
Analysis of the Anderson operator
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Abstract. We consider the continuous Anderson operator H = ∆ + ξ on a two dimensional closed
Riemannian manifold S. We provide a short self-contained functional analysis construction of
the operator as an unbounded operator on L2(S) and give almost sure spectral gap estimates
under mild geometric assumptions on the Riemannian manifold. We prove a sharp Gaussian small
time asymptotic for the heat kernel of H that leads amongst others to strong norm estimates for
quasimodes. We introduce a new random field, called Anderson Gaussian free field, and prove that
the law of its random partition function characterizes the law of the spectrum of H. We also give
a simple and short construction of the polymer measure on path space and relate the Wick square
of the Anderson Gaussian free field to the occupation measure of a Poisson process of loops of
polymer paths. We further prove large deviation results for the polymer measure and its bridges.
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1 – Introduction

Let S be a two dimensional closed Riemannian manifold with metric g and associated volume
measure µ. White noise on S is a D′(S)-valued random variable ξ with Gaussian law with null
mean and covariance

E
[
ξ(ϕ1) ξ(ϕ2)

]
=

∫
S
ϕ1ϕ2 dµ,

for ϕ1, ϕ2 smooth functions on S. Almost surely it takes values in the Besov space Bα−2
∞∞(S), for

any α < 1, a distribution space, and its law depends only on the metric g on S. Let h ∈ C∞(S)
be a smooth function. Denote by Mhξ the multiplication operator by hξ, and by ∆ the Laplace-
Beltrami operator associated with the Riemannian metric on S. The Anderson Hamiltonian is the
random operator

H := ∆ +Mhξ, (1.1)
perturbation of the Laplace-Beltrami operator by a distribution-valued potential. The smooth
function h plays the role of a modulator for the noise, a position dependent coupling constant.
The operator H arises naturally as the scaling limit of a number of microscopic discrete operators
of interest in statistical physics. The study of the Anderson Hamiltonian presents an additional
difficulty compared to its discrete counterparts. Unlike what happens for the Laplace-Beltrami
operator ∆ or its perturbations by smooth potentials, the low regularity of ξ prevents a straight-
forward definition of H as a continuous operator from the Sobolev space H2(S) into L2(S) since

Mhξ(f) = fhξ

is not an element of L2(S) for a generic f ∈ H2(S). One had to wait for the recent development
of the theory of paracontrolled calculus and regularity structures before appropriate functional
settings were introduced for the study of the Anderson Hamiltonian – corresponding to h = 1. Let
T2 stand for the two dimensional flat torus. Allez and Chouk [1] first used paracontrolled calculus
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to define a random domain for H and proved that one can define H as an unbounded self-adjoint
operator on L2(T2), with discrete spectrum λn(ξ̂ ) tending to +∞ and eigenvalues λn(ξ̂ ) that are
continuous functions of a measurable functional ξ̂ of ξ taking values in a Banach space. The basic
mechanics at work in [1] was improved in Gubinelli, Ugurcan & Zachhuber’s recent work [24] in
which a similar result on the three dimensional torus was proved, amongst others. Labbé was
also able in [29] to use the tools of regularity structures to get similar results. We refer to these
works for detailed accounts of related matters and extensive references to the litterature. All these
works are set in the torus. The very recent work of Mouzard [31] used the tools of the high order
paracontrolled calculus developed by Bailleul & Bernicot in [4, 5, 6] to study Anderson Hamiltonian
on a two dimensional manifold, simplifying a number of technical points compared to [1, 24] and
proving that the random spectrum of H satisfies the same Weyl asymptotic law as the spectrum
of the Laplace-Beltrami operator.
◦ Anderson operator. We give in this work a self-contained construction of the Anderson operator
that is different from the previous constructions. It relies on the direct construction of the resolvent
operator via a fixed point equation where the analytic Fredholm theory can be used efficiently. We
note in particular that the only point from paracontrolled calculus that we use is the fundamental
continuity estimate on the corrector first proved by Gubinelli, Imkeller & Perkowski in the flat
torus [22], later extended to a manifold (and possibly parabolic) setting by Bailleul & Bernicot in
[4]. Recall that h is the coupling function that appears in front of the noise in the definition (1.1) of
Anderson operator. Given a positive regularization parameter r let ξr = e−r∆(ξ) stand for the heat
regularized white noise. The family of operators ∆ +Mhξr −

|log r|
4π h2 converges in probability as r

goes to 0 to a limit random unbounded self-adjoint operator H which is a quadratic functional of
the coupling function h and has a discrete spectrum σ(H) tending to +∞. This random operator
is called Anderson operator. We give in Section 3 a short and self-contained construction of that
operator that does not need a fine description of the domain of the Anderson operator to construct
it, unlike the previous works [1, 24, 31]. It uses the language of paracontrolled calculus but requires
nothing more than the absolute minimum on the subject. Our construction is essentially functional
analytic.

We give in Theorem 17 a detailed description of the solution to the parabolic Anderson equation
with singular initial conditions, giving back in particular the heat kernel pt(x, y) of H. Our main
point here is that a fine description of pt(x, y) actually contains a lot of information on the operator
H itself. As a direct illustration we recover in Proposition 29 Mouzard’s Weyl law for the spectrum
of H from a Tauberian point of view. Information on different norms of the eigenfunctions or quasi-
modes of H can also be recovered from a good control of the heat semigroup. Denote by (un)n≥0

the sequence of L2 normalized eigenfunctions of H with corresponding eigenvalues λn(ξ̂ ). Recall
α− 2 < −1 stands for the almost sure Hölder regularity of white noise ξ.

Theorem 1 – For every β′ > 1 there exists a positive random variable C such that the following
two facts hold true almost surely.

• One has for all n ≥ 0 such that |λn(ξ̂ )| ≥ 1 the n-uniform estimate

‖un‖C2α−1 ≤ C
∣∣λn(ξ̂ )

∣∣ β′2 . (1.2)

• For every Λ ∈ R and every u ∈ span
(
un ; λn(ξ̂ ) ≤ Λ

)
with unit L2 norm one has

‖u‖Hα ≤ CΛ1/2.

We are able to obtain in Proposition 25 lower and upper Gaussian bounds for pt(x, y), which
imply an interesting parabolic Harnack estimate for (∂t + H)-harmonic functions. Somewhat
independently of the good control on the heat kernel from Theorem 17 we are also able to quantify
the spectral gap of H in terms of some isoperimetric constant of the Riemannian manifold (S, g)
generalizing Cheeger’s Poincaré inequalities to our setting and also under the assumption that
the Riemannian volume form µ satisfies a log-Sobolev inequality – the definitions of the different
quantities below will be recalled in Section 4.3. The eigenfunction u0 – the ground state, is
associated with the smallest eigenvalue λ0(ξ̂ ) of H.
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Theorem 2 – One has the following two almost sure estimates on the spectral gap of H.
• Denote by C(S, g) > 0 the Cheeger constant of the Riemannian manifold (S, g). Then one

has the spectral gap estimate∣∣λ0(ξ̂ )− λ1(ξ̂ )
∣∣ ≥ (minu0

maxu0

)4
C(S, g)2

4
> 0.

• Assume that the Riemannian volume measure µ satisfies a log-Sobolev inequality with con-
stant CLS. Then one has the spectral gap estimate∣∣λ0(ξ̂ )− λ1(ξ̂ )

∣∣ ≥ (minu0

maxu0

)2 (maxu4
0 + maxu−4

0

)−1

2CLS
> 0.

◦ Anderson Gaussian free field. We introduce and study the Anderson Gaussian free field in Section
5. This doubly random field φ on S is defined from the L2 spectral decomposition of the random
operator H in the same way as Gaussian free field is defined from the L2 spectral decomposition
of ∆. It thus has two layers of randomness. Like the usual Gaussian free field it is almost surely
of regularity 0−. One can define the Wick square : φ2 : of φ as a doubly random variable; its
distribution L(:φ2:) depends on H so it is random. The following result is proved in a more precise
form in Theorem 37 and Corollary 38.

Theorem 3 – The law of the random spectrum of H is characterized by the law of L(:φ2:).

◦ The polymer measure. The polymer measure provides a mathematical model for the random
motion of a particle subject to a thermal motion in an extremely disordered potential modeled by
white noise. From Feynman-Kac representation formula it is the non-negative measure Q formally
defined at a generic point w ∈ C([0, 1],S) by its density

exp

(∫ 1

0

ξ(wt)dt

)
with respect to the Wiener measure PW on path space over S, up to a multiplicative normalization
constant. The pointwise evaluation of the distribution ξ is however meaningless, which motivates
a definition of the polymer measure Q as a limit as r > 0 goes to 0 of the measures Q(r) obtained
from a regularized noise ξr setting

dQ(r)

dPW
(w) ∼ exp

(∫ 1

0

(
ξr +

| log r|
4π

)
(wt)dt

)
. (1.3)

Note that the measures Q(r) and the limit measure Q are random, as the white noise environment
is random. (Both Q(r) and Q depend implicitly on the starting point of the path w, that may be
fixed or random, possibly independently of the environment.) This measure was first constructed
in the flat setting of the two dimensional torus by Cannizzaro & Chouk in [10] using the then newly
developed tools of paracontrolled calculus. We give here the first construction of this measure on a
closed Riemannian manifold. Our construction is different from that of Cannizzaro & Chouk and
we construct the random measure Q as the law of a Markov process with transition probability
e−t(H−λ0(ξ̂ )). The sharp small time asymptotic that we obtain on the kernel of that operator, or the
Gaussian bound proved for that kernel, allow for a straightforward use of Kolmogorov’s criterion
to construct the polymer measure on a space of Hölder paths. It is singular with respect to Wiener
measure on C([0, 1],S) although it has support in all the spaces Cγ([0, 1],S), for γ < 1/2 like
Brownian motion. Following a long tradition going back to the work of Symanzik on constructive
quantum field theory in the 60’s, we relate in Section 6.2 the distribution of the square of the
Anderson Gaussian free field and the distribution of the renormalized occupation measure O1/2 of
a certain Poisson point process of polymer loops in S. The notations will be defined in Section 6.2.

Theorem 4 – The renormalized occupation measure O1/2 has the same distribution as the Wick
square : φ2 : of the Anderson Gaussian free field.

Finally we prove large deviation results for the free end point path and bridge polymer measures,
for small traveling time. Given a point x ∈ S write Qx for the polymer measure started from x.
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Given 0 < r ≤ 1 and 0 < γ < 1/2, denote by Q(r)
x the law under Qx on Cγ([0, 1], S) of the process

(wsr)0≤s≤1; this is the law of the Markov process with generator r
(
H − λ0(ξ̂ )

)
started from x.

Given another point y ∈ S denote by Q
(r)
x,y the law of the polymer path conditioned on starting

from x and ending up in y at time r, after linear reparametrization of the time interval [0, r] by
the fixed interval [0, 1]. Set

I (w) :=

∫ 1

0

|ẇs|2g ds (1.4)

for w ∈ H1([0, 1],S), and I (w) = ∞, otherwise. One proves the following large deviation result
for the polymer measure and its bridges, where d(x, y) stands for the Riemannian distance between
x and y. Recall that Q(r)

x and Q
(r)
x,y are families of random measures.

Theorem 5 – Fix two points x 6= y in S and 0 < γ < 1/2. The following happens almost surely.

- The family
(
Q

(r)
x

)
0<r≤1

satisfies in Cγ([0, 1],S) a large deviation principle with good rate
function I (·).

- The family
(
Q

(r)
x,y

)
0<r≤1

satisfies in Cγ([0, 1],S) a large deviation principle with good rate
function I (·)− d(x, y)2.

So the polymer measure on free and fixed endpoints paths satisfies the same large deviation
principle as Wiener measure and the rate function does not see the effect of the white noise
potential.

We have organized this work by gathering in Section 2 a number of elementary facts that
we use in the remainder of the work. Section 3 provides a short self-contained functional analytic
construction of the Anderson operator H. Section 4 provides a fine description of the heat kernel of
H and applications to the spectral gap and eigenfunction estimates of H amongst others. Section
5 introduces the Anderson Gaussian free field and studies some of its properties. We relate in
particular the distribution of the Wick square Anderson Gaussian free field to the distribution of
the spectrum of H. Section 6 deals with the polymer measure, its construction and properties, its
link with the Anderson Gaussian free field and the large deviation results for this measure and its
bridges. The introduction of each section gives more details on its content. Appendix A contains
a proof of a parametric version of meromorphic Fredholm theory. Appendix B gives a number of
elements on the geometric Littlewood-Paley decomposition that we use, and Appendix C presents
an elementary probabilistic derivation of a Faber-Krahn type lower bound of the spectral radius
of the Laplace-Beltrami operator.

Notations. We collect here a number of notations that are used throughout the text.
- We denote by µ the Riemannian volume measure.
- We use the notation Cγ(S) for the Hölder spaces, and Hγ(S) for the Sobolev sapces, for

any γ ∈ R, both defined as Besov spaces over S.
- The notation B(E,F ) stands for the space of continuous linear maps from a Banach space
E into a Banach space F , with operator norm ‖ · ‖B(E,F ).

- For a constant z ∈ C, we will stick to the usual convention that z stands for the multipli-
cation operator Mz in an identity involving operators.

- The notation OE(1) stands for a bounded E-valued function.

