qfp0, z
1
q dz1

“
ÿ

|k|săγ, |`|sąγ´|k|s

py ´ xq`

`!

ż 1

0

ϕ`prqB
k``h

`

xr ´ p0, z
1
q
˘

Xk
‹ {gyp0,z1qfp0, z

1
q dz1,

where ` runs over a finite set, xr “ x ` rpy ´ xq, and ϕ`prq are bounded functions of r. Since
ş

Rd B
k``hpxr ´ p0, z

1
qqdz1 “ 0, we can replace {gyp0,z1qfp0, z

1
q by

{gyp0,z1q fp0, z
1
q ´zgyx1rfpx

1
rq “zgyx1r

´

{gx1rp0,z1qfp0, z
1
q ´ fpx1rq

¯

.

Then one can obtain the required estimate of pEfqpyq ´ygyxpEfqpxq. Even though zgyx1r produces
factors |x0|

a with a ą 0 which is not compatible with |y1 ´ x1|, it is cancelled by a factor |x0|
´a

coming from the kernel Bk``h. If y0 ą x0 ą 0, by the semigroup property
ż

Rd
h
`

y ´ px0, w
1
q
˘

‹ h
`

px0, w
1
q, p0, z1q

˘

dw1 “ h
`

y ´ p0, z1q
˘

,

the argument leads to the case y0 ą x0 “ 0, since the required estimate is already obtained in RˆRdx0 .
B

We turn to the proof of the reconstruction theorem for singular modelled distributions.

Proof of Theorem 20 – The proof is just an analogue of the proof of Proposition 6.9 in Hairer’
seminal work [44], so we omit a number of details. The only difference is that ptpx, ¨q is not compactly
supported. By linearity, assume that f “ 0 on Rˆ Rd0 “ p´8, 0s ˆ Rd. Applying Theorem 48 to the
restriction of f on Fa “ ra,8q ˆ Rd with a ą 0, and writing rRM

a for RM
˝ Ea, for the extension map

Ea from Fa to Rˆ Rd, one has the distribution rRM
a f on Rˆ Rd such that the bounds

ˇ

ˇ

ˇ

@

rRM
a f ´ Πg

xfpxq, ϕ
λ
x

D

ˇ

ˇ

ˇ
À Cϕa

pη´γq{2
}Πg
} }f}Dγ λ

γ

hold for any Schwartz function ϕ, x P RˆRd, 0 ă λ ď 1 such that ϕλx is supported on ty P RˆRd; y0 ą

au. In particular, the restriction of rRM
a f on Fa are compatible over all a ą 0 because of the local

property of the reconstruction operator, so the quantity
@

rRMf , ϕ
D

is defined for any ϕ supported on
p0,8qˆRd. Since f vanishes on RˆRd0, one defines

@

rRMf , ϕ
D

“ 0 if ϕ is supported on p´8, 0qˆRd.
To consider the paring with ptpx, ¨q, fix the family tφn,kunPN,kPZd of functions of the forms

φn,k “ 2´npd`2qφ2´n

xn,k , xn,k “
`

2´2n, 2´nk
˘

P Rˆ Rd

where φ is a smooth function supported on
 

x P RˆRd; dp0, xq ă 1
(

, and such that
ř

n,k φn,kpxq “ 1 if
0 ă x0 ă 1{2. Now fix an integer n0 such that 2´n0 » t1{4_|x0|

1{2, and set rφn0 “ 1´
ř

něn0,kPZd φn,k.
Then one can define

A

rRMf ´ Πg
xfpxq, ptpx, ¨q

E

“
ÿ

něn0,kPZd

A

rRMf ´ Πg
xfpxq, ptpx, ¨qφn,k

E

`

A

rRMf ´ Πg
xfpxq, ptpx, ¨q rφn0

E
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if the right hand side converges. For the second term, since rφn0 is supported on ty P RˆRd; y0 Á 2´2n0u

and ptpx, ¨q rφn0p¨q “ f t
1{4

x p¨q for some Schwartz function f which is uniform over t, x, n0, one has
ˇ

ˇ

ˇ
xrRMf ´ Πg

xfpxq, ptpx, ¨qrφn0y

ˇ

ˇ

ˇ
À

´

|x0| _ t
1{2

¯pη´γq{2

tγ{4.

For the first term, one decomposes
rRMf ´ Πg

xfpxq “
´

rRMf ´ Πg
xn,kfpxn,kq

¯

` Πg
xn,kfpxn,kq ´ Πg

xn,k

´

{gxn,kxfpxq
¯

“: paq ` pbq ` pcq.

Since roughly ptpx, ¨qφn,k » 2´npd`2qptpx, xn,kqφ
2´n

xn,k , one has
ˇ

ˇxpaq, ptpx, ¨qφn,ky
ˇ

ˇ À 2´npd`2q ptpx, xn,kqp2
´n
q
η´γ

p2´nqγ “ 2´npη`2q2´nd ptpx, xn,kq.

