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2 UPMC, ERGA-LERMA, UMR 8112, 3 rue Galilée, 94200 Ivry, FraneE-mail: i.bailleul�statslab.am.a.uk,fabrie.debbash�gmail.omAbstrat. A new probalisti approah to general relativisti kineti theory isproposed. The general relativisti Boltzmann equation is linked to a new Markovproess in a ompletely intrinsi way. This treatment is then used to prove theausal harater of the relativisti Boltzmann model.Keywords : General relativity, Boltzmann equation, probability, Markov proessAMS lassi�ation sheme numbers: Primary: 83C75, 60H10; Seondary: 60H301. IntrodutionRelativisti transport arises in a large variety of ontexts; these inlude not onlyastrophysis [1℄ and osmology [2℄, but also plasma physis [3℄ and heavy ion ollisions[4℄, and even ondensed matter physis [5, 6℄ where transport, allbeit non relativisti,ours at bounded speed [5℄. There are three main types of models for relativistitransport: the purely marosopi, so-alled hydrodynamial models [7℄, the modelsbased kineti theory [8℄, and the stohasti models [9, 10℄. The purely marosopimodels have been developped sine the 1940's [11℄, but have serious limitations. Inpartiular, traditional Landau-Ekhart theories have been proven to be non-ausal [12℄and strong arguments [13℄, both mathematial and physial, exist against the morereent marosopi theories based on extended thermodynamis [14℄.As explained below, the main tool of relativisti kineti theory is a relativistigeneralization of Boltzmann famous transport equation. Various relativistiBoltzmann equations have been proposed sine 1940. A systemati treatment has beenproposed only reently in [15, 16℄ (see also [17℄ for a relativisti generalization of theVlasov equation). The treatment proposed in [17℄ is ovariant, but not manifestly so.On the other hand, [15, 16℄ o�ers several equivalent, manifestly ovariant approahes,but fails to o�er a purely intrinsi presentation. The relativisti Boltzmann andBoltzmann-Vlasov models have long be assumed [13℄ to be ausal‡, but there is, tothe best of our knowledge, no formal proof of this assertion in the existing litterature.Physially realisti stohasti models have been developed sine 1997 [18℄ andrelativisti stohasti proesses now onstitute a rapidly expanding �eld in bothmathematis and physis. Reent referenes are e.g. [19, 20, 21, 22℄ and [23, 24, 25, 26℄,

‡ Contrary to the above traditional hydrodynamial models disussed above.



