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We address propagation of chaos for large systems of rough differ-
ential equations associated with random rough differential equations
of mean field type

dXt “ V
`

Xt,LpXtq
˘

dt` F
`

Xt,LpXtq
˘

dWt,

where W is a random rough path and LpXtq is the law of Xt. We
prove propagation of chaos, and provide also an explicit optimal con-
vergence rate. The analysis is based upon the tools we developed
in our companion paper [2] for solving mean field rough differential
equations and in particular upon a corresponding version of the Itô-
Lyons continuity theorem. The rate of convergence is obtained by a
coupling argument developed first by Sznitman for particle systems
with Brownian inputs.

1. Introduction. The study of mean field stochastic dynamics and in-
teracting diffusions / Markov processes finds its roots in Kac’s simplified ap-
proach to kinetic theory [31] and McKean’s work [35] on nonlinear parabolic
equations. It provides the description of evolutions pµtqtě0 in the space of
probability measures under the form of a pathspace random dynamics

dXtpωq “V
`

Xtpωq, µt
˘

dt` F
`

Xtpωq, µt
˘

dWtpωq,

µt :“LpXtq,
(1.1)
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2 I. BAILLEUL, R. CATELLIER, F. DELARUE

where LpAq stands for the law of a random variable A over a probabil-
ity space pΩ,F ,Pq containing ω and relates it to the empirical behaviour
of large systems of interacting dynamics. The main emphasis of subse-
quent works has been on proving propagation of chaos and other limit
theorems, and giving stochastic representations of solutions to nonlinear
parabolic equations under more and more general settings; see for instance
[38, 39, 27, 20, 21, 36, 30, 7, 8]. Classical stochastic calculus makes sense
of equation (1.1) only when the process W is a semi-martingale under P,
for some filtration, and the integrand is predictable. However, this setting
happens to be too restrictive in a number of situations, especially when the
diffusivity is random. This prompted several authors to address equation
(1.1) by means of rough paths theory. Indeed, one may understand rough
paths theory as a natural framework for providing probabilistic models of
interacting populations, beyond the realm of Itô calculus. Cass and Lyons
[15] did the first study of mean field random rough differential equations
and proved the well-posed character of equation (1.1), and propagation of
chaos for an associated system of interacting particles, under the crucial
assumption that there is no mean field interaction in the diffusivity, i.e.
Fpx, µq “ Fpxq, and that the drift depends linearly on the mean field inter-
action. Bailleul extended partly these results in [1] by proving well-posedness
of the mean field rough differential equation (1.1) in the case where the drift
depends nonlinearly on the interaction term and the diffusivity is still in-
dependent of the interaction, and by proving an existence result when the
diffusivity depends on the interaction. Another breakthrough came with our
earlier arXiv deposit [3], in which we explained how to handle the case when
F truly depends on the interaction term by making a systematic use of Lions’
approach to differential calculus on Wasserstein space. To make the content
more accessible, we eventually decided to split [3] into two parts: While the
current work is mainly inspired from the second half of [3], our companion
article [2] corresponds to the first half of [3]; Therein, we address the well-
posedness of the mean field rough equation (1.1) for a genuinely nonlinear
F.

In fact, as explained in [2], the general case may be easily reduced to the
study of the simpler equation

(1.2) dXtpωq “ F
`

Xtpωq,LpXtq
˘

dWtpωq,

which is precisely the version we address in this paper. To make it clear, the
purpose of the present article is to prove that, under suitable assumptions,
the solution of (1.2) coincides with the limit (in a convenient sense), as n
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tends to 8, of the n-particle system

Xi
tpωq “ Xi

0pωq `

ż t

0
F

ˆ

Xi
spωq,

1

n

n
ÿ

j“1

δ
Xj
s pωq

˙

dW i
spωq, t ě 0,(1.3)

for 1 ď i ď n, where
`

Xi
0p¨q,W

ip¨q
˘

1ďiďn
is a collection of independent and

identically distributed variables with the same distribution as pX0p¨q,W p¨qq,
the first component being regarded as a random variable with values in
Rd and the second one as a random variable with values in the space of
continuous functions. Of course, equation (1.3) must be understood as a
rough differential equation driven by the signal pW 1pωq, ¨ ¨ ¨ ,Wnpωqq with
pX1pωq, ¨ ¨ ¨ , Xnpωqq as output. As it is well-known, this requires to lift
pW 1pωq, ¨ ¨ ¨ ,Wnpωqq into an enhanced rough path W pnqpωq and henceforth
to define the various iterated integrals. Asking the paths W pωq, ω P Ω, to
have a finite p-variation for 2 ď p ă 3, this prompts us to assume that,
instead of

`

pX1
0 p¨q,W

1p¨qq, ¨ ¨ ¨ , pXn
0 ,W

np¨qq
˘

, we have in fact n independent
copies pXi

0p¨q,W
ip¨q,Wip¨qq1ďiďn of the triple pX0p¨q,W p¨q,Wp¨qq, where Wpωq

is the iterated integral of W pωq and Wipωq is the iterated integral of W ipωq.
Of course, it is also needed to define the iterated integrals of W jpωq with
respect to W ipωq, for j “ i. Not only we assume below that such iterated
integrals do indeed exist, but we make the additional assumption that there
is a measurable map I giving Wi,jpωq from W ipωq and W jpωq, that is

(1.4) Wi,jpωq “ I
`

W ipωq,W jpωq
˘

, i “ j.

In words, (1.4) says that there exists a measurable way to construct the iter-
ated integral of two independent copies of the signal in the limiting equation
(1.2). Hence, (1.4) should be really regarded as an intrinsic property of (1.2)
and not as a specific feature of the particle system (1.3).

More generally, it is in fact a key point in the subsequent analysis to draw
a parallel between the underlying rough path used to give a meaning to (1.3)
and the notion of extended1 rough set-up used in [2] to address (1.2). We
provide a reminder of the latter notion in Section 2. Basically, it says that, in
order to solve (1.2), we must not only lift, for a given ω P Ω, the trajectory
W pωq into an enhanced rough path pW pωq,Wpωqq, but we must in fact lift
the whole trajectory pW pωq,W p¨qq, the second component being seen as a
path with values in some LqpΩ,F ,P; Rmq space, where m is the dimension
of the signal. Then, we call extended rough path set-up the enhancement of
pW pωq,W p¨qq.

1In fact, the term extended does not appear in [2], but it is here of a convenient use to
distinguish from the standard rough set-up used to solve the particle system (1.3).
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The striking fact of our analysis is then based upon an observation noticed
first by Tanaka in his seminal work [40] on limit theorems for mean field type
diffusions, and used crucially by Cass and Lyons in their seminal work [15].
We refer to it as Tanaka’s trick. It says that, for a given ω P Ω, the particle
system (1.3) itself may be interpreted as a mean field equation, but with
respect to the empirical measure of the driving noise. Adapted to the rough
paths theory, it says that, for any fixed ω P Ω, the path

W pnqpωq “
´

`

W ipωq
˘

1ďiďn
,
`

Wi,jpωq
˘

1ďi,jďn

¯

“:
´

W pnqpωq,Wpnqpωq
¯

,

which underpins the rough structure used to solve (1.3), may be seen as an
extended rough set-up on its own – below, we just say a rough set-up) but
defined on the finite probability space

ˆ

 

1, ¨ ¨ ¨ , n
(

,P
` 

1, ¨ ¨ ¨ , n
(˘

,
1

n

n
ÿ

i“1

δi

˙

,

where Ppt1, ¨ ¨ ¨ , nuq denotes the collection of subsets of t1, ¨ ¨ ¨ , nu, instead
of the former probability space pΩ,F ,Pq. We call this set-up the empirical
rough set-up, and we make its construction entirely clear in the sequel of the
paper. For sure, given the iterated integrals of the signal pW 1pωq, ¨ ¨ ¨ ,Wnpωqq,
the rough integral (1.3) should be interpreted in the usual sense, as given by
standard Lyons’ rough paths theory. In short, this requires to expand locally
the integrand in (1.3), which in turns requires to have a convenient notion
of derivative with respect to the measure argument. In this regard, a crucial
fact in [2] is to use Lions’ approach [33, 9, 11] to differential calculus on the
space P2pRdq of probability measures on Rd with a finite square moment, the
so-called d-dimensional Wasserstein space, d denoting here and throughout
the dimension of the output in (1.2). The core of our analysis in Section 4
is that, whenever Wasserstein derivatives on P2pRdq are projected, through
empirical measures, into classical derivatives on pRdqn, as it is needed to dif-
ferentiate the integrand in (1.3), the resulting solution for (1.3), as given by
standard rough paths theory, coincides with the solution obtained by inter-
preting (1.3) as a mean field rough equation driven by the aforementioned
empirical rough set-up – see Section 3 for reminders on solvability results
for mean field rough equations. In this way, the convergence of solutions of
(1.3) to solutions of (1.2) as n tends to 8 is reduced to a form of continuity
of the solutions to mean field rough differential equations with respect to
the underlying rough set-up. We called the latter continuity of the Itô-Lyons
solution map, see Theorem 5.4 of our companion work [2]. Our first main
result, Theorem 4.3, shows that, for a sufficiently large class of input sig-
nals, propagation of chaos is in fact a consequence of the continuity of the
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Itô-Lyons solution map for mean field rough differential equations. At this
stage, it is worth mentioning that it is precisely in the requirements of the
continuity of the Itô-Lyons map that the structure condition (1.4) about the
cross-iterated integrals comes in. In [2], a rough set-up that satisfies (1.4) is
said to be strong.

While the proofs of both our first main result and the underlying continu-
ity property of the Itô-Lyons solution map are mostly based on compactness
arguments, our second main result is to elucidate, under slightly stronger
assumptions the convergence rate in the propagation of chaos; see Theorem
5.1 in Section 5. The strategy is directly inspired from original Sznitman’s
coupling argument for mean field systems driven by Brownian signals, see
[38]. Although the proof is much more involved than in the Brownian set-
ting, we recover the same rate of convergence: It coincides with the rate of
convergence (in Wasserstein metric) of the empirical measure of an n-sample
of (sufficiently integrable) i.i.d. variables to their common distribution. In
particular, the speed decays with the dimension.

As in [2], our analysis holds for continuous rough paths whose p-variation,
for some p P r2, 3q, is finite and has sub-exponential tails and for which the
so-called local accumulated variation –that counts the increments of the sig-
nal of a given size over a bounded interval– has super-exponential tails, see
[2, Theorem 1.1]. Among others, our results apply to continuous centred
Gaussian signals defined over some time interval r0, T s that have indepen-
dent components and whose covariance function has finite ρ-two dimensional
variation, for some ρ P r1, 3{2q.

For the sake of completeness, it is worth adding that there has been a
number of works recently using probabilistic tools to investigate mean field
problems. We emphasize Barbu and Röckner’s work [5] on stochastic repre-
sentations for nonlinear PDEs, and Coghi and Gess’ work [17] on stochastic
nonlinear, non-local Fokker-Planck equation, that arise in the mean field
limit of weakly interacting diffusions with a common noise. Even though
it is purely analytic, Jabin and Wang’s work [29] on quantitative estimates
of propagation of chaos should be read at the light of a probabilistic intu-
ition. The litterature at the intersection of rough paths theory and mean
field dynamics is sparser. Cass and Lyons launched the subject in [15] by
proving a well-posedness result for a mean field rough differential equation
with no interaction in the diffusivity and a linear interaction in the drift,
and a propagation of chaos result. The well-posedness result was generalised
by Bailleul under a different set of assumptions in [1] for mean field rough
differential equation with no interaction in the diffusivity and a nonlinear
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interaction in the drift. The setting happens to be much simpler for equa-
tions with an additive noise, as no rough paths are needed and propagation
of chaos, central limit theorem and large deviation results can be proved, as
shown by Coghi, Deuschel, Friz and Maurelli in [16]. Coghi and Nilssen de-
veloped in [19] a variant of Bailleul and Riedel’s approach of rough flows [4]
to study rough nonlocal mean field type Fokker-Planck equations subjected
to a rough common noise (meaning that, in [19], the process pµtq0ďtďT in
(1.1) becomes random under the action of an additional noise that is pre-
cisely assumed to be a rough path; obviously, there is no common noise in
our model) but to an idiosyncratic Brownian noise (to make it clear, the id-
iosyncratic noise should be regarded as W in (1.1); of course, a substantial
difference is that, in our framework, W may not be a Brownian motion).
Last, Cass, dos Reis and Salkeld [13] used rough paths theory to investigate
in depth support theorems for solutions of McKean Vlasov equations driven
by a Brownian motion.

The present work leaves wide open the question of refining the strong law
of large numbers given by the propagation of chaos result stated in Theorem
4.3. A central limit theorem for the fluctuations of the empirical measure
of the particle system is expected to hold under reasonable conditions on
the common law of the rough drivers. Large and moderate deviation results
would also be most welcome. In a different direction, it would be interesting
to investigate the propagation of chaos phenomenon for systems of inter-
acting rough dynamics subject to a common noise. Very interesting things
happen in the Itô setting in relation with mean field games [10, 32]. Also, one
would get a more realistic model of natural phenomena by working with sys-
tems of particles driven by non-independent noises. Individuals with close
initial conditions could have drivers strongly correlated while individuals
started far apart could have (almost-)independent drivers. Limit mean field
dynamics are likely to be different from the results obtained here – see [18]
for a result in this direction in the Itô setting. We invite the reader to make
her/his own mind about these problems.

The paper is organized as follows. We recall in Section 2 the construction
of a rough set-up, as introduced in [2]. We provide in Section 3 a sketchy pre-
sentation of related solvability results for equation (1.2), including a review
of the main assumptions that we need on the diffusivity F. Convergence of
the particle system (1.3) is established in Section 4. The convergence rate
is addressed in Section 5, under additional regularity assumptions on F and
integrability assumptions on the signal. Proofs of some technical results are
given in Appendix A.1 and A.2.
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Notations. We gather here a number of notations that will be used through-
out the text.
‚ We set S2 :“

 

ps, tq P r0,8q2 : s ď t
(

, and ST2 :“
 

ps, tq P r0, T s2 : s ď
t
(

.
‚We denote by pΩ,F ,Pq an atomless Polish probability space, F standing

for the completion of the Borel σ-field under P, and denote by x¨y the expec-
tation operator, by x¨yr, for r P r1,`8s, the Lr-norm on pΩ,F ,Pq and by
⟪¨⟫ and ⟪¨⟫r the expectation operator and the Lr-norm on

`

Ω2,Fb2,Pb2
˘

.
When r is finite, LrpΩ,F ,P; Rq is separable as Ω is Polish.
‚ As for processes X‚ “ pXtqtPI , defined on a time interval I, we often

write X for X‚.

2. From Probabilistic Rough Structures to Rough Integrals.

2.1. Overview on Probabilistic Rough Structures. We here provide a brief
reminder of the content of Section 2 in [2]. We refer the reader to the paper
for a complete review. Throughout the section, we work on a finite time
horizon r0, T s, for a given T ą 0.

The first level of the rough path structure used to give a meaning to (1.2)
is defined as an ω-indexed pair of paths

(2.1)
`

Wtpωq,Wtp¨q
˘

0ďtďT
,

where
`

Wtp¨q
˘

0ďtďT
is a collection of q-integrable Rm-valued random vari-

ables on pΩ,F ,Pq, which we regard as a deterministic LqpΩ,F ,P; Rmq-valued
path, for some exponent q ě 8, and

`

Wtpωq
˘

0ďtďT
stands for the realiza-

tions of these random variables along the outcome ω P Ω; so the pair (2.1)
takes values in Rm ˆ LqpΩ,F ,P; Rmq. The second level has the form of an

ω-dependent two-index path with values in
`

RmˆLqpΩ,F ,P; Rmq
˘b2

and is
encoded in matrix form as

(2.2)

ˆ

Ws,tpωq WKK
s,tpω, ¨q

WKK
s,tp¨, ωq WKK

s,tp¨, ¨q

˙

0ďsďtďT

,

where

• Ws,tpωq is in pRmqb2 » Rmˆm,
• WKK

s,tpω, ¨q is in Rm b Lq
`

Ω,F ,P; Rm
˘

» Lq
`

Ω,F ,P; Rmˆm
˘

,

• WKK
s,tp¨, ωq is in Lq

`

Ω,F ,P; Rm
˘

b Rm » Lq
`

Ω,F ,P; Rmˆm
˘

,

• WKK
s,tp¨, ¨q is in Lq

`

Ωb2,Fb2,Pb2; Rmˆm
˘

, the realizations of which read

in the form Ω2 Q pω, ω1q ÞÑ WKK
s,tpω, ω

1q P Rmˆm and the two sections

of which are precisely given by WKK
s,tpω, ¨q : Ω Q ω1 ÞÑ WKK

s,tpω, ω
1q, and

WKK
s,tp¨, ωq Q ω

1 ÞÑ WKK
s,tpω

1, ωq, for ω P Ω.
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A convenient form of Chen’s relations is required, for any ω P Ω,

Wr,tpωq “ Wr,spωq `Ws,tpωq `Wr,spωq bWs,tpωq,

WKK
r,tp¨, ωq “ WKK

r,sp¨, ωq `WKK
s,tp¨, ωq `Wr,sp¨q bWs,tpωq,

WKK
r,tpω, ¨q “ WKK

r,spω, ¨q `WKK
s,tpω, ¨q `Wr,spωq bWs,tp¨q,

WKK
r,tp¨, ¨q “ WKK

r,sp¨, ¨q `WKK
s,tp¨, ¨q `Wr,sp¨q bWs,tp¨q,

(2.3)

for any 0 ď r ď s ď t ď T , with notation fr,s :“ fs ´ fr, for a function
f from r0,8q into a vector space. In (2.3), we denoted by Xp¨q b Y p¨q,
for any two X and Y in LqpΩ,F ,P; Rmq, the random variable

`

ω, ω1q ÞÑ
`

XipωqYjpω
1q
˘

1ďi,jďm
defined on Ω2. It is in Lq

`

Ω2,Fb2,Pb2; Rmˆm
˘

. The

notation KK in WKK is used to indicate that WKK
s,tp¨, ¨q should be thought of as

the random variable

pω, ω1q ÞÑ

ż t

s

´

Wrpωq ´Wspωq
¯

b dWrpω
1q.

Since Ω2 Q pω, ω1q ÞÑ pWtpωqqtě0 and Ω2 Q pω, ω1q ÞÑ pWtpω
1qqtě0 are inde-

pendent under Pb2, we then understand WKK
s,t as an iterated integral for two

independent copies of the noise. We refer to Examples 2.1 and 2.2 in [2].
In the end, we denote by W pωq the so-called rough set-up specified by the
ω-dependent collection of maps given by (2.1) and (2.2).

2.2. Regularity of the Rough Set-Up. Following [2], we use the notion
of p-variation to handle the regularity of the various trajectories in hand.
Throughout, the exponent p is taken in the interval r2, 3q. For a continuous
function G from the simplex ST2 into some R`, we set, for any p1 ě 1,

}G}p
1

r0,T s,p1´v :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

|Gti´1,ti |
p1 ,

and define for any function g from r0, T s into R`, }g}p
r0,T s,p´v :“ }G}p

r0,T s,p´v

as the p-variation semi-norm of its associated two index function Gs,t :“
gt ´ gs. Similarly, for a random variable Gp¨q on Ω with values in CpST2 ; R`q,
and p1 ě 1, we define its p1-variation in Lq as

xGp¨qyp
1

q;r0,T s,p1´v :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

@

Gti´1,tip¨q
Dp1

q
,(2.4)

and define for a random variable Gp¨q on Ω, with values in Cpr0, T s; R`q,

@

Gp¨q
Dp1

q;r0,T s,p1´v
:“

@

Gp¨q
Dp1

q;r0,T s,p1´v
,
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as the p1-variation semi-norm in Lq of its associated two-index function ST2 Q
ps, tq ÞÑ Gs,tp¨q “ Gtp¨q ´ Gsp¨q. Lastly, for a random variable Gp¨, ¨q from
pΩ2,Fb2q into CpST2 ; R`q, we set

⟪Gp¨, ¨q⟫p1q;r0,T s,p1´v :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

⟪Gti´1,tip¨, ¨q⟫p
1

q
.(2.5)

Given these definitions, we require from the rough set-up W that

• For any ω P Ω, the path W pωq is in the space Cpr0, T s; Rmq, and the
map W : Ω Q ω ÞÑ W pωq P Cpr0, T s; Rmq is Borel-measurable and
q-integrable.

• For any ω P Ω, the two-index path Wpωq is in CpST2 ; Rmˆmq, and the
map W : Ω Q ω ÞÑ Wpωq P CpST2 ; Rmˆmq is Borel-measurable and
q-integrable.

• For any pω, ω1q P Ω2, the two-index path WKKpω, ω1q is an element
of CpST2 ; Rmˆmq, and the map WKK : Ω2 Q pω, ω1q ÞÑ WKKpω, ω1q P
CpST2 ; Rmˆmq is Borel-measurable and q-integrable.

Moreover, we may set, for some fixed p P r2, 3q and for all 0 ď s ď t ď T
and ω P Ω,

vps, t, ωq :“
›

›W pωq
›

›

p

rs,ts,p´v
`
@

W p¨q
Dp

q;rs,ts,p´v

`
›

›Wpωq
›

›

p{2

rs,ts,p{2´v
`
@

WKKpω, ¨q
Dp{2

q;rs,ts,p{2´v

`
@

WKKp¨, ωq
Dp{2

q;rs,ts,p{2´v
` ⟪WKKp¨, ¨q⟫p{2

q;rs,ts,p{2´v
,

(2.6)

and we assume that, for any positive finite time T and any ω P Ω, the
quantity vp0, T, ωq is finite. Importantly, ω ÞÑ pvps, t, ωqqps,tqPST2

is a random

variable with values in CpST2 ; R`q and is super-additive, namely, for any
0 ď r ď s ď t ď T , and ω P Ω,

vpr, t, ωq ě vpr, s, ωq ` vps, t, ωq.

We then assume xvp0, T, ¨qyq ă 8, which implies, by Lebesgue’s dominated
convergence theorem, that the function ST2 Q ps, tq ÞÑ xvps, t, ¨qyq is continu-
ous. We assume that it is of bounded variation on r0, T s, i.e.

(2.7) xvp¨qyq;rs,ts,1´v :“ sup
0ďt1ă¨¨¨ătKďT

K
ÿ

i“1

xvpti´1, ti, ¨qyq ă 8.
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10 I. BAILLEUL, R. CATELLIER, F. DELARUE

We then call a control any family of random variables pω ÞÑ wps, t, ωqqps,tqPST2
that is jointly continuous in ps, tq and that satisfies,

(2.8) wps, t, ωq ě vps, t, ωq ` xvp¨qyq;rs,ts,1´v,

together with

xwps, t, ¨qyq ď 2wps, t, ωq,

wpr, t, ωq ě wpr, s, ωq ` wps, t, ωq, r ď s ď t.
(2.9)

A typical choice to get (2.8) and (2.9) is to choose

(2.10) wps, t, ωq :“ vps, t, ωq ` xvp¨qyq;rs,ts,1´v.

2.3. Controlled Trajectories. With a rough set-up at hands on a given
finite time interval r0, T s, we define an associated notion of controlled path
and rough integral in the spirit of Gubinelli [28]. Again, we refer to [2] for
details, see Definition 3.1 therein.