The sum 2´nd
ř

kPZd ptpx, xn,kq is roughly equals to htpx0q, where ht is a one-dimensional heat kernel.
Hence

ÿ

něn0

ÿ

kPZd

|xpaq, ptpx, ¨qφn,ky| À 2´n0pη`2qhtpx0q

À
`

|x0|
1
2 _ t

1
4
˘η`2

t´
1
2
`

|t´
1
2 x0| _ 1

˘´
γ`2
2 “ t

γ
4 p|x0| _ t

1
2 q

η´γ
2 .

Using the bound }fpxq}β À |x0|
pη´βq{2^0, one gets the same bounds as above for pbq and pcq, with η

replaced by β0. B

C.2 Proof of Proposition 29 and Proposition 30

We provide a sketch of the proof Proposition 29 and Proposition 30, following [30]. Recall that,
the basis V of V is the set of all rooted trees with node types Tn and edge types Te, and with
decorations n : Nτ Ñ Nd`1 and e : Eτ Ñ Nd`1. Write N “ Tn ˆ Nd`1 and E “ Te ˆ Nd`1.
Moreover, the basis B of U is a subset satisfying assumption (D). For simplicity, we prove the
following proposition for V and U , instead of V ˚ and U˚.

Proposition – (a) The space V (or U) with the operators t e
ñuePE (or t e

ñ5uePE) is an E-multi-
pre-Lie algebra.

(b) Let pW, t3euePEq be an E-multi-pre-Lie algebra, and let tϕtnupt,nqPN (or tϕtnupt,nqPNXB)
Ă W . Then there exists a unique E-multi-pre-Lie morphism ϕ : V (or U) Ñ W such that
ϕptnq “ ϕtn for any tn P N (or NX B).

The E-multi-pre-Lie property of pV, t e
ñuePEq

pτ
e
ñ σq

e1
ñ η ´ τ

e
ñ pσ

e1
ñ ηq “ pσ

e1
ñ τ q

e
ñ η ´ σ

e1
ñ pτ

e
ñ ηq

is proved in a similar way to Proposition 4 of [30], so we omit the proof. The same property for
pU, t

e
ñ5uePEq follows from it. Indeed, by assumption (D1) for the canonical projection πU : V Ñ U ,

we have
pτ

e
ñ5 σq

e1
ñ5 η ´ τ

e
ñ5 pσ

e1
ñ5 ηq “ πU

`

pτ
e
ñ σq

e1
ñ η ´ τ

e
ñ pσ

e1
ñ ηq

˘

.

In order to prove (b), we introduce the Guin-Oudom extension of the multi-pre-Lie structure.
The following is the content of Section 2.2 of [30].

Definition – Let pW, t3euePEq be an E-multi-pre-Lie algebra. Let pW, eq “ tpa, equaPW be a copy
of the linear space W , and denote

W‘E :“
à

ePE

pW, eq.

Moreover, let SpW‘Eq be the symmetric algebra of W‘E, with unit 1. Then one can define the
following linear maps.
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‚ Define the linear map 3e : W b SpW‘Eq Ñ SpW‘Eq inductively as follows.
c3e 1 “ 0,

c3e

N
ź

i“1

pbi, eiq “
N
ÿ

i“1

pa3e bi, eiq
ź

j‰i

pbj , ejq,

where c, b1, . . . , bN PW and e1, . . . , eN P E.
‚ Define the linear map 3 : SpW‘Eq bW ÑW inductively as follows.

1 3 b “ b,

pc, eq3 b “ c3e b,

N
ź

i“1

pci, eiq3 b “ c1 3e1

˜

N
ź

i“2

pci, eiq3 b

¸

´

˜

c1 3e1

N
ź

i“2

pci, eiq

¸

3 b,

where c, c1, . . . , cN , b P W and e, e1, . . . , eN P E. (The last quantity is invariant under the
permutations of pc1, e1q, . . . , pcN , eN q because of the multi-pre-Lie property of W , so the
extension 3 is well-defined.)

The above extensions keep the multi-pre-Lie morphism property. Indeed, if ϕ : V Ñ W is
an E-multi-pre-Lie morphism, then defining the extension ϕ : SpV ‘Eq Ñ SpW‘Eq by ϕppc, eqq :“
pϕpcq,Eq for any pc, eq P pV, eq, and denoting by ñ the extension ñ: SpV ‘Eq b V Ñ V , one has

ϕpX ñ bq “ ϕpXq3 ϕpbq

for any X P SpV ‘Eq and b P V .

Since Te “ tIu, we identify E with Nd`1. The following formula can be proved by a similar
argument to Lemma 2.6 of [31] by noting that πU satisfies assumption (D1).