2 – Tools for the analysis

We will use in the sequel a number of elementary facts on paraproducts and meromorphic
Fredholm theory. We recall here what we need from them and refer the reader to [2, 22, 5, 31] for
basics and non-basics on paraproduct and resonant operators.
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• Paraproduct, resonant operator and corrector – Recall from Littlewood-Paley theory that
one can decompose an arbitrary distribution f on the d-dimensional torus as a sum of smooth
functions

f =
∑
n≥−1

Pnf

approximately localized in frequency space in annuli of size 2n. This allows to decompose formally
the product of two distributions into

fg =
∑
i<j−1

(Pif)(Pjg) +
∑
j<i−1

(Pif)(Pjg) +
∑
|i−j|≤1

(Pif)(Pjg),

with the first two quantities always converging. Based on that model, and set in our 2-dimensional
setting, one can decompose the product of any two smooth functions f, g on S under the form

fg = Pfg + Pgf + Π(f, g), (2.1)
with paraproduct and resonant operators P and Π with the following continuity properties.

– For any α1, α2 ∈ R the paraproduct operator
P : (f, g) 7→ Pfg,

maps continuously Cα1(S) × Cα2(S) into Cα1∧0+α2(S), and the space Cα1(S) × Hα2(S)
and Hα1(S)× Cα2(S) into Hα1∧0+α2(S).

– The resonant operator
Π : (f, g) 7→ Π(f, g),

is symmetric and well-defined as a continuous operator from Cα1(S)×Cα2(S) into Cα1+α2(S),
and from Cα1(S)×Hα2(S) into Hα1+α2(S), iff α1 + α2 > 0.

Identity (2.1) thus makes sense for all f ∈ Cα1(S), g ∈ Cα2(S), or f ∈ Cα1(S), g ∈ Hα2(S),
provided α1 + α2 > 0. The reader will find more details on these paraproduct and resonant
operators in Appendix B. The next fundamental result is the backbone of Gubinelli, Imkeller &
Perkowski’ seminal work [22] on singular stochastic PDEs. Its extension to a manifold setting was
worked out in Bailleul & Bernicot’s work [4] in a general parabolic setting – see Mouzard’s work
[31] for the mixed elliptic Sobolev/Hölder result.

– The trilinear operator
C(a, b, c) := Π(Pab, c)− aΠ(b, c)

is continuous from Cα1(S) × Cα2(S) × Cα3(S) into Cα1+α2+α3(S), and from Hα1(S) ×
Cα2(S)× Cα3(S) into Hα1+α2+α3(S), if α2 + α3 < 0 and α1 + α2 + α3 ∈ (0, 1).

It is well-known that space white noise takes almost surely its values in the Besov space
Bα
′−2
∞,∞(S), for any α′ < 1. The reader can then think of the probability space (Ω,F ,P) on which

it is defined as Ω = Bα
′−2
∞,∞(S), for an ad hoc regularity exponent. Fix

0 < 2− 2α′ < α < α′ < 1,

and let ξ stand for white noise on S. Fix also a smooth real valued ‘coupling’ function h on S.
Denote now by σ(∆) the spectrum of the Laplace-Beltrami operator ∆. Given z0 /∈ σ(∆), we will
use occasionally the paraproduct-like operator P defined by the intertwining relation

(∆− z0) Pfg := Pf
(
(∆− z0)g

)
.

It was proved in Bailleul and Bernicot’s work [5] that this operator has the same regularity prop-
erties as the operator P. (Strictly speaking, the work [5] deals with the more general parabolic
situation; see [31] for the elliptic setting.) This operator P depends on z0, which will be fixed
throughout, so we do not record it in the notation. It was proved in [5] that the (modified)
corrector

C(a, b, c) := Π(Pab, c)− aΠ(b, c) (2.2)
enjoys the same continuity property as C. Set

M−(f) := Pf (hξ), M+(f) := Phξf + Π(f, hξ). (2.3)
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While the operator M− is well-defined and sends continuously Hγ(S) into Hγ∧0+α′−2(S) for any
γ ∈ R the operator M+ is only defined on the spaces Cγ(S) and Hγ(S) for γ > 2− α′, due to the
resonant operator in the definition of M+. Set

δf := f + (∆− z0)−1M−(f) = f + Pf (Xh),

where
Xh := (∆− z0)−1(hξ).

The operator δ is well-defined on all of D′(S). Pick

2− 2α′ < s < α <
α+ 1

2
< α′ < 1. (2.4)

We single out here an elementary fact whose proof is left to the reader.

Lemma 6 – For every regularity exponent γ ∈ R and every positive η there exists a positive
constant mη such that for every real parameter z0 ≤ mη one has∥∥(∆− z0)−1

∥∥
B(Hγ(S),Hγ+2−η(S))

< η,

and the continuous map
(∆− z0)−1M− : Hγ(S)→ Hγ∧0+α(S)

has a norm smaller than 1.

We use the fact that ξ ∈ Cα′−2(S) and α < α′, in the proof of the second item of the lemma. It
follows that, for every 0 < β ≤ α, the map δ from Hβ(S) into itself is invertible for z0 negative and
large enough. Taking z0 even larger if needed, the map δ is also invertible as a map from Cβ(S)
into itself, for all 0 < β ≤ α.
• Meromorphic Fredholm theory with a parameter – The analytic Fredholm theory provides

conditions under which one can invert a family of Fredholm operators acting on some Hilbert space.
Let U be a connected open subset of the complex plane C. Let (H, 〈·, ·〉) be a Hilbert space. Recall
that a family

(
A(z)

)
z∈U of linear maps from H into itself is said to be holomorphic iff the map A is

C-differentiable in U . This is equivalent to requiring that the C-valued function z 7→
〈
y,
(
A(z)x

)〉
is holomorphic for any x, y ∈ H2. The family

(
A(z)

)
z∈U is said to be finitely meromorphic if for

any z ∈ U , there exists a finite collection of operators (Aj)1≤j≤n0
of finite rank and a holomorphic

family A0(·), defined near z, such that one has
A(z′) = A0(z′) + (z′ − z)−1A1 + · · ·+ (z′ − z)−n0An0 ,

near z. We shall need a version with parameters of the meromorphic Fredholm Theorem where
A(z,a) depends continuously on a parameter a, element of a metric space.

Theorem 7 – Let U ⊂ C be a connected open subset of the complex plane. Let (A, d) be a metric
space and

(
K(z,a)

)
z∈U,a∈A be a finitely meromorphic family of compact operators depending con-

tinuously on a ∈ A. If for every a0 ∈ A the operator
(
Id−K(z,a)

)−1 exists at some point z ∈ U
for all a in a neighborhood of a0 then the family

(z′ ∈ U) 7→
(
Id−K(z′,a)

)−1

is a well-defined meromorphic family of operators with poles of finite rank which depends continu-
ously on a ∈ A.

A proof of this statement is given in Appendix A. Recall here that a sequence (hn)n≥0 of Banach
space-valued meromorphic functions, defined on a common open subset of C, converge to a limit
meromorphic function h if hn converges uniformly to h on every compact set that does not contain
any pole of h.

3 – A construction of the Anderson operator

Let ξ stand for space white noise on the Riemannian manifold S and let h stand for a smooth
real valued function on S. We denote by ∆ the Laplace-Beltrami operator associated with the
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Riemannian metric on S, and recall that one can construct ξ as a random series
∑
n≥0 γnfn,

where the fn are the eigenfunctions of the Laplace-Beltrami operator and the γn are a family of
centered Gaussian random variables with unit variance all independent. We define in this section
the unbounded operator H = ∆+Mhξ on L2(S) by its resolvent map R(z), a meromorphic function
of z. We identify R as the unique solution of a fixed point equation. The naive formulation of the
fixed point equation involves however a multiplication problem that is the signature of the singular
character of the operator H. A renormalization process is needed to make sense of it, that is,
we smoothen the noise ξ with the heat kernel e−r∆ and add r-dependent diverging terms in the
operator to make the resolvent associated with this modified operator converge as r tends to 0.
The resolvent R is then defined from a renormalized version of a naive fixed point equation using
the meromorphic Fredholm theory.

A reader already familiar with one of the previous constructions of the Anderson operator
[1, 29, 24, 31] may skip this section and keep in mind that we construct the resolvent of this
operator as a meromorphic function defined on all of C. This plays a role in the sequel.

To disentangle the multiplication problem involved in the definition of the operator H and its
resolvent, it turns out to be useful to split the multiplication operator Mhξ into

Mhξ = M− + M+,

using the operators M− and M+ from (2.3). This allows to separate well-defined terms of low
regularity from ill-defined terms of a priori better regularity. This approach allows to get around
the tricky use of strongly paracontrolled distributions from [1, 24], and to avoid the use of the
subtle quasi-duality between paraproduct and resonant operators from [24, 31].

Pick z0 negative and big enough. We will tune it later to make some ξ-dependent quantities
small using Lemma 6.

3.1 Definition and approximation of the resolvent

We first formulate in Section 3.1.1 a fixed point equation for the resolvent that involves an
ill-defined term, as expected from the singular nature of the Anderson operator. This analytically
ill-defined term only involves the noise and it can be given sense by a renormalization procedure
of Wick type described in Proposition 8. This is where the fact that the noise is random is put
to work as the renormalized term is constructed by probabilistic means as a random variable.
Rewriting in Section 3.1.2 the fixed point equation with the ill-defined term replaced by its well-
defined counterpart provides an equation that can be solved uniquely in an appropriate space of
meromorphic operator valued functions. The renormalization procedure is interpreted in Section
3.1.3 as giving an r-indexed family of resolvent operators associated with a diverging r-indexed
family of operators.

3.1.1 – The naive fixed point equation for the resolvent. One has at a formal level

R(z) =
(
∆ +Mξ − z

)−1
=
(

Id + (∆− z0)−1M− + (∆− z0)−1(M+ − z + z0)
)−1

(∆− z0)−1

=
(

Id + δ−1(∆− z0)−1
(
M+ − z + z0

))−1

δ−1(∆− z0)−1

= δ−1(∆− z0)−1 −R(z)
(
M+ − z + z0

)
δ−1(∆− z0)−1.

This is the raw version of the fixed point equation that should define R(z). Recall from (2.4) the
constraints on the exponents s, α and α′. We spot a problem in the term M+δ−1 as the resonant
term in

M+(δ−1u) = Pξ(δ
−1u) + Π

(
δ−1u, hξ

)
,

is not well-defined as δ−1 takes its values at best in Cα
′
(S) and α′ + (α′ − 2) < 0. The identity

δ−1 = Id− (∆− z0)−1M−δ−1

allows to rewrite the fixed point equation for R(z) as

R(z) = δ−1(∆− z0)−1 −R(z)
(

M+ −M+(∆− z0)−1M−δ−1 − (z − z0)δ−1
)

(∆− z0)−1, (3.1)
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and to isolate precisely the problem in the expression M+(∆ − z0)−1M−, that is in the resonant
term

Π
(

PuXh, hξ
)
, u ∈ Hs(S) (3.2)

that comes from the M+ operator. Using the corrector C from (2.2) one has
M+(∆− z0)−1M−(u) = Phξ(PuXh) + uΠ(Xh, hξ) + C(u,Xh, hξ).

We isolate in the u-independent, noise-dependent, term Π(Xh, hξ) the only ill-defined term – the
sum of the regularity exponents of Xh and hξ add up to a negative constant. An elementary
renormalization process allows however to give a proper meaning to such a term. Set

ξr := e−r∆

for the heat regularized space white noise and
Xh,r := (∆− z0)−1(hξr).

The next statement identifies the singular part of the diverging resonant term
Π
(
Xh,r, hξr

)
.

Proposition 8 – We have the exact expression

E
[
Π(Xh,r, hξr)

]
=
| log r |h2

4π
+OC2α′−2(1) (3.3)

and the random variables
Π
(
Xh,r, hξr

)
− | log r |h2

4π
converge in probability in the space C2α′−2, as ε > 0 goes to 0, to a limit random variable denoted
by

R
{

Π(Xh, hξ)
}
.

Moreover R
{

Π(Xh, hξ)
}

, which implicitly depends on z0, goes to 0 in probability in the space
C2α′−2(S) as z0 < 0 diverges to −∞.

The letter ‘R’ is chosen for ‘renormalized’. Identity (3.3) improves upon the corresponding
statement in [31] by showing that the singular part of the resonance is a constant when h ≡ 1,
rather than a function. A similar fact was proved in the closely related work [13] of Dahlqvist,
Diehl & Driver on the parabolic Anderson model equation in a closed two dimensional Riemannian
manifold. (They developed for their purpose a first order version of regularity structures in that
setting, rather than using paracontrolled calculus.) Identity (3.3) improves upon [13] by showing
that the singular part is a local functional of the coupling function h, in the sense that for any test
functions (h1, h2) ∈ C∞(S) with disjoint supports we have

δh1
δh2

(
| log r |h1h2

4π

)
= 0. (3.4)

(We denote here by δh the functional derivative with respect to h.) As a matter of fact we already
have here

| log r |h1h2

4π
= 0

if h1 and h2 have disjoint supports. The proof of Proposition 8 follows the usual pattern for similar
Wick renormalization proofs; it is given in Appendix B.

3.1.2 – The renormalized fixed point equation for the resolvent. We define the renormalized version
of the operator M+(∆− z0)−1M− setting for all u ∈ Hs(S)

R
{

M+(∆− z0)−1M−
}

(u) := Pξ
(
(∆− z0)−1M−u

)
+ uR

{
Π(Xh, hξ)

}
+ C(u,Xh, hξ).