General relativisti Boltzmann equation 2where the reader will �nd intrinsi, ovariant and manifestly ovariant approahes torelativisti di�usions. All relativisti stohasti proesses studied so far are ausal.The aim of the present artile is threefold.(i) propose a lear, intrinsi presentation of the relativisti Boltzmann equation,(ii) use this intrinsi presentation to establish, for the �rst time, a lear link betweenthe two main branhes of relativisti transport models i.e. relativisti kinetitheory and relativisti stohasti proesses,(iii) use that link to o�er a simple proof that the relativisti Boltzmann is ausal.All results are presented in an arbitrary oriented and time-oriented spae-time.The material is organized as follows. Setion 2. o�ers a presentation of thephysial aspets of relativisti kineti theory. Setion 3 sets up the geometrialtools while Setion 3 reviews the de�nition and properties of the relativisti one-partile distribution. Setion 4 presents an intrinsi probabilisti interpretation of therelativisti Boltzmann equation; the proof that this eqaution is ausal is also outlinedin this setion, all tehnial details being relegated to the Appendix.2. Physial aspets of relativisti kineti theoryThe traditional Boltzmann equation [27, 28℄ aims at desribing the out-of-equilibriumdynamis of a dilute gas of non relativisti and non quantum point partiles. Thisequation is today best derived from the so-alled BBGKY hierarhy [29, 28℄. Supposethere are N partiles in the gaz; aording to lassial mehanis, the evolution of thegaz is then ompletely determined by a system of 6N ordinary di�erential equations�xing the dynamis of the partile positions and veloities. The probability of �nding,at a ertain time t, any k ≤ N partiles at a ertain point of the k-dimensional phase-spae then admits a density with respet to the Lebesgue measure in this phase-spaeand this density is obviously the produt of Dira distributions.This desription of the gaz is of ourse of little use beause N is very large. Itis also of little physial interest, beause the positions and veloities of the individualgaz partiles annor be measured. What one observes are rather smoothed out oraveraged quantities. One ususally supposes that the averaged probability of �nding ata ertain time any k ≤ N partiles at a ertain point of the k-dimensional phase spae,still admits, for all k, a density with respet to the Lebesgue measure in this phase-spae. It is then straightforward to dedue from the equations of lassial mehanis,a system of equations obeyed exatly by all these densities. This system onstituteswhat one alls the BBGKY hierarhy.If only pair-interations are taken into aount, the equation k of the hierarhy isan integro- di�erential transport equation �xing the dynamis of the k-partile densityin terms of the k + 1-partile density. The Boltzmann equation is dedued from the
k = 1-equation of the BBGKY hierarhy by taking into aount the high dilutionof the gaz and postulating that the two partile density is ompletely determined bythe one partile density, and by supposing all interations between partiles to belose range interations whih an thus be assimilated to point ollisions. Note thatthis restrition does not prelude interations of the partiles with an `exterior' �eld,independent of the gas dynamis.How muh of the above piture an one generalize into a relativisti model oftransport? Unfortunately, not muh. Indeed, a onsistent relativisti desription of
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N interating partiles involves, not only the partile degrees of freedom (positions,veloities), but also the interation �eld degrees of freedom. In other words, the`mehanial' equations are, in the relativisti regime, a set of di�erential equations,not for 6N , but for an in�nite number of degrees of freedom. Extending the aboveapproah to the relativisti realm would thus neessitate introduing densities in anin�nite dimensional spae. Writing a relativisti equivalent of the BBGKY hierarhythus seems a rather formidable task, and dealing with suh a generalized hierarhyappears even more daunting.The lassial Boltzmann equation however, taken by itself, an be generalizedto the relativisti regime; this is possible beause the Botzman equation onsidersonly one partile densities, whih admit a nie relativisti formulation, and treats allpartile interations as point ollisions.The relativisti Boltzman equation is then built in two steps. Step 1: it is possibleto introdue a natural geometrial objet whih generalizes to the relativisti realm thestandard notion of one-partile density. This will be alled the relativisti one-partiledensity. Step 2: Consider a gaz of N non quantum but relativisti partiles immersedin an `exterior' gravitational �eld, independent of the dynamis of the gaz. Supposealso that all gaz partiles interat only through ollisions and that the gaz partilesare free between their ollisions i.e. follow geodesis of the exterior gravitational �eld.It is then possible to write down fomally a relativisti Boltzman equation obeyed bythe relativisti distribution funtion. The left-hand side of this transport equation issimply the ation of the geodesi �ow on the relativisti one-partile density and theleft-hand side is a ollision term, the general form of whih is independent of the detailof the partile interations.This artile makes lear the probabilisti ontent of the relativisti Boltzmannequation by introduing a well hosen random dynamis and by showing that thedistribution funtion obeys Boltzmann equation if, and only if, it is the density of theinvariant measure of the random proess. The probabilisti point of view also makesthe ausal harater of the relativisti Boltzmann equation very lear.The use of probabilisti methods to investigate the lassial homogeneous non-relativisti Boltzmann equation is not new and dates bak to Ka's suggestion [30℄,followed by MKean's work [31℄. The �rst breakthrough ame from Tanaka's work[32℄ who proved some exponential rate of onvergene to equilibrium for Maxwelliangases by using probabilisti tools. The enormous industry whih followed ([33℄, [34℄,[35℄, [36℄ et.) ulminated reently with the results by Fournier et al. [37℄, [38℄ whoobtained some uniqueness results for some singular ollision kernels by probabilistimethods based on ouplings. It is however, to the best of our knowledge, the �rsttime that a probabilisti view is given on the relativisti Boltzmann equation. Moregenerally, it has beome more and more lear that the study of random proesses withvalues in Lorentzian manifolds an bring interesting insights on di�erent questionsranging from the irreversibility problem in relativisti statistial mehanis [39℄ toplasma physis [40℄, [26℄, to the study of spaetime singularities [22℄.3. Geometrial settingLet (M, g) be a Lorentzian manifold, oriented and time-oriented. Denote by TM itstangent bundle, with generi point ϕ = (m, ṁ), and by T 1M the unit future-orientedbundle over M.