Definition 2.1. An ω-dependent continuous Rd-valued path pXtpωqq0ďtďT
is called an ω-controlled path on r0, T s if its increments can be decomposed
as

(2.11) Xs,tpωq “ δxXspωqWs,tpωq ` E
“

δµXspω, ¨qWs,tp¨q
‰

`RXs,tpωq,

where
`

δxXtpωq
˘

0ďtďT
belongs to C

`

r0, T s; Rdˆm
˘

and
`

δµXtpω, ¨q
˘

0ďtďT
to

C
`

r0, T s; L4{3pΩ,F ,P; Rdˆmq
˘

,
`

RXs,tpωq
˘

s,tPST2
is in the space CpST2 ; Rdq, and

~Xpωq~‹,r0,T s,w,p :“ |X0pωq| `
ˇ

ˇδxX0pωq
ˇ

ˇ`
@

δµX0pω, ¨q
D

4{3

` ~Xpωq~r0,T s,w,p ă 8,

where

~Xpωq~r0,T s,w,p :“ }Xpωq}r0,T s,w,p ` }δxXpωq}r0,T s,w,p

`
@

δµXpω, ¨q
D

r0,T s,w,p,4{3
` }RXpωq}r0,T s,w,p{2,

with

}Xpωq}r0,T s,w,p :“ sup
H“ps,tqĂr0,T s

ˇ

ˇXs,tpωq
ˇ

ˇ

wps, t, ωq1{p
, and similarly for δxX

@

δµXpω, ¨q
D

r0,T s,w,p,4{3
:“ sup

H“ps,tqĂr0,T s

@

δµXs,tpω, ¨q
D

4{3

wps, t, ωq1{p
,

}RXpωq}r0,T s,w,p{2 :“ sup
H“ps,tqĂr0,T s

ˇ

ˇRXs,tpωq
ˇ

ˇ

wps, t, ωq2{p
.

We call δxXpωq and δµXpω, ¨q in (2.11) the derivatives of Xpωq.
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PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 11

We then define the notion of random controlled trajectory, which consists
of a collection of ω-controlled trajectories indexed by the elements of Ω.

Definition 2.2. A family of ω-controlled paths pXpωqqωPΩ such that X,
δxX, δµX and RX are measurable from Ω into C

`

r0, T s; Rd
˘

, C
`

r0, T s; Rdˆm
˘

,

C
`

r0, T s; L4{3pΩ,F ,P; Rdˆmq
˘

and C
`

ST2 ; Rd
˘

, and satisfy

(2.12)
@

X0p¨q
D

2
`
@

~Xp¨q~r0,T s,w,p
D

8
ă 8

is called a random controlled path on r0, T s.

It is proven in [2, Lemma 3.3] that a random controlled trajectory induces
a continuous path t ÞÑ Xtp¨q from r0, T s to L2pΩ,F ,P; Rdq. On another mat-
ter, the reader may observe that we do not require any integrability property
on the initial conditions δxX0 and δµX0 of the two derivative processes. In
fact, it must be understood that, when dealing with solutions to (1.2), both
δxX0 and δµX0 are automatically prescribed: δxX0pωq “ FpX0pωq,LpX0qq

and δµX0pω, ¨q “ 0, see the forthcoming Theorem 2.3 for more details. Simple
bounds for both δxX0 and δµX0 then easily follow. Lastly, as it is explained
in our companion paper [2], see Definition 3.1 therein, the values of 4{3 and
8 in Definition 2.2 are somewhat arbitrary. In particular, the analysis could
be managed with other exponents provided that a certain trade-off between
the two of them (here 4{3 and 8) still holds. To make it clear, 4{3 should
be here regarded as the conjugate exponent of 4; and the reader may eas-
ily guess that 8 shows up in the computations when squaring some fourth
moments.

2.4. Rough Integral. As for the construction, of the rough integral, we
recall the following statement from [2, Theorem 3.4].

Theorem 2.3. There exists a universal constant c0 and, for any ω P Ω,
there exists a continuous linear map

`

Xtpωq
˘

0ďtďT
ÞÑ

ˆ
ż t

s
Xs,upωq b dW upωq

˙

ps,tqPST2

from the space of ω-controlled trajectories equipped with the norm ~¨~‹,r0,T s,p,

onto the space of continuous functions from ST2 into RdbRm with finite norm
} ¨ }r0,T s,w,p{2, with w in the latter norm being evaluated along the realization
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12 I. BAILLEUL, R. CATELLIER, F. DELARUE

ω, that satisfies for any 0 ď r ď s ď t ď T the identity

ż t

r
Xr,upωq b dW upωq

“

ż s

r
Xr,upωq b dW upωq `

ż t

s
Xs,upωq b dW upωq `Xr,spωq bWs,tpωq,

together with the estimate

ˇ

ˇ

ˇ

ˇ

ż t

s
Xs,upωq b dW upωq ´ δxXspωqWs,tpωq ´ E

“

δµXspω, ¨qW
KK
s,tp¨, ωq

‰

ˇ

ˇ

ˇ

ˇ

ď c0 ~Xpωq~r0,T s,w,pwps, t, ωq
3{p.(2.13)

Above, δxXspωqWs,tpωq is the product of a dˆm matrix and an mˆm ma-
trix, so it gives back a dˆm matrix, with components

`

δxXspωqWs,tpωq
˘

i,j
“

řm
k“1

`

δxX
i
spωq

˘

k

`

Ws,tpωq
˘

k,j
, for i P t1, ¨ ¨ ¨ , du and j P t1, ¨ ¨ ¨ ,mu, and sim-

ilarly for ErδµXspω, ¨qWKK
s,tp¨, ωqs. As usual, the above construction allows us

to define an additive process setting

ż t

s
Xupωq b dW upωq :“

ż t

s
Xs,upωq b dW upωq `Xspωq bWs,tpωq,

for 0 ď s ď t ď T . We can thus consider the integral process
` şt

0Xspωq b
dW spωq

˘

0ďtďT
as an ω-controlled trajectory with values in Rdˆm, with

ˆ

δx

„
ż ¨

0
Xspωq b dW spωq



t

˙

pi,jq,k

“
`

Xtpωq
˘

i
δj,k,

for i P t1, ¨ ¨ ¨ , du and j, k P t1, ¨ ¨ ¨ ,mu, where δj,k stands for the usual
Kronecker symbol, and with null µ-derivative.

When the trajectory Xpωq takes in values in Rd b Rm rather than Rd,
the integral

şt
0Xspωq b dW spωq belongs to Rd b Rm b Rm. We then set for

i P t1, ¨ ¨ ¨ , du

ˆ
ż t

0
XspωqdW spωq

˙

i

:“
m
ÿ

j“1

ˆ
ż t

0
Xspωq b dW spωq

˙

i,j,j

,

and consider
şt
0XspωqdW spωq as an element of Rd.
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PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 13

2.5. Stability of Controlled Paths under Nonlinear Maps. A key fact in
[2] is to use regularity properties of functions defined on Wasserstein space
through a lifting procedure to an L2 space standing above the probability
space. We refer the reader to Lions’ lectures [33], to the lecture notes [9] of
Cardaliaguet or to Carmona and Delarue’s monograph [11, Chapter 5] for
basics on the subject.

‚ Recall pΩ,F ,Pq stands for an atomless probability space, with Ω a
Polish space and F its Borel σ-algebra. Fix a finite dimensional space E “
Rk and denote, for r ě 1, by Lr : “ LrpΩ,F ,P;Eq the space of E-valued
random variables on Ω with finite r moment. We equip the space PrpEq :“
 

LpZq ; Z P Lr
(

with the r-Wasserstein distance

(2.14) drpµ1, µ2q :“ inf
!

}Z1 ´ Z2}r ; LpZ1q “ µ1, LpZ2q “ µ2

)

.

When r “ 2, an Rk-valued function u defined on P2pEq is canonically ex-
tended to L2 by setting, for any Z P L2, UpZq :“ u

`

LpZq
˘

.

‚ The function u is then said to be differentiable at µ P P2pEq if its
canonical lift is Fréchet differentiable at some point Z such that LpZq “ µ;
we denote by ∇ZU P pL2qk the gradient of U at Z. The function U is then
differentiable at any other point Z 1 P L2 such that LpZ 1q “ µ, and the laws
of ∇ZU and ∇Z1U are equal, for any such Z 1.

‚ The function u is said to be of class C1 if its canonical lift is of class
C1. If u is of class C1 on P2pEq, then ∇ZU is σpZq-measurable and given
by an LpZq-dependent function Du from E to Ek such that

(2.15) ∇ZU “ pDuqpZq.

In order to emphasize the fact that Du depends upon LpZq, we shall write
Dµu

`

LpZq
˘

p¨q instead of Dup¨q. Importantly, this representation is inde-
pendent of the choice of the probability space pΩ,F ,Pq and can be easily
transported from one probability space to another.

Throughout the paper, we regard the function F in (1.2) as a map from
RdˆL2pΩ,F ,P; Rdq into the space LpRm,Rdq – RdbRm of linear mappings
from Rm to Rd. Intuitively, we identify the coefficient driving equation (1.2)
with its lift pF. Following [2, Subsection 3.3], we require F to satisfy the
following regularity assumptions.

Regularity assumptions 1 – Assume that F is continuously differentiable
in the joint variable px, Zq, that BxF is also continuously differentiable in
px, Zq and that there is some positive finite constant Λ such that |Fpx, µq|,
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14 I. BAILLEUL, R. CATELLIER, F. DELARUE

|BxFpx, µq|, |B2
xFpx, µq|, }∇ZFpx, Zq}2 and }Bx∇ZFpx, Zq}2 are bounded by

Λ, for any x P Rd, µ P P2pRdq and Z P L2pΩ,F ,P; Rdq. Assume moreover
that, for any x P Rd, the mapping Z ÞÑ ∇ZFpx, Zq is a Λ-Lipschitz function
of Z P L2pΩ,F ,P; Rdq.

We recall below that, for an ω-controlled path Xpωq and for an Rd-valued
random controlled path Y p¨q, FpXpωq, Y p¨qq :“

`

FpXtpωq, Ytp¨qq
˘

0ďtďT
may

be also expanded in the form of an ω-controlled trajectory. As explained in
[2, (3.8)], it suffices for our purpose to provide the form of the expansion
when δµXpωq ” 0 and δµY p¨q ” 0.

Proposition 2.4. Let Xpωq be an ω-controlled path and Y p¨q be an Rd-
valued random controlled path. Assume that δµXpωq ” 0 and δµY p¨q ” 0
and that sup0ďtďT

`

|δxXtpωq|_xδxYtp¨qy8
˘

ă 8. Then, F
`

Xpωq, Y p¨q
˘

is an
ω-controlled path with

δx

´

F
`

Xpωq, Y p¨q
˘

¯

t
“ BxF

`

Xtpωq, Ytp¨q
˘

δxXtpωq,

which is understood as
`
řd
`“1 Bx`F

i,j
`

Xtpωq, Ytp¨q
˘`

δxX
`
t pωq

˘

k

˘

i,j,k
, with i, k P

t1, ¨ ¨ ¨ , du and j P t1, ¨ ¨ ¨ ,mu, and (with a similar interpretation for the
product)

δµ

´

F
`

Xpωq, Y p¨q
˘

¯

t
“ DµF

`

Xtpωq,LpYtq
˘`

Xtp¨q
˘

δxYtp¨q.

2.6. Local Accumulation. In order to proceed with the analysis of (1.3),
we make use of the notion of local accumulation. Following [2], we define
it as follows. Given a nondecreasing2 continuous positive valued function $
on S2, a non-negative parameter s and a positive threshold α, we define
inductively a sequence of times setting τ0ps, αq :“ s, and

(2.16) τ$n`1ps, αq :“ inf
!

u ě τ$n ps, αq : $
`

τ$n ps, αq, u
˘

ě α
)

,

with the understanding that infH :“ `8. For t ě s, set

(2.17) N$

`

rs, ts, α
˘

:“ sup
!

n P N : τ$n ps, αq ď t
)

.

We call N$ the local accumulation of $ (of size α if we specify the value
of the threshold): N$prs, ts, αq is the largest number of disjoint open sub-
intervals pa, bq of rs, ts on which $pa, bq is greater than or equal to α. When

2In the sense that $pa, bq ě $pa1, b1q if pa1, b1q Ă pa, bq.
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PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 15

$ps, tq “ wps, t, ωq1{p with w a control satisfying (2.8) and (2.9) and when
the framework makes it clear, we just write Nprs, ts, ω, αq for N$prs, ts, αq.
Similarly, we also write τnps, ω, αq for τ$n ps, αq when $ps, tq “ wps, t, ωq. We
will also use the convenient notation

τ$n ps, t, αq :“ τ$n ps, αq ^ t.

3. Analysis of the Mean Field Rough Differential Equation.

3.1. Solving the Equation. The following notion of solution to (1.2) is
taken from [2, Definition 4.1].

Definition 3.1. Let W together with its enhancement W satisfy the
assumption of Section 2.2 on a finite interval r0, T s. A solution to (1.2)
on the time interval r0, T s, with initial condition X0p¨q P L2pΩ,F ,P; Rdq, is
a random controlled path Xp¨q such that for P-a.e. ω the paths Xpωq and
X0pωq `

ş¨

0 F
`

Xspωq, Xsp¨q
˘

dW spωq coincide.

We formulate here the regularity assumptions on Fpx, µq used in [2], in
addition to Regularity assumptions 1, to show the well-posed character of
Equation (1.2). Below, we denote by

`

rΩ, rF , rP
˘

a copy of pΩ,F ,Pq, and given

a random variable Z on pΩ,F ,Pq, write rZ for its copy on
`

rΩ, rF , rP
˘

.

Regularity assumptions 2.

‚ The function BxF is differentiable in px, µq.

‚ For each px, µq P Rd ˆ P2pRdq, there exists a version of DµFpx, µqp¨q P
L2
µpR

d; Rd b Rmq such that the map px, µ, zq ÞÑ DµFpx, µqpzq from Rd ˆ
P2pRdq ˆ Rd to Rd b Rm b Rd is of class C1, the derivative in the direction
µ being understood as before.

‚ The function
`

x, Z
˘

ÞÑ B2
xF

`

x,LpZq
˘

from Rd ˆ L2pΩ,F ,P; Rdq to Rd b
Rm b Rd b Rd is bounded by Λ and Λ-Lipschitz continuous.

‚ The two derivative functions px, Zq ÞÑ BxDµF
`

x,LpZq
˘

pZp¨qq (which
is the same as px, Zq ÞÑ DµBxF

`

x,LpZq
˘

pZp¨qq by Schwarz’ theorem) and
px, Zq ÞÑ BzDµF

`

x,LpZq
˘

pZp¨qq are bounded by Λ and Λ-Lipschitz continu-
ous from Rd ˆ L2

`

Ω,F ,P; Rd
˘

to L2
`

Ω,F ,P; Rd b Rm b Rd b Rd
˘

.

‚ For each µ P P2pRdq, we denote by D2
µFpx, µqpz, ¨q, the derivative of

DµFpx, µqpzq with respect to µ – which is indeed given by a function. For
z1 P Rd, D2

µFpx, µqpz, z1q is an element of Rd b Rm b Rd b Rd. We assume
that

px, Zq ÞÑ D2
µF

`

x,LpZq
˘`

Zp¨q, rZp¨q
˘

,
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from Rd ˆ L2pΩ,F ,P; Rdq to L2
´

Ωˆ rΩ,F b rF ,Pb rP; Rd b Rm b Rd b Rd
¯

,

is bounded by Λ and Λ-Lipschitz continuous.

The two functions Fpx, µq “
ş

fpx, yqµpdyq and Fpx, µq “ g
`

x,
ş

yµpdyq
˘

,
for functions f, g P C3

b (meaning that f and g are bounded and have bounded
derivatives of order 1, 2 and 3), satisfy the Regularity assumptions 1 and
2. The following property is taken from [2, Proposition 4.3 and (4.21)].

Proposition 3.2. Let F satisfy Regularity assumptions 1 and 2 and
w be a control satisfying (2.8) and (2.9). Consider two ω-controlled paths
Xpωq and X 1pωq with possibly different initial conditions pX0pωq, δxX0pωqq
and pX 10pωq, δxX

1
0pωqq, defined on a time interval r0, T s, together with two

random controlled paths Y p¨q and Y 1p¨q, with possibly different initial condi-
tions pY0pωq, δxY0pωqq and pY 10pωq, δxY

1
0pωqq, all of them satisfying δµXpωq ”

δµX
1pωq ” 0 and δµY p¨q ” δµY

1p¨q ” 0 together with

(3.1)
ˇ

ˇδxXpωq
ˇ

ˇ_
ˇ

ˇδxX
1pωq

ˇ

ˇ_
@

δxY p¨q
D

8
_
@

δxY
1p¨q

D

8
ď Λ,

and the size estimates
@

~Y p¨q~r0,T s,w,p
D2

8
ď L0,

@

~Y 1p¨q~r0,T s,w,p
D2

8
ď L0,(3.2)

�

�Xpωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď L0,
�

�X 1pωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď L0,(3.3)

for i P t0, ¨ ¨ ¨ , N0u, for some L0 ě 1, and N0 “ N
`

r0, T s, ω, 1{p4L0q
˘

given
by (2.17), and for the sequence

`

t0i “ τip0, T, ω, 1{p4L0qq
˘

i“0,¨¨¨ ,N0`1
given

by (2.16).
Then, we can find a constant γ depending on L0 and Λ such that, for any

partition ptiqi“0,¨¨¨ ,N included in pt0i qi“0,¨¨¨ ,N0 and satisfying wpti, ti`1, ωq
1{p ď

1{p4Lq for some L ě L0, we have
�

�

�

�

ż ¨

ti

´

F
`

Xrpωq, Yrp¨q
˘

´ F
`

X 1rpωq, Y
1
r p¨q

˘

¯

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ
´

ˇ

ˇ∆X0pωq
ˇ

ˇ`
ˇ

ˇδx∆X0pωq
ˇ

ˇ

¯

`
@

∆Y0p¨q
D

4
`
@

δx∆Y0p¨q
D

4

` γ wp0, ti, ωq
1{p

´

�

�∆Xpωq
�

�

r0,tis,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

`
γ

4L

´

�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

,

(3.4)

where ∆Xtpωq :“ Xtpωq ´X
1
tpωq, ∆Ytp¨q :“ Ytp¨q ´ Y

1
t p¨q, t P r0, T s.

In [2], Proposition 3.2 is used to prove the following existence and unique-
ness result, see Theorems 1.1 and 4.4 therein, to which we add the final
estimate in the statement.

imsart-aop ver. 2014/10/16 file: MeanField2AoP.tex date: June 9, 2020



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 17

Theorem 3.3. Let F satisfy Regularity assumptions 1 and 2 and w
be a control satisfying (2.8) and (2.9). Assume there exists a positive time
horizon T such that the random variables wp0, T, ¨q and

`

N
`

r0, T s, ¨, α
˘˘

αą0
have sub and super exponential tails respectively, in the sense that

P
`

wp0, T, ¨q ě t
˘

ď c1 exp
`

´tε1
˘

,

P
`

Npr0, T s, ¨, αq ě t
˘

ď c2pαq exp
`

´t1`ε2pαq
˘

,
(3.5)

for some positive constants c1 and ε1, and possibly α-dependent positive
constants c2pαq and ε2pαq. Then, for any d-dimensional square-integrable
random variable X0, the mean field rough differential equation (1.2) has
a unique solution defined on the whole interval r0, T s. Moreover, there exist
four positive real numbers γ0, L0, L and η0 (with γ0, η0 ą 1), only depending
on Λ and T , such that, for any subinterval rS1, S2s Ă r0, T s for which

A

N
`

rS1, S2s, ¨, 1{p4L0q
˘

E

8
ď 1,

and
B

”

γ
´

1` wp0, T, ¨q1{p
¯ıNprS1,S2s,¨,1{p4Lqq

F

32

ď η0,

it holds, for any ω P Ω

~Xpωq~rS1,S2s,w,p ď

”

C
´

1` wp0, T, ωq1{p
¯ı2Npr0,T s,ω,1{p4Lqq

,

for a constant C depending only on Λ and T .

Proof. We just address the derivation of the last inequality since the
latter is not given in [2, Theorem 4.4]. The key point is to sum over n ě
1 in [2, (4.30)], replacing r0, Ss therein by rS1, S2s, which is indeed licit
provided that

@

N
`

rS1, S2s, ¨, 1{p4L0q
˘D

8
ď 1, see for instance [2, (4.23)], and

A

“

γ0

`

1` wp0, T, ¨q1{p
˘‰NprS1,S2s,¨,1{p4Lqq

E

32
ď η0 for η0 small enough, see [2,

(4.29)].

3.2. Strong Rough Set-Ups and Continuity of the Itô-Lyons solution Map.
Uniqueness in law of the solutions to (1.2) is proven in [2, Theorem 5.3] under
the additional assumption that the set-up satisfies the following definition.

Definition 3.4. A rough set-up is called strong if there exists a mea-
surable mapping I from C

`

r0, T s; Rm
˘2

into C
`

ST2 ; Rm b Rm
˘

such that

(3.6) Pb2
´

 

pω, ω1q P Ω2 : WKKpω, ω1q “ I
`

W pωq,W pω1q
˘(

¯

“ 1.
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For our prospect, the following continuity theorem is of crucial interest;
see3 [2, Theorem 5.4].

Theorem 3.5. Let F satisfy the same assumptions as in Theorem 3.3.
Given a time interval r0, T s and a sequence of probability spaces pΩn,Fn,Pnq,
indexed by n P N, let, for any n, Xn

0 p¨q :“ pXn
0 pωnqqωnPΩn be an Rd-valued

square-integrable initial condition and

W np¨q :“
´

Wnpωnq,W
npωnq,W

n,KKpωn, ω
1
nq

¯

ωn,ω1nPΩn

be an m-dimensional rough set-up with corresponding control wn, as given
by (2.10), and local accumulated variation Nn, for fixed values of p P r2, 3q
and q ą 8. Assume that

‚ the collection
`

Pn ˝ p|Xn
0 p¨q|

2q´1
˘

ně0
is uniformly integrable;

‚ for positive constants ε1, c1 and pε2pαq, c2pαqqαą0, the tail assumption
(3.5) hold for wn and Nn, for all n ě 0;

‚ associating vn with each W np¨q as in (2.6), the functions
`

ST2 Q ps, tq ÞÑ
xvnps, t, ¨qy2q

˘

ně0
are uniformly Lipschitz continuous.

Assume also that

‚ there exist, on another probability space pΩ,F ,Pq, a square integrable
initial condition X0p¨q with values in Rd and a strong rough set-up

W p¨q :“
´

W pωq,Wpωq,WKKpω, ω1q
¯

ω,ω1PΩ

with values in Rm, such that the law under the probability measure Pb2
n

of the random variable

Ω2
n Q pωn, ω

1
nq ÞÑ

`

Xn
0 pωnq,W

npωnq,Wnpωnq,W
KK
n pωn, ω

1
nq
˘

,

seen as a random variable with values in the space RdˆCpr0, T s; Rmqˆ
 

CpST2 ; Rm b Rmq
(2

, converges in the weak sense to the law of

Ω2 Q pω, ω1q ÞÑ
`

X0pωq,W pωq,Wpωnq,W
KKpω, ω1q

˘

.
3 Here, we feel useful to say a word about the proof of Theorem [2, Theorem 5.4].

The proof of Step 2b therein is a bit short. The reader may indeed wonder why K
therein may be chosen independently of n. In fact, it suffices to observe, with the same
notations as therein, that we can render PpNn

prSj , Sj`1s, ¨, 1{p4L0qq ě 1q as small as
needed, uniformly in n. This follows from the fact that PpNn

prSj , Sj`1s, ¨, 1{p4L0qq ě

1q “ PpwnpSj , Sj`1, ¨q ě 1{p4L0qq ď 4L0xw
n
pSj , Sj`1, ¨qy. By the second item in the as-

sumption of Theorem 3.5, the last term is less than CpSj ´ Sj`1q, for C independent of
n.
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Then, W p¨q satisfies the requirements of Theorem 3.3 for some p1 P pp, 3q
and q1 P r8, qq, with control w therein given by (2.10). Moreover, if Xnp¨q,
resp. Xp¨q, is the solution of the mean field rough differential equation driven
by W np¨q, resp. W p¨q, then Xnp¨q converges in law to Xp¨q on Cpr0, T s; Rdq.