The assumptions (2.4) on the regularity exponents guarantee that the operator R
{

M+(∆ −
z0)−1M−

}
is linear continuous from L2(S) into H2α−2(S). The renormalized counterpart of the

fixed point equation (3.1) for R(z) reads

R(z) = δ−1(∆− z0)−1 −R(z)
(

M+ −R
{

M+(∆− z0)−1M−
}
δ−1 − (z − z0)δ−1

)
(∆− z0)−1,
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that is

R(z)

{
Id +

(
M+ −R

{
M+(∆− z0)−1M−

}
δ−1 − (z− z0)δ−1

)
(∆− z0)−1

}
= δ−1(∆− z0)−1 (3.5)

Choosing z0 < 0 random and big enough ensures with Lemma 6 the bound∥∥∥(M+ −R
(
M+(∆− z0)−1M−

)
δ−1
)

(∆− z0)−1
∥∥∥
B(E,H2α−2(S))

< 1, (3.6)

with E = L2(S) or H2α−2(S). One notes further that the operator in the preceding inequality is
compact in B(H2α−2(S), H2α−2(S)) as it actually maps H2α−2(S) into H2α′−2(S), and α < α′.
Equation (3.5) then defines a map

R(z0) = δ−1(∆− z0)−1

{
Id +

(
M+ −R

{
M+(∆− z0)−1M−

}
δ−1
)

(∆− z0)−1

}−1

, (3.7)

and the meromorphic Fredholm theory applied to the holomorphic family of compact operators
acting on H2α−2(S)

Id +

(
M+ −R

{
M+(∆− z0)−1M−δ−1

}
− (z − z0)δ−1

)
(∆− z0)−1 ∈ B

(
H2α−2(S), H2α−2(S)

)
allows to define

R(z) = δ−1(∆− z0)−1

{
Id +

(
M+ −R

{
M+(∆− z0)−1M−

}
δ−1 − (z − z0) δ−1

)
(∆− z0)−1

}−1

as a meromorphic function of z ∈ C with values in B
(
H2α−2(S), δ−1

(
H2α(S)

))
. Since H2α(S) is

continuously embedded into C2α−1(S), the restriction ofR to L2(S) defines a meromorphic function
with values in B

(
L2(S), C2α−1(S)

)
. We invite the reader to check that the assumptions of Theorem

7 on meromorphic Fredholm theory with a parameter are met, with ξ̂ ∈ Cα′−2(S)× C2α′−2(S) in
the role of the parameter. The meromorphic operators R(·) are thus continuous functions of ξ̂.

3.1.3 – The regularized renormalized fixed point equation. The convergence result of Proposition 8
and the fixed point equation giving the meromorphic function R(·) can be put together to provide
approximations of R(z) by the resolvent of bounded operators. It is convenient for that purpose
to use Skorohod representation theorem for weak convergence (hence convergence in probability)
and assume that the convergence in Proposition 8 is almost sure. This can be done by a change
of probability space Ω on which white noise is defined – see e.g. Theorem 4.30 in Kallenberg’s
book [26] for Skorohod theorem. Denote by Ω1 the measurable subset of Ω of probability 1 where
the almost sure convergence holds. Since we are only interested in almost sure statements what
happens on the null set Ω\Ω1 is irrelevant.

Given a positive regularization parameter r, set
δr(f) := f + (∆− z0)−1Pf (hξr)

and
M−r (f) := Pf (hξr), M+

r (f) := Phξrf + Π(f, hξr).

One proves the following statement in Appendix B.

Lemma 9 – For r > 0 the operator M−r is a smoothing operator and the operator M+
r is a

pseudodifferential operator of order 0.

The operator δ−1
r is also a pseudo-differential operator of order 0. Denote here by

ch,r :=
|log r|h2

4π

the diverging part of Π(Xh,r, hξr) – this is a function on S whose associated multiplication operator
is denoted by Mch,r . Set

Rr

{
M+(∆− z0)−1M−

}
(u) := M+

r (∆− z0)−1M−r u− ch,ru.

The convergence result from Proposition 8 implies that the map Rr

{
M+(∆ − z0)−1M−

}
is con-

verging to the map R
{

M+(∆−z0)−1M−
}

in B
(
L2(S), H2α−2(S)

)
, for all chance elements ω ∈ Ω1.
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It follows that for all ω ∈ Ω1, the (ω-dependent) operators

Rr(z) := δ−1
r (∆− z0)−1

{
Id +

(
M+ −Rr

{
M+(∆− z0)−1M−

}
δ−1
r − (z − z0) δ−1

r

)
(∆− z0)−1

}−1

converge as r goes to 0 to the (ω-dependent) operator R(z) in B
(
L2(S), C2α−1(S)

)
, as a mero-

morphic function of z by the analytic Fredholm theory. Rewinding the algebraic process that led
to this expression of Rr(z) requires the use of the following elementary statement, whose proof is
given in Appendix B.

Lemma 10 – Pick a ∈ R. Let P be an invertible elliptic pseudo-differential operator of order a
and Q(z) a pseudo-differential operator of positive order b, depending holomorphically on z ∈ C.
If there exists z0 such that

(
Id + P−1Q(z0)

)
and

(
Id +Q(z0)P−1

)
are invertible from Ha(S) into

itself then we have(
P +Q(z)

)−1
=
(
Id + P−1Q(z)

)−1
P−1 = P−1

(
Id +Q(z)P−1

)−1 (3.8)
for all z ∈ C, where both sides of each equality are Fredholm operators from Ha(S) into itself
depending meromorphically on z ∈ C.

Lemma 9 and Lemma 10 justify that we write(
∆− z0 + M−r

)−1
{

Id +

(
M+
r −

(
M+
r (∆− z0)−1M−r −Mch,r

)
δ−1
r − (z − z0) δ−1

r

)
(∆− z0)−1

}−1

=
(

∆− z0 + M−
)−1

◦{
Id + M+

r (∆− z0)−1 −
(

M+
r (∆− z0)−1M−r −Mch,r − (z − z0)

)
(∆− z0 + M−r )−1

}−1

=

{
∆− z0 + M−r +M+

r (∆− z0)−1
(

∆− z0 + M−ε

)
−
(

M+
r (∆− z0)−1M−r −Mch,r − (z − z0)

)}−1

=
(

∆− z + M−r + M+
r +Mch,r

)−1

=
(

∆− z +Mhξr +Mch,r

)−1

,

by the usual composition in the pseudo-differential calculus. So Rr(z) is the resolvent of the
operator ∆+Mhξr+ch,r , perturbation of the Laplace-Beltrami operator ∆ by the r-diverging smooth
potential hξr + ch,r.

Proposition 11 – The meromorphic maps Rr(·), with values in B
(
L2(S), C2α−1(S)

)
, converge to

the meromorphic map R(·) as r > 0 goes to 0, and R(·) has real poles in a half-plane
{

Re(z) > m
}

,
for m negative large enough.

Proof – The Rr have real poles as the potentials ξr and ch,r are real valued. The poles of R
are limits of the poles of Rr. We see from (3.6) and (3.7) that R has no poles in the half-place{

Re(z) 6 m
}

, for m negative large enough. �

We used Skorohod representation theorem to represent a convergence in probability as an almost
sure convergence on a different probability space. The reader should keep in mind that the resolvent
of the regularized and renormalized operator ∆ + hξr − ln r

4π h
2 is only converging in probability to

a limit resolvent.

3.2 Construction of the operator H

We can construct an operator associated with the map R.

Theorem 12 – The map R is the resolvent of a closed unbounded self-adjoint operator H on L2(S)
with real discrete spectrum bounded below.

Proof – Pick a real number z1 which is not a pole of the limit family R(·). For r0 > 0 small
enough, z1 is not a pole of the resolvent Rr(·) for all r ∈ [0, r0], so R(z1) is the limit in
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operator norms of the family Rr(z1) of self-adjoint operators acting on L2(S), as r goes to 0.
This implies that R(z1) itself is compact self-adjoint as an operator on L2(S). Denote by

σ
(
R(z1)

)
=
{

(λn − z1)−1
}
n≥0
⊂ R

its spectrum, with λn ≤ λn+1 for all n, and by (un)n≥0 its eigenvalues – they form an or-
thonormal system of L2. Also the meromorphic family of operators R(z) satisfies the resolvent
identity

R(z) = R(z1)
(
Id + (z − z1)R(z1)

)−1
, (3.9)

for any z that is not a pole of R(·), where the term
(
Id+(z−z1)R(z1)

)−1 exists by meromorphic
Fredholm theory in B

(
L2(S), L2(S)

)
relying on the compactness of R(z1) ∈ B

(
L2(S), H2α(S)

)
.

(This identity is obtained by passing to the limit in the corresponding identity satisfied by
Rr using the convergence of Rr to R.) The resolvent identity (3.9) implies that the range of
R(z1) does not depend on z1. Define the z-independent vector space

D(H) := R(z)
(
L2(S)

)
.

By the resolvent equation (3.9), the meromorphic family of operators R(·) has poles contained
in (λn)n≥0 and satisfies for all n ≥ 0 the eigenvalue equation

R(z)un = (z − λn)−1un.

This implies that we can define an unbounded operator H − z on L2(S), with domain D(H),
in such a way that (H − z)R(z) is the identity map on L2(S).
The spectrum of H is bounded below since its resolvent R(·) has no poles in the half-plane
{Re(z) 6 m}, for m negative large enough. Last the operator H : D(H) ⊂ L2(S) 7→ L2(S) is
self–adjoint, hence closed since D(H) = R(z)

(
L2(S)

)
, and (H−z)R(z) = textrmId : L2(S) 7→

L2(S) and R(z1) is bounded self–adjoint. �

Remarks – 1. Since (
∆ +Mhξr +Mch,r

)
Rr

is the identity map on L2(S), and R is the limit of the Rr, one can think of H as the limit of the
operators ∆ +Mhξr +Mch,r .

2. One has
D(H) = Im

(
R(z1)

)
⊂ C2α−1(S),

with elements f ∈ D(H) such that f+PfXh ∈ H2α(S). This property of elements in the domain of
H was the starting point of the constructions of the Anderson operator in [1, 24, 31]. A regularity
structures picture is given in [29]. (Note that we learn from the explicit description of D(H) in
[31] that the domain of H is not an algebra.) The operator H and its domain are the objects of
primary interest in these works and one has first to ‘guess’ the domain and check its density in an
appropriate space before proving a number of functional inequalities satisfied by H. A fixed point
argument is used in [1, 29] to construct the inverse of H + c, for c positive and big enough, while
the Babuska-Lax-Milgram theorem is used as a substitute in [24, 31]. The interest of working with
the meromorphic resolvent on the entire complex plane will appear for instance in the functional
analytic proof of Proposition 15 on the continuous dependence of the spectral data of H on the
enhanced noise ξ̂.

It follows from the spectral theorem for unbounded self-adjoint operators with compact resolvent
that one has the following spectral representation of the heat kernel of H

e−tH =
∑
n≥0

e−tλn un ⊗ un.

We emphasize the dependence of the eigenvalues λn of H on ξ̂ by writing λn(ξ̂). We will see
in Proposition 15 below that the eigenvalues and their associated eigen-projectors are continuous
functions of the enhanced noise ξ̂.
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4 – Heat operator for the Anderson operator

The main result of this section, Theorem 17, provides a sharp asymptotic Gaussian estimate
for the Schwartz kernel pt(x, y) of e−tH . The existence, regularity and strict positivity of pt are
proved in Section 4.1, with a number of consequences. The sharp asymptotic of pt obtained in
Section 4.2 gives a direct access in Section 4.3 to a proof of Weyl’s law for the distribution of the
eigenvalues of H and different estimates for its eigenfunctions. We also prove in that section some
Gaussian upper and lower bounds on pt(x, y) and give almost sure lower bounds on the spectral
gap of H under different kinds of geometric assumptions on (S, g).

4.1 Heat kernel and properties of H

It is elementary to get qualitative informations on the Schwartz kernel of the heat operator of
H. Thinking of α as 1− the regularity exponent (2α − 1) that appears in the next statement is
also of the form 1−.

Proposition 13 – The heat semigroup e−tH of the Anderson Hamiltonian H has a positive kernel
pt(x, y) with respect to the Riemannian volume measure on S that is a continuous function of all
its arguments that is an (2α−1)-Hölder function of its arguments (x, y) on any finite time interval
[t0, t1], for 0 < t0 ≤ t1 <∞.

Proof – Existence of the heat kernel. We follow the classical approach, as exposed for instance
in Section 5.2 of Davies’ textbook [14]. Recall that the graph norm of H on its domain D(H)
is defined by

‖u‖2H := ‖u‖2L2 + ‖Hu‖2L2 ,

and that it turns D(H) into a Hilbert space. We note first that for f ∈ L2(S), the element
e−tHf belongs to the domain D(H) of H, for all t > 0, by the spectral theorem, so

(
e−tHf

)
(x)

is a (2α−1)-Hölder function of x ∈ S for each t > 0. Since t 7→ e−tHf , is a continuous function
of t on the half plane {Re(t) > 0}, with values in the Hilbert space

(
D(H), ‖ · ‖H

)
, we have

that (t, x) 7→
(
e−tHf

)
(x), is a continuous function on [t0, t1] × S, for each compact interval

[t0, t1] ⊂ (0,∞). As the linear form f 7→
(
e−tHf

)
(x), is bounded on L2(S) for each t > 0 and

x ∈ S, there exists a(t, x) ∈ L2(S) such that(
e−tHf

)
(x) =

〈
f, a(t, x)

〉
L2 .