Lemma 49. For any pt, nq P NX B, τ 1, . . . , τ I P B, and p1, . . . , pN P Nd`1, one has

πU

˜

tn ‹
a

‹
i“1

Ipipτ iq

¸

“
ÿ

q1ďp1,...,qNďpN
q1`¨¨¨`qNďn

p´1q|q1|`¨¨¨`|qN |
ˆ

n

q1, . . . , qN

˙ a
ź

i“1

pτ i, pi´qiqñ5 t
n´q1´¨¨¨´qN ,

where ñ5 denotes the extension ñ5: SpU
‘EqbU Ñ U , and

`

n
q1,...,qN

˘

is the multinomial coefficient
ˆ

n

q1, . . . , qN

˙

“
n!

q1! ¨ ¨ ¨ qN !pn´ q1 ´ ¨ ¨ ¨ ´ qN q!
.

Then we can prove the uniqueness part of (b) immediately. Indeed, if ϕ : U Ñ W is an
E-multi-pre-Lie morphism, then it satisfies

ϕ

˜

tn ‹
a

‹
i“1

Ipipτ iq

¸

“
ÿ

q1ďp1,...,qNďpN
q1`¨¨¨`qNďn

p´1q|q1|`¨¨¨`|qN |
˜

n

q1, . . . , qN

¸

a
ź

i“1

pϕpτ iq, pi ´ qiq3 ϕptn´q1´¨¨¨´qN q

for any tn ‹‹
a
i“1 Ipipτ iq P B. The right hand side provides the recursive definition of the map ϕ,

so we can conclude that ϕ is determined by the values ϕptnq for any tn P N. On the other hand,
given tϕptnqupt,nqPN, we can prove that the map ϕ defined by the above formula satisfies indeed
the multi-pre-Lie property. We do not provide the details here because the existence part of (b) is
not used in this paper.

C.3 Proof of Lemma 43

C.3.1 Reduced coproducts

First we consider trees with n and e-decorations, without o-decoration. Recall that SC is a set
of strongly conform trees and C is a set of conform trees. Set
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˝T :“ spanpSCq,
˝T` :“ spanpCq,
˝U´ :“ RrSCs.

Definition – We define the following splitting maps.

1. The linear map ˝D : ˝T Ñ ˝T b ˝T`, is defined for τne P SC by

˝Dpτne q :“
ÿ

µPST pτq

ÿ

nµ,e1Bµ

1

e1Bµ!

ˆ

n

nµ

˙

µ
nµ`πe

1
Bµ

e b
`

τ{blueµ
˘rn´nµsµ

e`e1
Bµ

,

where ST pτq is the set of all subtrees µ of τ which contain the root of τ , and the second
sum is over functions n : Nµ Ñ N with nµ ď n and functions e1Bµ : Bµ Ñ N . The algebra
morphism

˝D` : ˝T` Ñ ˝T` b ˝T`

is defined by the same formula with τne P C.
2. The algebra morphism

˝D´ : ˝U´ Ñ ˝U´ b ˝U´

is defined by ˝D´1´ “ 1´ b 1´, and for τne P SC

˝D´pτne q :“
ÿ

ϕPSF pτq

ÿ

nϕ,e1Bϕ

1

e1Bϕ!

ˆ

n

nϕ

˙

tMϕu
nϕ`πe

1
Bϕ

e b
`

τ{redϕ
˘rn´nϕsϕ

e`e1
Bϕ

,

where SF pτq is the set of all subforests ϕ of τ which contain all red nodes of τ , and the
sum over nϕ and e1Bϕ is taken as in item 1.

3. The algebra morphism
˝D

´
: ˝T` Ñ ˝U´ b ˝T`

is defined by the same formula as ˝D´, but the first sum is restricted to the set SF pτq of
all subforests ϕ P SF pτq which is disjoint with the root of τ .

Our aim is to show the coassociativities of ˝D˘ and ˝D and ˝D
´. To avoid a confusing calcula-

tion, we separate the coproducts into graph part and decoration part. Define simpler coproducts
acting on undecorated trees by
˚D`τ :“

ÿ

σPST pτq

σ b
`

τ{blueσ
˘

, ˚D´τ :“
ÿ

ϕPSF pτq

ϕb
`

τ{redϕ
˘

, ˚D
´
τ :“

ÿ

ϕPSF pτq

ϕb
`

τ{redϕ
˘

.