General relativisti Boltzmann equation 4Denote by VolM the volume form on M assoiated with the Lorentzian metri g(for whih VolM(e0, . . . , e3) = 1, if (e0, . . . , e3) is an orthonormal basis of M at somepoint). Identify the volume form and the volume measure VolM(dm). The tangentbundle TM inherits from the Lorentzian struture of M a volume measure VolTM(dϕ)whih is the semi-diret produt of VolM by the Lebesgue measure Lebm(dṁ) in eah�ber TmM, normalized to assign measure 1 to any hyperube of TmM onstruted onan orthonormal basis:VolTM(dϕ) = Lebm(dṁ) ⊗VolM(dm), ϕ = (m, ṁ).At any point m ∈ M, the metri gm on TmM indues on eah hyperboloid T 1
mM aRiemannian metri; denote by Vol1m(dṁ) its assoiated volume measure, where dṁis understood here as a surfae element in T 1

mM. The volume measure VolT 1M isVolT 1M(dϕ) = Vol1m(dṁ) ⊗VolM(dm), ϕ = (m, ṁ).As is well-known, geodesi motion indues a dynamis in TM whih leaves thebundle T 1M stable: freely falling partiles have a veloity of onstant norm. Letdenote by H0 the vetor �eld on TM generating the geodesi motion. Given aloal oordinate system x : U ⊂ M 7→ R4, any tangent vetor ṁ of TmM anuniquely be written ∑3
i=0 ṁ

i∂xi
, with the usual notations. The map (m, ṁ) ∈ TM 7→(

(xi)06i63, (ṁ
i)06i63

) de�nes a loal oordinate system on TM. In these oordinates,the geodesi vetor �eld H0 reads
3∑

i=0

(
ṁi ∂

∂xi
− Γk

ijṁ
iṁj ∂

∂ṁk

)
,where the Γ's are the Christo�el symbols of g.Given a spaelike hypersurfae V, write T1V for {

(m, ṁ) ∈ T 1M ; m ∈ V
}. Thisbundle inherits from the Lorentzian metri a natural volume measure VolT1V whih isthe semi-diret produt of the Riemannian volume measure on V and the Riemannianmeasure in eah hyperboloid T 1

mM, for m ∈ V. Note that T1V is not the unit tangentbundle to (V, g).4. One partile distribution funtionFollow the random motion of a typial partile of a relativisti gas, in a spaetime
(M, g); it desribes a random path ψs = (ms, ṁs) in T 1M, where§ s is a multiple ofthe proper time of the timelike path (ms). Without loss of generality, we an restritourselves to the ase where ṁs has unit norm and s is the proper time of the partile.The random path an be thought of as a suession of (potentially in�nitesimal)geodesi segments separated by points where random ollisions hange the veloity ofthe partile.Statistial physis [41, 13, 42, 15℄ suggests the following assumptions about thisproess.
• One an assoiate to any spaelike submanifold V a measure µT1V(dϕ) on the unittangent bundle T1V over V, to be understood as the distribution of a typial gaspartile hitting V. The measure µT1V(dϕ) has a density fV(ϕ) with respet to thenatural volume measure VolT1V(dϕ) on T1V.