4. Particle System and Propagation of Chaos. We now have all
the ingredients to write down the limiting mean field rough differential equa-
tion (1.2) as the limit of a system of particles driven by rough signals (1.3).

4.1. Empirical Rough Set-Up. We recall the framework used to address
(1.3). The initial conditions pXi

0p¨qq1ďiďn are Rd-valued variables with the
same distribution as X0 (in the statement of Theorem 3.3) and the en-
hanced signals

`

W ip¨q,Wip¨q
˘

1ďiďn
are Rm‘RmbRm-valued with the same

distribution as pW p¨q,Wp¨qq on the space of continuous functions. Moreover,
the variables pXi

0p¨q,W
ip¨q,Wip¨q

˘

1ďiďn
are independent and identically dis-

tributed. All of them are constructed on a single probability space, still de-
noted by pΩ,F ,Pq. Assuming the rough set-up in Theorem 3.3 to be strong,
see Definition 3.4, we let

Wi,jpωq “ I
`

W ipωq,W jpωq
˘

, i “ j, 1 ď i, j ď n.

Obviously, equation (1.3) must be understood as a rough differential equa-
tion driven by an pnˆmq-dimensional signal

`

W 1pωq, ¨ ¨ ¨ ,Wnpωq
˘

, and with
`

X1pωq, ¨ ¨ ¨ , Xnpωq
˘

as pnˆdq-dimensional output. Our first task is to prove
that (1.3) may be also understood as a mean field rough differential equa-
tion on a suitable rough set-up and that the two interpretations coincide. If
we require Pb2

`

tpω, ω1q : }WKKpω, ω1q}r0,T s,p{2´v ă 8u
˘

“ 1 in Definition 3.4,
then it is pretty clear that, for almost every ω P Ω,

W pnqpωq “
´

`

W ipωq
˘

1ďiďn
,
`

Wi,jpωq
˘

1ďi,jďn

¯

“:
´

W pnqpωq,Wpnqpωq
¯

,

is a rough path of finite p-variation, with the convention that Wi,ipωq “
Wipωq, for i P t1, ¨ ¨ ¨ , nu. As explained in [2, Proposition 2.3], we may change
the definition of

`

pW ipωqq1ďiďn, pWi,jpωqq1ďi,jďn
˘

on a P-null set so that

W pnqpωq is in fact a rough path for any ω P Ω.

As mentioned in Introduction, the striking fact of the analysis was first
introduced by Tanaka in [40] and used by Cass and Lyons in their seminal
work [15]. The quantity Wpnqpωq may be seen as a rough set-up defined on
a finite probability space for any fixed ω P Ω; we call it the empirical rough
set-up. To make it clear, observe that, throughout Section 2, the rough
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structure is supported by the probability space pΩ,F ,Pq itself. Here, ω is
fixed, and we see the probability space as

(4.1)

ˆ

 

1, ¨ ¨ ¨ , n
(

,P
` 

1, ¨ ¨ ¨ , n
(˘

,
1

n

n
ÿ

i“1

δi

˙

,

where Ppt1, ¨ ¨ ¨ , nuq denotes the collection of subsets of t1, ¨ ¨ ¨ , nu. The
reader may object that such a probability space is not atomless whilst we
explicitly assumed pΩ,F ,Pq to be atomless in the introduction (see also
[2, Section 2]); actually, the reader must realize that, in [2], the atomless
property is just used to guarantee that, for any probability measure µ on
a given Polish space S, the probability space pΩ,F ,Pq carries an S-valued
random variable with µ as distribution. In other words, we could instead
say that, in [2], the probability space pΩ,F ,Pq has to be rich enough, which
is indeed guaranteed under the assumptions used therein. So, it is here not
a hindrance that t1, ¨ ¨ ¨ , nu is finite: We must restrict ourselves to random
variables taking at most n-values, but this is exactly what we need for our
purposes since all the relevant probability distributions showing up from the
particle system are n-empirical distributions.

Hence, in order to draw a parallel with (2.2), the role played by ω P Ω is
here played by i P t1, ¨ ¨ ¨ , nu and the matrix (2.2) must read

(4.2)

˜

Wi,i
s,tpωq Wi,‚

s,tpωq

W‚,i
s,tpωq W‚,‚

s,t pωq

¸

0ďsďtďT

,

where Wi,‚
s,tpωq is seen as t1, ¨ ¨ ¨ , nu Q j ÞÑ Wi,j

s,tpωq, W‚,i
s,tpωq as t1, ¨ ¨ ¨ , nu Q

j ÞÑ Wj,i
s,tpωq and W‚,‚

s,t pωq as t1, ¨ ¨ ¨ , nu Q pi, jq ÞÑ Wi,j
s,tpωq.

In the same spirit, the variation function v in (2.6) is (we put a subscript
p in the variation function below to emphasize the dependence upon p)

vi,np ps, t, ωq :“
›

›W ipωq
›

›

p

rs,ts,p´v
` pnq

v

W ‚pωq
wp

q;rs,ts,p´v

`
›

›Wipωq
›

›

p{2

rs,ts,p{2´v
` pnq

v

Wi,‚pωq
wp{2

q;rs,ts,p{2´v

` pnq
v

W‚,ipωq
wp{2

q;rs,ts,p{2´v
` pnq

vv

W‚,‚pωq
wwp{2

q;rs,ts,p{2´v
,

(4.3)

where we used the notations

pnqpX‚qq “

ˆ

1

n

n
ÿ

j“1

|Xj |q
˙1{q

, pnqppX‚,‚qqq “

ˆ

1

n2

n
ÿ

j,k“1

|Xj,k|q
˙1{q

,
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the corresponding p-variation being defined as in (2.4) and (2.5). Obviously,
vi,np p0, T, ωq is almost surely finite. Hence, in order to check that W pnqpωq
defines a rough set-up, it remains to check that it satisfies (2.7). To do so,
we strengthen the assumptions on the signal and assume that, for the same
parameter q as in Section 2, it holds

E
”

›

›W p¨q
›

›

pq

r0,T s,p1{pq´H
`
›

›Wp¨q
›

›

pq{2

r0,T s,p2{pq´H

ı

` Eb2
”

›

›WKKp¨, ¨q
›

›

pq{2

r0,T s,p2{pq´H

ı

ă 8,
(4.4)

where

›

›W pωq
›

›

rs,ts,p1{pq´H
“ sup
H“ps1,t1qĂrs,ts

|Wt1pωq ´Ws1pωq|

|t1 ´ s1|1{p

›

›Wpωq
›

›

rs,ts,p2{pq´H
“ sup
H“ps1,t1qĂrs,ts

|Ws1,t1pωq|

|t1 ´ s1|2{p
,

and similarly for
›

›WKKpω, ω1q
›

›

rs,ts,p2{pq´H
, stand for the standard Hölder semi-

norms of the rough path. Then, back to (4.3), we can find a universal positive
constant c such that

vi,np ps, t, ωq ď c
!

›

›W ipωq
›

›

p

rs,ts,p1{pq´H
`
›

›Wipωq
›

›

p{2

rs,ts,p2{pq´H

` pnq
v›

›W ‚pωq
›

›

p

rs,ts,p1{pq´H

w

q
` pnq

v›

›Wi,‚pωq
›

›

p{2

rs,ts,p2{pq´H

w

q

` pnq
v
›

›W‚,ipωq
›

›

p{2

rs,ts,p2{pq´H

w

q
` pnq

vv
›

›W‚,‚pωq
›

›

p{2

rs,ts,p2{pq´H

ww

q

)

pt´ sq.

(4.5)

Taking the mean over i P t1, ¨ ¨ ¨ , nu and invoking the law of large numbers
(see Lemma A.3 in Appendix A.3 for a version of the law of large numbers
with second order interactions), we deduce that, for almost every ω P Ω,

lim sup
ně1

sup
0ďsătďT

pnq
v

v‚,np ps, t, ωq
w

q

t´ s

ď c
´A

›

›W p¨q
›

›

pq

r0,T s,p1{pq´H
`
›

›Wp¨q
›

›

pq{2

r0,T s,p2{pq´H

E1{q
(4.6)

` ⟪››WKKp¨, ¨q
›

›

pq{2

r0,T s,p2{pq´H
⟫1{q¯

,

for a new value of the constant c. Observe that, in order to derive (4.6), the
law of large numbers can be directly applied to each of the first three terms
in the right-hand side of (4.5), since each of them lead to empirical means
over terms of the form J

`

W ipωq
˘

, for a suitable functional J (which has
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nothing to do with the mapping I used in Definition 3.4). Differently, the
last three terms in (4.5) require a modicum of care as they lead to empirical
means of the form

1

n2

n
ÿ

j,k“1,j “k

›

›I
`

W jpωq,W kpωq
˘›

›

pq{2

r0,T s,p2{pq´H
`

1

n2

n
ÿ

j“1

›

›Wjpωq
›

›

pq{2

r0,T s,p2{pq´H
,

with I as in (3.6). Still, if the summands in the two sums are integrable,

the limit is
@
›

›I
`

W 1p¨q,W 2p¨q
˘
›

›

pq{2

r0,T s,p2{pq´H

D

, see once again Lemma A.3 in

Appendix A.3. Hence (4.6). Now, the fact that the right-hand side of (4.6)
is finite guarantees that the 1-variation in the mean in (2.7) is uniformly
controlled in n ě 1, the mean in (2.7) being understood as the mean on the
probability space

`

t1, ¨ ¨ ¨ , nu,Ppt1, ¨ ¨ ¨ , nuq, 1
n

řn
i“1 δi

˘

. Here are two exam-
ples under which (4.5) holds true.

Example 4.1. Assume that the regularity index q used in (2.6) satis-
fies the inequality q ą 1{p1 ´ p{3q, and that, for some constant KT ě 0,
xvps, t, ¨qyq ď KT pt´ sq for ps, tq P ST2 . Then, we get the bounds

@

|pWt ´Wsqp¨q|
pq
D

ď Kq
T |t´ s|

q,
@

|Ws,tp¨q|
pq{2

D

ď Kq
T |t´ s|

q, ⟪|WKK
s,tp¨, ¨q|

pq{2⟫ ď Kq
T |t´ s|

q.

By Kolmogorov’s criterion for rough paths, see Theorem 3.1 in [24], we de-
duce that W has paths that are 1{p1 :“ p1´1{qq{p ą 1{3-Hölder continuous.
Similarly, W and WKK have paths that are 2p1 “ 2p1 ´ 1{qq{p ą 2{3-Hölder
continuous and (4.4) holds true with p1 instead of p. So, the empirical rough
set-up satisfies the required conditions provided we replace p by p1.

Example 4.2. Assume that W :“ pW 1, ¨ ¨ ¨ ,Wmq is a tuple of inde-
pendent and centred continuous Gaussian processes, defined on r0, T s, for
which there exist an exponent % P r1, 3{2q and a constant K such that, for
any subinterval rs, ts Ă r0, T s and any k “ 1, ¨ ¨ ¨ ,m, it holds

sup
ÿ

i,j

ˇ

ˇ

ˇ
E
”

`

W k
ti`1

´W k
ti

˘`

W k
sj`1

´W k
sj

˘

ıˇ

ˇ

ˇ

ρ
ď K|t´ s|,(4.7)

the sup being over divisions ptiqi and psjqj of rs, ts. Then, }W p¨q}r0,T s,p1{pq´H

has Gaussian tail and }Wp¨q
›

›

r0,T s,p2{pq´H
and }WKKp¨, ¨q

›

›

r0,T s,p2{pq´H
have ex-

ponential tails, for any p P p2%, 3q; see Theorem 11.9 in [24].

Now that we have defined the empirical rough set-up, we must make
clear the meaning given to the rough differential equation (1.2) in Definition
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3.1 when the rough set-up therein is precisely the empirical rough set-up.
We call the corresponding rough differential equation the empirical rough
differential equation.

For a given ω P Ω, the probability space that carries the empirical rough-
set up is given by (4.1). Despite the fact it is not atomless, whilst pΩ,F ,Pq
is, Theorem 3.3 applies and guarantees existence and uniqueness of a so-
lution to the empirical rough differential equation. In this regard, observe
that the square integrability requirement on the initial condition here writes
1
n

řn
i“1

ˇ

ˇXi
0pωq

ˇ

ˇ

2
ă 8, which is indeed satisfied for ω in a full event. The solu-

tion reads in the form of a n-tuple Xpnqpωq “ pXipωqq1ďiďn in Cpr0, T s; Rdqn.
The coefficient driving the equation for Xipωq reads

F
´

Xi
tpωq, X

θnp¨q
t pωq

¯

, t P r0, T s,

where θnp¨q : t1, ¨ ¨ ¨ , nu Q j ÞÑ j is the canonical random variable on

t1, ¨ ¨ ¨ , nu. Here the dot in the notation X
θnp¨q
t pωq refers to the current ele-

ment in t1, ¨ ¨ ¨ , nu. With this notation, the law of X
θnp¨q
t pωq (on t1, ¨ ¨ ¨ , nu)

must be understood as the empirical distribution µnt pωq. Moreover, each
Xipωq is controlled, in standard Gubinelli’s sense, by the enhanced rough
path

`

W ipωq,Wipωq
˘

(the remainder in the expansion being controlled by
vi,n). In particular, Xipωq may be seen as an i-controlled path on the empir-

ical rough set-up: If we use δ
pnq
x and δ

pnq
µ as symbols for the Gubinelli deriva-

tives in Definition 2.1 but on the empirical rough set-up, then δ
pnq
x Xipωq

identifies with the standard Gubinelli derivative in the expansion of Xipωq

along the variations of
`

W ipωq,Wipωq
˘

and δ
pnq
µ X ¨pωq ” 0.

The key fact in our analysis lies in the interpretation of the two derivatives

δpnqx

”

FpXipωq, Xθnp¨qpωqq
ı

and δpnqµ

”

FpXipωq, Xθnp¨qpωqq
ı

in Proposition 2.4. First, it is elementary to check that

δpnqx

´

F
`

Xipωq, Xθnp¨qpωq
˘

¯

t
“ BxF

`

Xi
tpωq, X

θnp¨q
t pωq

˘

δpnqx Xi
tpωq

“ BxF
`

Xi
tpωq, µ

n
t pωq

˘

δpnqx Xi
tpωq.

(4.8)

More interestingly, we have

δpnqµ

´

F
`

Xipωq, Xθnp¨qpωq
˘

¯

t

“ DµF
`

Xi
tpωq, µ

n
t pωq

˘`

X
θnp¨q
t pωq

˘

δpnqx X
θnp¨q
t pωq,

(4.9)
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both the left- and the right-hand sides being seen as random variables on
t1, ¨ ¨ ¨ , nu. The realizations of the random variable in the right-hand side
may be computed by replacing the symbol ¨ by j P t1, ¨ ¨ ¨ , nu.

So, applying (2.13) with FpXipωq, µnpωqq as integrand, the third term on
the first line of (2.13) here reads

1

n

n
ÿ

j“1

DµF
`

Xi
tpωq, µ

n
t

˘`

Xj
t pωq

˘

δpnqx Xj
t pωqW

j,i
t pωq.

This shows that the integral
şt
0 F

´

Xi
spωq, X

θnp¨q
s pωq

¯

dW
pnq
s pωq, as defined by

Theorem 2.3, is the limit of the compensated Riemann sums

K´1
ÿ

k“0

ˆ

F
`

Xi
tk
pωq, X

θnp¨q
tk

pωq
˘

W i
tk,tk`1

pωq

` BxF
`

Xi
tk
pωq, X

θnp¨q
tk

pωq
˘

F
`

Xi
tk
pωq, X

θnp¨q
tk

pωq
˘

Wi
tk,tk`1

pωq

`
1

n

n
ÿ

j“1

DµF
`

Xi
tk
pωq, µnt pωq

˘

pXj
tk
pωqqF

`

Xj
tk
pωq, X

θnp¨q
tk

pωq
˘

Wj,i
tk,tk`1

pωq

˙

,

(4.10)

as the mesh of the dissection 0 “ t0 ă ¨ ¨ ¨ ă tK “ t tends to 04. This
allows to compare the latter quantity with (1.3) if we intepret the inte-
gral with respect to W ipωq therein as a rough integral with respect to
the enhanced setting above pW 1pωq, ¨ ¨ ¨ ,Wnpωqq, and consider the leading
coefficient FpXi

tpωq, µ
n
t pωqq as a standard Euclidean function of the tuple

X
pnq
t pωq “

`

X1
t pωq, ¨ ¨ ¨ , X

n
t pωq

˘

. Indeed, under the standing Regularity as-
sumptions 1 and 2, the function

f i : pRdqn Q
`

x1, ¨ ¨ ¨ , xn
˘

ÞÑ F

ˆ

xi,
1

n

n
ÿ

k“1

δxk

˙

is C2 with Lipschitz derivatives and

Bxjf
i
`

x1, ¨ ¨ ¨ , xn
˘

“ δi,j BxF

ˆ

xi,
1

n

n
ÿ

k“1

δxk

˙

`
1

n
DµF

ˆ

xi,
1

n

n
ÿ

k“1

δxk

˙

pxjq,

with δi,j “ 1 if i “ j and 0 otherwise, see Chapter 5 in [11]. Therefore,
(1.3) is uniquely solvable in the classical sense and the above formulas for

4In the second line, BxF
`

Xi
spωq, X

θnp¨q
s pωq

˘`

F
`

Xi
spωq, X

θnp¨q
s pωq

˘

Wi
s,tpωq

˘

is understood

as
`
řd
`“1

řm
j,k“1 Bx`Fι,j

`

Xi
spωq, X

θnp¨q
s pωq

˘`

F`,k
`

Xi
spωq, X

θnp¨q
s p¨qpωq

˘`

Wi
s,t

˘k,j
pωq

˘˘

ι“1,¨¨¨ ,d

and similarly for the term on the third line.
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the derivatives show that the rough integral therein may be approximated
by the same Riemann sum as in (4.10). Namely, (1.3) may be rewritten as

K´1
ÿ

k“0

ˆ

f i
`

X1
tk
pωq, ¨ ¨ ¨ , Xn

tk
pωq

˘

W i
tk,tk`1

pωq

`

n
ÿ

j“1

Bxjf
i
`

X1
tk
pωq, ¨ ¨ ¨ , Xn

tk
pωq

˘

Wj,i
tk,tk`1

pωq

˙

.

This proves that the solution to (1.3), when the latter is seen as a rough dif-
ferential equation driven by the enhanced setting above pW 1pωq, ¨ ¨ ¨ ,Wnpωqq,
coincides with the solution of the empirical version of (1.2), when the lat-
ter is understood as a mean field rough differential equation driven by the
empirical rough set up.

4.2. Propagation of Chaos. We now have all the ingredients to prove that
the empiral measure of the solution to the particle system (1.3) converges,
in some sense, to the solution of the rough mean field equation (1.2), when
the rough set-up therein is interpreted as originally explained in Section 2.
This is what we call propagation of chaos. The statement takes the following
form.

Theorem 4.3. We make the following assumptions.

(a) Let F satisfy Regularity assumptions 1 and 2.
(b) Let w be a control satisfying (2.8) and (2.9) for the same parameters

p P r2, 3q and q ě 8 as in Section 2. Assume that, for a given positive
time horizon T , the random variables wp0, T, ¨q and

`

N
`

r0, T s, ¨, α
˘˘

αą0
,

see (2.17), have sub and super exponential tails, see (3.5).
(c) Assume that the rough set-up W is strong.
(d) Assume also that there exists a positive constant ε1 such that

E
”

exp
´

›

›W p¨q}ε1
r0,T s,p1{pq´H

¯ı

` E
”

exp
´

›

›Wp¨q}ε1{2
r0,T s,p2{pq´H

¯ı

` Eb2
”

exp
´

›

›WKKp¨, ¨q}
ε1{2
r0,T s,p2{pq´H

¯ı

ă 8.
(4.11)

Then, for almost every ω P Ω,

(4.12)
1

n

n
ÿ

i“1

δXi,pnqpωq Ñ L
`

Xp¨q
˘

,

where Xpnqpωq “ pXi,pnqpωqqi“1,¨¨¨ ,n is the solution to (1.3) and Xp¨q is the
solution to (1.2), the convergence being the convergence in law on C

`

r0, T s; Rd
˘

.
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Moreover, for any fixed k ě 1, the law of
`

X1,pnqp¨q, ¨ ¨ ¨ , Xk,pnqp¨q
˘

converges

to L
`

Xp¨q
˘bk

.

Remark 4.4. Before we prove the above statement, we feel useful to
make the following comments:

‚ In item pbq of the assumption, we can always assume that w is in fact
given by the natural control (2.10).

‚ The argument used below in Step 3 of the proof would show that item
pdq implies the part related to w in item pbq at least when w is chosen
as in (2.10). Despite this form of redundancy, we feel better to keep
the current formulation (of the assumptions) as it is consistent with
the rest of the text.

‚ Following [2, Theorem 2.4], the above assumptions hold true for Gaus-
sian rough paths subject to the classical conditions of Friz-Victoir [26],
see Example 4.2, and the related Example 2.2 in [2].

Proof. The key tool for passing to the limit is the continuity Theorem
3.5, but with p therein replaced by some p1 P pp, 3q. The main difficulty is
in controlling the accumulated local variation of the empirical rough set-up.

To make the notations clear, we write X
i,pnq
0 for Xi, W i,pnq for W i, Wi,pnq

for Wi and Wi,j,pnq for Wi,j .

Step 1. As a starting point, we want to prove that, for almost every ω P Ω,
for any α ą 0, there exists a constant ε2 ą 0 such that, for all n ě 1,

(4.13) sup
ně1

1

n

n
ÿ

i“1

exp
´

N i,np0, T, ω, αq1`ε2
¯

ă 8,

where N i,np0, T, ω, αq is defined as the local accumulation

(4.14) N i,npr0, T s, ω, αq :“ N$pr0, T s, αq,

when $ps, tq “ vi,np1 ps, t, ωq
1{p1 , see (2.17) and (4.3). Following (A.1) in ap-

pendix (see also the longer discussion in the introduction of the appendix in
[2]), it suffices to prove (4.13) when $ in the definition of N i,n is equal to
each of the terms in the right-hand side of (4.3).

When $ps, tq “
›

›W ipωq
›

›

rs,ts,p1´v
or $ps, tq “

›

›Wipωq
›

›

1{2

rs,ts,p1{2´v
, the re-

sulting variables
`

N i,npr0, T s, ω, αq
˘

i“1,¨¨¨ ,n
in (4.14) are independent and

identically distributed, their common law being independent of n. Then,
(4.13) follows from assumption (b) in the statement and from the law of
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large numbers (using the well-known fact that the p1-variation is less than
or equal to the p-variation if p1 ą p).

If $ps, tq “ pnq
v

W ‚pωq
w

q;rs,ts,p1´v
or $ps, tq “ pnq

vv

W‚,‚pωq
ww1{2

q;rs,ts,p1{2´v
, the

resulting variables
`

N i,npr0, T s, ω, αq
˘

i“1,¨¨¨ ,n
in (4.14) only depend on n. We

may denote them by Nnpr0, T s, ω, αq. Then, it suffices to prove that, for any
α ą 0, lim supnÑ8N

npr0, T s, ω, αq is almost surely finite. By (4.5), we may
easily control Nnpr0, T s, ω, αq from above by noticing that

αpNnpr0, T s, ω, αq

ď c
´

pnq
v›

›W ‚pωq
›

›

p

r0,T s,p1{pq´H

w

q
` pnq

vv›

›W‚,‚pωq
›

›

p{2

r0,T s,p2{pq´H

ww

q

¯

,

for a constant c that is independent of n and ω. Proceeding as in (4.6), the
result follows again from the law of large of numbers and from assumption
(b).