Given an undecorated tree τ , denote by Xpn,kq the map giving to the node n P Nτ the n-decoration
k P N , and denote by Ipe,`q the map giving to the edge e P Eτ the e-decoration ` P N . Then any
decorated tree τne is of the form

Fτ “ F1 ¨ ¨ ¨FNτ, (C.1)
where τ is an undecorated tree, and F1, . . . ,FN are family of X-type or I-type operators, applying
to pairwise disjoint nodes or edges. Moreover, we define the coproducts of such operators by

DXpn,kq “
ÿ

k1ďk

ˆ

k

k1

˙

Xpn,k1q b Xpn,k´k1q,

DIpe,`q “ Ipe,`q b Id`
ÿ

`1

1

`1!
Xpe´,`1q b Ipe,```1q,

where e´ denotes the node from where the edge e leaves. For the products of pairwise disjoint
such operators, define DF :“ pDF1q . . . pDFN q.

At this stage, we see that the coproducts ˝Dp¨,`,´q apply to the decorated tree (C.1) by the
forms

˝Dp¨,`qpFτq “ pDFqp˚D`τq, ˝D´pFτq “ pDFqp˚D´τq. (C.2)
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In the right hand side of (C.2), be careful that DF acts on subtrees and contracted trees. For an X-
type operator, if n R Nσ then set Xpn,kqσ “ 1k“0σ. On a contracted tree τ{σ, the X-type operator
acts of the form Xprns,kq, where rns denotes the equivalence class in the contraction τ Ñ τ{σ. Hence

pDXpn,kqqpσ b pτ{σqq “

#

ř

k1ďk

`

k
k1

˘

Xpn,k1qσ b Xprns,k´k1qpτ{σq, n P Nσ,

σ b Xprns,kqpτ{σq, n R Nσ.

For an I-type operator, if e R Eσ or e R Eτ{σ then set Ipe,`qσ “ 0 and Ipe,`qpτ{σq “ 0. Combing with
the definition of Xpn,kq, we have

pDIpe,`qqpσ b pτ{σqq “

$

’

&

’

%

Ipe,`qσ b pτ{σq, for e P Eσ,
ř

`1
1
`1!Xpe´,`1qσ b Ipe,```1qpτ{σq, for e P Bσ,

σ b Ipe,`qpτ{σq, for e P Eτ zpEσ Y Bσq.
These conventions show that the identities (C.2) hold.

C.3.2 Coassociativity

Lemma 50. One has the coassociativity formulas
`

˝Db Id
˘

˝D “
`

Idb ˝D`
˘

˝D,
`

˝D` b Id
˘

˝D` “
`

Idb ˝D`
˘

˝D`,
`

˝D´ b Id
˘

˝D´ “
`

Idb ˝D´
˘

˝D´,
`

˝D´ b Id
˘

˝D
´
“
`

Idb ˝D
´˘˝D

´
.

Proof – We prove the identity
p
˝Db Idq˝D “ pIdb ˝D`q˝D; (C.3)

the other identities are proved similarly. By the commutation relation (C.2), we have
`

Idb ˝D`
˘

˝D Fτ “
`

Idb ˝D`
˘

pDFqp˚D`τq “
`

pIdb DqDF
˘`

Idb ˚D`
˘

˚D`τ.

Hence it is sufficient for proving (C.3) to show the two identities
`

˚D` b Id
˘

˚D` “
`

Idb ˚D`
˘

˚D`, (C.4)
pIdb DqDF “ pDb IdqDF. (C.5)

It is not difficult to show (C.4) by the definition of ST pτq, by noting that
ST pτ{σq “

 

η{σ ; σ Ă η Ă τ
(

and pτ{σq{pη{σq “ τ{η. To show (C.5), because of the multiplicative property of D, it is sufficient to
consider F “ Xpn,kq and Ipe,`q. They are easy exercises, so details are left to readers. B

Now we consider the extended decoration.

Lemma 51. One has the coassociativity formulas
pDb IdqD “

`

Idb D`
˘

D,
`

D` b Id
˘

D` “
`

Idb D`
˘

D`,

pD´ b IdqD´ “
`

Idb D´
˘

D´,
`

D´ b Id
˘

D
´
“

`

Idb D
´˘

D
´
.

Proof – We consider the first and third identities; the other identities are proved similarly. In this
proof, denote by τ̄ “ τne a generic decorated tree, and write τ̄o for τn,oe . As in Section 2.2 and Section
5.1, we use a shorthand notation

˝Dτ̄ “
ÿ

σ̄ďτ̄

σ̄ b pτ̄{σ̄q, ˝D´τ̄ “
ÿ

ϕ̄Ĳτ̄

ϕ̄b pτ̄{ϕ̄q.