§ Shoks keep the norm of the veloity onstant.
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• Given any point ϕ = (m, ṁ) ∈ T 1M, de�ne Vϕ as the set of spaelikehypersurfaes V of M ontaining m and orthogonal to ṁ at m. The value at
ϕ of the density fV does not depend on the arbitrary hoie of hypersurfae
V ∈ Vϕ, so fV(ϕ) is a well-de�ned salar; denote it by f(ϕ) = f(m, ṁ).

• At any pointm in spaetime, the vetor �eld j(m) =
∫

ṁ∈T 1
m

M
ṁf(m, ṁ)Vol1m(dṁ)represents the partile urrent at point m. In partiular, given any spaelike sub-manifold V with future unit normal ̟V(m) at m ∈ V, the omponent of j(m)normal to V at point m represents, for someone who onsiders V as 3D spae, the3D or spatial partile density n(m), de�ned with respet to the natural volumemeasure VolV(dm) indued by the Lorentzian metri of V. Suh an observer willalso onsider T1V as 6D phase-spae and will thus view g
(
ṁ,̟V(m)

)
f(m, ṁ)as the phase-spae partile density, de�ned with respet to the natural volumemeasure on T1V.The funtion f is usually alled the partile density in T1V, or one partiledistribution funtion of the gas. This density ompletely determines, through its�rst moment j, the partile ontent of the spaetime. The stress-energy ontent isdetermined through the seond moments of f . Note that the zeroth moment of f hasno physial interpretation.5. Evolution equation for the one partile distribution funtionLet us assoiate to the one partiule distribution funtion of the gas a Markov proessperforming geodesi motion in between shok times where it is hit by partiles ofthe gas, resulting in a hange of its speed. Parametrize this proess by the propertime of its trajetories in M. The rate at whih the shoks happen is supposed todepend only on the one partile distribution funtion and on the hosen model forthe ollision mehanism of pairs of partiles. Given two partiles at loation m ∈ M,with veloity ṁ and ṁ′, denote by p and p′(∈ T 1M

) the outome of the ollision ofthe two partiles orresponding to the sattering angle θ ∈ S2. We denote lassiallyby W (m ; ṁ, ṁ′; θ) the ollision kernel, whih represents the rate at whih the aboveollision holds; it has the symmetry property
W (m ; ṁ, ṁ′; θ) = W (m ; p, p′; θ), (1)for allm ∈ M and ṁ, ṁ′ ∈ TmM, usually refered to as the mirosopi reversibility. Seee.g. the book [43℄ of Cerignani and Kremer for preise models of ollision mehanismsand ollision kernels; these pratially important details are irrelevant for us in thiswork. We de�ne our Markov proess by its generator:

(
Gh

)
(m, ṁ) =

(
H0h

)
(m, ṁ)

+

∫

TmM×S2

{
h(m, p) − h(m, ṁ)

}
W (m ; ṁ, ṁ′ ; θ) dθ f(m, ṁ′)Vol1m(dṁ′).(2)Reall that the outome p of the ollision is a funtion of inoming momentaṁ, ṁ′and the sattering angle θ. Note that as the total rate of ollision

∫

TmM×S2

W (m ; ṁ, ṁ′ ; θ) dθ f(m, ṁ′)Volm(dṁ′)



General relativisti Boltzmann equation 6might be in�nite, one would really need the sophistiated tools of stohasti alulusto justify the above intuitive piture of the motion as geodesi trajetories in betweenshok times, as these shoks times would not be disrete in ase the above integral isin�nite. This is not our purpose here, though.5.1. The relativisti Boltzmann equationOne an assoiate to any ϕ = (m, ṁ) ∈ T 1M, the set Vϕ of spaelike hypersurfaes Vof M ontainingm and orthogonal to ṁ at m. Suppose now the hitting distribution bythe proess of any spaelike hypersurfae V has a density gV with respet to VolT1V.The value of the density gV at point ϕ will not depend on the arbitrary hoie ofhypersurfae V ∈ Vϕ. Indeed, gV(ϕ) is the limit of the ratio of the mean number ofpartiles hitting a neighbourhood U of ϕ in T1V by the volume of that neighbourhood,as it dereases to {ϕ}. Given another V′ in Vϕ, we an map U to a neighbourhood U ′ of
ϕ in T