In fact, the most difficult cases are $ps, tq “ pnq
v

Wi,‚pωq
w1{2

q;rs,ts,p1{2´v
or

$ps, tq “ pnq
v

W‚,ipωq
w1{2

q;rs,ts,p1{2´v
. By symmetry, it suffices to treat the first

one. And, by changing in an obvious manner the parameter α, we may just
focus on $ps, tq “ pnq

v

Wi,‚pωq
wq

q;rs,ts,p1{2´v
. Then,

pnq
v

Wi,‚
s,tpωq

wq

q
“

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
@

Wi,KK
s,t pω, ¨q

Dq

q

¯

`
@

Wi,KK
s,t pω, ¨q

Dq

q
.(4.15)

Now, Rosenthal’s inequality (see [37]) together with (4.11) say that, for any
a ě 2 and any i P t1, ¨ ¨ ¨ , nu,

ż

Ω

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
@

Wi,KK
s,t pω, ¨q

Dq

q

¯

ˇ

ˇ

ˇ

ˇ

a

dPpωq ď Can
´a{2|t´ s|2aq{p,

for a constant Ca depending on a and on the upper bound for the left-hand

side in (4.11), but independent of i, n and ps, tq. Letting pt
pnq
k “ kT {nqk“0,¨¨¨ ,n

and allowing the constant Ca to vary from line to line, we deduce that

ÿ

1ďkă`ďn

n
ÿ

i“1

ż

Ω

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j

t
pnq
k ,t

pnq
`

pωq
ˇ

ˇ

q
´
@

Wi,KK

t
pnq
k ,t

pnq
`

pω, ¨q
Dq

q

¯

ˇ

ˇ

ˇ

ˇ

a

dPpωq ď Can
3´a{2.

We deduce from Markov inequality that, for any a ě 2 and any n ě 1,

P

ˆ

max
1ďiďn

max
1ďkă`ďn

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j

t
pnq
k ,t

pnq
`

pωq
ˇ

ˇ

q
´
@

Wi,KK

t
pnq
k ,t

pnq
`

pω, ¨q
Dq

q

¯

ˇ

ˇ

ˇ

ˇ

ě n´1{4

˙

ď Can
3´a{4.

(4.16)
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By item (d) in the statement, we also have, for any n ě 1, a ě 2 and δ ą 0,

P

ˆ

max
1ďi,jďn

´

›

›W i}2r0,T s,p1{pq´H `
›

›Wi,j}r0,T s,p2{pq´H

¯

ě nδ{2
˙

ď Can
2´aδ{2,

(4.17)

which implies, at least for n large enough (below, we absorb the constant
T that appears in the length of the increments by changing nδ{2 into nδ,
which is indeed possible since n is large, it being understood that the lower
threshold for n only depends on δ and T )

P

ˆ

max
1ďi,jďn

sup
|s´t|ďT {n

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ ě nδ´2{p

˙

ď Can
2´aδ{2,

P

ˆ

max
1ďi,jďn

sup
minp|s´t|,|s1´t1|qďT {n

´

ˇ

ˇW i
s,tpωq

ˇ

ˇ

ˇ

ˇW j
s1,t1pωq

ˇ

ˇ

¯

ě nδ´1{p

˙

ď Can
2´aδ{2.

(4.18)

Similarly, we have (for the same ranges of values for a, δ and n)

P

ˆ

max
1ďiďn

›

›

@

Wi,KKpω, ¨q
D

q
}r0,T s,p2{pq´H ě nδ{2

˙

ď Can
1´aδ{2,(4.19)

which implies

P

ˆ

max
1ďiďn

sup
|s´t|ďT {n

@

Wi,KK
s,t pω, ¨q

D

q
ě nδ´2{p

˙

ď Can
1´aδ{2,

P

ˆ

max
1ďiďn

sup
minp|s´t|,|s1´t1|qďT {n

´

ˇ

ˇW i
s,tpωq

ˇ

ˇ

@

Ws1,t1p¨q
D

q

¯

ě nδ´1{p

˙

ď Can
1´aδ{2.

(4.20)

Using Chen’s relations (2.3) to write Wi,j
s,t :“ ´Wi,j

tsu,s ` Wi,j
tsu,ttu ` Wi,j

ttu,t `

W i
s,ttu b W j

ttu,t ´ W i
tsu,s b W j

s,ttu (with tsu :“ tns{T uT {n), we can find a

constant cq only depending on q (but the value of which is allowed to change
from line to line) such that, for any ps, tq P ST2 ,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
ˇ

ˇWi,j
tsu,ttupωq

ˇ

ˇ

q
ˇ

ˇ

ˇ

ˇ

ď cqΞ
i,j sup
ps1,t1qPST2

ˇ

ˇWi,j
s1,t1pωq

ˇ

ˇ

q´1

with

Ξi,j :“ sup
|s1´t1|ďT {n

ˇ

ˇWi,j
s1,t1pωq

ˇ

ˇ` sup
minp|s1´t1|,|s2´t2|qďT {n

´

ˇ

ˇW i
s1,t1pωq

ˇ

ˇ

ˇ

ˇW j
s2,t2pωq

ˇ

ˇ

¯

,

imsart-aop ver. 2014/10/16 file: MeanField2AoP.tex date: June 9, 2020



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 29

from which, together with (4.17) and (4.18), we deduce that

P

ˆ

max
1ďi,jďn

sup
ps,tqPST2

ˇ

ˇ

ˇ

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
ˇ

ˇWi,j
tsu,ttupωq

ˇ

ˇ

q
ˇ

ˇ

ˇ
ě cqn

δq´1{p

˙

ď Can
2´aδ{2.

Proceeding similarly with
@

Wi,KK
s,t pω, ¨q

Dq

q
and inserting (4.16), we finally ob-

tain, for a ě 2, δ ą 0 and n large enough (in terms of T and δ only) and for
a possibly new value of cq,

P

ˆ

max
1ďiďn

sup
ps,tqPST2

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
@

Wi,KK
s,t pω, ¨q

Dq

q

¯

ˇ

ˇ

ˇ

ˇ

ě cq

´

n´1{4 ` nδq´1{p
¯

˙

ď Ca

´

n3´a{4 ` n2´aδ{2
¯

.

(4.21)

Meanwhile, we also have, for P-almost every ω P Ω,

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
@

Wi,KK
s,t pω, ¨q

Dq

q

¯

ˇ

ˇ

ˇ

ˇ

ď max
1ďi,jďn

´

›

›Wi,jpωq}q
r0,T s,p2{pq´H `

›

›

@

Wi,KKpω, ¨q
D

q
}
q
r0,T s,p2{pq´H

¯

pt´ sq2q{p.

By (4.17) and (4.19), we deduce that (again for the same ranges of values
for a, δ and n)

P

ˆ

max
1ďiďn

sup
ps,tqPST2

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
@

Wi,KK
s,t pω, ¨q

Dq

q

¯

ˇ

ˇ

ˇ

ˇ

ě nδqpt´ sq2q{p
˙

ď Can
2´aδ{2.

(4.22)

Taking the power 1´p{p1 in the expression underpinning the event in (4.21)
and, similarly, the power p{p1 in the expression underpinning the event in
(4.22), cross-multiplying both expressions, we get, for n large enough and
for δ P p0, 1{4q,

P

ˆ

max
1ďiďn

sup
ps,tqPST2

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
@

Wi,KK
s,t pω, ¨q

Dq

q

¯

ˇ

ˇ

ˇ

ˇ

ě cp,p1,q
`

n´pp
1´pq{p4p1q`δqp{p1 ` nδq´pp

1´pq{ppp1q
˘

pt´ sq2q{p
1

˙

ď Ca

´

n3´a{4 ` n2´aδ{2
¯

,
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where cp,p1,q only depends on p, p1 and q. Choosing δ small enough in terms
of p, p1 and q, we deduce that for n large enough,

P

ˆ

max
1ďiďn

sup
ps,tqPST2

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

´

ˇ

ˇWi,j
s,tpωq

ˇ

ˇ

q
´
@

Wi,KK
s,t pω, ¨q

Dq

q

¯

ˇ

ˇ

ˇ

ˇ

ě cp,p1,qpt´ sq
2q{p1

˙

ď Ca

´

n3´a{4 ` n2´aδ{2
¯

.

Back to (4.15), we deduce that, for δ as in the previous inequality (assuming
also without any loss of generality that δ P p0, 1{2q), a large enough (in terms
of δ, but δ depending on p, p1 and q) and then n large enough (in terms of
δ and T ) and also for a new value of cp,p1,q,

P

ˆ

@i P t1, ¨ ¨ ¨ , nu, @ps, tq P ST2 , pnq
v

Wi,‚pωq
w

q;rs,ts,p1{2´v

ď cp,p1,qpt´ sq
2{p1 `

@

Wi,KKpω, ¨q
D

q;rs,ts,p1{2´v

˙

ě 1´ Can
´aδ{4.

(4.23)

By Borel-Cantelli lemma, we deduce that, for P-almost every ω P Ω, for n
large enough, for any i P t1, ¨ ¨ ¨ , nu and any ps, tq P ST2 ,

pnq
v

Wi,‚pωq
w

q;rs,ts,p1{2´v
ď cp,p1,qpt´ sq

2{p1 `
@

Wi,KKpω, ¨q
D

q;rs,ts,p1{2´v
.

Since the variables
`

Wi,KK
˘

iě1
are independent, the local accumulation as-

sociated with the second term in the right-hand side may be handled like
the local accumulation associated to $ps, tq “

›

›W ipωq
›

›

rs,ts,p1´v
. The local

accumulation associated with the first term is easily handled.

Step 2. Now, from the law of large numbers (see Lemma A.3 for the law
of large numbers with second order interaction terms) and from [6, Theorem
2.3 and Problem 3.1], we deduce that there exists a full subset E Ă Ω (the
definition of which may vary from line to line in the rest of the proof as long
as PpEq remains equal to 1) such that, for any ω P E,

πnpωq “

ˆ

1

n2

n
ÿ

i,j“1

δ`
X
i,pnq
0 pωq,W i,pnqpωq,Wi,pnqpωq,Wi,j,pnqpωq

˘

˙

ně1

converges in the weak sense to
`

X0p¨q,W p¨q,Wp¨q,WKKp¨, ¨q
˘

on the space Rdˆ

C
`

r0, T s; Rm
˘

ˆ
 

CpST2 ; Rm b Rmq
(2
.

Step 3. Back to the statement of Theorem 3.5, the first item in the
statement is a consequence of the law of large numbers. As for the fourth
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item, it follows directly from the previous step. In order to check the check
the second and third items, we now have a look at vi,np1 ps, t, ωq in (4.3).
Following (4.6), we already know that

lim sup
ně1

sup
0ďsătďT

pnq
v

v‚,np1 ps, t, ωq
w

2q

t´ s
ă 8,

which proves the third item in the statement of Theorem 3.5. We end up
with the proof of the second item. Following (4.5), there exists a constant c1

such that, for any ε ą 0, the quantity

(4.24) sup
ně1

pnq
$

%exp
´

rv‚,np1 p0, T, ωqs
ε
,̄

-

1

is finite if (notice that we could work below with 1{p1 instead of 1{p–Hölder
norms, but 1{p obviously suffices and is in fact more adapted to the assump-
tion (4.11))

sup
ně1

1

n

n
ÿ

i“1

exp
´

c1
›

›W ipωq
›

›

p1ε

r0,T s,p1{pq´H
` c1

›

›Wipωq
›

›

p1ε{2

r0,T s,p2{pq´H

¯

ă 8,

sup
ně1

1

n

n
ÿ

i“1

exp
´

c1 pnq
$

%

›

›W‚,ipωq
›

›

p1{2

r0,T s,p2{pq´H

,

-

ε

q

¯

ă 8,

(4.25)

and similarly on the second line of (4.25) with W‚,ipωq replaced by Wi,‚pωq
and W‚,‚pωq (the last two terms appearing on the last line of (4.5)). By the
law of large numbers, the first line holds true on a full event if p1ε ă ε1. As
for the second one, we use the following trick. Notice that the function

(4.26) p0,`8q Q x ÞÑ exp
`

xε{q
˘

,

is convex on rAε,8q, for some Aε ą 0. Therefore, Jensen’s inequality says
that, in order to check the second line in (4.25), it suffices to prove that

sup
ně1

1

n2

n
ÿ

i,j“1

exp
”´

Aε{qε _
›

›Wi,jpωq
›

›

p1ε{2

r0,T s,p2{pq´H

¯ı

ă 8,(4.27)

and similarly for the two terms appearing on the last line of (4.5). Obviously,
under the standing assumption, the latter holds true with probability 1
provided p1ε ă ε1. This proves (4.24). In the statement of Theorem 3.5, this
proves the condition related to the tails of wn by a standard application of
Markov inequality.
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The bound on the local accumulation in the second item of Theorem 3.5
follows from the first step of the proof.

Step 4. By Theorem 3.5, we get (4.12) on a set of full measure. By
Proposition 2.2 in [38], we deduce that, for any fixed k ě 1, the law of
`

X1,pnq, ¨ ¨ ¨ , Xk,pnq
˘

converges to L
`

Xp¨q
˘bk

.

Remark 4.5. Recently, the authors in [16] obtained a quantified propa-
gation of chaos result for mean field stochastic equations with additive noise

(4.28) dxt “ b
`

xt,Lpxtq
˘

dt` dwt, x0 “ ζ,

for a random path w P C
`

r0, T s,Rd
˘

subject to mild integrability condition,
and random initial condition ζ. There is no need of rough paths theory to
make sense of this equation and solve it by elementary means, under proper
regularity assumptions on the drift b. Its distribution is even a Lipschitz func-
tion of the distribution of pζ, wq, in p-Wasserstein metric. Using Tanaka’s
trick, this continuity result entails a propagation of chaos result. The global
Lipscthiz continuity of the solution map Lpw, ζq ÞÑ Lpxq ensures in partic-
ular a quantitative convergence rate for the particle system no greater than
the corresponding convergence rate for the sample empirical mean of the
driving noises, which is optimal. We get back such a sharp estimate in the
present, much more complicated, setting in the next section. Note that the
global Lipschitz bound satisfied by the natural map Φ giving the solution to
equation (4.28) as a fixed point of Φ actually allows to deal with reflected
dynamics, as the bounded variation part needed for the reflection happens to
be a Lipschitz function of the non-reflected path, in Skorokhod formulation of
the problem. We do not have such a strong continuity result for our solution
map; see Theorem 3.5. See also the previous work [22] of the authors.

5. Rate of Convergence. The goal of this section is to elucidate the
rate of convergence in the convergence result stated in Theorem 4.3.

The analysis is based upon a variation of Sznitman’s original coupling
argument, see [38]. To make its principle clear, we recall that, on the space
pΩ,F ,Pq, the triples

`

X1
0 p¨q,W

1p¨q,W1p¨q
˘

, ¨ ¨ ¨ ,
`

Xn
0 p¨q,W

np¨q,Wnp¨q
˘

are n
independent copies of the original triple

`

X0p¨q,W p¨q,Wp¨q
˘

. For each i P
t1, ¨ ¨ ¨ , nu, the pair

`

W ip¨q,Wip¨q
˘

is completed into a rough set-up

W
i
p¨q :“

`

W ip¨q,Wip¨q,Wi,KKp¨, ¨q
˘

,

Wi,KKpω, ω1q “ I
`

W ipωq,W ipω1q
˘

, pω, ω1q P Ω2.
(5.1)
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Here we put a bar on the symbol W
i
in order to distinguish it from the finite-

dimensional rough set-up W pnqpωq that lies above
`

W 1pωq, ¨ ¨ ¨ ,Wnpωq
˘

. In

comparison, the second-order level of W pnq is made of pWiq1ďiďn and of
`

Wi,j “ IpW i,W jq
˘

1ďi “jďn
, see (4.2). To make the notations more homo-

geneous, we sometimes write Wi,ipωq for Wipωq.

With each
`

Xi
0p¨q,W

i
p¨q

˘

, we associate the corresponding solution X
i
p¨q

to the mean field equation (1.2). The 5-tuples

Ω Q ω ÞÑ
´

Xi
0pωq,W

ipωq,Wipωq,Wi,KKp¨, ωq, X
i
pωq

¯

1ďiďn

are independent and identically distributed, Ω Q ω ÞÑ
`

Wi,KK
t p¨, ωq

˘

0ďtďT

being regarded as a process with values in LqpΩ,F ,P; Rdq. Recalling that
Xpnqpωq “

`

X1,pnqpωq, ¨ ¨ ¨ , Xn,pnqpωq
˘

is the solution to (1.3), we then let

(5.2) µnt pωq “
1

n

n
ÿ

i“1

δ
X
i,pnq
t pωq

, µnt pωq “
1

n

n
ÿ

i“1

δ
X
i
tpωq

, t P r0, T s, ω P Ω.

Here is now the main result. Note the use of the d1-distance (see (2.14))
in the assumption required from F in the statement below, d1-continuity
being stronger than d2-continuity.

Theorem 5.1. We make the following assumptions.

(a) Assumptions (a)–(d) in the statement of Theorem 4.3 are satisfied for
the same parameters p P r2, 3q and q ě 8 as in Section 2, for some
control w satisfying (2.8) and (2.9) and some time horizon T ą 0.

(b) The first and second derivatives of F, px, µq ÞÑ BxFpx, µq, px, µ, zq ÞÑ
`

DµFpx, µqpzq, BxDµFpx, µqpzq
˘

, and px, µ, z, z1q ÞÑ D2
µFpx, µqpz, z1q,

are bounded on the whole space and are Lipschitz continuous with re-
spect to all the variables, the Lipschitz property in the direction µ being
understood with respect to d1.

(c) Last, for any α ą 0, there exists a constant ε2 ą 0 such that, for
some p1 P rp, 3q, and any random variables τ, τ1 : Ω Ñ r0, T s, with
Ppτ ă τ1q “ 1, we have

(5.3) sup
ně1

sup
1ďiďn

E

„

exp

„ˆ

pN i,n
`

rτ, τ1s, ω, α
˘

?
τ1 ´ τ

˙1`ε2

ă 8,

where pN i,n
`

rτ, τ1s, ω, α
˘

is defined as the accumulation N$

`

rτ, τ1s, α
˘

when $ “ p pwi,np1 pωqq
1{p1 with
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pwi,np1 ps, t, ωq :“
`

wi,np1 ` pvi,np1
˘

ps, t, ωq ` pnq
v

pv‚,np1 pωq
w

q;rs,ts,1´v
` pt´ sq,

wi,np1 ps, t, ωq :“ vi,np1 ps, t, ωq `
pnq
v

v‚,np1 pωq
w

q;rs,ts,1´v
,

pvi,np1 ps, t, ωq :“
@

Wi,KKpω, ¨q
Dp1{2

q;rs,ts,p1{2´v
`
@

Wi,KKp¨, ωq
Dp1{2

q;rs,ts,p1{2´v
.

(5.4)

Then, for any r ě 1, there exists an exponent qprq ě 8 such that, if X0p¨q

is in Lqprq, then, for any n ě 1,

(5.5) sup
1ďiďn

E

„

sup
0ďtďT

ˇ

ˇX
i
t ´X

i,pnq
t

ˇ

ˇ

r
1{r

` E

„

sup
0ďtďT

d1

`

µnt , µ
n
t

˘r
1{r

ď Cςn,

for a constant C independent of n, and ςn “ n´1{2 if d “ 1, ςn “ n´1{2 lnp1`
nq if d “ 2 and ςn “ n´1{d if d ě 3.

Remark 5.2. Let us make a few remarks on this statement before em-
barking on its proof.

‚ We refer to [11, Chapter 5] for examples of a function F satisfying item
(b) in the assumptions of the statement. Importantly, we recall that a
function G : P2pRdq Q µ ÞÑ Gpµq P R, whose derivative DµG : P2pRdqˆ
Rd Q pµ, zq ÞÑ DµGpµqpzq P Rd is uniformly bounded on the whole
P2pRdqˆRd, is Lipschitz continuous with respect to the d1-Wasserstein
distance. In particular, under the assumptions of the statement, F itself
is Lipschitz continuous on Rd ˆ P2pRdq, the Lipschitz property in the
direction µ being understood with respect to d1.

‚ Obviously, condition (5.3) depends on p1. We let the reader check that if
(5.3) holds for some p1 P rp, 3q, then it holds for any other p2 P rp1, 3q.

‚ By inspecting the proof of Theorem 5.1, we could make explicit the
value of qprq (in the condition X0p¨q P Lqprq), but we feel that it would
not be so useful.

‚ The convergence rate ςn in (5.5) corresponds to the usual rate for the
convergence in the 1-Wasserstein distance of an empirical sample of
independent, identically distributed, random variables toward the lim-
iting common distribution; see [23] together with Lemma A.2.

‚ Theorem 5.1 applies when W is a continuous centred Gaussian process
defined over r0, T s as in Example 4.2.

Proof. Observe that, for each i P t1, ¨ ¨ ¨ , nu and any ω P Ω, we can de-

fine the integral process
`şt

0 F
`

X
i
spωq, µ

n
s pωq

˘

dW
i,pnq
s pωq

˘

0ďtďT
using usual

rough paths theory, where the label i in the notation W i,pnqpωq is here
to indicate that the integral only involves

`

W ipωq, pWj,ipωqq1ďjďn
˘

. Equiv-

alently, W i,pnqpωq must be seen as
`

W ipωq, pWj,ipωqq1ďjďn
˘

. The fact that
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the integral may be defined with respect to
`

W ipωq, pWj,ipωqq1ďjďn
˘

fol-

lows from the fact that X
j
pωq, for each j P t1, ¨ ¨ ¨ , nu and each ω P Ω,

is controlled by the variations of the sole W jpωq. So, whenever we expand

locally F
`

X
i
spωq, µ

n
s pωq

˘

, we let appear increments of X
i
spωq, which are con-

trolled by increments of W ipωq, and also increments of X
j
spωq, for j “ i,

which are controlled by increments of W jpωq: At the end of the day, it
suffices to have the iterated integrals pWj,ipωqq1ďjďn to define the integral
`şt

0 F
`

X
i
spωq, µ

n
s pωq

˘

dW
i,pnq
s pωq

˘

0ďtďT
.

Step 1. The first step is to compare

ż t

0
F
´

X
i
spωq,LpXsq

¯

dW
i
spωq and

ż t

0
F
´

X
i
spωq, µ

n
s pωq

¯

dW i,pnq
s pωq,(5.6)

for t P r0, T s. What makes the proof non-trivial is the fact that the rough
set-ups used in the first and the second integrals are not the same. So, in
order to compare the two of them, we need to come back to the original
constructions of the two integrals. To simplify notations, and for 0 ď t ď T ,
set

F
i
tpωq :“ F

´

X
i
tpωq,LpXtq

¯

, F i,nt pωq :“ F
´

X
i
tpωq, µ

n
t pωq

¯

.(5.7)

For sure,
`

F
i
tpωq

˘

0ďtďT
is ω-controlled by W

i
pωq, see Definition 2.1 and

Proposition 2.4, and the collection indexed by ω P Ω is a random path

controlled by W
i
, see Definition 2.2 for a reminder. The corresponding

Gubinelli derivatives are denoted by
`

δxF
i
tpωq, δµF

i
tpω, ¨q

˘

0ďtďT
, see again

Proposition 2.4. Similarly, pF i,nt pωqq0ďtďT is controlled by W i,pnqpωq and
W ‚,pnqpωq and Gubinelli derivatives are encoded in the form of a collection
`

δxF
i,n
t pωq,

`

δµF
i,j,n
t pωq

˘

1ďjďn

˘

0ďtďT
, see (4.8–4.9). To make it clear, set

δxF
i
tpωq :“ BxF

`

X
i
tpωq,LpXtq

˘

F
`

X
i
tpωq,LpXtq

˘

,

δµF
i
tpω, ¨q :“ DµF

`

X
i
tpωq,LpXtq

˘`

X
i
tp¨q

˘

F
`

X
i
tp¨q,LpXtq

˘

,
(5.8)

where Xp¨q is the solution to (1.2) with W p¨q “
`

W p¨q,Wp¨q,WKKp¨, ¨q
˘

. We
also let

δxF
i,n
t pωq :“ BxF

`

X
i
tpωq, µ

n
t pωq

˘

F
`

X
i
tpωq, µ

n
t pωq

˘

,

δµF
i,j,n
t pωq :“ DµF

`

X
i
tpωq, µ

n
t pωq

˘`

X
j
t pωq

˘

F
`

X
j
t pωq, µ

n
t pωq

˘

.
(5.9)
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For a subdivision ∆ “ ts “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ tu, set

Ii,∆s,t pωq :“
K´1
ÿ

k“0

!