Then we can write
Dτ̄o “

ÿ

σ̄

σ̄o
b pτ̄{σ̄qo|τzσ , D´τ̄o “

ÿ

ϕ̄

ϕ̄o
b pτ̄{ϕ̄qo`opϕ̄q.
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Recall that opϕ̄q : Nτ{ϕ Ñ Zrβ0s, is a function giving the value |τ̄j |, where τ̄j is a connected component
if ϕ, to the node rτjs P Nτ{ϕ. We obtain the coassociativity of D from the coassociativity of ˝D, noting
that

pτ̄{σ̄q{pη̄{σ̄q “ τ̄{η̄, o|pτzσqzpηzσq “ o|τzη

for any η̄ ď σ̄ ď τ̄ . To prove the coassociativity of D´, noting that

pD´ b IdqD´τ̄o “
ÿ

ψ̄Ĳϕ̄Ĳτ̄

ψ̄o
b pϕ̄{ψ̄qo`opψ̄q

b pτ̄{ϕ̄qo`opϕ̄q

and
pIdb D´qD´τ̄o “

ÿ

ψ̄Ĳτ̄

ψ̄o
b D´pτ̄{ψ̄qo`opψ̄q

“
ÿ

ψ̄Ĳϕ̄Ĳτ̄

ψ̄o
b pϕ̄{ψ̄qo`opψ̄q

b pτ̄{ϕ̄qo`opψ̄q`opϕ̄{ψ̄q,

it is sufficient to show that opϕ̄q “ opψ̄q ` opϕ̄{ψ̄q as a function on Nτ{ϕ. This holds true because
|ϕ̄|1 “ |ψ̄|1 ` |ϕ̄{ψ̄|1. B

C.3.3 Co-interaction

Lemma 52. One has the co-interaction formulas

Mp13q
`

˝D´ b ˝D
´˘˝D “ pIdb ˝Dq˝D´,

Mp13q
`

˝D
´
b ˝D

´˘˝D` “
`

Idb ˝D`
˘

˝D
´
,

(C.6)

and
Mp13q

`

D´ b D
´˘

D “ pIdb DqD´,

Mp13q
`

D
´
b D

´˘

D` “ pIdb D`qD
´
.

(C.7)

Proof – Consider the first identity of (C.6) and the first identity of (C.7); the two other identities
are proved similarly. By the commutation relations (C.2), identity (C.6) rewrites

Mp13q
`

pDb DqDF
˘`

˚D´ b ˚D
´˘˚D`τ “

`

pIdb DqDF
˘

pIdb ˚D`q˚D´. (C.8)
By the multiplicativity of D, it is sufficient to show (C.8) for the operators F “ Xpn,kq and Ipe,`q. By
definition,

`

˚D´ b ˚D
´˘˚D`τ “

ÿ

σPST pτq

ÿ

ϕPSF pσq,ψPSF pτ{σq

ϕb pσ{redϕq b ψ b pτ{blueσq{redψ.

Note that ϕ and ψ are disjoint subforests of τ because of the definition of SF . Thus we have

Mp13q
`

pDb DqDXpn,kq
˘

pϕb pσ{redϕq b ψ b pτ{blueσq{redψq

“Mp13q
ÿ

k“a`b`c`d

k!

a!b!c!d!
Xpn,aqϕb Xpn,bqpσ{

redϕq b Xpn,cqψ b Xpn,dq
`

pτ{blueσq{redψ
˘

“
ÿ

k“a`b`d

k!

a!b!d!
Xpn,aqpϕψq b Xpn,bqpσ{

redϕq b Xpn,dq
`

pτ{blueσq{redψ
˘

“
`

pIdb DqDXpn,kq
˘

pϕψ b pσ{redϕq b
`

τ{blueσq{redψ
˘

,

since either of a and c has to be 0 in the second line. It is not difficult to a similar equality for
F “ Ipe,`q. Hence we have

Mp13q
`

pDb DqDF
˘`

˚D´ b ˚D
´˘˚D`τ “

`

pIdb DqDF
˘

Mp13q
`

˚D´ b ˚D
´˘˚D`τ.

Since it is not difficult to show the co-interaction formula
Mp13q

`

˚D´ b ˚D
´˘˚D`τ “

`

Idb ˚D`
˘

˚D´,

identity (C.8) follows as a consequence.
Next we consider (C.7). By definition,

Mp13q
`

D´ b D
´˘

Dτ̄o “
ÿ

σ̄ďτ̄ ,ϕ̄Ĳσ̄,ψ̄Ĳτ̄{σ̄

ϕ̄oψ̄o|τzσ b pσ̄{ϕ̄qo`opϕ̄q
b
`

pτ̄{σ̄q{ψ̄
˘o|τzσ`opψ̄q
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and
pIdb DqD´τ̄o “

ÿ

ζ̄Ĳτ̄ ,η̄ďτ̄{ζ̄

ζ̄o b η̄o`opζ̄q
b
`

pτ̄{ζ̄q{η̄
˘po`opζ̄qq|pτ{ζqzη .