The map (
(t, x) ∈ (0, 1]× S

)
7→ a(t, x) ∈ L2(S),

being weakly continuous is norm continuous – a consequence of the uniform boundedness
principle. We then have for all test functions h1, h2 ∈ C∞(S)〈

e−tHh1, h2

〉
L2 =

〈
e−Ht/2h1, e

−Ht/2h2

〉
L2

=

∫
pt(x, y)h1(x)h2(y) dxdy

with
pt(x, y) :=

〈
a(t/2, x), a(t/2, y)

〉
L2

a continuous function of its arguments. One gets the (2α − 1)-Hölder regularity of pt(x, y)
as a function of x, for t, y fixed, noting that since the map (x ∈ S) 7→ a(t, x) ∈ L2(S) is
weakly (2α − 1)-Hölder continuous it is also norm (2α − 1)-Hölder continuous – here again
a consequence of the uniform boundedness principle. The joint regularity of pt(x, y) as a
function of (x, y) follows, for 0 < t0 ≤ t ≤ t1 <∞.
Positivity. The fact that pt(x, y) is non-negative and non-null comes from the fact that e−tH
is the strong limit in operator norm of the semigroup e−tHr of the renormalised Hamiltonian
Hr. The non-negativity of the approximating operators e−tHr is straightforward from their
Feynman-Kac representation. One proves that pt(·, ·) is positive for all positive times t using
the strong maximum principle as Cannizzaro, Friz & Gassiat in their proof of Theorem 5.1



13

in [11]. Note that their proof works only for a continuous initial condition while we need
the result for any initial condition in L2(S). We conclude from the fact that e−tH sends
continuously L2(S) into D(H) ⊂ C(S) for any t > 0, using their result after an arbitrary
positive time. We let the reader check that their proof works verbatim in our manifold setting
as it only uses a crude estimate on the heat kernel of the Laplace operator that holds in our
Riemannian manifold setting as well. �

We note here that Dahlqvist, Diehl and Driver only considered in [13] the parabolic Anderson
model equation with smooth initial condition, so their results do not provide any insight on the heat
kernel of the Anderson operator. A reader who has seen the parabolic paracontrolled structure
used to solve the parabolic Anderson model equation may be puzzled by the fact that e−tHf
is in the domain of H for any f ∈ L2(S) at positive times t, while it is essentially given by a
seemingly different structure (∂t + ∆)−1(Puξ), for some u, up to a remainder term. Commuting
the paraproduct and the resolution operator (∂t + ∆)−1 produces a remainder term, so the elliptic
paracontrolled structure pops out from the parabolic structure as a consequence of the identity

(∂t + ∆)−1(ξ)(t) =

∫ t

0

e−(t−s)∆ξ ds =

∫ t

0

e−r∆ξ dr = ∆−1ξ −
∫ ∞
t

e−r∆ξ dr. (4.1)

We take profit here from the fact that the noise ξ is time-independent and the integral over (t,∞)
is a smooth remainder term when t > 0.

The next statement follows from the positivity of the heat kernel of H and the Krein-Rutman
theorem [38, Thm A.1 p. 123].

Corollary 14 – Almost surely the lowest eigenvalue λ0(ξ̂ ) of H is simple with a positive eigenvector.

(Note that this question was also considered in Chouk & van Zuijlen’s work [12], however their
proof seems incomplete since they used Cannizzaro, Friz & Gassiat’ strong maximum principle [11]
which requires a continuous initial condition rather than an arbitrary initial condition in L2(S).
Proceeding as in the ‘Positivity’ paragraph of the proof of Proposition 13 fixes that point.) We
now state another corollary of Proposition 13 that will be important for us later. It makes a crucial
use of our construction in Section 3 of the resolvent of H as a meromorphic function defined on all
of C.

Proposition 15 – The eigenvalues and their associated spectral projectors in L2(S) are continu-
ous functions of ξ̂. The spectral projectors are further continuous functions of ξ̂ as elements of
B
(
L2(S), C2α−1(S)

)
.

We have in particular that the ground state u0,r of Hr is converging in C2α−1(S) to the ground
state u0 of H as r goes to 0. We note before giving the proof of Proposition 15 that the continuity
of λn(ξ̂ ) as a function of ξ̂ was already proved in Allez & Chouk’ seminal work [1] in their setting.
The continuity of the spectral projectors was somehow proved by Labbé in Theorem 1 of [29].

Proof – Pick an eigenvalue λ of H and a small disc D around λ with intersection with σ(H)
equal to {λ}. Since the regularized and renormalized resolvent Rr converges to R in the sense
of Fredhom analytic operators and R(z) is invertible for z ∈ ∂D, we know that for r small
enough, the operator Rr(z) is well-defined and invertible for z ∈ ∂D. Moreover it follows from
the uniform convergence of Rr(z) to R(z) on ∂D that the family of spectral projectors

ΠD
r :=

i

2π

∫
∂D

Rr(z) dz

is well-defined for r > 0 small enough and converges in B
(
L2(S), H2α−1(S)

)
, so the limit

operator reads
Πλ :=

i

2π

∫
γ

R(z)dz : L2(S) 7→ H2α−1(S).

We know from Rouché’s Theorem [15, Thm C.12] applied to the operator valued meromorphic
function (Id + (z − z1)Rr(z1))

−1, z1 /∈ R, (this meromorphic Fredholm operator has same poles
with multiplicity as R(z)) that σ(Hr) ∩D has fixed multiplicity for r small enough since the
poles of Rr and R contained in the disc D have the same multiplicity. Furthermore, as ΠD

r is
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a self-adjoint spectral projector, one has ΠD
r ◦ ΠD

r = ΠD
r . It follows that Π2

λ = Πλ and Πλ is
a self-adjoint projector such that one has for any n ≥ 0

Πλun =
i

2π

∫
∂D

R(z)undz =
i

2π

∫
∂D

(
λn(ξ̂)− z

)−1
undz = δ

λn(ξ̂)
λ un.

This implies that Πλ acts as the identity when restricted on the eigenspace of λ and vanishes
on all eigenfunctions un of eigenvalue λn(ξ̂) 6= λ. By continuity of Πλ ∈ B(L2(S), L2(S)) this
implies that Πλ vanishes on the orthogonal of the eigenspace of λ hence Πλ is the orthogonal
projector on the eigenspace of λ.
As a consequence of this discussion λ0(ξ̂r) and λ1(ξ̂r) are both converging to λ0(ξ̂) and λ1(ξ̂).
By construction the lowest eigenvalues λ0(ξ̂r) are simple for all r small enough, including r = 0.
Using the regularizing property of the operators e−Hr and e−H stated in Proposition 13, and
the convergence of the kernel of e−Hr to the kernel of e−H in the space B(L2(S), C2α−1(S))

that we will later prove below in Section 4.2, we see that if one picks a small disc D0(ξ̂) with
center λ0(ξ̂) so that D0(ξ̂)∩σ(H) = {λ0(ξ̂)}, one has the convergence of Π0

r = eλ0(ξ̂r)eHrΠ
D0(ξ̂)
r

to Πλ0(ξ̂) = eλ0(ξ̂)eHΠλ0(ξ̂) in B
(
L2(S), C2α−1(S)

)
. �

The image νe−tH by e−tH of a Borel finite measure ν on S has density∫
S
pt(x, ·)ν(dx)

with respect to the Riemannian volume measure on S. One says that ν is invariant by the semigroup
(e−tH)t>0 if νe−tH = ν, for all t > 0.

Corollary 16 – Each random variable λn(ξ̂ ) has a law that is absolutely continuous with respect
to Lebesgue measure on R, with a positive density. So the kernel of H is almost surely trivial and
the semigroup (e−tH)t>0 has no invariant Borel probability measure.

Proof – The first point comes from Proposition 15 and the fact that the laws of ξ and ξ + c
are equivalent for all constants c.
Since the unbounded operator H is symmetric in L2(S), the heat kernel of H is a symmetric
function of its space arguments. So a Borel invariant probability measure has a non-negative
density with respect to the Riemannian volume measure, which is in the domain of H and in
its kernel. Conversely, a non-null element of the kernel of H defines an invariant Borel signed
measure.
The previous absolute continuity result implies that any eigenvalue of H has null probability
of being null. Recall from Section 3.2 that we denote by un the eigenvectors of H; they form
an orthonormal system of L2(S). An element

f =
∑
n≥0

cnun

of L2(S) such that e−tHf = f satisfies then

e−tλn(ξ̂ )cn = cn

for all n ≥ 0. Since all the λn(ξ̂ ) are almost surely different from 0, this can happen only if
cn = 0 for all n, that is if f = 0. �

It is not clear however that tuples of k eigenvalues have a law that is absolutely continuous with
respect to Lebesgue measure in Rk.

4.2 A sharp asymptotic for the heat kernel of Anderson operator

The qualitative estimate on the heat kernel p of H provided by Proposition 13 is not sufficient
for our needs, which are quantitative. Fix a finite positive time horizon T . Let (E, | · |) be a Banach
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space. For γ < 0 and a regularity exponent β ∈ (0, 1) set

tγCβ
(
(0, T ], E

)
:=

{
v ∈ C

(
(0, T ], E

)
; sup

0<s≤t≤T
s|γ|

∣∣v(t)− v(s)
∣∣

|t− s|β
<∞

}
.

The above supremum defines the norm ‖v‖tγCβ of an element of that space. This norm turns this
space into a Banach space. Denote by p∆

t (x, y) the Schwartz kernel of the usual heat operator
e−t∆. Given 0 < α < α′ < 1 pick a positive constant ε such that

α+ ε > 1.

Pick also a regularity exponent β so that
(α′ − 2) + β > 0

and write
β′ := β + 2ε+ 2η,

for a (small) positive constant

0 < η <
α′ − α

2
.

To fix the ideas one can think of α, α′ as 1− and β, β′ as 1+.

Theorem 17 – Define formally the map

(?) : u0 7→
{

(t, x) 7→
〈
u0(·), (pt − p∆

t )(x, ·)
〉}
.

Almost surely

(1) the map (?) sends continuously B−ε1,∞(S) into t− β
′

2 C
(
(0, T ], Cα(S)

)
,

(2) the map (?) sends continuously H−2α′(S) into t−α′C
(
(0, T ], Hα(S)

)
.

These two functions depend continuously on ξ̂.

Note that while all elements in L2(S) of the form e−tHf , for f ∈ L2(S), are in the domain of
H, the Dirac distributions δy are not elements of L2(S) so one does not expect the pt(·, y) to be
elements of the domain of H. The above time weighted spaces are the natural spaces where to
look at the classical heat kernel p∆, as a consequence of the classical sharp estimates

‖e−t∆v‖Cβ2 . t
β1−β2

2 ‖v‖Cβ1 (β1, β2 ∈ R)

and similar estimates in the Sobolev scale, satisfied by p∆. So it is not surprising to see these
spaces pop out here. Item (1) of Theorem 17 says in particular that p− p∆ explodes near t = 0+

at worst as t− β
′

2 . A dimensional analysis of the second term in Duhamel’s heuristic picture

pt = p∆
t +

∫ t

0

e−(t−s)∆Mhξe
−s∆ ds+ (· · ·)

shows that it actually scales as t−1/2 so the result stated in Theorem 17 is indeed sharp as β′ > 1
can be chosen arbitrarily close to 1. We will use item (2) of Theorem 17 in Section 4.4, in our
proof of size estimates for the eigenvectors of H.

Proof – We already constructed p as a continuous function on S × (0, T ] × S in the proof of
Proposition 13. We show here that it has the regularity properties given by the two items
of Theorem 17 by showing that it is the unique solution in some spaces of some equation
obtained as a variant of the Duhamel equation. Set

L := ∂t + ∆, and (Fu0)(s) := e−s∆(u0),

with the letter ‘F ’ chosen for ‘free propagation’. We rewrite the parabolic Anderson model
equation

(∂t + ∆)p = Mhξ(p)

satisfied formally by p – with y argument ‘fixed’, under the form of an equation on v := p−p∆

v = L−1
(
Mhξ(v)

)
+ L−1

(
Mhξ(Fu0)

)
. (4.2)
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We first concentrate on the free propagation term in the right hand side of this equation and
set

u(0) := L−1
(
Mhξ(Fu0)

)
.

Lemma 18 – For all u0 ∈ B−ε1,∞(S) one has u(0) ∈ t−2εC
(
(0, T ], Cα(S)

)
.

Proof – Note first that one has∥∥M−(e−s∆u0)
∥∥
Cα′−2 . s−2ε‖u0‖B−ε1,∞

. (4.3)

and for all ρ > 0∥∥e−(t−s)∆M−(e−s∆u0)
∥∥
Cρ

. |t− s|
α′−2−ρ

2 s−2ε‖u0‖B−ε1,∞
.

For 0 < t1 < t2 ≤ T one has∥∥∥∥∫ t1

0

e−(t1−s)∆M−(e−s∆u0) ds−
∫ t2

0

e−(t2−s)∆M−(e−s∆u0) ds

∥∥∥∥
Cα

≤
∥∥∥∥∫ t2

t1

e−(t2−s)∆M−(e−s∆u0) ds

∥∥∥∥
Cα

+

∥∥∥∥∫ t1

0

(
e−(t1−s)∆ − e−(t2−s)∆

)
M−(e−s∆u0) ds

∥∥∥∥
Cα

≤ ‖u0‖B−ε1,∞

∫ t2

t1

|t2 − s|
α′−2−α

2 s−2ε ds

+
∥∥Id− e−(t2−t1)∆

∥∥
B(Cα+2η,Cα)

∥∥∥∥∫ t1

0

e−(t1−s)∆M−(e−s∆u0) ds

∥∥∥∥
Cα+2η

≤ (1) + (2)× (3).