1
V

′ by a di�eomorphism arbitrarily lose to the identity sine V and V
′ have thesame tangent spae at m, provided U is small enough. The two limit ratios gV(ϕ) and

gV′(ϕ) will thus have the same value. So gV(ϕ) = g(ϕ) is a natural funtion (salar) onthe unit tangent bundle T 1M, named one partile distribution funtion of theMarkov proess. The funtion g enjoys the following ruial analytial property,proved in Appendix.Proposition 1. We have: G∗g = 0.So the measure g(ϕ)VolT 1M(dϕ) is invariant for the random dynamis, and theequation G∗g = 0 is a detailled balane equation. In a more onrete way, proposition1 means that the integral
Z

T1M

g(ϕ)
n

(H0h)(ϕ)+

Z

TmM×S2

˘

h(m, p)−h(m,ṁ)
¯

W (m ; ṁ, ṁ
′ ; θ) dθ f(m, ṁ

′)Volm(dṁ
′)

oVolT1M(dϕ)(3)is null for any smooth funtions h with ompat support. We write here ϕ = (m, ṁ)for a generi element ϕ ∈ T 1M. The symmetry property (1) of the ollision kerneland an integration by parts‖ enable to re-write (3) under the form
∫

T 1M

(
−H0g + C(f, g)

)
(ϕ)h(ϕ)VolT 1M(dϕ) = 0,where

C
(
f, g

)
(ϕ) =

∫

T 1M

∫

S2

{
g(m, p)f(m, p′)−g(m, ṁ)f(m, ṁ′)

}
W (m ; ṁ, ṁ′; θ) dθVolm(dṁ′),that is H0g = C(f, g). Boltzmann's fundamental haos hypothesis is equivalent tosaying that the one partile distribution funtion of the gas and the one partiledistribution funtion of the Markov proess oinide: g = f . Equation

H0f = C(f, f)is the usual form of the relativisti Boltzmann equation. Consult [44℄ for a totallydi�erent and axiomati presentation of the general relativisti Boltzmann equation.
‖ The vetor �eld H0 has an L2

`Vol
T1M

´-dual equal to −H0 as it preserves Liouville measure on
T

1M.



General relativisti Boltzmann equation 75.2. Causal harater of the relativisti Boltzmann equationWe show in this setion how the introdution of the above random dynamis leadsto a lear understanding of the ausal harater of the general relativisti Boltzmannequation, through proposition 1. We refer the reader to the works [45, 46, 47℄ and[48℄ of Dudynski and Ekiel-Jezewska for mathematial works on that question in thespeial relativisti ase.Fix an open spaelike hypersurfae V and denote by D+(V) its future domainof dependene: it is the set of points m of M suh that any past-direted tiemlikepath started from m hits V. This set is known to be globally hyperboli, [49℄. Thenext proposition holds for all globally hyperboli spaetimes although we state it for
D+(V).Proposition 2. One an assoiate to any point m of D+(V) a positive onstant
T (m) suh that any past direted timelike path started from m, parametrized by itsproper time, hits V before time T (m).Proof � It su�es to take for T (m) the length of a future-direted maximal geodesifrom V to m, whose existene is guaranteed by the global hyperboliity of D+(V)� see e.g. prop. 2.33 in Senovilla's review [50℄, or onsult [51℄. �Consider the T 1M-valued Markov proess (ψs)s>0 = (ms, ṁs)s>0 with generator

G∗h = −H0 h+ C(f, h);it has past-direted timelike paths. Start it from a point (m, ṁ) ∈ T 1M with
m ∈ D+(V). Sine f is G∗-harmoni (by proposition 1), the random proess(
f(ψs)

)
s>0

is a non-negative martingale. Denote by H the hitting time of T1V by
(ψs)s>0; it is almost-surely bounded above by T (m), by proposition 2. One an thusapply the optional stopping theorem and get

f(m, ṁ) = E(m,ṁ)