The cointeraction between ˝D and ˝D´ implies that the change of variables
ζ̄ Ø ϕ̄ ψ̄, η̄ Ø σ̄{ϕ̄

is possible. Since σ and ψ are disjoint,

pϕ̄ψ̄qo “ ϕ̄o ψ̄o|τzσ , pσ̄{ϕ̄qo`opϕ̄ψ̄q
“ pσ̄{ϕ̄qo`opϕ̄q,

`

pτ̄{σ̄q{ψ̄
˘po`opϕ̄ψ̄qq|pτ{pϕψqqzpσ{ϕq “

`

pτ̄{σ̄q{ψ̄
˘o|τzσ`opψ̄q

.

Thus (C.7) follows. B

D – Comments

Section 1 – Regularity structures theory has its roots in T. Lyons’ theory of rough paths and
rough differential equations [58]. This theory deals with controlled ordinary differential equations

dxt “ V pxtqdht,

with controls h of low regularity, say α-Hölder. For α ą 1{2, Young integration theory allows
to make sense of the equation as a fixed point problem for an integral equation. As one expects
a solution path to be α-Hölder, the product V pxtqdht makes sense as a distribution on R` iff
α ` pα ´ 1q ą 0, that is α ą 1{2. One of Lyons’ deep insights was to realize that what really
governs the dynamics is not the R`-valued control h, say, but rather a finite collection of its
iterated integrals. The latter are ill-defined when α ď 1{2, and a rough path is the a priori datum
of quantities playing their role. Natural algebraic and size constraints on these objects are then
sufficient to set the entire theory. These constraints are similar to the constraints that define the
g-part of a model. Several reformulations of rough paths theory were given after Lyons’ seminal
work: Davie’s numerical scheme approach [26], Gubinelli’s controlled paths approach [38, 39], Friz
& Victoir’s limit ODE picture [34], and Bailleul’s approximate flow-to-flow approach [2], amongst
others. Gubinelli’s versatile notion of controlled paths was a direct source of inspiration for the
construction of regularity structures.

Other tools than regularity structures have been developed for the study of singular stochastic
PDEs. None of them offers presently a complete alternative to regularity structures.

‚ Gubinelli, Imkeller and Perkowski laid in [42] the foundations of paracontrolled calculus,
that was developed by Bailleul & Bernicot [3, 4, 5]. While the fundamental notions of reg-
ularity structures involve pointwise expansions, paracontrolled calculus uses paraproducts
as a mean for making sense of what it means to look like a reference quantity. See [40] for
lecture notes on the subject and [41] for an overview on the subject, both by Gubinelli &
Perkowski.

In a nutshell, the starting point of the paracontrolled approach to the study of singular
stochastic PDEs is the decomposition of a product of two distributions f, g into

fg “
`

Pfg ` Pgf
˘

` Πpf, gq.

This decomposition is obtained in a Fourier picture of the product by splitting the convo-
lution into what happens far from the diagonal

`

Pfg ` Pgf
˘

from what happens near the
diagonal Πpf, gq. This decomposition isolates in the resonant term Πpf, gq what does not
make sense in a general product, the paraproduct terms Pfg,Pgf being always well-defined.
The definition of Pfg allows to think of it as a modulation of g by f and give meaning to
what it means for a distribution/function u to look like another distribution/function g

u “ Pvg ` u
7,
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for a function v and a distribution/function v7 that is more regular than g. The role of
modelled distributions is played in a paracontrolled setting by systems puaqaPA of paracon-
trolled distributions/functions

ua “
ÿ

τPT ;|aτ |ďnα

Puaτ rτ s ` u
7
a (D.1)

indexed by the set A of words over an alphabet T , with remainders u7a sufficiently regular.
The reference distributions/functions rτ s somehow play the role of Πτ and the puaqaPA the
role of the puτ qτPT,|τ |ăγ . (Bailleul & Hoshino’s work on the link between paracontrolled
calculus and regularity structures make that link clear.) Identity (D.1) is is an analogue of
the notion of modelled distribution. While the definition of the latter involves pointwise
comparisons, here the comparison is somehow done in ‘momentum space’, although not in
a pointwise sense. The core point of the paracontrolled analysis of a (system of) singular
stochastic PDE(s) is that we end up dealing with ill-defined terms of the form

Π1
`

u, ζpiq
˘

(D.2)
for operators Π1 that have similar properties as the resonant operator Π, and possibly multi-
dimensional functionals ζpiq of the noise ζ. It turns out that while an expression like (D.2)
does not make sense for a generic u, it makes sense on a restricted class of u of the form (D.1)
provided one can make sense of the terms Π1

`

τ, ζpiq
˘

. The analysis of a given (system of)
singular stochastic PDE(s) gives an inductive definition of the ζpiq and the τ ’s. Compared
to the regularity structures setting, the datum of all the Π1

`

τ, ζpiq
˘

plays the role of the
datum of a model. The inductive/tree structure of the elements of a regularity structure
takes here the form of the inductive definition of the τ ’s and ζpiq’s. A systematic treatment
of renormalization operations within paracontrolled calculus has not been invented yet.
The links between the regularity structure and paracontrolled settings detailed in Bailleul
& Hoshino’s works [8, 9] allow however to transport the renormalization machinery of
regularity structures into the setting paracontrolled calculus. What is missing presently is
an independent, purely paracontrolled, approach of the renormalization problem.