Now one has
(1) . O

(
|t2 − t1|

α′−α
2 t−2ε

1

)
,

and for the term (2) ∥∥Id− e−(t2−t1)∆
∥∥
B(Cα+2η,Cα)

. |t2 − t1|η.

For the term (3) one has

(3) . ‖u0‖B−ε1,∞

∫ t1

0

|t1 − s|
α′−2−(α+2η)

2 s−2ε ds = O
(
t
α′−α

2 −η−2ε
1

)
.

Similar computations with M+ in place of M− conclude the proof. We leave these computations
to the reader and note here that L−1

(
M+(Fu0)

)
∈ t−2εC

(
(0, T ], C2α(S)

)
. �

The very same proof shows that u(0) ∈ t−α
′
C
(
(0, T ], Hα(S)

)
if u0 ∈ H−2α(S), with

L−1
(
M+(Fu0)

)
∈ t−α

′
C
(
(0, T ], H2α(S)

)
.

The proof actually shows that u(0) takes values in a space of the form t−α
′
Cη
(
(0, T ], E

)
under

assumption (1) or (2).

Unlike its counterpart in u(0) the multiplication operation Mhξ(v) in (4.2) is ill-posed for the
natural class of functions v. To deal with this term requires a renormalization step and to
work with a space of v’s with a special paracontrolled structure. The next statement deals
with the renormalization step. Recall from Section 3.1 that we use the notation ch,r for the
function | log r |

4π h2.

Lemma 19 – Let o(1) ∈ (0, α′ − α) be a small positive constant. Consider the operators
M+
r L−1M−r −Mch,r as elements of the space of continuous linear maps from t−

β′
2 C
(
(0, T ], Cα(S)

)
with values in the sum space

t−
β′
2 C
(
(0, T ], C3α−2(S)

)
+ t−

β′+o(1)
2 C

(
(0, T ], C2α′−2(S)

)
. (4.4)

They converge in probability as r goes to 0 to a limit random operator denoted by R(M+L−1M−).
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Proof – Given u ∈ t−
β′
2 C
(
(0, T ], Cα(S)

)
and 3α− 2 > 0 one uses the (space) corrector C to

isolate from the resonant term in M+
r the term

Π
(
hξr,L

−1Pu(hξr)
)
− ch,ru = C

(
u, hξr,L

−1(hξr)
)

+ u
{

Π
(
hξr,L

−1(hξr)
)
− ch,r

}
∈ t−

β′
2 C
(
(0, T ], C3α−2(S)

)
+ t−

β′+o(1)
2 C

(
(0, T ], C2α′−2(S)

)
.

The corrector term is converging almost surely as r goes to 0, and the term Π
(
hξr,L

−1(hξr)
)
−

ch,r is converging in probability in t−
β′+o(1)

2 C
(
(0, T ], C2α−2(S)

)
, as r goes to 0. Indeed, since

the map
t ∈ (0, T ] 7→

∫ ∞
t

e−s∆(·) ds ∈ B
(
Cα
′−2(S), C2α′−2(S)

)
is continuous, the relation (4.1) between L−1 and ∆−1 shows that the limit process is a
continuous function of t ∈ (0, T ]. However one needs to subtract log t

4π h2 to the resonant term
for

Π
(
hξ,
(
L−1(hξ)

)
(t)
)
− log t

4π
h2

to converge in C2α−2(S) as t goes to 0. This log t term explains why we need to introduce the
o(1) exponent in (4.4), so that the second term takes values in t−

β′+o(1)
2 C

(
(0, T ], C2α′−2(S)

)
.

�

We will trade below the explosion factor t−
o(1)

2 against some space regularity, which is why
we are insisting to have 2α′ − 2 rather than 2α − 2 as a space regularity exponent for the
corresponding term. The fact that space time white noise is almost surely γ-Hölder regular
for all γ < −1 gives us that freedom. We note now the following elementary fact that will be
useful.

Lemma 20 – One has

L−1
(
t−

β′+o(1)
2 C

(
(0, T ], C2α′−2(S)

))
⊂ t−

β′
2 +

o(1)
2 C

(
(0, T ], C2α(S)

)
.

Proof – This is mainly the proof of Lemma 18 with the additional trick that consists in
decomposing the analogue here of the term (1) therein under the form

(1) = ‖v‖
∫ t2

t1

|t2 − s|η+o(1)/2−1s−o(1)/2s−
β′
2 +

o(1)
2 ds

. t
− β
′

2 +
o(1)

2
1

∫ t2

t1

|t2 − s|η+o(1)−1s−o(1)/2 ds.

The result then boils down to the fact that the integral∫ t2

t1

|t2 − s|η+o(1)/2−1s−o(1)/2 ds

is of size |t2 − t1|η; a fact that can be seen by a change of variable. We apply a similar trick
in the term corresponding to (2)× (3). �

Definition – We say that a function v ∈ t− β
′

2 C
(
(0, T ], Cα(S)

)
has a paracontrolled structure

if
v = L−1M−(v′) + v],

for v′ ∈ t− β
′

2 C
(
(0, T ], Cα(S)

)
and v] ∈ t−

β′
2 +

o(1)
2 C

(
(0, T ], C2α(S)

)
. The sum of the natural

norms of v′ and v] endows the space V of paracontrolled functions with a norm that turns it
into a Banach space.

For v paracontrolled one can rewrite the formal equation (4.2) under the renormalized form
v = L−1

(
M−(v + Fu0)

)
+ L−1

(
M+v + M+Fu0

)
= L−1

(
M−(v + Fu0)

)
+
{

L−1
(
R(M+L−1M−)(v′)

)
+ L−1

(
M+v]

)
+ L−1

(
M+Fu0

)}
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and formulate it as a fixed point equation in the space of paracontrolled v as
v′ = v + Fu0

v] = L−1(M+v) + L−1
(
M+Fu0

)
that is

v′ = L−1M−(v′) + v] + Fu0

v] = L−1
(
R(M+L−1M−)(v′)

)
+ L−1

(
M+v]

)
+ L−1

(
M+Fu0

)
,

or
(v′, v]) =: Φ(v′, v]).

Lemma 21 – The map Φ is a contraction of V for T small enough.

Proof – We use Banach fixed point theorem. The proof is elementary and consists in exploiting
the fact that Φ naturally takes values in a space of functions with smaller explosion exponent;
this allows to gain the contracting factor is small time. We use for that purpose the fact
that ξ has almost surely Hölder regularity arbitrarily close to −1 to gain in the well-defined
terms M−v′ and M+v] a small positive regularity exponent that is turned by L−1 into a small
positive ‘explosion’ exponent as in the proof of Lemma 18. We leave the details to the reader
as all the ingredients have been spelled out above explicitly and that kind of reasoning is now
classical in the litterature on singular stochastic PDEs. �

The continuity of the fixed point as a function of the renormalized operator R(M+L−1M−)

is automatic in a fixed point scheme. This gives the continuous dependence of v on ξ̂ and
concludes the proof of item (1) of Theorem 17. Together with Lemma 19 it shows that if p(r)

stands for the heat kernel of regularized and renormalized operator Hr− ch,r then p(r)− p∆ is
converging to p− p∆ in the appropriate space. As usual with linear equations, one sees that
the lifetime T of the solution does not depend on the initial condition u0. This gives global
in time well-posedness. The proof of item (2) is similar and left to the reader. �

The next statement gives a property of the operator p− p∆ that we will use later.

Corollary 22 – Let A be a continuous linear map from B−ε1,∞(S) into t− β
′

2 C
(
(0, T ], Cα(S)

)
. Then

- the operator A has a well-defined Schwartz kernel A(x, (t, y)) such that

sup
x∈S

sup
0<t≤T

sup
y1 6=y2

t−
β′
2

∣∣A(x, (t, y1))−A(x, (t, y2))
∣∣

|y1 − y2|α
<∞, (4.5)

- for all t > 0 the operator A(t) is trace class in L2(S) and one has

trL2

(
A(t)

)
≤ O

(
t−

β′
2

)
.

Proof – Step 1 - Localization by partition of unity. Choose a finite cover ∪jUj of S where
each open set Uj is diffeomorphic to a ball of R2, and a partition of unity

∑
j χj = 1, with

χj ∈ C∞c (Uj) subordinated to that cover. Consider the decomposition

Af =
∑
j,k

χk
(
A(χjf)

)
=:
∑
j,k

Ajkf.

It suffices to prove that each operator Ajk(t) is trace class on L2 and satisfies the bound (4.5).
We may assume we have maps Φj : Vj ⊂ T2 → Uj = Φj(Vj) ⊂ S that map diffeomorphically
a subset Vj of T2 onto Uj . Set Ψj ∈ C∞c (Vj) be test functions on T2 such that Ψj = 1 on
Φ−1
j (supp(χj)). Define the operator

Bjk(t) = ΨkΦ∗kAjk(t)Φ−1∗
j Ψj : L2(T2) 7→ L2(T2).

This map is well–defined since the map Φ−1∗
j is well–defined on the support of Ψj and for

all functions ϕ ∈ L2(S), the function Ajk(ϕ) has its image supported in supp(χk) hence the
pull-back Φ∗kAjk(t) is always well–defined and is supported in Vk. It suffices to prove that the
operator Bjk(t) defined above is trace class on L2(T2) endowed with the Haar measure of T2
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since the push-forward Riemannian measure from S has smooth density with respect to the
Haar measure on T2 and trace class elements form an ideal in B

(
L2(S), L2(S)

)
. Note that

by boundedness of the pull-back by smooth diffeomorphisms acting on Besov spaces, each
operator Bij maps continuously B−ε1,∞(T2) into t− β

′
2 C
(
(0, T ], Cα(T2)

)
.

Step 2 - Existence of Schwartz kernels as densities. We work with the operators Bjk which
live on the torus and can be identified with compactly supported operators on R2× [0, T ]×R2.
Recall we denote by µ(dx) the Riemannian volume measure. We are looking for a function
Bij(x, (t, y)) such that one has

Bjk(u)(t, y) =

∫
T2

Bjk(x, (t, y))u(x)µ(dx) ∈ t−
β′
2 C
(
(0, T ], Cα(T2)

)
for all u ∈ C∞c (Vj). Let χ : R2 → R be a smooth non-negative function with compact support
whose integral equals 1. Since

us :=

∫
R2

s−2χ
( · − x

s

)
u(x)µ(dx)

converges to u in B−ε1,∞(T2) as s > 0 goes to 0, the following limit exists

Bjk(u)(t, y) = lim
s→0

Bjk(us)(t, y) = lim
s→0

∫
R2

Bjk

(
s−2χ

( · − x
s

))
(t, y)u(x)µ(dx).

Now observe that the family s−2χ( ·−xs ) converges inB−ε1,∞(T2) to δx when s goes to 0, uniformly
in x ∈ Vj . This implies that

lim
s→0

Bjk

(
s−2χ

( · − x
s

))
(t, y)

exists for all (t, y) ∈ (0, T ] × Vj , and the previous quantity is bounded by a constant CK ,
uniformly in (t, y) in any compact subset K of (0, T ]×Vj and x ∈ Vk. Dominated convergence
can then be used and gives

Bjk(u)(t, y) =

∫
R2

lim
s→0

Bjk

(
s−2χ

( · − x
s

))
(t, y)u(x)µ(dx)

for all (t, y) ∈ K. So

Bjk(x, (t, y)) := lim
s→0

Bjk

(
s−2χ

( · − x
s

))
(t, y)

is the Schwartz kernel of Bjk. It is uniformly bounded in (x, y) for each t > 0, and it satisfies

sup
x∈Vk

sup
0<t≤T

sup
(y1,y2)∈V 2

j ,y1 6=y2

t−
β′
2

∣∣Bjk(x, (t, y1))−Bjk(x, (t, y2))
∣∣

|y1 − y2|α
<∞.

Step 3 - Fourier bounds and L2–traces. The trick consists in writing, for ` ∈ Z2,

〈
ei`·, Bjk(t)ei`·

〉
L2 = t−

β′
2 〈`〉α+β

〈
〈`〉αei`· , t

β′
2 Bjk(t)

(
〈`〉εei`·

)〉
L2
, (4.6)

and noting that since the `-indexed family 〈`〉εei`· is bounded in B−ε1,∞(T2) and the family
〈`〉αei`· is bounded in C−α(T2), uniformly in `, the fact that Bjk be a continuous linear map
from B−ε1,∞(T2) into t− β

′
2 C
(
(0, T ], Cα(T2)

)
implies that the big bracket term above is bounded

by a constant independent of `. The bound α+ β > 1 gives a converging sum when summing
(4.6) over ` ∈ Z2, so the operator Bjk(t) has indeed a finite trace, of order t− β

′
2 . �

By taking β′ slightly bigger we can assume without loss of generality that

lim
t→0+

t
β′
2 A(t, ·) = 0.
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4.3 Moment bounds for the heat kernel and spectral gap

The sharp description of the heat kernel of H provided by Theorem 17 has a number of useful
and non-trivial consequences. We first prove moment bounds that will be useful in Section 6 in our
construction of the polymer measure. We prove two sided Gaussian estimates for the heat kernel
of H. Building on the proof of this fact that we give in Proposition 25 we are able to provide in
Theorem 28 an almost sure spectral estimate for H in terms of u0 only under a mild geometric
assumption on the Riemannian manifold. In Theorem 27, we give an estimate on the spectral gap
in terms of isoperimetric constants and the ground state of H which holds true for any Riemannian
surface S.