F
i
tk
pωqW i

tk,tk`1
pωq ` δxF

i
tk
pωqWi

tk,tk`1
pωq

` E
“

δµF
i
tk
pω, ¨qWi,KK

tk,tk`1
p¨, ωq

‰

)

,

Ii,n,∆s,t pωq :“
K´1
ÿ

k“0

!

F i,ntk pωqW
i
tk,tk`1

pωq ` δxF
i,n
tk
pωqWi

tk,tk`1
pωq

`
1

n

n
ÿ

j“1

δµF
i,j,n
tk

pωqWj,i
tk,tk`1

pωq
)

.

(5.10)

The two integrals in (5.6) should be understood as the respective limits
of the two Riemann sums right above as K tends to 8. In the sequel, we

denote the summand in the first sum by Ii,Bttk,tk`1u
pωq and the summand in

the second sum by Ii,n,B
ttk,tk`1u

pωq. By Lemma A.1 proved in Appendix A.2, we

can find, for any % ě 8, an exponent %1 ě q, independent of n, K and ∆, such
that, whenever X0p¨q P L%

1

, it holds, for a constant C, also independent of n,
K and ∆ but depending on xX0p¨qy%1 , and then for any k P t1, ¨ ¨ ¨ ,K ´ 1u
(provided K ě 2),
A!

Ii,n,∆s,t p¨q´Ii,n,∆
1

s,t p¨q

)

´

!

Ii,∆s,t p¨q´I
i,∆1

s,t p¨q

)E

%
ď Cςn⟪w`ptk´1, tk`1, ¨, ¨q⟫3{p

%1
,

where ∆1 :“ ∆zttku and w`ps, t, ω, ω1q :“ wps, t, ωq ` }WKKpω, ω1q}
p{2
rs,ts,p{2´v,

(w being here given by (2.10)). In the rest of the proof, it is implicitly
understood that the condition X0p¨q P L%

1

is satisfied for %1 large enough
and that the constant C is allowed to depend on xX0p¨qy%1 .

Formulating (4.5) and (4.6) but for the limit (instead of empirical) rough
set-up, we know that the right hand side in the above inequality is less than

Cςn

”

@

}W p¨q}r0,T s,p1{pq´H

D

p%1
`
@

}Wp¨q
›

›

r0,T s,p2{pq´H

D1{2

p%1

` ⟪}WKKp¨, ¨q
›

›

r0,T s,p2{pq´H
⟫1{2

p%1

ı3
ptk`1 ´ tk´1q

3{p,

but by assumption all the expectations are finite. Now we can choose k such
that |tk`1 ´ tk´1| ď 4|t ´ s|{K (if not, it means that 4pt ´ sqpK ´ 1q{K ă
řK´1
k“1 |tk`1´ tk´1| “

řK´1
k“1 ptk`1´ tk ` tk ´ tk´1q “ 2pt´ sq´ ptK ´ tK´1`

t1 ´ t0q ď 2pt´ sq, which is a contradiction since K ě 2). We get

A!

Ii,n,∆s,t p¨q ´ Ii,n,∆
1

s,t p¨q

)

´

!

Ii,∆s,t p¨q ´ I
i,∆1

s,t p¨q

)E

%
ď Cςn

´ t´ s

K

¯3{p
,
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the constant C being allowed to increase from line to line as long as it
remains independent of n, K, ∆ and ∆1. Letting tp1q “ tk and applying
iteratively the above bound to a sequence of meshes of the form ∆zttp1qu,
∆zttp1q, tp2qu, . . . , and then letting K tend to 8, we deduce that

B
ż t

s
F i,nr p¨qdW i,pnq

r p¨q ´

ż t

s
F
i
rp¨qdW

i
rp¨q ´

!

Ii,n,B
ts,tu ´ I

i,B
ts,tu

)

F

%

ď Cςnpt´ sq
3{p.

(5.11)

By Lemma A.1, we also have
@

Ii,n,B
ts,tu ´ I

i,B
ts,tu

D

%
ď Cςnpt´ sq

1{p, from which

we deduce that
A

ż t

s
F i,nr p¨qdW i,pnq

r p¨q ´

ż t

s
F
i
rp¨qdW

i
rp¨q

E

%
ď Cςnpt´ sq

1{p.

Similarly, Lemma A.1 says that
@“

F i,np¨q ´ F
i
p¨q

‰

s,t

D

%
ď Cςnpt´ sq

1{p, and,
noting that

R
ş

F i,ndW i,pnq

s,t pωq “

ż t

s
F i,nr pωqdW i,pnq

r pωq ´ Ii,n,Bs,t pωq

` δxF
i,n
s pωqWi

s,tpωq `
1

n

n
ÿ

j“1

δµF
i,j,n
s pωqWj,i

s,tpωq,

R
ş

F
i
dW

i

s,t pωq “

ż t

s
F
i
rpωqdW

i
rpωq ´ I

i,B
s,tpωq

` δxF
i
spωqW

i
s,tpωq ` E

”

δµF
i
spω, ¨qW

i,KK
s,t p¨, ωq

ı

,

we deduce in a similar manner, using (5.11) and Lemma A.1 once again,
that

A

R
ş

F i,ndW i,pnq

s,t p¨q ´R
ş

F
i
dW

i

s,t p¨q

E

%
ď Cςnpt´ sq

2{p.

So, fixing i P t1, ¨ ¨ ¨ , nu, choosing % large enough and applying a suitable
version of Kolmogorov’s theorem (see for instance Theorem 3.1 in [24]),
we can find p1 P pp, 3q, which may be assumed to satisfy item pcq in the
assumption (see for instance the second bullet point in Remark 5.2) and the
value of which is fixed until the end of the proof, such that

ˇ

ˇ

ˇ

ˇ

ż t

s
F i,nr pωqdW i,pnq

r ´

ż t

s
F
i
rpωqdW

i
rpωq

ˇ

ˇ

ˇ

ˇ

ď θi,npωqpt´ sq1{p
1

,

ˇ

ˇ

ˇ

”

F i,npωq ´ F
i
pωq

ı

s,t

ˇ

ˇ

ˇ
ď θi,npωqpt´ sq1{p

1

,
ˇ

ˇ

ˇ

ˇ

R
ş

F i,ndW i,pnq

s,t pωq ´R
ş

F
i
dW

i

s,t pωq

ˇ

ˇ

ˇ

ˇ

ď θi,npωqpt´ sq2{p
1

,

(5.12)
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with
@

θi,np¨q
D

%
ď Cςn, for a new value of the constant C.

Observe now that the empirical control associated with our empirical
rough set-up and with the exponent p1 reads (compare with (2.10))

wi,np1 ps, t, ωq :“ vi,np1 ps, t, ωq `
pnq
v

v‚,np1 pωq
w

q;rs,ts,1´v
,

where we used the same notation as in (4.3). In fact, there is no loss of
generality in changing the definition of wi,np1 into

(5.13) wi,np1 ps, t, ωq :“ vi,np1 ps, t, ωq `
pnq
v

v‚,np1 pωq
w

q;rs,ts,1´v
` pt´ sq,

which permits to replace pt ´ sq1{p
1

by wi,np1 ps, t, ωq
1{p1 in the inequalities

(5.12). Hence,

�

�

�

�

ż ¨

0
F i,nr pωqdW i,pnq

r ´

ż ¨

0
F
i
rpωqdW

i
rpωq

�

�

�

�

r0,T s,wi,n
p1
,p1
ď θi,npωq.

Step 2. We now make use of Proposition 3.2 to compare

ż t

0
F
`

Xi,pnq
s pωq, µns pωq

˘

dW i,pnq
s pωq and

ż t

0
F
`

X
i
spωq, µ

n
s pωq

˘

dW i,pnq
s pωq,

see (5.2). To simplify the notations, we just write Xi for Xi,pnq and W i for
W i,pnq. We then apply Proposition 3.2 with

(5.14)
`

Xpωq, Y p¨q
˘

“
`

Xipωq, X‚pωq
˘

,
`

X 1pωq, Y 1p¨q
˘

“
`

X
i
pωq, X

‚
pωq

˘

,

the underlying set-up being understood as the empirical rough set-up for a
given realization ω (in particular, the various assumptions on the moments
in Proposition 3.2 must be checked under the empirical distribution). The
difficulty here is that the variations of these two solutions are controlled by
two different functionals w, see (2.11); in short, there is the control associated
with the empirical set-up and the control associated with the theoretical one.
This is the rationale for introducing pwi,np1 in (5.4). Obviously, pwi,np1 p¨, ¨, ωq is

not the natural control functional associated with W ipωq, but it is greater
than wi,np1 ps, t, ωq and it satisfies

(5.15) pnq
v

pw‚,np1 ps, t, ωq
w

q
ď 2 pwi,np1 ps, t, ωq,

which suffices to apply Proposition 3.2, see also [2, Proposition 4.3], with
wi,np1 ps, t, ωq replaced by pwi,np1 ps, t, ωq. The resulting semi-norm that must be

imsart-aop ver. 2014/10/16 file: MeanField2AoP.tex date: June 9, 2020



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 39

used to control the difference
`

Xpωq ´ X 1pωq, Y p¨q ´ Y 1p¨q
˘

“
`

Xipωq ´

X
i
pωq, X‚pωq ´ X

‚
pωq

˘

on a given interval rs, ts is ~ ¨ ~rs,ts, pwi,n,p1 (we feel

easier not to put the index p1 in pwi,n but it is implicitly understood). We use
the corresponding local accumulation, which we denote by pN i,n

`

r0, T s, ω, α
˘

.

We first check that the pair
`

Xpωq, Y p¨q
˘

“
`

Xipωq, X‚pωq
˘

in (5.14) sat-
isfies the assumptions of Proposition 3.2, assuming that T is upper bounded
by 1 (which may seem rather restrictive but which is in fact consistent with
what we do in the sequel since we require, at least for a while, T to be small
enough). By construction of the processes

`

Xjpωq
˘

j“1,¨¨¨ ,n
as the solution

of the empirical rough equation, we know from Theorem 3.3 and from [2,
Proposition 4.2] (which guarantees a form of stability in the iterative con-
struction of the solution) that we can find three deterministic constants L0,
η0 and γ0, all strictly greater than 1 and only depending on Λ (we may
forget the dependence upon T since T ď 1; in particular the three con-
stants are independent of n and, for sure, of the index i as well), such that
Xpωq “ Xipωq satisfies (3.3) with w “ pwi,np1 (it being understood that the

points
`

t0` “ τ`p0, T, ω, 1{p4L0qq
˘

`“0,¨¨¨ ,N0`1
in the statement of Proposition

3.2 are constructed with respect to pwi,np1 ) and Y p¨q “ X‚pωq satisfies condi-

tion (3.2) with respect to pnq
v

¨
w

8
, provided that T satisfies

pnq
$

% pN‚,n
`

r0, T s, ω, 1{p4L0q
˘

,

-

8
ď 1,(5.16)

pnq

$

’

’

%

”

γ0

´

1` pw‚,np1 p0, T, ¨q
1{p1

¯ı
pN‚,npr0,T s,¨,1{p4L0qq

,

/

/

-

32

ď η0.(5.17)

We now check that the pair
`

X 1pωq, Y 1p¨q
˘

“
`

X
i
pωq, X

‚
pωq

˘

in (5.14)
also satisfies the assumptions of Proposition 3.2. In fact, using the Hölder
regularity of the paths, see (4.5) for a similar use, and using the additional
t´s in the definition (5.4), pwi,np1 dominates (up to a multiplicative constant)

the control wi associated to W
i

(and p1) through (2.10) (see (5.1) for the

definition of W
i
; in short, the variations of W ipωq and Wipωq are already

included in vi,np1 pωq, the variations of Wi,KKpω, ¨q and Wi,KKp¨, ωq are precisely

included in the definition of pvi,np1 pωq and, using the Hölder regularity of the

paths, the variations of W ip¨q and Wi,KKp¨, ¨q (in Lq) are dominated by the
additional t´s). Moreover, we have (observe that, since we work here with a
copy of the theoretical rough set-up, we use theoretical instead of empirical

imsart-aop ver. 2014/10/16 file: MeanField2AoP.tex date: June 9, 2020



40 I. BAILLEUL, R. CATELLIER, F. DELARUE

moments to check the various properties of a rough set-up)

@

pwi,np1 ps, t, ¨q
D

q
ď Cpt´ sq ď C pwi,np1 ps, t, ωq,

for a constant C independent of i, n, s and t. Although C ě 2 (compare
with (2.8)), this permits to use pwi,np1 ps, t, ¨q as control functional when working

with the rough set-up W
i

and, in particular, when invoking the solvability
Theorem 3.3 – the proof would be the same. This is an important point: the

path X
i
pωq, defined right after (5.1), is the solution of a mean-field rough

equation driven by a signal that is controlled by pwi,np1 p¨q. Hence, X 1pωq “

X
i
pωq in (5.14) satisfies the second bound in (3.3) with w “ pwi,np1 , provided

(5.16) and (5.17) hold true but under the theoretical (instead of empirical)
moments of order 8 and 32 respectively and T therein is deterministic. Of
course, by exchangeability, the latter is in fact true automatically as soon as
(5.16) and (5.17) themselves are satisfied (it suffices to take power 8 in (5.16)
and power 32 in (5.17) and then to take the theoretical expectation). By the

same argument, X
i
p¨q satisfies the second condition in (3.2) with respect to

x¨y8; in turn, this, together with (5.16), make it possible to apply the first
line in [2, Proposition 4.2, (4.4)] for each i P t1, ¨ ¨ ¨ , nu and to deduce that
Y 1p¨q “ X

‚
pωq satisfies the second condition (3.2) but with respect to pnq

v

¨
w

8
.

Due to the assumption in [2, Proposition 4.2], this may require to work with
a larger value of the threshold L0 in the statement of Proposition 3.2, but,
as made clear in the statement of [2, Proposition 4.2] itself, this is always
possible. Then, by Proposition 3.2, we obtain, for a given L ě L0,

�

�

�

�

ż ¨

tk

F
`

Xi
rpωq, µ

npωq
˘

dW i
rpωq ´

ż ¨

tk

F
`

X
i
rpωq, µ

npωq
˘

dW i
rpωq

�

�

�

�

rtk,tk`1s, pwi,n,p1

ď γ pwi,np1 p0, tk, ωq
1{p1

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8

˙

`
γ

4L

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rtk,tk`1s, pw‚,n,p1

,

-

8

˙

,

where pwi,np1 ptk, tk`1, ωq
1{p1 ď 1{p4Lq and for k ď 2 pN i,npr0, T s, ω, 1{p4Lqq

(since the sequence ptiqi must refine the sequence pt0j qj , we may assume

that the collection ptiqi counts 2 pN i,npr0, T s, ω, 1{p4Lqq ` 2 points, including
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t0 “ 0) and where γ depends on L0 and Λ. The point now is to insert the
conclusion of the first step (replacing for free wi,np1 by pwi,np1 therein). We get

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

ď γ pwi,np1 p0, tk, ωq
1{p1

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8

˙

` θi,npωq

`
γ

4L

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rtk,tk`1s, pw‚,n,p1

,

-

8

˙

.

If γ{p4Lq ď 1{2, we get

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

ď 2γ
´ 1

L
` pwi,np1 p0, tk, ωq

1{p1
¯

ˆ

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8

˙

` 2θi,npωq.

(5.18)

We deduce that there exists a constant c ě 1, possibly depending on L0 but
independent of n and L and T and whose value may increase from line to
line, such that (see for instance [2, footnote 5] for the concatenation of two
intervals)

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tk`1s, pwi,n,p1

ď c
´

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1
`
�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

¯

ď c
`

1` ζi,nT pωq
˘�

�

`

Xi ´X
i˘
pωq

�

�

r0,tks, pwi,n,p1

` c ζi,nT pωq
pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8
` cθi,npωq,

with ζi,nT pωq :“ 1
L ` pwi,np1 p0, T, ωq

1{p1 . So, by induction,

�

�

`

Xi ´X
i˘
pωq

�

�

r0,tk`1s, pwi,n,p1
ď c

´

k
ÿ

`“0

“

c
`

1` ζi,nT pωq
˘‰`

¯

ˆ

ˆ

ζi,nT pωq
pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8
` θi,npωq

˙

.
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In the end,

�

�

`

Xi ´X
i˘
pωq

�

�

r0,T s, pwi,n,p1

ď c
”

c
`

1` ζi,nT pωq
˘

ı2 pN i,npr0,T s,ω,1{p4Lqq`1

ˆ

ˆ

ζi,nT pωq
pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8
` θi,npωq

˙

.

(5.19)

Hence, using the shorten notation pN i,n
T pωq for pN i,npr0, T s, ω, 1{p4Lqq and

recalling that c ě 1, we obtain

pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8

ď pnq
$

%

“

c2
`

1` ζ‚,nT pωq
˘‰2 pN‚,nT pωq`1

ζ‚,nT pωq
,

-

8

ˆ pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8

` pnq
$

%

“

c2
`

1` ζ‚,nT pωq
˘‰2 pN‚,nT pωq`1

θ‚,npωq
,

-

8
.

(5.20)

Step 3. The key quantity of interest in (5.20) is the multiplicative factor
in the second line, which we denote by

Ψn
T pωq :“ pnq

$

%

“

c2
`

1` ζ‚,nT pωq
˘‰2 pN‚,nT pωq`1

ζ‚,nT pωq
,

-

8
.

In particular, letting

Θn
T pωq :“ pnq

$

%

“

c2
`

1` ζ‚,nT pωq
˘‰2 pN‚,nT pωq`1

θ‚,npωq
,

-

8
,

we rewrite (5.20) in the form

pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8

ď Ψn
T pωq

pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8
`Θn

T pωq.
(5.21)

Here comes the key point. The variable ω being frozen, assume that we
are given a deterministic time horizon T small enough and a deterministic
L ě L0 large enough, such that γ{p4Lq ď 1{2, Ψn

T pωq ď 1{2, and (5.16) and
(5.17) hold true. Then,

pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

r0,T s, pw‚,n,p1

,

-

8
ď 2Θn

T pωq.
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The above inequality sounds really close to the desired result, but it is on
a small interval r0, T s only. The purpose is thus to iterate it in order to
cover any given time interval. The explicit construction of T and L being
postponed to Step 5.

Step 4. In order to iterate in a proper way, we change our notation.
While we keep the notation T for the deterministic global time horizon
given in the statement (without any further requirement that T ď 1), we
use the letter τ instead of T in the previous analysis. Put differently, τ will
stand for a deterministic time horizon less than 1 such that Ψτ is small
enough. And then, we let τ0 “ τ and consider a deterministic dissection
0 “ τ0 ă τ1 ă ¨ ¨ ¨ ă τM “ T of the interval r0, T s into M subintervals.
The goal of this step is to explain how the error on the interval rτ`, τ``1s,
` “ 1, ¨ ¨ ¨ ,M ´ 1 can be controlled in terms of the error on the preceding
interval r0, τ`s, the construction of the dissection being achieved in Step 5.

To do so, we need to revisit the statement of Proposition 3.2. Assume
indeed that we have a bound for

E i,nτ` pωq :“
´

1` pwi,np1 p0, T, ωq
1{p1

¯

�

�

`

Xi ´X
i˘
pωq

�

�

r0,τ`s, pwi,n,p1
,

for some ` ď M . Then, in order to duplicate the previous two steps, we
must consider a new dissection τ` “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ τ``1 of the
interval rτ`, τ``1s with the property that K “ 2 pN i,n

`

rτ`, τ``1s, ω, 1{p4Lq
˘

`1

and that pwi,np1 ptk, tk`1, ωqď1{p4Lq if k ă K. The key point is to apply the

first inequality in (3.4) on rtk, tk`1s with pXpωq, Y p¨qq “ pXipωq, Xip¨qq and

pX 1pωq, Y 1p¨qq “ pX
i
pωq, X

i
p¨qq, but with τ` instead of 0 as initial time.

Upper bounding the second line in (3.4) by E i,nτ` pωq`pnq
v

E‚,nτ` pωq
w

8
, we obtain

�

�

�

�

ż ¨

tk

F
`

Xi
rpωq, µ

n
r pωq

˘

dW i
rpωq ´

ż ¨

tk

F
`

X
i
rpωq, µ

n
r pωq

˘

dW i
rpωq

�

�

�

�

rtk,tk`1s, pwi,n,p1

ď γ pwi,np1 pτ`, τ``1, ωq
1{p1

"

�

�

`

Xi ´X
i˘
pωq

�

�

rτ`,tks, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rτ`,τ``1s, pw‚,n,p1

,

-

8

*

`
γ

4L

"

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rtk,tk`1s, pw‚,n,p1

,

-

8

*

` γ

„

E i,nτ` pωq `
pnq
v

E‚,nτ`
pωq

w

8



,
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provided the analogues of (3.2) and (3.3) hold true. We may argue as in the
second step to check the latter two: They are consequences of Theorem 3.3,
if τ``1 ´ τ` ď 1 and the analogues of (5.16) and (5.17) hold true, namely

pnq
$

% pN‚,n
`

rτ`, τ``1s, ω, 1{p4L0q
˘

,

-

8
ď 1,(5.22)

pnq

$

’

’

%

”

γ0

´

1` pw‚,np1 pτ`, τ``1, ¨q
1{p1

¯ı
pN‚,nprτ`,τ``1s,¨,1{p4L0qq

,

/

/

-

32

ď η0.(5.23)

Then, proceeding as in the second step,

�

�

`

Xi ´X
i˘
pωq

�

�

rtk,tk`1s, pwi,n,p1

ď c
´ 1

L
` pwi,np1 pτ`, τ``1, ωq

1{p1
¯

"

�

�

`

Xi ´X
i˘
pωq

�

�

rτ`,tks, pwi,n,p1

` pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rτ`,τ``1s, pw‚,n,p1

,

-

8

*

` c

"

E i,nτ` pωq `
pnq
v

E‚,nτ`
pωq

w

8
` θi,npωq

*

.

In the end, we are in the same situation as in Step 2, but with new ζi,nT and
pN i,n
T . Here, we let (pay attention that, to be consistent with the notations

ζi,nT and pN i,n
T , we should use rτ`, τ``1s instead of ` as subscript below, but,

for simplicity, we prefer to use ` only)

ζi,n` pωq :“
1

L
` pwi,np1 pτ`, τ``1, ωq

1{p1 , pN i,n
` pωq :“ pN i,n

ˆ

rτ`, τ``1s, ω,
1

4L

˙

.

Following (5.19), we obtain

�

�

`

Xi ´X
i˘
pωq

�

�

rτ`,τ``1s, pwi,n,p1

ď c
“

c
`

1` ζi,n` pωq
˘‰2 pN i,n

` pωq`1

ˆ

"

ζi,n` pωq
pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rτ`,τ``1s, pw‚,n,p1

,

-

8
(5.24)

` θi,npωq ` E i,nτ` `
pnq
v

E‚,nτ`
pωq

w

8

*

.