‚ Otto & Weber [61] developed jointly with Sauer and Smith [62, 63] a variant of regularity
structures that is more in the flavour of rough paths theory. Most concepts and objects
from regularity structures have counterparts in their setting. It was specifically designed
and used for the analysis of a number of quasilinear singular stochastic PDEs. Some of
these equations can be approached using the original first order paracontrolled calculus
as in Bailleul, Debussche and Hofmanová’s work [7] or a variant of it using paracompo-
sition operators, as in Furlan & Gubinelli’s work [36]. See also [10, 37] for extensions of
paracontrolled calculus and regularity structures designed for the study of a whole class of
quasilinear singular stochastic PDEs.

‚ Kupiainen & Marcozzi managed in [55, 56] to implement a renormalization group approach
to the (KPZ) and Φ4

3 equations. The starting point of their strategy consists in decomposing
the resolution operator K´1 involved in the Picard formulation of the equation as a sum
of operators K´1

n turning distributions into smooth functions that vary essentially only up
to scale 2´n. The approximate renormalized dynamics will take the form

uN “

ˆ N
ÿ

n“0

K´1
n

˙

´

FN puN , BuN ; ζq
¯

in a simplified problem where the initial condition was taken to be null. The noise is left
untouched, with no problem for defining the nonlinearity in the right hand side since uN
is smooth. So one has

uN “ u0
N ` ¨ ¨ ¨ ` u

N
N ,

where each term unN is morally varying only up to scale 2´n. The point is now to see
that one can choose the nonlinearity FN in such a way that each unN is the solution of an
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equation of the form

unN “
´

N
ÿ

m“n

K´1
n

¯´

FnN pu
n
N , Bu

n
N ; ζq

¯

for a nonlinearity FnN , and is converging in a proper space as N goes to infinity. This is
done via the use of rescaling operators, taking profit from the exact scaling property of
the heat kernel, by turning the problem of convergence of each unN into the problem of the
convergence of the family of rescaled versions of the functions FnN – taking profit of the
fact that the former is a continuous function of the later. The overall convergence of uN
as N goes to 8 is somehow similar to the well-known fact that a sum of functions

ř

n u
n

converges in an α-Hölder space if un is localized in Fourier space on a ball of size 2n and
has uniform norm of order 2´αn.

Section 2 – The functional setting adopted here draws inspiration from [3, 4, 5] and [61]. The
main result of this section is the reconstruction theorem.

Several proofs of the reconstruction theorem are available now, in addition to Hairer’s original
proof. Gubinelli, Imkeller and Perkowski gave in [42] an alternative construction of the reconstruc-
tion map using a paraproduct-like operator. Singh & Teichmann showed in [64] how it can be
understood as the continuous extension of an elementary reconstruction operator defined on a set
of smooth modelled distributions. Otto and Weber have an analogue of the reconstruction map in
their rough paths-like setting [61, 62]. Caravenna & Zambotti’s recent work [18] provide a robust
version of the reconstruction theorem in a setting free of any reference to regularity structures.
The notion of coherent germ turns it into a particularly versatile tool. See [48, 52, 57] for versions
of the reconstruction theorem in functional settings different from Hölder spaces.

The reconstruction theorem takes its place in the history of a family of statements producing
‘transcendantal’ objects, i.e. objects constructed by limiting procedures, from families of objects
satisfying constraints involving no limiting procedures. The one-step Euler scheme for solving
ordinary differential equations characterizes for instance uniquely their flows under sufficient reg-
ularity conditions on the vector fields. In its simplest form, for the equation 9y “ ´y, in R, it
yields the elementary identity p1 ´ t{nqn Ñ e´t, as n goes to 8. It takes a more elaborate form
in Hille’s approximation

`

pId` t
n Gq

´1
˘n of the semigroup pe´tGqtą0 generated by an unbounded

operator G under well-known conditions. Chernov’s theorem [23] on families of strongly continu-
ous perturbations of the identity used for constructing pe´tGqtą0 has a similar flavour. So is the
C1-approximate flow-to-flow machinery of [2], that provides a far reaching generalization of Lyons’
extension theorem in rough paths theory and Gubinelli and Feyel & de la Pradelle’ sewing lemma
[38, 27, 28]. All these statements characterize uniquely a transcendantal object as the unique
object close to a family of objects satisfying a ‘Op1q condition’, involving no limiting procedure.
The characterizing identity (2.29) for the reconstruction is of that form when the reconstruction
operator is unique. This kind of situation allows to build a calculus for the transcendantal objects
from an elementary calculus on their generators.