[
f(ψH)

]
.This identity proves the �rst part of the following statement. Write T1D+(V) for{

(m, ṁ) ∈ T 1M ; m ∈ D+(V)
}.Theorem 3. Let (M, g) be any Lorentzian manifold and V be a spaelike hypersurfae.The one partile distribution funtion of a gas is a ausal funtion: its values on

T1D+(V) are determined by its values on T1V. The restrition of f to T1V is theminimal set of data needed to determine f on T1D+(V).Proof � The seond part of the statement diretly omes from the fat that thedistribution of ψH has support in the whole of T1
(
I−(m0) ∩ V

) for a proessstarted from the point ψ0 = (m0, ṁ0). �AppendixThe result of proposition 1 omes from Kolmogorov's forward equation for thetransition semi-group of a general Markov proess X ; we reall it here.Denote by x a generi element of the state spae of the proess and write
Pt(x, h) = Ex

[
h(Xt)

]



General relativisti Boltzmann equation 8for the expetation of h(Xt) for a proess started from x; write Pt(x, dy) for theassoiated kernel on the state spae. Write, as above, G for the generator of theproess. Kolmogorov's forward equation omes from the semi-group property of thekernels Pt(x, ·), enoded in the Chapman-Kolmogorov equation
Pt+s(x, h) =

∫
Pt(y, h)Ps(x, dy), ∀ s, t > 0, x in the state spae,and reads (see e.g. Chap. 1 of [52℄)

d

dt
Pt(x, h) = Pt(x,Gh). (A.1)In a ontext where the kernels Pt(x, ·) are given by a density pt(x, y) with respet tosome referene measure dy, equation (A.1) re-writes

d

dt
pt(x, y) = G∗pt(x, y), (A.2)where G∗ ats on y and is the dual of G in L2(dy). Note however that there is no needof densities to make sense of equation (A.1).The result of proposition 1 is loal in M; it will ome as an appliation of equation(A.2) by reparametrizing loally the trajetories of the proess by a time funtionde�ned loally on M. The following loal onstrution will be used to that end.a) Normal variation of a spaelike hypersurfae. Let V be a relatively ompatspaelike hypersurfae of M. For m ∈ V and ε ∈ R small enough, de�ne Φε(m) asthe position at time ε of the geodesi started from m, leaving V orthogonally in thefuture diretion with a unit speed. Then there exists, as a onsequene of the loalinversion theorem, a positive onstant η and an open set U ⊂ M suh that the map

Φ : (−η, η) × V → U , (ε,m) 7→ Φε(m), is a di�eomorphism. Let us further suppose ηand V small enough for U to be strongly ausal. Writing Vε for Φε(V), the map Φ0 isthe identity on V, and ∂εΦε(m) ∈ T 1
Φε(m)M is orthogonal to TΦε(m)Vε. The family ofspaelike hypersurfaes {Vε}ε∈(−η,η) is alled the normal variation of V. The followingrelated notation will be useful.Notations. We de�ne a vetor �eld ̟ on U as follows. Given a point m ∈ Vε, denoteby ̟(m) the future unit timelike vetor orthogonal to TmVε; set ̟(ϕ) := ̟(m), for

ϕ = (m, ṁ).
• γ = γ(ϕ) := g

(
̟(ϕ), ṁ

) will be a funtion of ϕ = (m, ṁ) in the tangent bundleof U .
• The ∗TVε-operation will stand for taking the L

2(VolTVε
)-dual and the ∗-operationfor taking the L2(VolT 1M)-dual.