Hence,

pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rτ`,τ``1s, pw‚,n,p1

,

-

8

ď Ψn
` pωq ˆ

pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rτ`,τ``1s, pw‚,n,p1

,

-

8
`Θn

` pωq,
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with

Ψn
` pωq :“ pnq

$

%

“

c2
`

1` ζ‚,n` pωq
˘‰2 pN‚,n` pωq`1

ζ‚,n` pωq
,

-

8
,

Θn
` pωq

:“ pnq
$

%

“

c2
`

1` ζ‚,n` pωq
˘‰2 pN‚,n` pωq`1

´

θ‚,npωq ` E‚,nτ`
pωq ` pnq

v

E‚,nτ`
pωq

w

8

¯,

-

8
.

Following (5.21), if we can choose L large enough and then τ``1 ´ τ` small
enough such that Ψn

` pωq ď 1{2, then we get

pnq
$

%

�

�

`

X‚ ´X
‚˘

pωq
�

�

rτ`,τ``1s, pw‚,n,p1

,

-

8
ď 2 Θn

` pωq.

Eventually, returning to (5.24) and modifying the value of the constant c,
we deduce

�

�

`

Xi ´X
i˘
pωq

�

�

rτ`,τ``1s, pwi,n,p1

ď c
“

c
`

1` ζi,n` pωq
˘‰2 pN i,n

` pωq`1

ˆ

ˆ

ζi,n` pωqΘn
` pωq ` θ

i,npωq ` E i,nτ` `
pnq
v

E‚,nτ`
pωq

w

8

˙

,

and then

E i,nτ``1
pωq ď κi,n` pωq

ˆ

ζi,n` pωqΘn
` pωq ` θ

i,npωq ` E i,nτ` pωq `
pnq
v

E‚,nτ`
pωq

w

8

˙

,

with

(5.25) κi,n` pωq :“ c2
´

1` pwi,np1 p0, T, ωq
1{p1

¯ ”

c2
`

1` ζi,n` pωq
˘

ı2 pN i,n
` pωq`1

,

using the fact that c ě 1. By induction, we get the following global bound:

E i,nτ``1
pωq ď

ÿ̀

k“0

Ki,nk,`pωq
„

ζi,nk pωqΘ
n
kpωq ` θ

i,npωq ` pnq
v

E‚,nτk
pωq

w

8



,(5.26)

with

(5.27) Ki,nk,`pωq :“
ź̀

j“k

κi,nj pωq.
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We deduce that for any r ą 8, we can find a constant qprq (which has nothing
to do with q in the assumption) such that

pnq
v

E‚,nτ``1
pωq

w

r
ď

ÿ̀

k“0

"

pnq
v

K‚,nk,`
w

qprq
ˆ

´

1` pnq
v

pw‚,np0, T, ωq1{p
1w

qprq

¯

ˆ

´

1` pnq
$

%

“

c2
`

1` ζ‚,nk pωq
˘‰2 pN‚,nk pωq`1

,

-

qprq

¯

ˆ

´

pnq
v

θ‚,npωq
w

qprq
` pnq

v

E‚,nτk
pωq

w

r

¯

*

.

Using the fact that

pnq
v

K‚,nk,`
w

qprq

ě max
´

1, pnq
v

pw‚,np0, T, ωq1{p
1w

qprq
, pnq

$

%rc2 p1` ζ‚,nk pωqqs2
pN‚,nk pωq`1

,

-

qprq

¯

,

we obtain a bound of the form a``1 ď
ř`
k“0 gk,`

`

b` ak
˘

, with

a` :“ pnq
v

E‚,nτ`
pωq

w

r
, gk,` :“ 4ˆ

´

pnq
v

K‚,nk,`
w

qprq

¯3
, b :“ pnq

v

θ‚,npωq
w

qprq
.

Hence,

(5.28) a` ď b
ÿ̀

j“1

ÿ

0ďk1ď¨¨¨ďkjďkj`1“`

j
ź

h“1

gkh,kh`1
.

Back to (5.27), we will use below the bound

Ki,nk,`pωq

ď c2p``1´kq
ź̀

j“k

!

`

1` pwi,np0, T, ωq1{p
1˘“

c2
`

1` ζi,nj pωq
˘‰2 pN i,n

j pωq`1
)

ď c4p``1´kq`4 pN i,n
k,``1pωq

`

1` pwi,np0, T, ωq1{p
1˘``1´k`2 pN i,n

k,``1pωq,

(5.29)

with the shortened notation pN i,n
k,` pωq :“ pN i,n

`

rτk, τ`s, ω, 1{p4Lq
˘

, where we

have used the fact that
ř`
j“k

pN i,n
j pωq ď pN i,n

k,``1pωq.

Step 5. We now recall that the parameter L and the sequence of deter-
ministic times 0 “ τ0 ă τ1 ă ¨ ¨ ¨ ă τM must satisfy γ{p4Lq ď 1{2, (5.22),
(5.23) and Ψn

` pωq ď 1{2, together with τ``1´τ` ď 1, for ` P t0, ¨ ¨ ¨ ,M ´1u.
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In order to proceed, we let

M1 “

A

›

›W p¨q
›

›

p1

r0,T s,p1{p1q´H

E

q
`

A

›

›Wp¨q
›

›

p1{2

r0,T s,p2{p1q´H

E

q

`

A

›

›WKKp¨, ¨q
›

›

p1{2

r0,T s,p2{p1q´H

E

q
,

and we consider the events

An1 “

"

ω P Ω : pnq
v
›

›W ‚pωq
›

›

p1

r0,T s,p1{p1q´H

w

q
` pnq

v
›

›W‚pωq
›

›

p1{2

r0,T s,p2{p1q´H

w

q

` pnq
vv
›

›W‚,‚pωq
›

›

p1{2

r0,T s,p2{p1q´H

ww

q
ďM1 ` 1

*

,

An2 “

"

ω P Ω : @i P t1, . . . , nu, @ps, tq P ST2 ,

pnq
v

Wi,‚pωq
w

q;rs,ts,p1{2´v
` pnq

v

W‚,ipωq
w

q;rs,ts,p1{2´v

ď 2cp,p1,qpt´ sq
2{p1

`
@

Wi,KKpω, ¨q
D

q;rs,ts,p1{2´v
`
@

Wi,KKp¨, ωq
D

q;rs,ts,p1{2´v

*

,

with cp,p1,q, as in (4.23). On the event An1 XA
n
2 , we have (compare with (4.3)

and (4.5)) for s, t P r0, T s2, s ă t,

vi,np1 ps, t, ωq ď
›

›W ipωq
›

›

p1

rs,ts,p1´v
`
›

›Wipωq
›

›

p1{2

rs,ts,p1{2´v

` 3p
1{2´1

ˆ

@

Wi,KKpω, ¨q
Dp1{2

q;rs,ts,p1{2´v
`
@

Wi,KKp¨, ωq
Dp1{2

q;rs,ts,p1{2´v

˙

`
`

c1p,p1,q `M1

˘

pt´ sq,

for a new constant c1p,p1,q only depending on p, p1 and q. Therefore, intro-
ducing the new event

An3 “

"

pnq
$

%

A

›

›W‚,KKpω, ¨q
›

›

p1{2

r0,T s,p2{p1q´H

E

q

,

-

q

` pnq
$

%

A

›

›W‚,KKp¨, ωq
›

›

p1{2

r0,T s,p2{p1q´H

E

q

,

-

q
ď 2

`

1`M1

˘

*

,

we get, on An1 XA
n
2 XA

n
3 ,

pnq
v

v‚,np1 pωq
w

q;rs,ts,1´v
ď c1p,p1,q,M1

pt´ sq,

for a new constant c1p,p1,q,M1
only depending on p, p1, q and M1.
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Recall now the definition of pvi,np1 in (5.4). We have

pvi,np1 ps, t, ωq

“
@

Wi,KKpω, ¨q
Dp1{2

q;rs,ts,p1{2´v
`
@

Wi,KKp¨, ωq
Dp1{2

q;rs,ts,p1{2´v

ď

”A

›

›Wi,KKpω, ¨q
›

›

p1{2

r0,T s,p2{p1q´H

E

q
`

A

›

›Wi,KKp¨, ωq
›

›

p1{2

r0,T s,p2{p1q´H

E

q

ı

pt´ sq.

And then,

pnq
v

pv‚,np1 pωq
w

q;rs,ts,1´v
ď

ˆ

pnq
$

%

A

›

›W‚,KKpω, ¨q
›

›

p1{2

r0,T s,p2{p1q´H

E

q

,

-

q

` pnq
$

%

A

›

›W‚,KKp¨, ωq
›

›

p1{2

r0,T s,p2{p1q´H

E

q

,

-

q

˙

pt´ sq.

Therefore, on the event An1 XA
n
2 XA

n
3 , we have

pnq
v

pv‚,np1 pωq
w

q;rs,ts,1´v
ď 2p1`M1qpt´ sq.

Using the same notations as in (5.4), we end-up with

pwi,np1 ps, t, ωq ď rwi,np1 ps, t, ωq,(5.30)

for ω P An1 XA
n
2 XA

n
3 , where we let (using the fact that 3p

1{2´1 ď
?

3 ď 2)

rwi,np1 ps, t, ωq :“
›

›W ipωq
›

›

p1

rs,ts,p1´v
`
›

›Wipωq
›

›

p1{2

rs,ts,p1{2´v
` Cp,p1,q,M1pt´ sq

` 3
@

Wi,KKpω, ¨q
Dp1{2

q;rs,ts,p1{2´v
` 3

@

Wi,KKp¨, ωq
Dp1{2

q;rs,ts,p1{2´v
,

with Cp,p1,q,M1 :“ c1p,p1,q,M1
` c1p,p1,q ` 3M1 ` 3. Using the notation (2.17),

we also let rN i,nprτ, τ1s, ω, αq :“ N$prτ, τ
1s, αq, with $ :“ p rwi,np1 pωqq

1{p1 . By
(5.30),

(5.31) pN i,nprτ, τ1s, ω, αq ď rN i,nprτ, τ1s, ω, αq,

for ω P An1 XA
n
2 XA

n
3 . The good point here is that the variables

`

rwi,np1
˘

1ďiďn

are independent whilst the variables
`

pwi,np1
˘

1ďiďn
are not. Similarly, when-

ever τ and τ1 are deterministic, the variables
`

rN i,nprτ, τ1s, ¨, αq
˘

1ďiďn
are

independent. Moreover, it is not difficult to see that

(5.32) rwi,np1 ps, t, ωq ď 3 pwi,np1 ps, t, ωq ` Cp,p1,q,M1pt´ sq,
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from which we deduce, see for instance (A.1), that, for any α ą 0,

(5.33) rN i,n
`

rτ, τ1s, ω, α
˘

ď pN i,n
´

rτ, τ1s, ω,
α

2 ¨ 31{p1

¯

` Cα
`

τ1 ´ τ
˘

,

for a constant Cα only depending on α and on p, p1, q and M1 (we feel
easier not to indicate the dependence on p, p1, q and M1). In particular, we
can easily replace pN i,n by rN i,n in the third item of the assumption of the
statement. Moreover, by (4.11), we deduce that each rwi,np1 satisfies the first
bound in (3.5), uniformly in i and n.

We now claim that we can choose L and the sequence 0 “ τ0 ă ¨ ¨ ¨ ă

τM “ T , independently of n, such that

A

rN1,n
`

rτ`, τ``1s, ¨, 1{p4L0q
˘

E

8
ď

1

2
,(5.34)

B

”

γ0

´

1` rw1,n
p1 p0, T, ¨q

1{p1
¯ı

rN1,nprτ`,τ``1s,¨,1{p4L0qq
F

32

ď
1` η0

2
,(5.35)

B

”

c2
´

1` rw1,n
p1 p0, T, ¨q

1{p1
¯ı2 rN1,nprτ`,τ``1s,¨,1{p4L0qq`1

ˆ

´ 1

L
` rw1,n

p1 pτ`, τ``1, ¨q
1{p1

¯

F

8

ď
1

4
,(5.36)

for γ0, η0 and c as in Steps 2 and 4 (in particular, c is independent of n and
L). We then make use of the third item in the assumption of the statement,
see (5.3); basically, it says that, in all the three constraints, we should nor-
malize rN1,n

`

rτ`, τ``1s, ¨, 1{p4L0q
˘

by the root of τ``1´τ`. This indeed makes

sense since inequality (5.32) insures that rN1,n
`

rτ`, τ``1s, ¨, 1{p4L0q
˘

satisfies

a similar estimate as pN1,n
`

rτ`, τ``1s, ¨, 1{p4L0q
˘

in (5.3). As for (5.34), (5.3)
says that the left-hand side can be bounded by C

?
τ``1 ´ τ`, for a constant

C independent of n, which makes it possible to choose τ``1´τ` small enough
(independently of n) such that the constraint (5.34) is indeed satisfied. Re-
calling that τ``1´τ` is less than 1 and invoking Cauchy-Schwarz inequality,
the left-hand side in (5.35) can be bounded by C

?
τ``1´τ` ; the way the con-

stant C here shows up is made clear in (5.41) below, with δ1` therein being
here understood as τ``1´τ` and the function f being lower bounded by the
identity. Importantly, the application of (5.41) is made possible by the up-
per bounds we have for rw1,n

p1 and rN1,n in terms of pw1,n
p1 and pN1,n, see (5.32)

and (5.33). As for (5.36), it may be bounded, using the same argument to-
gether with an additional Cauchy-Schwarz argument, by a product of the
form C

?
τ``1´τ` ˆ

`

1
L `

@

rw1,n
p1 pτ`, τ``1, ¨q

1{p1
D

16

˘

. The first factor C
?
τ``1´τ`

can be made smaller than 2 by choosing τ``1 ´ τ` small enough. Then, we
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can take L ě 16 so that C
?
τ``1´τ`{L is less than 1{8. It then remains to

decrease τ``1 ´ τ` if necessary to render
@

rw1,n
p1 pτ`, τ``1, ¨q

1{p1
D

16
less than

1{16; this is possible by using the analogue of (4.5) but for pwi,np1 , as it says

that rw1,n
p1 pτ`, τ``1, ¨q

1{p1 scales like pτ``1´τ`q
1{p1 , the (random) scaling factor

having moments of any order that are bounded independently of n. Impor-
tantly, this discussion says that the number M of intervals in the dissection
can be chosen independently of n. For sure, the index 1 in the left-hand
side in the three constraints (5.34), (5.35) and (5.36) can be replaced by any
i P t1, ¨ ¨ ¨ , nu. We then consider the family of events

A`,n4 “ A`,n4,1 XA
`,n
4,2 XA

`,n
4,3, ` “ 0, ¨ ¨ ¨ ,M ´ 1,

A`,n4,1 “

!

pnq
$

% rN‚,n
`

rτ`, τ``1s, ¨, 1{p4L0q
˘

,

-

8
ď 1

)

,

A`,n4,2 “

"

pnq

$

’

’

%

”

γ0

´

1` rw‚,np1 p0, T, ¨q
1{p1

¯ı
rN‚,nprτ`,τ``1s,¨,1{p4L0qq

,

/

/

-

32

ď 1` η0

*

,

A`,n4,3 “

"

pnq

$

’

’

%

”

c2
´

1` rw‚,np1 p0, T, ¨q
1{p1

¯ı2 rN‚,nprτ`,τ``1s,¨,1{p4L0qq`1

ˆ

´ 1

L
` rw‚,np1 pτ`, τ``1, ¨q

1{p1
¯

,

/

/

-

32

ď
1

2

*

.

By (5.30) and (5.31), on An1 X An2 X An3 X
`
ŞM´1
`“0 A`,n4

˘

, the upper bounds
(5.22), (5.23) and Ψn

` ď 1{2 are satisfied and then the conclusion of the
fourth step holds true.

Following (5.25), this prompts us to set:

rκi,n` pωq :“ c2
´

1` rwi,np1 p0, T, ωq
1{p1

¯

ˆ

”

c2
´

1`
1

L
` rwi,np1 pτ`, τ``1, ωq

1{p1
¯ı2 rN i,n

` pωq`1
,

and then rKi,nk,`pωq :“
ś`
j“k rκ

i,n
j pωq. Returning to the conclusion of the fourth

step, we get, for ω P An :“ An1 XA
n
2 XA

n
3 X

`
ŞM´1
`“0 A`,n4

˘

,

pnq
v

E‚,nτ`
pωq

w

r

ď pnq
v

θ‚,npωq
w

qprq

ÿ̀

j“1

ÿ

0ďk1ď¨¨¨ďkjďkj`1“`

j
ź

h“1

4ˆ
´

pnq
v

rK‚,nkh,kh`1
pωq

w

qprq

¯3

ď `22``1 ˆ 4` ˆ pnq
v

θ‚,npωq
w

qprq
ˆ

´

pnq
v

rK‚,n0,` pωq
w

qprq

¯3`
.

The key fact here is that rKi,n0,M pωq, for any i P t1, ¨ ¨ ¨ , nu, has finite moments
of any order, independently of i and n. The proof follows from (5.29), from
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(4.11) and from the third item in the assumption of the statement of Theo-

rem 5.1, the last two properties implying that
`

1` rwi,np1 pτ`, τ``1, ωq
1{p1

˘
rN i,n
` pωq

has finite moments of any order, independently of i and n, see for instance
(5.43) below. Hence, for a constant C, independent of n but possibly de-
pending on M , we get (using an obvious exchangeability argument)

A

1Anp¨q
pnq
v

E‚,nT p¨q
w

r

E

r
ď C

A

pnq
v

θ‚,np¨q
w

qprq

E

2r
ď C

@

θ1,np¨q
D

qprq
,

where we took, without any loss of generality, qprq ě 2r. Taking % “ qprq in
(5.12), we get that, for a constant C independent of n, but depending on r,

(5.37) sup
1ďiďn

A

1Anp¨q
ˇ

ˇ

`

Xi ´X
i˘
p¨q

ˇ

ˇ

E

r
ď Cςn.

Step 6. From the law of large of numbers and from (4.11), we claim that
PppAn1 q

Aq decays faster than any n´s, for s ą 0. The first step of the proof
is to notice that

P
´

`

An1
˘A
¯

ď P
´

ω : pnq
v›

›W ‚pωq
›

›

p1

r0,T s,p1{p1q´H

w

q
´

A

›

›W p¨q
›

›

p1

r0,T s,p1{p1q´H

E

q
ě

1

3

¯

` P
´

ω : pnq
v
›

›W‚pωq
›

›

p1{2

r0,T s,p2{p1q´H

w

q
´

A

›

›Wp¨q
›

›

p1{2

r0,T s,p2{p1q´H

E

q
ě

1

3

¯

` P
´

ω : pnq
vv›

›W‚,‚pωq
›

›

p1{2

r0,T s,p2{p1q´H

ww

q
´

A

›

›WKKp¨, ¨q
›

›

p1{2

r0,T s,p2{p1q´H

E

q
ě

1

3

¯

“: πn1,1 ` π
n
1,2 ` π

n
1,3.

Since the most difficult term is the last one, we just explain how to handle
it. The other two terms may be treated in the same way. Since q ě 1, we
first observe that

πn1,3

ď P
´

ω : pnq
vv›

›W‚,‚pωq
›

›

p1{2

r0,T s,p2{p1q´H

wwq

q
ě

A

›

›WKKp¨, ¨q
›

›

p1{2

r0,T s,p2{p1q´H

Eq

q
`

1

3q

¯

ď P

ˆ

ω :
1

n2

ÿ

i “j

´

›

›Wi,jpωq
›

›

qp1{2

r0,T s,p2{p1q´H
´

A

›

›WKKp¨, ¨q
›

›

qp1{2

r0,T s,p2{p1q´H

E

1

¯

ě
1

3q`1

˙

` P

ˆ

ω :
1

n2

n
ÿ

i“1

›

›Wipωq
›

›

qp1{2

r0,T s,p2{p1q´H
ě

1

3q`1

˙

.

By (4.11), the last term in the right-hand side is easily handled. As for the
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first one, Markov’s inequality yields, for any s ą 1,

P

ˆ

ω :
1

n2

ÿ

j “i

´

›

›Wi,jpωq
›

›

qp1{2

r0,T s,p2{p1q´H
´

A

›

›WKKp¨, ¨q
›

›

qp1{2

r0,T s,p2{p1q´H

E

1

¯

ě
1

3q`1

˙

ď
3spq`1q

ns`1

n
ÿ

i“1

E

„ˇ

ˇ

ˇ

ˇ

ÿ

j:j “i

´

›

›Wi,jp¨q
›

›

qp1{2

r0,T s,p2{p1q´H
´

A

›

›WKKp¨, ¨q
›

›

qp1{2

r0,T s,p2{p1q´H

E

1

¯

ˇ

ˇ

ˇ

ˇ

s

.

By (4.11) again and by Rosenthal’s inequality, see [37], we deduce that the
right-hand side is less than Cn´s{2, for a constant C independent of n. This
completes the proof of our claim.

The same result holds for P
`

pAn3 q
A
˘

. Also, since
`

rN i,nprτ`, τ``1s, ¨, αq
˘

1ďiďn
,

are independent for any ` “ 0, ¨ ¨ ¨ ,M ´ 1 and have finite moments of
any order that can be bounded independently of n, we also have that
P
`

pA`,n4,1q
A
˘

decays faster than any n´s, for any ` “ 0, ¨ ¨ ¨ ,M ´ 1. Invok-

ing once again (5.42), the same holds for P
`

pA`,n4,2q
A
˘

and P
`

pA`,n4,3q
A
˘

and

hence for P
`

pA`,n4 qA
˘

. Since M is finite, P
`

pAn4 q
A
˘

also decays faster than any
n´s.

We finally check that the same is true for An2 . In fact, this is a consequence
of (4.23), choosing therein δ first in terms of p, p1 and q, and then a in terms
of δ such that aδ{4 “ s. In the end, Ca in (4.23) depends on p, p1, q and s.

All in all, back to the definition of An at the end of the fifth step, see
(5.37), we deduce that, for any s ą 0, P

`

pAnqA
˘

ď Cn´s. Therefore, in order
to conclude, it suffices to prove that, for any r ě 1, we can choose qprq ě 8
such that, if X0p¨q is in Lqprq, then

(5.38) sup
1ďiďn

E
”

sup
0ďtďT

|Xi
t |
r
ı

ď Cprq,

for a constant Cprq depending on r and on xX0p¨qyqprq but independent of n.

Obviously, (5.38) implies the same inequality but for X
i

by (say for i “ 1)
letting n tend to 8 and then invoking Theorem 4.3.

The proof of (5.38) relies on the final estimate in the statement of The-
orem 3.3. To make it clear, we consider a new random dissection 0 “ τ0 ă

τ1 ă ¨ ¨ ¨ ă τM “ T of r0, T s (for simplicity, we use the same notation as in
the previous step, but the new dissection has in fact nothing to do with the
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first one; in particular, it is random) such that

Γ
pnq
1

`

ω, rτ`, τ``1s
˘

:“ pnq
$

% pN‚,n
`

rτ`, τ``1s, ω, 1{p4L0q
˘

,

-

8
ď 1,

Γ
pnq
2

`

ω, rτ`, τ``1s
˘

:“ pnq
$

%

“

γ2
0

`

1` pw‚,np0, T, ωq1{p
1˘‰ pN‚,n

`

rτ`,τ``1s,ω,1{p4Lq
˘

,

-

32
ď η0,

(5.39)

for the same constants as in the statement of Theorem 3.3. We deduce from
Theorem 3.3 that there exists a constant C (independent of n) such that,
for any i P t1, ¨ ¨ ¨ , nu and ` P t0, ¨ ¨ ¨ ,M ´ 1u,

~Xipωq~rτ`,τ``1s, pwi,n,p1

ď

”

C
´

1` pwi,np1 p0, T, ωq
1{p1

¯ı2 pN i,npr0,T s,ω,1{p4Lqq
.

(5.40)

Observe now that, for any i P t1, ¨ ¨ ¨ , nu,

sup
0ďtďT

|Xi
t ´X

i
0| ď

M´1
ÿ

`“0

´

~Xipωq~rτ`,τ``1s, pwi,n,p1 pw
i,n
p1 pτ`, τ``1, ωq

1{p1
¯

ďM
”

C
´

1` pwi,np1 p0, T, ωq
1{p1

¯ı2 pN i,npr0,T s,ω,1{p4Lqq`1
.