We start by proving a moment bound on A(t) that is a direct consequence of Corollary 22 and
leads in Proposition 24 to a useful moment bound on e−tH .

Lemma 23 – Let A be a continuous linear operator from B−ε1,∞(S) into t− β
′

2 C
(
(0, T ], Cα(S)

)
such

that limt→0+ t
β′
2 A(t, ·) = 0. Then for all k ≥ 1, for 0 ≤ t ≤ T , the Schwartz kernel A(t, x, y) of A

satisfies the bound

sup
x∈S

∣∣∣∣∫
S
A(x, (t, y)) d(x, y)k dy

∣∣∣∣ . k! t
k
2 +α−β′

2 (4.7)

with an implicit multiplicative constant independent of k.

Proof – We use the previous notations from Corollary 22. Using the fact that the Euclidean
distance function induced by smooth charts and the Riemannian distance function are equiv-
alent, it suffices to prove an estimate of the form

sup
x∈R2

∫
R2

∣∣Bij(x, (t, y))
∣∣|x− y|k dy . k! t

α−β′+k
2 .

Observe that the family of distributions
(
δ(· − x)

)
x∈Vj

is uniformly bounded in B−2ε
1,∞(Vj),

therefore by continuity of Bjk : B−2ε
1,∞(R2) 7→ t−

β′
2 Cη

(
[0, T ], Cα(Vj)

)
, the family of functions

(t, y) ∈ [0, T ]× Vj 7→ t
β′
2 Bjk

(
δ(· − x)

)
(t, y),

is bounded in Cη
(
[0, T ], Cα(Vj)

)
, uniformly in x ∈ Vk, and compactly supported in the variable

y ∈ Vj since Bjk is defined using cut–off functions. From the Hölder regularity and the fact
that t β

′
2 A(t, ·) vanishes at time 0 we deduce that for all λ ∈ (0, 1), we have a scaling bound

sup
t∈(0,T ]

sup
x∈Vk

t
β′
2

∣∣Bjk(x, (t, λ(z − x) + x)
)∣∣ . λα.

From this we deduce by compactness of the supports of Bjk that if one chooses test functions
(ψj , ψk) ∈ C∞c (R2)2 such that ψj , ψk 6 1 are equal to 1 on Vj and Vk respectively then one
has∫

R2

∣∣Bjk(x, (t, y))
∣∣|x− y|k dy = ψj(x)

∫
R2

ψk(y)
∣∣Bjk(x, (t, y))

∣∣|x− y|k µ(dy)

= ψj(x)t

∫
R2

ψk
(√
t(z − x) + x

)∣∣Bjk(x, (t,√t(z − x) + x)
)∣∣|√t(z − x)|k µ(dz)

. t1+ k−β′+α
2

∫
R2

ψk
(√
t(z − x) + x

)
|z − x|k µ(dz) . k! t

k−β′+α
2 ,

from a change of variable. The implicit multiplicative constant in the last inequality depends
on ψk; it can be chosen independent of ψk in (4.7) as only finitely many Bjk are involved in
the decomposition of A in the proof of Lemma 22. �

It is a well-known elementary fact that the heat kernel of the Laplace operator satisfies the
estimate (4.7) with the exponent (α−β′+k)/2 in the upper bound replaced by k/2. The following
Kolmogorov type bound follows as a consequence; it will play an important role in our construction
of the polymer measure in Section 6.1. Recall from Proposition 13 that the heat kernel pt of H is
positive.
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Proposition 24 – For all positive exponents a one has the moment estimate

sup
x∈S

(∫
S
pt(x, y) d(x, y)k µ(dy)

)1/k

. (k!)1/k t
1
2 +ok(1), (4.8)

for an exponent ok(1) that goes to 0 as k goes to +∞.

Bounds of the form (4.8), with 1/2 in place of 1/2 + ok(1), are typical of Gaussian type kernels.
We will use the moment estimate (4.8) below in our study of the polymer measure, in Section 6.
It is not clear from our analysis that pt has a Gaussian bound as it is not clear that operators A
with the properties of Lemma 23 satisfy such bounds. It is possible to prove such bounds. We
emphasize that except from the results of this section, the rough estimate provided by Proposition
24 suffices for all the other results of the present work.

We now give a proof of Gaussian upper and lower bounds for the heat kernel of H..

Proposition 25 – There exists constants m and c that depend only on the ground state u0 of H
such that one has

e−tλ0(ξ̂ )

mct
exp

(
−cd(y, x)2

t

)
≤ p(t, x, y) ≤ mce−tλ0(ξ̂ )

t
exp

(
−d(y, x)2

ct

)
(4.9)

for all 0 < t ≤ 1.

The bound (4.9) gives back the moment estimate(4.8) from Proposition 24. For a positive
regularization parameter r set

Hrf := ∆f + hξrf + ch,rf

with ch,r = − | log r|
4π h2. We justify Proposition 25 by proving an r-uniform similar estimate for the

heat kernel pr(t, x, y) of Hr. The continuity of p− p∆ as a function of ξ̂ in item (i) of Theorem 17
allows us to pass to the limit in the corresponding inequalities for each fixed positive t. For a fixed
positive r we use the idea of conjugating the operator to a simpler operator for which one can use
well-known heat kernel bounds with good control on its parameters as functions of r. The reader
will find in Section 1.1 of [34] more references on works about diffusions with distributional drifts.

Proof – Pick 1 < β < 2. Fix r > 0 and denote by u0,r ‘the’ ground state of Hr, with
associated eigenvalue λ0,r; it is a positive function. It will turn out to be crucial to allow
for a normalization different from the usual unit L2-norm normalization; we will fix this
normalization below. The conjugated operator

Mu−1
0,r

(
Hr − λ0,r

)
Mu0,r

= ∆− 2∇(log u0,r)∇ (4.10)

is known to have a heat kernel with Gaussian lower and upper bounds depending only on the
oscillation osc(u2

0,r) := maxu2
0,r−minu2

0,r of u2
0,r, as this is a conservative perturbation of the

Laplace-Beltrami operator. See e.g. Section 4.3 and Section 6.4 of Stroock’s book [40]. So
there is a continuous positive fonction c(·) of osc(u2

0,r) with c(0) = 1 such that setting

cr := c
(
osc(u2

0,r)
)
, mr :=

maxu0,r

minu0,r
,

one has
e−tλ0,r

mrcrt
exp

(
−crd(y, x)2

t

)
≤ pr(t, x, y) ≤ mrcre

−tλ0,r

t
exp

(
−d(y, x)2

crt

)
(4.11)

for all 0 < t ≤ 1 and x, y ∈ S. We now see that one can take the constants λ0,r,mr and cr
uniform in r ∈ (0, 1]. One gets from Proposition 15 the continuous dependence of λ0,r and
u0,r ∈ C2α−1(S) as functions of r. The bounds (4.9) follow from that continuity and the fact
that the limit u0 is positive. �

It is well-known from Fabes & Stroock work [16] that the above two sided Gaussian bounds are
all we need to prove a parabolic Harnack principle which takes here the following form. Denote by
B(x, ρ) the closed geodesic ball of S of center x and radius ρ.
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Corollary 26 – Pick 0 < k1 < k2 < 1 and k3 ∈ (0, 1). There exists a constant c depending only on
k1, k2, k3 such that for all non-negative (∂t −H) harmonic function u on a domain of (0, 1]×S of
the form [s− ρ, s]×B(x, ρ), one has

u(t, y) ≤ c u(s, x),

for all (t, y) ∈ [s− k2ρ
2, s− k1ρ

2]×B(x, k3ρ).

The conjugation trick used in the proof of Proposition 25 together with a continuity argument
turns out to be useful to give lower bounds on the spectral gap of H that seem to be hard to obtain
otherwise. We do that under two kinds of assumptions, geometric and functional analytic.

• Isoperimetric estimate on the spectral gap. Let ν be a smooth volume measure on S. Given a
subset A of S and κ > 0 denote by A(κ) := {m ∈ S ; d(m,A) ≤ κ} its κ-enlargement and set

σν(∂A) := lim inf
κ↘0

ν(A(κ))− ν(A)

κ
.

The Cheeger constant of the Riemannian manifold (S, g) associated with the smooth volume mea-
sure ν is defined as

C(ν) := inf
A⊂S

σν(∂A)

min
{
ν(A), ν(S\A)

} .
We do not emphasize the dependence on (S, g) in the notation as the manifold S and its Riemannian
structure g are fixed in almost all of this work. Recall we denote by µ the Riemannian volume
measure on S.

Theorem 27 – One has almost surely the following estimate on the spectral gap∣∣λ0(ξ̂ )− λ1(ξ̂ )
∣∣ ≥ C(u2

0µ)2

4
.

This formula gives back in particular the almost sure lower bound
(

minu0

maxu0

)4
C(µ)2

4 for the
spectral gap of H, in terms of the Cheeger constant C(µ) of (S, g); this lower bound is positive.
The constant C(µ) was denoted by C(S, g) in Theorem 2. It is equal to 2/L for a flat torus of size
L.

Proof – Proceeding as in the proof of Proposition 25, we see that it suffices to prove that
the spectral gap λ1(ξ̂r) − λ0(ξ̂r) of the conjugated regularized operator ∆ − 2(∇ log u0,r)∇
is bounded below by C(u2

0,rµ)2/4, for the convergence of u0,r to u0 in C2α−1(S) proved in
Proposition 15 implies that C(u2

0,rµ) is converging to C(u2
0µ) as r goes to 0.

The Cheeger lower bound on λ1(ξ̂r)− λ0(ξ̂r) is classical in Riemannian geometry and we give
a self–contained proof adapted to our context as follows. We use the notation ν0,r for the
volume measure u2

0,rµ. The point is to see that for all smooth functions f ∈ C∞(S), with
median value m0,r(f) with respect to ν0,r, one has∫

S

‖∇f‖ dν0,r > C(ν0,r)

∫
S

∣∣f −m0,r(f)
∣∣ dν0,r. (4.12)

If one takes (4.12) for granted for a moment one can apply this inequality to the function f |f |
where f is rescaled in such a way that it has unit L2(ν0,r)-norm and f−1(0) and (f |f |)−1

(0)
have equal ν0,r-measure ν0,r(S)/2, so f |f | has null median. This yields∫

S

∥∥∇ (f |f |)
∥∥ dν0,r = 2

∫
S
‖f∇f‖ dν0,r > C(ν0,r)

∫
S
|f |2 dν0,r = C(ν0,r),

and we get from Cauchy-Schwartz inequality that
C(ν0,r) ≤ 2‖∇f‖L2(ν0,r).

In the general case if f ∈ C∞(S,R) is such that
∫
S fdν0,r = 0 and

∫
S
f2dν0,r = 1, one can use

the inequality ∫
S

(f + c)2dν0,r =

∫
S

(f2 + c2) dν0,r >
∫
S

f2 dν0,r



23

to possibly add a constant to f and trade the assumption that
∫
S fdν0,r = 0 for the assumption

that f−1(0) cuts S in two pieces of equal ν0,r measure. Applying the above arguments to
f+c

‖f+c‖L2(ν0,r)
yields

C(ν0,r) ≤ 2
‖∇f‖L2(ν0,r)

‖f + c‖L2(ν0,r)
≤ 2
‖∇f‖L2(ν0,r)

‖f‖L2(ν0,r)
.

The representation of the spectral gap of ∆ + 2(∇ log u0,r)∇ as a Rayleigh quotient

λ1(ξ̂r)− λ0(ξ̂r) = inf∫
S f dν0,r=0

∫
S ‖∇f‖

2 dν0,r∫
S |f |2 dν0,r

then makes it clear that
λ1(ξ̂r)− λ0(ξ̂r) ≥

C(ν0,r)
2

4
.

It remains to prove formula (4.12). Recall from the coarea formula that one has∫
S
‖∇f‖ dν0,r =

∫
R
σν0,r

(
{f = t}

)
dt.

From the isoperimetric inequality
σν0,r

(∂A) > C(ν0,r) min
(
ν0,r(A), ν0,r(S \A)

)
we deduce that if 0 is a median of f we have the bounds∫

S
‖∇f‖ dν0,r =

∫
f≤0

|∇f | dν0,r +

∫
f>0

|∇f | dν0,r

=

∫ 0

−∞
σν0,r ({f = t}) dt+

∫ ∞
0

σν0,r ({f = t}) dt

> C(ν0,r)

(∫ 0

−∞
ν0,r({f ≤ t})dt+

∫ ∞
0

ν0,r({f > t}) dt
)

> C(ν0,r)

∫
S
|f | dν0,r

where we used integration by parts for the last step and disintegration of the volume ν0,r along
level sets of f . �

• Log-Sobolev estimate on the spectral gap. Let ν be a non-negative measure on S. Recall that the
ν-entropy of a positive integrable function f such that

∫
S f | log f | dν <∞ is the quantity

Entν(f) :=

∫
S
f log f dν −

(∫
S
f dν

)
log

(∫
S
f dν

)
.