• For larity, all objets de�ned on V or TV will have a hat on them: ϕ̂, Ĝ, ψ̂ε...de�ned below.
• Last, Hε will denote the hitting proper time of TVε ⊂ T 1M.b) Reparametrization of the trajetories of the proess. Given a point ϕof T 1M take a relatively ompat spaelike hypersurfae V ontaining m and dothe preeding onstrution. To prove that G∗g = 0 at ϕ we only need to onsiderwhat happens near ϕ. Let us then work in the tangent bundle of U , where we an



General relativisti Boltzmann equation 9use the parameter ε as a time parameter rather than using the proper time of therandom trajetories. That is, onsider the re-parametrized proess {ψHε
}ε∈(−η,η); ithas generator γ −1 G. Deompose this operator as follows

∀ϕ = Φε(ϕ̂) ∈ Vε,
Gf

γ
(ϕ) = (̟f)(ϕ) + Ĝ(f ◦ φε) (ϕ̂) = (̟f)(ϕ) +

(
Gf

)
(ϕ), (A.3)where Ĝ is an operator on TV, and where, as a onsequene, G ats only on TVε. Now,de�ne the TV-valued proess {

ψ̂ε

}
ε∈(−η,η)

:=
{
Φ−1

ε (ψHε
)
}

ε∈(−η,η)
and denote by ℓ̂εits time-dependent generator.) Proof of proposition 1. Without loss of generality, one an assume that ρ̂0 has asmooth density with respet to VolTV and denote by ρ̂ε the density of the distributionof ψ̂ε with respet to VolTV. By Kolmogorov's forward equation, it satis�es theequation

∂ερ̂ε = ℓ̂∗TV

ε ρ̂ε,for all ε ∈ (−η, η). The operator ℓ̂∗TV
ε stands here for the L

2(VolTV)-dual of ℓ̂ε. Letus now denote by Vol(ε)
TV

the pull-bak on TV by φε of the measure VolTVε
on TVε,and denote by Gε its density with respet to VolTV. Then ϕ̂ε has a density µ̂ε =

ρ̂ε

Gεwith respet to Vol(ε)
TV
; it satis�es the equation

∂εµ̂ε +
∂εGε

Gε

µ̂ε = ℓ̂∗TV; ε
ε µ̂ε. (A.4)We have written here ℓ̂∗TV; ε

ε g for bℓ∗TV

ε
(Gεg)
Gε

. Denote by µε the density of ψHε
withrespet to VolTVε

, and onsider µ and G as funtions of ε and ϕ ∈ TVε, that is,onsider them as funtions de�ned on the tangent bundle of U . By its very de�nition,the funtion µ and the one partile distribution funtion of the proess are linkedthrough the relation
µ(ϕ) = γ g(ϕ), (A.5)disussed in the third point of setion 4. Equation (A.4) an be written in terms of µas

̟µ+
̟G

G
µ = G

∗TVε

µ. (A.6)The operator G has been introdued in equation (A.3). It is useful at that stage toremark that we have
G
∗TVε

= G
∗as a onsequene of the hange of variable formula, and sine we have a normalvariation of V. The following lemma is needed to make the �nal step.Lemma. We have for any smooth funtion f

̟∗f +̟f +
̟G

G
f = 0.



General relativisti Boltzmann equation 10Proof � As above, this is onsequene of the hange of variable formula and the fatthat we have a normal variation of V. Write T 1U for the future unit tangentbundle over U and take h a smooth funtion over T 1U with ompat support.
∫

T 1U

(̟∗f) (ϕ)h(ϕ)VolT 1M(dϕ) =

∫

T 1U

f(ϕ) (̟h)(ϕ)VolT 1M(dϕ)

=

∫

(−η,η)

∫

TV

f(ε, ϕ̂) (∂εh)(ε, ϕ̂)Gε(ϕ̂)VolTV(dϕ̂) dε

= −

∫

(−η,η)×TV

(∂εf)(ε, ϕ̂)h(ε, ϕ̂)Gε(ϕ̂)VolTV(dϕ̂) dε

−

∫

(−η,η)×TV

(fh)(ε, ϕ̂) ∂εGε(ϕ̂)VolTV(dϕ̂) dε

= −

∫

T 1U

(
̟f +

̟G

G

)
(ϕ)h(ϕ)VolT 1M(dϕ).

(A.7)
�As a onsequene of this lemma we an use the deomposition given in equation (A.3)to write equation (A.6) as G∗

(
µ
γ

)
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