The second factor in the right-hand side has finite moments of any order,
see (5.43) below, replacing therein pN i,n

` {
?
δ` by Npr0, T s, ω, 1{p4Lqq{

?
T .

Moreover, we prove below that M has sub-exponential tails, i.e., PpM ą

aq ď c expp´aεq, for c, ε ą 0. This suffices to prove (5.38).

We now prove that pτ`q`“0,¨¨¨ ,M in (5.39) may be constructed in such a
way that M has indeed sub-exponential tails. Obviously, see for instance
(A.1), it suffices to construct, for each constraint in (5.39), a subdivision
pτ`q`“0,¨¨¨ ,M of r0, T s, for which the corresponding constraint in (5.39) (and
only this one) holds true and the number of points M has sub-exponential
tails.

We start with the second constraint in (5.39). By induction, we de-
fine the sequence pτ1`q`“0,¨¨¨ ,M 1 , letting τ10 :“ 0 and τ1``1 :“ inftt ě τ1` :

Γ
pnq
2 pω, rτ1`, tsq ě η0u ^ T 5 (we recall that η0 ą 1), with M 1 :“ inf`PNt` P

N : τ1` “ T u. We claim that we can choose M “ 2M 1. Indeed, since the

5The reader may compare with (2.16), paying attention to the fact that, here,

t ÞÑ Γ
pnq
2 pω, rτ1`, tsq is not continuous but just right upper semi-continuous, namely

limεŒ0,εą0 Γ
pnq
2 pω, rτ1`, t`εsq ď Γ

pnq
2 pω, rτ1`, tsq for any t P rτ1`, T s. In order to check the lat-

ter, it suffices to prove that t ÞÑ pN i,n
prτ1`, ts, ω, 1{p4Lqq is also right upper semi-continuous,
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counter pN i,n appearing in (5.39) is the local accumulation of a continuous
function on ST2 , there exists δL ą 0 such that, for any t P r0, T s and any

i P t1, ¨ ¨ ¨ , nu, pN i,nprt, pt` δLq ^ T s, ω, 1{p4Lqq “ 0. (Of course, δL depends
on n and ω, but this is not a problem in the rest of the proof.) Then, for

any point t P rτ1`, τ
1
``1q, we have, by definition of τ1``1, Γ

pnq
2 pω, rτ1`, tsq ă η.

Moreover, if |τ1``1 ´ t| ď δL, then Γ
pnq
2 pω, rt, τ1``1sq “ 1 ď η. Therefore, we

may choose τ2` “ τ1` for ` P t0, ¨ ¨ ¨ ,Mu and then |τ2``1 ´ τ1``1| ď δL. The
sequence pτ`q`“0,¨¨¨ ,2M satisfies the second constraint in (5.39).

We now prove that M 1 has sub-exponential tails (which implies that M “

2M 1 also has sub-exponential tails). Letting δ1` :“ τ1``1 ´ τ1`, for any ` P N,
we have, for any A ą 1 (recalling γ0, η0 ą 1),

π1 :“ P

ˆ

δ1` ă
1

A
, ` ăM 1 ´ 1

˙

ď P

ˆ

pnq
$

%

“

γ2
`

1` pw‚,np1 p0, T, ωq
1{p1

˘‰
pN‚,n` pωq{

?
δ1`
,

-

1{
?
A

32
ě η0

˙

“ P

ˆ

pnq
$

%

“

γ2
`

1` pw‚,np1 p0, T, ωq
1{p1

˘‰
pN‚,n` pωq{

?
δ1`
,

-

32
ě η

?
A

0

˙

,

with the shorten notation pN‚,n` pωq “ pN‚,n
`

rτ1`, τ
1
``1s, ω, 1{p4Lq

˘

; in the sec-

ond line, we used the fact that pnq
v“

γ2
`

1` pw‚,np1 p0, T, ωq
1{p1

˘‰
pN‚,n` pωqw

32
ě η0,

see footnote (5). We now introduce the function fpxq “ exp
`

lnpxq1`ε
˘

,
x ą 1; it is non-decreasing on r1,8q and convex on re,8q. By Markov
inequality,

π1 ď e´
`

lnrη32
?
A

0 s

˘1`ε

E

„

f

ˆ

1

n

n
ÿ

i“1

e
”

γ2
´

1` pwi,np1 p0, T, ¨q
1{p1

¯ı32 pN i,n
` {
?
δ1`
˙

ď e´
`

lnrη32
?
A

0 s

˘1`ε 1

n

n
ÿ

i“1

E

„

f

ˆ

e
”

γ2
´

1` pwi,np1 p0, T, ¨q
1{p1

¯ı32 pN i,n
` {
?
δ1`
˙

,

with e “ expp1q. We prove in (5.42) below that, for ε small enough (inde-
pendently of n),

(5.41) sup
i“1,¨¨¨ ,n

E

„

f

ˆ

e
”

γ2
´

1` pwi,np1 p0, T, ¨q
1{p1

¯ı32 pN i,n
` {
?
δ1`
˙

ď C,

for any i P t1, ¨ ¨ ¨ , nu. Assume indeed that, for an index i P t1, ¨ ¨ ¨ , nu, for a time t ě τ1`
and for an integer ` ě 0, it holds that pN i,n

prτ1`, t` εs, ω, 1{p4Lqq ě ` for any ε ą 0. Then,

for any ε ą 0, we can find ` ` 1 reals τ1` “: t
pεq
0 ă t

pεq
1 ă ¨ ¨ ¨ ă t

pεq
` ď t ` ε such that

pwi,np1 pt
pεq
j , t

pεq
j`1, ωq

1{p1

ě 1{p4Lq. By an obvious compactness argument and by continuity of

pwi,np1 , we deduce that there exists ` ` 1 points τ1` “: t
p0q
0 ă t

p0q
1 ă ¨ ¨ ¨ ă t

p0q
` ď t such that

pwi,np1 pt
p0q
j , t

p0q
j`1, ωq

1{p1

ě 1{p4Lq, which in turn implies that pN i,n
prτ1`, ts, ω, 1{p4Lqq ě `.
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for C independent of n. As a result, π1 ď C exp
`

´
`

32 lnpη0q
˘1`ε

Ap1`εq{2
˘

,
and then,

P
`

M 1 ą `` 1
˘

“ P
`

δ11 ` ¨ ¨ ¨ ` δ
1
` ă T, `` 1 ăM 1

˘

ď
ÿ̀

i“1

P

ˆ

δ1i ă
T

`
, i` 1 ăM 1

˙

ď C`e´
`

32 lnpη0q
˘1`ε

p`{T qp1`εq{2 ,

which shows that M 1 has sub-exponential tails.

We now check what happens when handling the first constraint in (5.39).
We may define M 1 as before, that is M 1 :“ inf`PNt` P N : τ1` “ T u with

τ10 :“ 0 and τ1``1 :“ inftt ě τ1` : Γ
pnq
1 pω, rτ1`, tsq ě 1u ^ T . Then, we can

repeat the same proof as above by using the fact that

!

δ1` ă
1

A
, ` ăM 1 ´ 1

)

Ă

"

pnq
$

%

pN‚,n
`

rτ1`, τ
1
``1s, ω, 1{p4L0q

˘

a

δ1`

,

-

8
ě
?
A

*

and by recalling that

pnq
$

%

pN‚,n
`

rτ1`, τ
1
``1s, ω, 1{p4L0q

˘

a

δ1`

,

-

8

has Weibull tails with shape parameter strictly greater than 16, uniformly in
the choice of the dissection 0 “ τ0 ă ¨ ¨ ¨ ă τM 1 “ T , which follows from the
third item in the assumption of Theorem 5.1 together with the convexity of
the function r0,`8q Q x ÞÑ exppx1`εq, for ε ě 0. This permits to provide
an upper bound for Ppδ1` ă 1{A, ` ă M 1 ´ 1q and then to deduce as before
that M 1 has sub-exponential tails.

It now remains to prove (5.41). By (4.26) and (4.27), we can find a real
ε1 ą 0, independent of n, such that supi“1,¨¨¨ ,n E

“

exp
`

pwi,np1 p0, T, ¨q
ε1
˘‰

ď C,
for C independent of n. Hence, combining with the third item in the as-
sumption of the statement, we get, for any n ě 1, i P t1, ¨ ¨ ¨ , nu, a ą 1 and
K ą 0,

P

ˆ

´

1` pwi,np1 p0, T, ¨q
1{p1

¯
pN i,n
` {
?
δ1`
ě a

˙

ď P

ˆ

pN i,n

à

δ1`
ě K

˙

` P

ˆ

1` pwi,np1 p0, T, ¨q
1{p1 ě a1{K

˙

ď ce´K
1`ε2

` ce´a
ε1p

1{K
,

(5.42)

6Recall that a positive random variable A has a Weibull tail with shape parameter 2{%
if A1{ρ has a Gaussian tail.
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for a new constant c independent of n and i. Choosing K “ pln aq1{p1`ε2{2q,
we deduce that there exist a constant c ą 1 and an exponent ε ą 0 such
that, for any a ą 0,

(5.43) P
´

`

1` pwi,np1 p0, T, ¨q
1{p1

˘
pN i,n
` {
?
δ1` ě a

¯

ď ce´c
´1 lnpaq1`2ε

,

from which we obtain (5.41).

APPENDIX A: INTEGRABILITY AND AUXILIARY ESTIMATES

We prove in this appendix auxiliary results that we left aside in the body
of the text to keep focused on the main problems at hand. In Appendix
A.1, we show that assumption (c) in Theorem 5.1 holds true for interacting
particle system driven by Gaussian rough paths satisfying Example 4.2, see
Remark 5.2. Appendix A.2 is dedicated to proving a crucial moment estimate
for some quantity of interest in Step 1 of the proof of Theorem 5.1. This
is where the convergence rate ςn appears, see for instance (5.11). In the last
Appendix A.3, we elaborate on the versions of law of large numbers used in
the text.

A.1. Gaussian Case. Remark 5.2 asserts that the assumptions of The-
orem 4.3 are satisfied in the Gaussian framework specified in Example 4.2.
Since the derivation of (4.11) is already justified in the latter example, we
only prove here that we can control the empirical local accumulation as
in the requirement pcq of Theorem 5.1 with p1 “ p therein. Following the
proof of [2, Theorem 2.4], we may focus on the local accumulation of each
of the various terms in (5.4). To make it clear, we have the following prop-
erty: For a given threshold α ą 0 and for any two continuous functions
v1 : ST2 Ñ R` and v2 : ST2 Ñ R`, set Nipαq :“ Nvi

`

r0, T s, α
˘

, for 1 ď i ď 2,
and Npαq :“ Nv1`v2

`

r0, T s, α
˘

, see (2.17) for the original definition, then

(A.1) max
´

N1

´α

2

¯

, N2

´α

2

¯¯

ě Npαq.

Throughout the proof, we choose Ω as the space W “ Cpr0, T s; Rdq,
equipped with the law P of the Gaussian process addressed in Example
4.2. We call H the corresponding Cameron-Martin space and we regard
pW,H,Pq as an abstract Wiener space. We then regard pW 1, ¨ ¨ ¨ ,Wnq as
the canonical process on Ωn equipped with the product measure Pbn. We re-
call from [24, Theorem 10.4] that the processes pWiq1ďiďn and pWi,jq1ďi,jďn

may be regarded as random variables on Ωn. We first perform the proof

imsart-aop ver. 2014/10/16 file: MeanField2AoP.tex date: June 9, 2020



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 57

when rτ, τ1s in the requirement pcq of Theorem 5.1 is the interval r0, T s it-
self; we explain in the last step of the proof why this may be generalized to
any (possibly random) subinterval rτ, τ1s of r0, T s.

Step 1. The first step is to consider, for a given α ą 0, the accumulation
rN i
`

r0, T s, ω, α
˘

associated with
›

›W ipωq
›

›

p

rs,ts,p´v
`
›

›Wipωq
›

›

p{2

rs,ts,p{2´v
, see (4.3),

namely
rN ipr0, T s, ω, αq :“ N$

`

r0, T s, α
˘

,

when
$ps, tqp “

›

›W ipωq
›

›

p

rs,ts,p´v
`
›

›Wipωq
›

›

p{2

rs,ts,p{2´v
,

but this follows from [2, Theorem 2.4] and from an obvious exchangeability
argument. The term pvi,np1 ps, t, ωq in (5.4) is handled in the same way.

Step 2. We now focus on the local accumulation of the fourth and fifth
terms in (4.3). For simplicity, we just explain what happens for the fourth
term. The fifth term may be handled in the same way.

We use the same notation as in Subsection 4.1 and proceed as in the proof
of [2, Theorem 2.4]. The Gaussian process pW 1, ¨ ¨ ¨ ,Wnq has

`

Wn,H‘n,Pbn
˘

as abstract Wiener space. For ω “ pωiq
n
i“1 P Ωn and for h “ ‘ni“1hi P H‘n,

we let
ThW

pnqpωq “ T‘ni“1hi
W pnqpωq

for the translated rough path along h (see [24, (11.5)]). By [24, Lemma 11.4]
and by Young’s inequality, with probability 1 under Pbn, for all h P H‘n,
›

›Wi,jpωq
›

›

p{2

rs,ts,pp{2q´v
ď c

´

›

›pThWqi,jpωq
›

›

p{2

rs,ts,pp{2q´v
`
›

›pThW q
ipωq

›

›

p

rs,ts,p´v

`
›

›pThW q
jpωq

›

›

p

rs,ts,p´v
` }hi}

p
rs,ts,%´v ` }hj}

p
rs,ts,%´v

¯

.

Importantly, the constant c is independent of n. Below, it is allowed to
increase from line to line as long as it remains independent of n. So,

pnq
$

%

›

›Wi,‚pωq
›

›

p{2

rs,ts,pp{2q´v

,

-

q

ď c

"

pnq
$

%

›

›pThWqi,‚pωq
›

›

p{2

rs,ts,pp{2q´v

,

-

q
` pnq

$

%

›

›pThW q
‚pωq

›

›

p

rs,ts,p´v

,

-

q

`
›

›pThW q
ipωq

›

›

p

rs,ts,p´v
`
›

›hi
›

›

p

rs,ts,%´v
` pnq

$

%

›

›h‚
›

›

p

rs,ts,%´v

,

-

q

*

ď c

"

pnq
$

% 8pThW qi,‚pωq8p
r0,T s,p1{pq´H

,

-

q
pt´ sq `

›

›hi
›

›

p

rs,ts,%´v

` pnq
$

%

›

›h‚
›

›

p

rs,ts,%´v

,

-

q

*

,

(A.2)
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where for any i, j P t1, ¨ ¨ ¨ , nu, we let

8W i,jpωq8rs,ts,p1{pq´H :“ }pW i,W jqpωq}rs,ts,p1{pq´H `

b

}Wi,jpωq}rs,ts,p2{pq´H,

and similarly for 8pThW qi,jpωq8r0,T s,p1{pq´H.
The tricky term in (A.2) is the last one on the last line. The key point is

to notice that, for a given ε P p0, 2´ ρq,

pnq
$

%

›

›h‚
›

›

p

rs,ts,%´v

,

-

q
“

„

1

n

n
ÿ

j“1

›

›hj
›

›

pq

rs,ts,%´v

1{q

“ n´1{q

"„ n
ÿ

j“1

›

›hj
›

›

pq

rs,ts,%´v

p2´εq{ppqq*p{p2´εq

ď n´1{q

„ n
ÿ

j“1

›

›hj
›

›

2´ε

rs,ts,%´v

p{p2´εq

,

where we used the fact that 2´ε ă pq. Observe in particular that, whenever
řn
j“1

›

›hj
›

›

2´ε

rs,ts,%´v
ď np2´εq{ppqq, it holds

pnq
$

%

›

›h‚
›

›

p

rs,ts,%´v

,

-

q
ď n´1{q

„ n
ÿ

j“1

›

›hj
›

›

2´ε

rs,ts,%´v

p{p2´εq

ď n´1{q
`

np2´εq{ppqq
˘p{p2´εq´1

n
ÿ

j“1

›

›hj
›

›

2´ε

rs,ts,%´v
“ n´p2´εq{ppqq

n
ÿ

j“1

›

›hj
›

›

2´ε

rs,ts,%´v
,

where, in the second line, we used the fact that p{p2 ´ εq ą 1. Returning

to (A.2), we deduce that, whenever }hi}rs,ts,%´v ď 1 and
řn
j“1

›

›hj
›

›

2´ε

rs,ts,%´v
ď

np2´εq{ppqq,

pnq
$

%

›

›Wi,‚pωq
›

›

p{2

rs,ts,pp{2q´v

,

-

q
ď c

"

pnq
$

% 8pThW qi,‚pωq8p
r0,T s,p1{pq´H

,

-

q
pt´ sq

`
›

›hi
›

›

2´ε

rs,ts,%´v
` n´p2´εq{ppqq

n
ÿ

j“1

›

›hj
›

›

2´ε

rs,ts,%´v

*

.(A.3)

When the left-hand side is less than or equal to αp, we can modify the
constant c in such a way that the inequality remains true when }hi}rs,ts,%´v ě

1 or
řn
j“1

›

›hj
›

›

2´ε

rs,ts,%´v
ě np2´εq{ppqq. Noticing that 2 ´ ε ą ρ, (A.3) remains

true with pnqpWi,‚pωqq
p{2
q;rs,ts,pp{2q´v in the left-hand side.

Define now N i,n,KK
`

r0, T s, ω, α
˘

:“ N$

`

r0, T s, α
˘

, when

$ps, tqp “ pnq
v

Wi,‚pωq
wp{2

q;rs,ts,pp{2q´v
.
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Then, (A.3) (together with 2´ ε ą ρ) yields

N i,n,KK
`

r0, T s, ω, α
˘

αp ď c

"

pnq
$

% 8pThW qi,‚pωq8p
r0,T s,p1{pq´H

,

-

q
T

`
›

›hi
›

›

2´ε

r0,T s,%´v
` n´p2´εq{ppqq

n
ÿ

j“1

›

›hj
›

›

2´ε

r0,T s,%´v

*

ď c

"

pnq
$

%8pThW qi,‚pωq8p
r0,T s,p1{pq´H

,

-

q
T `

›

›hi
›

›

2´ε

r0,T s,%´v

` n´p2´εq{ppqq`ε{2
„ n
ÿ

j“1

›

›hj
›

›

2

r0,T s,%´v

p2´εq{2*

,

where we applied Hölder’s inequality to handle the last term. By choosing ε
small enough such that p2´ εq{ppqq ´ ε{2 ą 0 and by applying Proposition
11.2 in [24], we get, for a possibly new value of the constant c,

N i,n,KK
`

r0, T s, ω, α
˘

αp

ď c

"

pnq
$

% 8pThW qi,‚pωq8p
r0,T s,p1{pq´H

,

-

q
T ` }h}2´εH‘nT

p2´εq{p2ρq

*

,
(A.4)

with }h}2H‘n “
řn
i“1 }hi}

2
H. We then notice that p2 ´ εq{p2%q ą 1{2 since

2 ´ ε ą %. We deduce that T p2´εq{p2%q ď cT 1{2 for a possibly new value of
the constant c. We then apply Theorems 11.5 and 11.7 in [24] but on the
space pWbn,H‘n,Pbnq. Importantly, we observe that

E
”

pnq
$

% 8W i,‚pωq8p
r0,T s,p1{pq´H

,

-

q

ı

is bounded by a constant c, independent of i and n, which proves that
N i,n,KKpr0, T s, ¨, αq{

?
T has a Weibull distribution with shape parameter 2{p2´

εq, independently of n.

Step 3. We now turn to the local accumulation of the sixth term in (4.3).
Taking the norm pnqp ¨ qq in (A.2), we get, with probability 1 under Pbn, for
all h P H‘n,

pnq
$

%

$

%

›

›W‚,‚pωq
›

›

p{2

rs,ts,pp{2q´v

,

-

,

-

q

ď c

"

pnq
$

%

$

% 8pThW q‚,‚pωq8p
r0,T s,p1{pq´H

,

-

,

-

q
pt´ sq ` pnq

$

%

›

›h‚
›

›

p

rs,ts,%´v

,

-

q

*

.

Following the proof of (A.3), we deduce that

pnq
vv

W‚,‚pωq
wwp{2

q;rs,ts,p{2´v
ď c

"

pnq
$

%

$

% 8pThW q‚,‚pωq8p
r0,T s,p1{pq´H

,

-

,

-

q
pt´ sq
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` n´p2´εq{ppqq
n
ÿ

j“1

›

›hj
›

›

2´ε

rs,ts,%´v

*

,

at least when the left-hand side is less than or equal to αp. Importantly, there
is no need to distinguish the coordinate i of h from the other coordinates
j “ i since the coefficient in front of any }hj}rs,ts,%´v, j “ 1, ¨ ¨ ¨ , n, has the
same power decay as n tends to 8. So, the context is simpler than in the
previous step and we may conclude in the same way.

Local accumulations associated to the second term in (4.3) and to ps, tq ÞÑ
pnq
v

v‚,np1 pωq
w

q;rs,ts,1´v
and ps, tq ÞÑ pnq

v

pv‚,np1 pωq
w

q;rs,ts,1´v
in (5.4) are handled in

the same way. (As for the latter one, the reader may refer to the proof of [2,
Theorem 2.4].)

Step 4. The proof has been here achieved on the interval r0, T s. Impor-
tantly, the fact that T is deterministic does not play any role in the proof.
It is in particular quite easy to see that the interval r0, T s can be replaced
by any (random) sub-interval rτ, τ1s Ă r0, T s as in the requirement pcq of
Theorem 5.1.

A.2. An Auxiliary Estimate. We prove in this appendix some aux-
iliary estimates that were used in Step 1 of the proof of Theorem 5.1. This
is where the convergence rate ςn in Theorem 5.1 appears. Recall we set
ςn “ n´1{2 if d “ 1, and ςn “ n´1{2 lnp1 ` nq, if d “ 2, and ςn “ n´1{d, if
d ě 3. Recall also definitions (5.7), (5.8), (5.9) and (5.10).

Lemma A.1. Fix % ě 8. There exists an exponent %1 such that, whenever
X0p¨q P L%

1

, we can find another constant C, depending on xX0p¨qy%1 and
satisfying, for any integers 1 ď i ď n and any 0 ď r ď s ď t ď T ,

@“

F i,np¨q ´ F
i
p¨q

‰

s,t

D

%
ď Cςn⟪w`ps, t, ¨, ¨q⟫1{p

%1
,

A

Ii,n,B
ts,tu p¨q ´ I

i,B
ts,tup¨q

E

%
ď C ςn

´

⟪w`ps, t, ¨, ¨q⟫1{p

%1
` ⟪w`ps, t, ¨, ¨q⟫2{p

%1

¯

,

ˆ
ż

Ω

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

δµF
i,j,n
s pωqWj,i

s,tpωq ´ E
“

δµF
i
spω, ¨qW

i,KK
s,t p¨, ωq

‰

ˇ

ˇ

ˇ

ρ
dPpωq

˙1{ρ

`

A

`

δxF
i,n
s p¨q ´ δxF

i
sp¨q

˘

Wi
s,tp¨q

E

ρ
ď C ςn ⟪w`ps, t, ¨, ¨q⟫2{p

%1
,

A!

Ii,n,B
tr,sup¨q ` I

i,n,B
ts,tu p¨q ´ I

i,n,B
tr,tu p¨q

)

´

!

Ii,Btr,sup¨q ` I
i,B
ts,tup¨q ´ I

i,B
tr,tup¨q

)E

%

ď C ςn ⟪w`pr, t, ¨, ¨q⟫3{p

%1
,
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where w`pr, t, ω, ω1q :“ wpr, t, ωq`}WKKpω, ω1q}
p{2
rr,ts,p{2´v, with w as in (2.10)

for the same parameters p and q as therein.