Recall also that we say that a measure ν on S satisfies a log-Sobolev inequality with constant CLS
with respect to the Dirichlet form associated with the Riemannian gradient operator ∇ if

Entν(f2) ≤ 2CLS

∫
S
|∇f |2 dν

for all functions f in the domain of the Dirichlet form. Such an inequality is known to imply
a Poincaré inequality with constant 1/CLS and a corresponding spectral gap. Bakry, Gentil &
Ledoux’s monograph [7] presents a number of geometric conditions ensuring that µ satisfies a
log-Sobolev inequality.

Theorem 28 – Assume that the Riemannian volume form µ satisfies a log-Sobolev inequality with
constant CLS. Then the spectral gap of H satisfies almost surely the lower bound∣∣λ0(ξ̂ )− λ1(ξ̂ )

∣∣ ≥ (minu0

maxu0

)2 (maxu4
0 + maxu−4

0

)−1

2CLS
.

Proof – Fix a regularization parameter r > 0. Denote by mr the spectral gap of Hr in L2(µ)
and by m′r the spectral gap of Hr in L2(u2

0,rµ). Then m′r is equal to the spectral gap of the
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conjugated operator ∆ + 2∇(log u0,r)∇ and

mr ≥ m′r
(

minu0,r

maxu0,r

)2

.

As in the proof of Theorem 27 we recognize in the conjugated operator the Dirichlet form of the
Riemannian gradient operator with respect to the weighted Riemannian volume form u2

0,rµ.
As Holley & Stroock well-known stability argument for log-Sobolev inequality ensures that
the weighted measure u2

0,rµ satisfies, under the assumption of the statement, a log-Sobolev
inequality with constant 2CLS

(
maxu4

0,r + maxu−4
0,r

)
we see that

m′r ≥
(

maxu4
0,r + maxu−4

0,r

)−1

2CLS
.

(See e.g. Proposition 5.1.6 in [7] for a proof of the stability argument.) We thus have the
lower bound ∣∣λ0,r − λ1,r

∣∣ = mr ≥
(

minu0,r

maxu0,r

)2
(

maxu4
0,r + maxu−4

0,r

)−1

2CLS
.

We conclude by using the continuity of the eigenvalues as functions of ξ̂r and the convergence
in L∞(S) of u0,r to u0 – Proposition 15. �

Note that the lower bounds on the spectral gap of H of Theorem 27 and Theorem 28 both
involve only the ground state u0.

4.4 Bounds for the eigenvalues and eigenfunctions of H

The sharp description of pt given by Theorem 17 gives a direct access to quantitative informa-
tions on the spectrum of H and its eigenfunctions. Recall we denote by µ the Riemannian volume
measure.

◦ Pick any t > 0. As e−tH is symmetric non-negative and its continuous kernel pt has finite ‘trace’∫
S
pt(x, x)µ(dx) <∞,

it follows from a well-known fact that e−tH is trace class in L2(S), with trace equal to the previous
integral – see e.g. the Lemma at the bottom of p.64 in [35], Section XI.4. The spectral resolution
of the self-adjoint operator H tells us that one further has

trL2

(
e−tH

)
=

∑
λ∈σ(H)

e−tλ.

As we also have
trL2

(
e−tH

)
= trL2

(
e−t∆

)
+ trL2

(
A(t)

)
,

where A satisfies the assumptions of Lemma 22, we have the asymptotic

trL2

(
e−tH

)
= trL2

(
e−t∆

)
+ trL2

(
A(t)

)
=
µ(S)

4πt
+O

(
t−

β′
2

)
. (4.13)

The following statement was first proved by Mouzard in [31] by using a fine description of the
domain of H and minimax representations for the eigenvalues, based on the link between the
operators H and ∆. This statement follows here from the small time equivalent (4.13) for the heat
kernel by Karamata’s Tauberian Theorem.

Proposition 29 – We have almost surely the equivalent

]
{
λ ∈ σ(H) ; λ ≤ a

}
∼

a,+∞

µ(S)

4π
a. (4.14)

One thus has almost surely the equivalent

λn(ξ̂ ) ∼ λn(0) ∼ 4π

µ(S)
n
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as n goes to ∞, with λn(0) the nth eigenvalue of the Laplace-Beltrami operator ∆. Note that one
cannot get this estimate from the Gaussian upper bound (4.9). We note further that since there
is a random variable c1 such that one has

trL2(e−tH) ≤ c1(ξ̂ )

t
(4.15)

for all 0 < t ≤ 1, and the λk are non-decreasing, we have for all k ≥ 1

ke−λk(ξ̂ )t ≤ c1(ξ̂ )

t
,

so taking t = 1/|λk(ξ̂ )| when this quantity is less than 1 gives the non-asymptotic lower bound∣∣λk(ξ̂ )
∣∣ ≥ e

c1(ξ̂ )
k,

for all eigvenvalues such that |λk(ξ̂ )| ≥ 1. The function

F1(x) := P
(
c1(ξ̂ ) ≥ x

)
has thus the property that

P
(
1 ≤ |λk(ξ̂ )| ≤ a

)
≤ F1

(ek
a

)
for all k ≥ 1 and a ≥ 1. The analysis of the proof of Theorem 17 shows that one can choose c1(ξ̂ )
of the form

c1(ξ̂ ) = ec‖ξ̂‖,

for a positive constant c, and

ξ̂ ∈
(
hξ,R

{
Π(Xh, hξ)

})
∈ Cα

′−2(S)× C2α′−2(S).

As we know that ξ has a Gaussian tail and R
{

Π(Xh, hξ)
}

has an exponential tail – see e.g.
Proposition 2.2 in [31], there exists a positive constant b such that

F1(x) .
1

xb
.

We record these facts as a statement.

Proposition 30 – One has
P
(
1 ≤ |λk(ξ̂ )| ≤ a

)
.
(a
k

)b
for all k ≥ 1 and a ≥ 1.

This kind of statement is somewhat ‘orthogonal’ to the exponential tail bounds from Allez &
Chouk [1] and Labbé [29]; they take here the form

e−b1(k)a . P
(
λk(ξ̂ ) < −a

)
. e−b2(k)a (4.16)

when a > ak is large, for some positive constants b1(k), b2(k) on which we have relatively poor con-
trol as functions of k. We also infer from the bound (4.15) that if nk(ξ̂ ) stands for the multiplicity
of the eigenvalue λk(ξ̂ ) then one has

nk(ξ̂ ) ≤ e c1(ξ̂ )
∣∣λk(ξ̂ )

∣∣
for all eigenvalues for which |λk(ξ̂ )| ≥ 1. The following elementary bound

nk(ξ̂ ) ≤ c1(ξ̂ ) eλk(ξ̂ )

can be interesting for negative eigenvalues. Since n0(ξ̂ ) = 1 we infer from that bound that

λ0(ξ̂ ) ≥ − ln c1(ξ̂ ) & −‖ξ̂‖.
(This lower bound is consistent with what one can infer from (3.6) and (3.7).) We recover from
the integrability properties of ‖ξ̂‖ the upper bound of (4.16) for λ0(ξ̂). We conjecture that H has
almost surely a simple spectrum.
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The zeta function ζH(s) of H is defined by the formula

ζH(s) :=
∑

λ∈σ(H)

|λ|−s.

It follows from Weyl law that it defines an analytic function of s on the open half space {Re(s) > 1}.
One has in that domain

ζH(s) =
∑

λ∈σ(H)∩(−∞,0)

(
|λ|−s − 1

Γ(s)

∫ 1

0

e−rλrs−1 dr

)
+

1

Γ(s)

∫ 1

0

trL2(e−rH) rs−1 dr

+
∑

λ∈σ(H)∩(0,∞)

1

Γ(s)

∫ ∞
1

e−rλrs−1 dr.

=: (1) + (2) + (3).

As the set σ(H)∩ (−∞, 0) is (almost surely) finite, the sum (1) defines an entire function of s ∈ C.
So does the sum (3), as min{λ ; λ ∈ σ(H) ∩ (0,∞)} > 0. As for the term (2) we know from the
trace asymptotic (4.13) that

1

Γ(s)

∫ 1

0

trL2(e−rH) rs−1 dr =
1

Γ(s)

{
µ(S)

4π(s− 1)
+

∫ 1

0

O
(
r−

1
2−δ
)
rs
dr

r

}
.

Proposition 31 – The function ζH(·) is a well-defined meromorphic function on the half-plane{
Re(s) > 1/2

}
.

The Duhamel formula tells us that

pt = p∆
t +

∫ t

0

p∆
t−sMξ p

∆
s ds+

∫
0≤s2≤s1≤t

p∆
t−s1Mξp

∆
s1−s2Mξ ps2 ds2ds1.

A dimensional analysis of the first integral on the right hand side tells us that it behaves as t−1/2

as t goes to 0, up to log corrections. (The distribution of this centered Gaussian random variable
Λt satisfies for all test functions ϕ the identity E

[
Λt(ϕ)2

]
= t−1`(ϕ) for an explicit function `(·)

of ϕ.) The second integral on the other hand behaves almost surely as t0− . It follows that our
meromorphic extension of ζH to the half-plane {Re(s) > 1/2} is sharp. It is possible to prove
that E

[
ζH(s)

]
has a meromorphic extension to all of C. We do not give here a proof of that fairly

non-trivial result.

◦ Recall (un)n≥0 stands for the orthonormal basis of L2(S) made up of eigenvectors of H, with
corresponding eigenvalues in non-decreasing order. Recall also that the constants α, α′, β, β′ were
chosen at the beginning of Section 4.2 before Theorem 17 so that 0 < α < α′ < 1, there is ε > 0
such that α+ ε > 1, β satisfy (α′−2) +β > 0 and β′ := β+ 2ε+ 2η, for a (small) positive constant
0 < η < α′−α

2 .

Theorem 32 – One has for all n ≥ 0 such that |λn(ξ̂)| ≥ 1 the n-uniform estimate

‖un‖C2α−1 .
∣∣λn(ξ̂)

∣∣ β′2 , (4.17)
and for p ≥ 2

‖un‖Lp .
∣∣λn(ξ̂)

∣∣( 1
2−

1
p )β′

. (4.18)

The optimal L∞ bound for the Laplacian eigenfunctions involves an exponent 1/2, so (4.17) is
not far from being optimal as β′ can be chosen arbitrarily close to 1. A similar form of Lp bound
(4.18) for the eigenfunctions of H, for 2 < p <∞, was previously proved by Mouzard & Zacchuber
in [32] as an application of their Strichartz estimates for the Anderson operator. Hölder estimates
of the type (4.17) cannot be proved by their method.

Our proof of Theorem 32 is amazingly simple.
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Proof – As one knows from the qualitative Proposition 13 that each map e−tH sends contin-
uously L2(S) into C2α−1(S) one has

e−1‖un‖C2a−1 =
∥∥e− 1

λn(ξ̂)
H
un
∥∥
C2a−1 ≤

∥∥e− 1

λn(ξ̂)
H∥∥
B(L2,C2a−1)

.

Now it is classical and elementary that one has for all κ > 0 and all t > 0 the continuity
estimate ∥∥e−t∆f∥∥

C2a−1 .κ t
1
2−a−κ|f |L2 .

Denote by At the operator associated with the kernel pt − p∆
t . One knows from the proof of

item (i) of Theorem 17 that At ∈ B
(
L2(S), Ca(S)

)
has norm bounded above by a constant

multiple of t−β′/2, as L2(S) is continuously embedded in B−ε1,∞(S). Taking κ small and using
that 2α− 1 ≤ α we obtain the estimate∥∥e− 1

λn(ξ̂)
H∥∥
B(L2,C2a−1)

≤ |λn|
β′
2 + |λn|κ+α− 1

2 . |λn|
β′
2 .

The Lp(S) bound follows from the L∞(S) bound (4.17) by interpolation. �

Corollary 33 – The heat semigroup (e−tH)t>0 is hypercontractive.

Proof – It suffices to notice that for any 2 < p one has from Theorem 32∥∥e−t(H−λ0(ξ̂ ))f
∥∥
Lp

. ‖f‖L2

∑
n≥0

e−t(λn(ξ̂ )−λ0(ξ̂ ))|λn|
β′
2 −

1
p ≤ C1(t)‖f‖L2

for any positive time t, for a finite positive constant C1, from Weyl estimate. This is known to
entail that the semigroup satisfies a log-Sobolev inequality with constants 2pt

p−2 and 2p logC1(t)
p−2

– see e.g. Theorem 5.2.5 in [7], from which the full hypercontractivity property follows. �

The proof of Theorem 32 is tailor made to get estimates on eigenfunctions. We use item (ii) of
Theorem 17 to obtain estimates on eigen clusters or quasimodes in Hα(S) rather than in a Hölder
space. Recall the exponents 0 < α < α′ < 1 are fixed as in the beginning of Section 4.2; think of
them as 1−. Given a ∈ R denote by

π≤a : L2(S)→ L2(S)

the spectral projector
π≤a(f) :=

∑
λn≤a

(f, un)un,

with (f, un) standing for the L2 scalar product of f and un.