The space of models over a given regularity structure is nonlinear. Bailleul & Hoshino showed in
[8, 9] how to parametrize this space by a linear space using the tools of paracontrolled calculus. The
set of K-admissible models on a given regularity structure turns out in particular to be parametrized
by the data for each τ of negative homogeneity of a |τ |-Hölder distribution, describing somehow the
most regular part of the distribution Πτ . This has a number of consequences, such as an extension
theorem similar to Lyons’ extension theorem in rough paths theory.

Proposition 9, giving a definition of the image of a modelled distribution by a nonlinear map,
has a counterpart in paracontrolled calculus, generalizing Bony’s paralinearisation formula to an
arbitrary order – see Section 2 of Bailleul & Bernicot’s work [5].

Section 3 – The proof of the continuity result for KM is an adaptation of the material from
Hairer’s groundbreaking work [44] to the functional setting adopted here. It is called by Hairer
the multilevel Schauder estimates. The construction of K-admissible models from Section 3.5 is
adapted from Bailleul & Hoshino’s work [8], which gives amongst others a parametrization of the set
of all admissible models on any reasonable concrete regularity structure. See [9] for more results
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on the structure of the space of models and modelled distributions. Note that in the different
components uτ of a modelled distribution also appear in the paracontrolled approach, in which
they are involved in the global description of a possible solution, as opposed to their local meaning
in the regularity structure setting.

Section 4 – This section essentially follows the line of the corresponding results in [44], Section
7 therein.

Section 5 – The notion of renormalization structures and compatible regularity and renormal-
ization structures introduced in this section is new. It encodes in a simple way the mechanics at
work in Bruned, Hairer and Zambotti’s work [16].

Section 6 – This section contains the core insights of Bruned, Chandra, Chevyrev and Hairer’s
work [13], implemented here on the example of the generalized (KPZ) equation. The relevance of
the notion of pre-Lie algebra was first noticed in the work [14] of Bruned, Chevyrev and Friz on
rough paths. The article [19] would provide a pre-history of the pre-Lie algebra. The comodule-
bialgebra structure of the Butcher-Connes-Kreimer Hopf algebra was first investigated in the work
[17] of Calaque, Ebrahimi-Fard and Manchon; it played a key motivating role in the work of Bruned,
Chevyrev and Friz. The description of the free pre-Lie algebra in this setting is due to Chapoton
and Livernet [22]. The notion of multi-pre-Lie algebra was introduced in the work [13] of Bruned,
Chandra, Chevyrev and Hairer, where the free multi-pre-Lie was first described.

The o-decorations introduced here under the form of ‚n,α is forced by our construction of
compatible regularity and renormalization structures for the generalized (KPZ) equation, given
in Section 9. It has no dynamical meaning. Bailleul & Bruned showed in [6] how to obtain
the renormalized equation without using extended decorations for a large class of renormalization
procedures including the BPHZ scheme.

The setting described here is robust enough to deal with equations driven by multiple noises,
or systems of equations driven by multiple noises. We take Funaki’s example [35] of the random
motion of a rubber on a manifold as an archetype – see also [46, 15]. The unknown u is a spacetime
function with values in Rd, solution of the system

pBt ´ B
2
xqu “ Γpuq

`

Bxu, Bxu
˘

` Σpuqξ,

where Γpzq is a symmetric matrix on Rd, and Σpzq a linear map from Rk to Rd, for any z P Rd, and
ξ “ pξ1, . . . , ξkq is an k-dimensional tuple of identically distributed independent one-dimensional
spacetime white noises. We still have only one operator pBt´B2

xq in this example, so the edge type
set is here the same as in the study of the generalised (KPZ) equation. The node set is changed
from t˝, ‚uˆNd`1 to t˝1, . . . , ˝k, ‚uˆNd`1 to account for the fact that we have k noises ξ1, . . . , ξk

in the system. Things get a bit messier if the system involves different operators, with different
regularising properties, and noises with different regularities. The fundamental ideas involved in
the analysis remain the same, while the notations needed to take care of this richer setting become
heavier. All this is explained in full details in [16].

Section 7 – This section gives what seems to us to be one of the two core results of [16],
Theorem 41 here. More general renormalization schemes were introduced by Bruned in [12].

Section 8 – This short section emphasizes a fact that has not received much attention so far.

Section 9 – This section builds on the fundamental work [16], with a number of simplifications.
The notion of subcritical equation is subtle to check in the general case of a system of equations,
as one needs to keep track of how a given symbol of a regularity structure ‘flows’ in the different
pieces of a system, involving possibly operators with different regularizing properties. The meaning
of subcriticality remains, though.
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Probab. Statist., 54(3):1314–1340, (2018).
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