The reason the appearance of the quantity w` instead of w, in the above
upper bounds, will appear at the beginning of Step 2 in the proof.

Proof. We directly prove the last inequality in the statement; the first
three inequalities follow from similar computations. Throughout the proof,
we use the following notations. For each i P t1, ¨ ¨ ¨ , nu, we call wi the control

associated with W
i
p¨q through identity (2.10). For j P t1, ¨ ¨ ¨ , nu, we also

let
wi,jps, t, ωq :“

›

›Wi,jpωq
›

›

p

rs,ts,p´v
.

We make in the course of the proof an intense use of Lemma A.2 below, giv-
ing the convergence rate of the empirical measure of a sample of independent
and identically distributed random variables towards their common law. In
this regard, a key fact is that the theoretical distribution driving the empir-
ical one must be sufficiently integrable. By a variant of (5.38), we already
know that, for any ρ ě 1, there exists ρ1 ě 8 such that sup0ďtďT

ˇ

ˇXtp¨q
ˇ

ˇ is

in Lρ as soon as X0p¨q is in Lρ
1

. The proof of this variant is in fact simpler
than the proof of (5.38) itself, since we can directly invoke Theorem 3.3
instead of (5.40), noticing that the analogue of M in (5.40) then becomes
deterministic, see for instance footnote (3). Importantly, the same holds true
with

�

�Xp¨q
�

�

r0,T s,w,p
: it belongs to Lρ if X0p¨q is in Lρ

1

, for a well-chosen ρ1.

The proof also follows from Theorem 3.3, by concatenating a deterministic
finite number of intervals of the form rS1, S2s, see [2, footnote (5)] for some
details about concatenation. We then compute

!

Ii,n,B
tr,supωq ` I

i,n,B
ts,tu pωq ´ I

i,n,B
tr,tu pωq

)

´

!

Ii,Btr,supωq ` I
i,B
ts,tupωq ´ I

i,B
tr,tupωq

)

“

´

RF
i,n

r,s pωq ´R
F
i

r,spωq
¯

W i
s,tpωq `

´

δxF
i,n
r,s pωq ´ δxF

i
r,spωq

¯

Wi
s,tpωq

`

˜

1

n

n
ÿ

j“1

δµF
i,j,n
r,s pωqWj,i

s,tpωq ´ E
”

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

ı

¸

,
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where

RF
i,n

r,s pωq :“ F i,ns pωq ´ F i,nr pωq ´ δxF
i,n
r pωqW i

r,spωq

´
1

n

n
ÿ

j“1

δµF
i,j,n
r pωqW j

r,spωq,

RF
i

r,spωq :“ F
i
spωq ´ F

i
rpωq ´ δxF

i
rpωqW

i
r,spωq

´ E
”

δµF
i
rpω, ¨qW

i
r,sp¨q

ı

.

(A.5)

Following (5.8) and (5.9), we define differentiable functions Gx and Gµ of
their arguments setting

δxF
i,n
t pωq “: Gx

`

X
i
tpωq, µ

n
t pωq

˘

, δxF
i
tpωq “: Gx

`

X
i
tpωq,LpXtq

˘

,

δµF
i,j,n
t pωq “: Gµ

`

X
i
tpωq, µ

n
t pωq

˘`

X
j
t pωq

˘

,

δµF
i
tpω, ¨q “: Gµ

`

X
i
tpωq,LpXtq

˘`

X
i
tp¨q

˘

.

Finally, we can write the whole difference in the form

!

IBtr,supωq ` I
B
ts,tupωq ´ I

B
tr,tupωq

)

´

!

IBtr,supωq ` I
B

ts,tupωq ´ I
B

tr,tupωq
)

“
`

RF
i,n

r,s pωq ´R
F
i

r,spωq
˘

W i
s,tpωq

`

”

Gx
`

X
i
pωq, µnpωq

˘

´Gx
`

X
i
pωq,LpXq

˘

ı

r,s
Wi
s,tpωq

`
1

n

n
ÿ

j“1

”

Gµ
`

X
i
pωq, µnpωq

˘`

X
j
pωq

˘

´Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘

ı

r,s
Wj,i
s,tpωq

`
1

n

n
ÿ

j“1

”

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘

ı

r,s
Wj,i
s,tpωq ´ E

”

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

ı

.

(A.6)

A key fact is that Gx and Gµ are Lipschitz continuous in all the entries,
the Lipschitz property in µ being understood with respect to d1. Moreover,
similar to F itself, they are jointly continuously differentiable in all the argu-
ments and the derivatives are Lipschitz continuous, the Lipschitz property
in µ being again understood with respect to d1.

imsart-aop ver. 2014/10/16 file: MeanField2AoP.tex date: June 9, 2020



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 63

Step 1. Observe that

”

Gx
`

X
i
pωq, µnpωq

˘

ı

r,s

“

ż 1

0
BxGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

X
i
r,spωqdλ

`
1

n

n
ÿ

j“1

ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

`

X
j,pλq
r;pr,sqpωq

˘

X
j
r,spωqdλ

“

ż 1

0
BxGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

X
i
r,spωqdλ

`

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,λ
r;pr,sqpωq

¯

pyqzdλ



dνn,λr;pr,sqpω; y, zq

(A.7)

where

µ
n,pλq
r;pr,sqpωq :“

1

n

n
ÿ

j“1

δ
X
j,pλq
r;pr,sqpωq

, ν
n,pλq
s;ps,tqpωq :“

1

n

n
ÿ

j“1

δ`
X
j,pλq
r;pr,sqpωq,X

j
r,spωq

˘,

with
X
j,pλq
r;pr,sqpωq :“ X

j
rpωq ` λX

j
r,spωq.

Proceeding similarly with
“

Gx
`

X
i
pωq,LpXq

˘‰

r,s
, we get

”

Gx
`

X
i
pωq, µnpωq

˘

´Gx
`

X
i
pωq,LpXq

˘

ı

r,s

“

ż 1

0

”

BxGx

´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

´ BxGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯ı

X
i
r,spωq dλ

`

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

´

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dL
`

X
pλq
r;pr,sq, Xr,s

˘

py, zq,

where, as before, X
pλq
r;pr,sqpωq “ Xrpωq`λXr,spωq. Splitting the last two terms
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in the above expansion into
ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

´

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

`

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dν
n,pλq
r;pr,sqpω; y, zq

´

ż

R2d

„
ż 1

0
DµGx

´

X
i,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

pyqzdλ



dL
`

X
pλq
r;pr,sq, Xr,s

˘

py, zq,

we get
ˇ

ˇ

ˇ

”

Gx
`

X
i
pωq, µnpωq

˘

´Gx
`

X
i
pωq,LpXq

˘

ı

r,s

ˇ

ˇ

ˇ

ď c

ż 1

0
d1

´

µ
n,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

dλ

ˆ

ˆ

~X
i
pωq~r0,T s,wi,pw

ipr, s, ωq1{p `
1

n

n
ÿ

k“1

~X
k
pωq~r0,T s,wk,pw

kpr, s, ωq1{p
˙

` c
ˇ

ˇ

ˇ
Si,nr,s

`

ω, |X
‚

r,spωq|
˘

ˇ

ˇ

ˇ
,

where Si,nr,s
`

ω, |X
‚

r,spωq|
˘

is the n-empirical mean of n variables that are dom-

inated by
`

|X
j
r,spωq| `

@

Xr,sp¨q
D

1

˘

j“1,¨¨¨ ,n
and n´ 1 of which are condition-

ally centred and conditionally independent given the realization of the path

pX
i
,W i,Wiq. Allowing the value of the constant c to increase from line to

line, we obtain
ˇ

ˇ

ˇ

”

Gx

´

X
i
pωq, µnpωq

¯

´Gx

´

X
i
pωq,LpXq

¯ı

r,s
Wi
s,tpωq

ˇ

ˇ

ˇ

ď c

ż 1

0
d1

´

µ
n,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

dλ

ˆ

„

~X
i
pωq~r0,T s,wi,p `

ˆ

1

n

n
ÿ

k“1

~X
k
pωq~2

r0,T s,wk,p

˙1{2

ˆ

„

wipr, t, ωq3{p `
1

n

n
ÿ

k“1

wkpr, t, ωq3{p


` c
ˇ

ˇ

ˇ
Si,nr,s

`

ω, |X
‚

r,spωq|
˘

ˇ

ˇ

ˇ
wipr, t, ωq2{p.

In order to conclude for the second term in the right-hand side of (A.6), it
suffices to recall from Rosenthal’s inequality (applied under the conditional
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probability given the realization of the path pX
i
,W i,Wiq) that

A

Si,nr,s
`

¨, |X
‚

r,sp¨q|
˘

E

3%{2
ď c n´1{2

A

~Xp¨q~r0,T s,w,pwpr, s, ¨q
1{p

E

3%{2

ď c n´1{2
@

~Xp¨q~r0,T s,w,p
D

χ%

@

wpr, t, ¨q
D1{p

χ%
,

where χ ě 1 is a universal constant whose value may change from line to
line (as long as it remains universal). If ρ is large enough, we deduce from
Lemma A.2 that

A”

Gx
`

X
i
p¨q, µnp¨q

˘

´Gx
`

X
i
p¨q,LpXq

˘

ı

r,s
Wi
s,tp¨q

E

%

ď c

ˆ
ż 1

0

A

d1

´

µ
n,pλq
r;pr,sqp¨q,L

`

X
pλq
r;pr,sq

˘

¯E

χ%
dλ

˙

@

~Xp¨q~r0,T s,w,p
D

χ%

ˆ
@

wpr, t, ¨q
D3{p

χ%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D

χ%

@

wpr, t, ¨q
D3{p

χ%

ď c ςn

´

1`
@

sup
0ďuďT

|Xup¨q|
D

χ%

¯

@

~Xp¨q~r0,T s,w,p
D

χ%
⟪w`pr, t, ¨, ¨q⟫3{p

χ%
.

Step 2. By the same argument, we have

ˇ

ˇ

ˇ

”

Gµ

´

X
i
pωq, µnpωq

¯

`

X
j
pωq

˘

´Gµ

´

X
i
pωq,LpXq

¯

`

X
j
pωq

˘

ı

r,s
Wj,i
s,tpωq

ˇ

ˇ

ˇ

ď c

ˆ
ż 1

0
d1

´

µ
n,pλq
r;pr,sqpωq,L

`

X
pλq
r;pr,sq

˘

¯

dλ

˙

wj,ips, t, ωq2{p

ˆ

„

�

�X
i
pωq

�

�

r0,T s,wi,p
`
�

�X
j
pωq

�

�

r0,T s,wj ,p
`

ˆ

1

n

n
ÿ

k“1

~X
k
pωq~2

r0,T s,wk,p

˙1{2

ˆ

„

wipr, s, ωq1{p ` wjpr, s, ωq1{p `

ˆ

1

n

n
ÿ

k“1

wkpr, s, ωq2{p
˙1{2

` c
ˇ

ˇ

ˇ
Si,j,nr,s

`

ω, |X
‚

r,spωq|
˘

ˇ

ˇ

ˇ
wj,ips, t, ωq2{p,

where
A

Si,j,nr,s

`

¨, |X
‚

r,sp¨q|
˘

E

3%{2
ď c n´1{2

@

~X~r0,T s,w,pwpr, s, ¨q
1{p

D

3%{2

ď c n´1{2
@

~X~r0,T s,w,pyχ%
@

wpr, t, ¨qy1{pχ% .

Observing that xwj,ips, t, ¨q2{pyχ% ď ⟪w`pr, t, ¨, ¨q⟫2{p
χ% – this is the rationale
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for introducing w`, and taking expectation, we get
A”

Gµ
`

X
i
p¨q, µnp¨q

˘`

X
j
p¨q

˘

´Gµ
`

X
i
p¨q,LpXq

˘`

X
j
p¨q

˘

ı

r,s
Wj,i
s,tpωq

E

%

ď c

ˆ
ż 1

0

A

d1

´

µ
n,pλq
r;pr,sqp¨q,L

`

X
pλq
r;pr,sq

˘

¯E

χ%
dλ

˙

@

~Xp¨q~r0,T s,w,p
D

χ%

ˆ ⟪w`pr, t, ¨, ¨q⟫3{p

χ%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D

χ%
⟪w`pr, t, ¨, ¨q⟫3{p

χ%
.

Taking the mean over j, we obtain as upper bound for the third term in the
right-hand side of (A.6) the quantity
C

1

n

n
ÿ

j“1

”

Gµ
`

X
i
p¨q, µnp¨q

˘`

X
j
p¨q

˘

´Gµ
`

X
i
p¨q,LpXq

˘`

X
j
p¨q

˘

ı

r,s
Wj,i
s,tpωq

G

%

ď c

ˆ
ż 1

0

A

d1

´

µ
n,pλq
r;pr,sqp¨q,L

`

X
pλq
r;pr,sq

˘

¯E

χ%
dλ

˙

@

~Xp¨q~r0,T s,w,p
D

χ%

ˆ ⟪w`pr, t, ¨, ¨q⟫3{p

χ%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D

χ%
⟪w`pr, t, ¨, ¨q⟫3{p

χ%
.

By Lemma A.2, we get the same bound as in the first step.

Step 3. We now turn to the last term in the right-hand side of (A.6).
It reads as the empirical mean of n random variables, n ´ 1 of which are
conditionally centred and conditionally independent given the realization of

the paths pX
i
,W i,Wiq, namely

1

n

n
ÿ

j“1

“

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘‰

r,s
Wj,i
s,tpωq ´ E

“

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

‰

.

We can handle the above term by invoking Rosenthal’s inequality once again
(in a conditional form). To do so, it suffices to compute the L% norm of
“

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘‰

r,s
Wj,i
s,tpωq. Doing as before (see (A.7)), it is less

than c
@

~Xp¨q
�

�

r0,T s,w,p

D

χ%
⟪w`pr, t, ¨, ¨q⟫3{p

χ%
. So,

C

1

n

n
ÿ

j“1

”

Gµ
`

X
i
pωq,LpXq

˘`

X
j
pωq

˘

ı

r,s
Wj,i
s,tpωq ´ E

”

δµF
i
r,spω, ¨qW

i,KK
s,t p¨, ωq

ı

G

%

ď c n´1{2
@

~Xp¨q~r0,T s,w,p
D

χ%
⟪w`pr, t, ¨, ¨q⟫3{p

χ%
,
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which suffices to conclude.

Step 4. We now handle the remainders in (A.6). By expanding (A.5)
and by using similar notations for the remainders in the expansion of each
`

X
j˘

j“1,¨¨¨ ,n
, we have (see for instance the proof of [2, Proposition 3.5] and

in particular [2, (3.9)])

RF
i,n

r,s pωq “ BxF
´

X
i
rpωq, µ

n
r pωq

¯

RX
i

r,s pωq

`
1

n

n
ÿ

j“1

DµF
´

X
i
rpωq, µ

n
r pωq

¯

`

X
j
rpωq

˘

RX
j

r,s pωq

`

ż 1

0

”

BxF
´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sqpωq

¯

´ BxF
´

X
i
rpωq, µ

n
r pωq

¯ı

X
i
r,spωq dλ

`
1

n

n
ÿ

j“1

ż 1

0

”

DµF
´

X
i,pλq
r;pr,sqpωq, µ

n,pλq
r;pr,sq

¯´

X
j,pλq
r;pr,sqpωq

¯

´ DµF
´

X
i
rpωq, µ

n
r

¯

`

X
j
rpωq

˘

ı

X
j
r,spωq dλ.

(A.8)

Expanding RF
i

r,spωq in a similar way, we have to investigate four difference

terms in order to estimate the difference RF
i,n

r,s pωq ´ RF
i

r,spωq. The first dif-
ference term corresponds to the first term in the right-hand side of (A.8)

ˇ

ˇ

ˇ

”

BxF
´

X
i
rpωq, µ

n
r pωq

¯

´ BxF
´

X
i
rpωq,LpXrq

¯ı

RX
i

r,s pωq
ˇ

ˇ

ˇ

ď cd1

´

µnr pωq,LpXrq

¯

~X
i
p¨q

�

�

r0,T s,wi,p
wipr, s, ωq2{p.

Then, we must recall that, in the first line of the right-hand side in (A.6),

the difference RF
i,n

r,s pωq´R
F
i

r,spωq is multiplied by W i
s,tpωq, which is less than

wips, t, ωq1{p. In other words, we must multiply both sides in the above
inequality by wipr, t, ωq1{p. By Cauchy Schwarz inequality, the L% norm of
the resulting bound is less than

c
@

d1pµ
n
r p¨q,LpXrq

D

χ%

@

~Xp¨q
�

�

r0,T s,w,p

D

χ%

@

wpr, t, ¨q
D3{p

χ%
.

The second difference term that we have to handle corresponds to the
second term in the right-hand side of (A.8). With an obvious definition for
RXp¨q, it reads

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

DµF
´

X
i
rpωq, µ

n
r pωq

¯

`

X
j
rpωq

˘

RX
j

r,s pωq

´

A

DµF
´

X
i
rpωq,LpXrq

¯

`

Xrp¨q
˘

RXr,sp¨q
E

ˇ

ˇ

ˇ

ˇ

.
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Proceeding exactly as in the first step, the latter is bounded by

cd1

´

µnr pωq,LpXrq

¯

˜

1

n

n
ÿ

j“1

ˇ

ˇRX
j

r,s pωq
ˇ

ˇ

¸

` c
ˇ

ˇ

ˇ
Si,nr,s

´

ω,
ˇ

ˇRX
‚

r,s pωq
ˇ

ˇ

¯
ˇ

ˇ

ˇ
,

where Si,nr,s
`

ω, |RX
‚

r,s pωq|
˘

is the n-empirical mean of n variables that are dom-

inated by
`

|RX
j

r,s pωq| `
@

RXr,sp¨q
D

1

˘

j“1,¨¨¨ ,n
and n´ 1 of which are condition-

ally centred and conditionally independent given the realization of the path

pX
i
,W i,Wiq. Hence, the L% norm of the right-hand side, after multiplication

as before by wips, t, ωq1{p, is less than

c
´A

d1

´

µnr p¨q,LpXrq

¯E

χ%
` n´1{2

¯

@

~Xp¨q~r0,T s,w,p
D

χ%

@

wpr, t, ¨q
D3{p

χ%
.

As for the third term in the right-hand side of (A.8), it fits, up to the

additional factor X
i
r,spωq and for each value of λ, the term studied in the

first step. So we get as an upper bound for its L% norm, after multiplication
by wips, t, ωq1{p, the quantity

c

ˆ
ż 1

0

ż 1

0

A

d1

´

µ
n,pλλ1q
r;pr,sq p¨q,L

`

X
pλλ1q
r;pr,sq

˘

¯E

χ%
dλdλ1

˙

ˆ
@

~Xp¨q~r0,T s,w,p
D2

χ%

@

wpr, t, ¨q
D3{p

χ%

` c n´1{2
@

~Xp¨q~r0,T s,w,p
D2

χ%

@

wpr, t, ¨q
D3{p

χ%
.

Following Step 2, we get exactly a similar bound for the fourth term in the
right-hand side of (A.8).

A.3. About Law of Large Numbers.

Lemma A.2. There exists a real ρd ě 1 such that, for any ρ ě ρd and any

probability measure µ on Rd satisfying Mρpµq :“
` ş

Rd |x|
ρµpdxq

˘1{ρ
ă 8, it

holds

E
”

d1

`

µnp¨q, µ
˘ρ{3

ı3{ρ
ď cρ,dMρpµq ςn,

for a constant cρ,d, only depending on ρ and d, where µnp¨q is the empirical
distribution of n independent identically distributed random variables and
with ςn as in the introduction of Subsection A.2.

Proof. Without any loss of generality, we can assume that Mρpµq “ 1,
see the argument in [11, Chapter 5, Theorem 5.8]. Then Theorem 2 in [23]
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gives us the following results. For d ě 3, we have (for ρ ě 2)

P
´

d1

`

µnp¨q, µ
˘

ě Aςn

¯

ď C exp
´

´cnςdnA
d
¯

` Cn
`

nAςn
˘´ρ{2

,

in which case the result easily follows. When d “ 1, we have

P
´

d1

`

µnp¨q, µ
˘

ě Aςn

¯

ď C exp
´

´ cnς2
nA

2
¯

` Cn
`

nAςn
˘´ρ{2

,

and the result follows as well by our choice of ςn. Finally, when d “ 2,

P
´

d1

`

µnp¨q, µ
˘

ě Aςn

¯

ď C exp

ˆ

´
cnς2

nA
2

plnp2`A´1ς´1
n qq2

˙

` CnpnAςnq
´ρ{2.

Assuming without any loss of generality that A ě 1, we have

lnp2`A´1ς´1
n q ď lnp2` ς´1

n q “ lnp1` 2ςnq ´ lnpςnq,

which is less than ´2 lnpςnq for n large enough. Given our choice of ςn, we
have ´ lnpςnq “ lnpnq{2 ´ lnplnp1 ` nqq, which is less than lnpnq{2. Hence,
modifying the value of the constant c, we get, for A ě 1 and for n large
enough, independently of the value of A, we get the bound

P
´

d1

`

µnp¨q, µ
˘

ě Aςn

¯

ď C exp

ˆ

´
cA2 lnp1` nq2

lnpnq2

˙

` CnpnAςnq
´ρ{2,

which suffices to complete the proof.

Lemma A.3. Let pXnqně1 be a collection of independent and identically
distributed random variables with values in a Polish space S and let f be a
real-valued Borel function on S2 such that Er|fpX1, X2q|s and Er|fpX1, X1q|s

are both finite. Then, with probability 1,

lim
nÑ8

1

n2

n
ÿ

i,j“1

fpXi, Xjq “ E
“

fpX1, X2q
‰

.

Proof. By the standard version of the law of large numbers, it suffices
to prove that, with probability 1,

lim
nÑ8

1

n2

n
ÿ

i,j“1,i “j

fpXi, Xjq “ E
“

fpX1, X2q
‰

.

Letting Sn “
řn
i,j“1,i “j fpXi, Xjq, for n ě 1, we then define the σ-field

Gn “ σpSk, k ě nq. By independence of the variables pXkqkě1, we have, for
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any pi, jq P t1, ¨ ¨ ¨ , nu2 with i “ j, ErfpXi, Xjq|Gns “ ErfpXi, Xjq|Sns. By
exchangeability, this is also equal to ErfpX1, X2q|Sns. We get

ErfpX1, X2q|Gns “
1

n2 ´ n

n
ÿ

i,j“1,i “j

E
“

fpXi, Xjq|Sn
‰

“
Sn

n2 ´ n
.

By Lévy’s downward theorem and by Kolmogorov’s zero-one law, the left-
hand side converges almost surely to ErfpX1, X2qs.

REFERENCES

[1] Bailleul, I., Flows driven by rough paths. Revista Mat. Iberoamericana, 31(3):901–
934, 2015.

[2] Bailleul, I., Catellier, R., Delarue, F., Solving mean field rough differential equa-
tions. Electron. J. Probab., 25, pno. 21, 51 pp., 2020.

[3] Bailleul, I., Catellier, R., Delarue, F., Mean field rough differential equations.
arXiv:1802.05882, 2018.

[4] Bailleul, I. and Riedel, S., Rough flows. J. Math. Soc. Japan, 71(3):915–978, 2019.
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[30] Jourdain, B., and Méléard, S., Propagation of chaos and fluctuations for a mod-
erate model with smooth initial data, Ann. I.H.P. (B),34(6):727–766, 1998.

[31] Kac, M., Foundations of kinetic theory. Third Berkeley Symp. on Math. Stat. and
Probab., 3:171–197, 1956.

[32] Kolokoltsov, V.N., and Troeva, M., On the mean field games with common noise
and the McKean-Vlasov SPDEs. arXiv:1506.04594, 2015.
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