Theorem 34 – One has for all a ∈ R+ and all f ∈ L2(S) the upper bound

‖π≤a(f)‖Hα . a
1
2 ‖f‖L2 , (4.19)

and all 2 ≤ p <∞
‖π≤a(f)‖Lp . a( 1

2−
1
p ) 1
α ‖f‖L2 . (4.20)

The Lp bound is a direct consequence of the Hα(S) bound. The Hα(S) estimate (4.19) is
new and seems out of reach of the methods of [32]. The estimate (4.20) improves much on the
corresponding estimate from [32] on the eigenfunction cluster

∑
λn∈[a,a+1](f, un)un. Mouzard &

Zachhuber’s estimate involves an exponent 1 − 1/p rather than 1/2 − 1/p. In any case, it is
expected that one could prove sharper Lp bounds if one could control the small time behaviour
of a parametrix of the wave operator associated to H. In the case of the Laplace operator ∆ this
gives sharp exponents 1/2− 2/p, for p ≥ 6, for the Lp size of the eigenfunctions of ∆. This loss in
the exponent is reminiscent of the corresponding loss of regularity in the Strichartz inequality on
a compact manifold proved first by Burq, Gérard & Tzvetkov in [9] and Staffilani & Tataru [39].

Proof – The technical heart of the argument is given by item (2) of Theorem 17. Pick c >

|λ0(ξ̂ )| so that H+c is positive. We prove in a quantitative way that the Sobolev norm of finite
linear combinations u =

∑N
n=0 cnun of eigenfunctions of H is equivalent to some seminorm

defined in terms of the positive operator H + c. Since the operator H + c : D(H) ⊂ L2(S) 7→
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L2(S) is positive and self-adjoint the functional calculus gives the representation

(H + c)
−α

=
1

Γ(α)

∫ 1

0

tα−1
(
e−t(∆+c) + e−tcA(t)

)
dt+

1

Γ(α)

∫ ∞
1

tα−1e−t(H+c) dt, (4.21)

where the identity holds, at first, in the sense of bounded operators from L2(S) into itself. We
next show that the previous equality allows to extend the action of (H + c)

−α to ∆αu for u
a finite linear combination of eigenfunctions. In fact, we both make sense of (H + c)

−α
∆αu

and prove some bound of the form∥∥ (H + c)
−α

∆αu
∥∥
L2 . ‖u‖L2 .

• For the integral over [1,∞) we use that

e−tH = e−
1
2He−(t− 1

2 )H .

It follows from item (2) of Theorem 17 and α < α′ that e− 1
2 (H+c)(∆ + 1)αu is well–defined

and satisfies some bound of the form∥∥e− 1
2 (H+c)(∆ + 1)αu

∥∥
L2 6 C‖u‖L2

for a positive constant C independent of u. As∥∥e−(t− 1
2 )(H+c)

∥∥
B(L2,L2)

. e−(t− 1
2 )(m−λ0(ξ̂ ))

we see that (∆ + 1)α 1
Γ(α)

∫∞
1
e−t(H+c)tα−1u is well–defined and we have

‖ 1

Γ(α)

∫ ∞
1

e−t(H+c)tα−1(∆ + 1)αudt‖L2 . ‖u‖L2

∫ ∞
1

tα−1e−(t− 1
2 )(c+λ0(ξ̂ )) dt,

with a finite integral
• For the integral over (0, 1] note first that

1

Γ(α)

∫ 1

0

tα−1e−t(∆+c1) dt = (∆ + c)−α − 1

Γ(α)

∫ ∞
1

tα−1e−t(∆+c) dt,

where the second integral converges absolutely again by the spectral gap argument, and is
smoothing since we deal with the usual heat kernel. So one has

‖
∫ 1

0

tα−1e−t(∆+c)(∆ + 1)αu dt‖L2 . ‖u‖L2 + ‖
∫ ∞

1

e−t(∆+c)(∆ + 1)αu dt‖L2 . ‖u‖L2 .

We use the continuity property of the map A : H−2α′(S) 7→ t−α
′
C((0, T ], Hα(S)) to write

‖
∫ 1

0

tα−1e−tcA(t)(∆ + 1)αu dt‖L2 . ‖u‖L2

∫ 1

0

tα−α
′
dt <∞,

as 0 < α < α′ < 1. This shows that one has indeed
∥∥ (H + c)

−α
∆αu

∥∥
L2 . ‖u‖L2 .

We conclude the proof of Theorem 34 with the identity〈
∆αu, u

〉
L2 =

〈
(H + c)α (H + c)

−α
∆αu, u

〉
L2

=
〈

(H + c)
−α

∆αu, (H + c)αu
〉
L2

6
∥∥ (H + c)

−α
∆αu

∥∥
L2

∥∥(H + c)αu
∥∥
L2 .

The term ‖(H + c)αu‖L2 is finite since the quasimode u is in the domain of H. It is further
of size O(aα) for u ∈ π≤a(L2(S)), which gives the conclusion. �

5 – Anderson Gaussian free field

We fix throughout this section a random variable
c = c(ω) >

∣∣λ0(ξ̂ )
∣∣,

with ω ∈ Ω the probability space on which the space white noise ξ is defined. The operator H + c
is thus positive and one defines a distribution valued Gaussian field with covariance (H+c)−1. We



29

call it the Anderson Gaussian free field. It is denoted by φ and defined by the formula

φ :=
∑
n≥0

γn
(
λn(ξ̂ ) + c

)−1/2
un, (5.1)

where the γn are independent, identically distributed, real-valued random variables with law
N (0, 1), defined on a probability space Ω′ with expectation operator E. This random variable
has thus two independent layers of randomness, one coming from H, that is ξ, and the other
coming from the γn. A notation emphasizing that fact would be

φ(ω, ω′) =
∑
n≥0

γn(ω′)
un(ω)(

λn(ω) + c(ω)
)1/2 ,

for two chances elements (ω, ω′) in the product space Ω×Ω′. The environment, or chance element
ω, is fixed from now on until Corollary 38. We do not keep track of the dependence on c in the
notation for φ. We start by giving an almost sure regularity estimate for the Anderson Gaussian
free field. As the classical Gaussian free field in dimension 2 it turns out to have regularity 0−.
Then we construct the Wick square of φ in Theorem 37 and prove in Theorem 38 that the law of
the spectrum of H is encoded in the law of the random partition function of the Wick square of φ.

We first show that the random field φ is (ω, ω′) almost surely essentially 0− regular. Recall one
can think of α′ < 1 as arbitrarily close to 1.

Theorem 35 – The Anderson Gaussian free field is almost surely in H−ν(S), for every ν > 1−α′.

Proof – Use the fact that the L2-trace does not depend on the choice of an orthonormal basis
of L2(S) to write

E
[∥∥ (∆ + 1)

− ν2 φ
∥∥2

L2

]
=
∑
n≥0

1

λn + c

〈
un, (∆ + 1)−νun

〉
L2

=
∑
n≥0

1

λn + c
‖un‖2H−ν/2

= tr
(
(∆ + 1)−ν(H + c)−1

)
.

We check that the operator (∆ + 1)−ν(H + c)−1 is trace class. The decomposition

(H + c)−1 = (∆ + c)−1 +

∫ 1

0

e−tcA(t) dt+

∫ ∞
1

(
e−t(H+c) − e−t(∆+c)

)
dt

and the properties of A(t) proved in item (1) of Theorem 17 ensure that the kernel K of the
operator (∆ + 1)−ν(H + c)−1 is continuous and such that∫

S
K(x, x) dx <∞.

It remains to prove that the Schwartz kernel K is nonnegative. Note that the Schwartz kernel
of (H + c)

−1 is positive since it is defined by the convergent integral
∫∞

0
e−t(H+c)dt where

e−t(H+c) has nonnegative kernel and that (∆ + 1)−ν also has a nonnegative kernel by the
Hadamard–Schwinger–Fock formula 1

Γ(ν)

∫∞
0
e−t(∆+1)tν−1dt where Γ(ν) > 0 and again the

heat kernel e−t(∆+1) is positive. Therefore the composite Schwartz kernel K is also nonneg-
ative. It follows then that the operator (∆ + 1)−ν(H + c)−1 is trace class, with trace equal
to
∫
S K(x, x) dx by the Lemma at the bottom of p.65 in [35], Section XI.4, for a proof of this

well-known fact. �

The above statement gives both the well-defined character of φ and its regularity. The usual
proof of this result for the Gaussian free field uses the fact that the operator (∆ + 1)−1 increases
regularity by 2, so one can use the fact that operators that increase regularity by 2+ in the Sobolev
scale are trace class. We cannot resort to that mechanism here as (H + c)−1 only sends L2(S) into
Hα(S), so the usual reasoning only gives regularity −1− for φ. As α′ < 1 can be chosen arbitrarily
close to 1 we see that φ is almost surely in all the spaces H−ν(S), for ν > 0.

We note from the fact that the operator H is not conformally invariant (in law) that one cannot
expect the random field φ to be conformally invariant.
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The Cameron-Martin space of the Gaussian law of φ is the Hilbert space

CM :=

{
ha :=

∑
n≥0

an
(λ+ c)1/2

un ; a ∈ `2(N)

}
,

with norm
‖ha‖CM := ‖a‖`2 .

For s ∈ (0, 1) define the operator (H + c)s by its spectral action and the operator (H + c)−s on
L2(S) by functional calculus

(H + c)−s =
1

Γ( s−1
2 )

∫ ∞
0

e−t(H+c)ts−1 ds.

As one has ∥∥(H + c)sha
∥∥2

L2 =
∑
n≥0

a2
n

λ1−2s
n

<∞

for all 0 < s < 1/2, one has the continuous inclusion
CM ⊂ (H + c)−s

(
L2(S)

)
.

It follows from item (1) of Theorem 17 and real interpolation that the maps
e−t(H+c) : L2(S)→ Hν(S)

have norms bounded above by t−(νβ′)/2, for 0 < t ≤ 1. By decomposing the integral giving
(H + c)−s into an integral over (0, 1] and an integral over (1,∞), and using in the analysis of this
second integral the same regularizing effect of e− 1

2 (H+c) as in the proof Theorem 34, one sees that
(H + c)−s sends L2(S) into Hν+

(S), for all ν+ < 1
β′ . So we have the continuous inclusion

CM ⊂ Hν+

(S), (5.2)
with ν < ν+. (The inequality ν > 1−α′ places no real constraint on ν+ since β′ is close to 1 while
(1− α′) is close to 0.)

We prove below that the Wick square :φ2 : of φ can be defined as a random element of H−2ν(S).
Its distribution depends on the enhanced noise ξ̂ since H does, so it is random. Theorem 37 below
shows that the law of the spectrum of H is characterized by the law of the distribution of the
random law of : φ2 :. We need an intermediate result before stating and proving it. We choose
below the letter ‘G’ for ‘Green function’.

Lemma 36 – The operator (H + c)−1 has a Schwartz kernel G(x, y) that is continuous outside
the diagonal and such that

G(x, y) .
∣∣log d(x, y)

∣∣,
for an implicit constant independent of x, y ∈ S.

Proof – The proof is a direct application of the integral representation (4.21) of (H + c)−1, of
the fact that t−α

′
2 is integrable on (0, 1], and of the fact that the Green function of ∆ + 1 has

an upper bound of the form log d(x, y). �

For n ≥ 2, set

an :=

∫ n∏
i=1

G(xi, xi+1) dx1 . . . dxn,

with the convention that xn+1 = x1 in the integral. Lemma 36 ensures that all the an are well-
defined, for n ≥ 2. One has actually, for n ≥ 2,

an = trL2

(
(H + c)−n

)
.

Here again it is not the (poor) regularizing property of (H + c)−1 that ensures that (H + c)−n is
trace class but rather Weyl estimates, Corollary 29. The quantity an is purely spectral as we have
from Lidskii’s theorem

an =
∑
k≥0

(
λk(ξ̂ ) + c

)−n
. (5.3)
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Given a positive regularization parameter r denote by
φr = e−r∆(φ)

the heat regularized Anderson Gaussian free field. We define the regularized Wick square : φ2
r : of

φr setting
:φ2
r : := φ2

r − E
[
φ2
r

]
.

(Recall the enhanced noise ξ̂ is fixed and E stands for the expectation operator on the probability
space where the γn are defined.) It will be crucial in the proof of the next statement that while
(H+ c)−1 is not trace class, the Weyl law stated in Corollary 29 ensures that (H+ c)−1 is Hilbert-
Schmidt.

Theorem 37 – The regularized Wick square :φ2
r : of Anderson Gaussian free field converges in law

as r goes to 0, as a random variable on Ω′ with values in H−2ν(S), to a limit random variable
denoted by :φ2 : and such that one has for all λ ∈ C sufficiently small

Z(λ) := E
[
e−λ:φ2:(1)

]
= det2

(
Id + λ(H + c)−1

)−1/2

= exp

∑
n≥2

(−λ)nan
2n

 .

This function of λ has an analytic extension to all of C.

Proof – We first take care of the probabilistic convergence of : φ2
r : before looking at the

partition function.
• Fix a large integer p. We first prove the convergence in L2(Ω′,E) of : φ2

r : as a random
variable with values in B−2ν

2p,2p; we conclude with Besov embedding and the fact that ν > 1−α′
can actually be chosen arbitrarily close to 1− α′.
For 0 < r1, r2 ≤ 1 hypercontractivity ensures that we have

E
[
‖ :φ2

r1 : − :φ2
r2 : ‖2p

B−2ν
2p,2p

]
.
∑
j≥−1

22pj(−2ν)

(∫
S

E
[
Pj
(

:φ2
r1 : − :φ2

r2 :
)
(x)2

]
dx

)p
,

so it suffices to see that one has an x-uniform bound
E
[
Pj
(

:φ2
r1 : − :φ2

r2 :
)
(x)2

]
= or1,r2(1), (5.4)

as r1 and r2 go to 0. Using the definition of Littlewood–Paley blocks from the Appendix B,
we get

E
[
Pj
(

:φ2
r1 : − :φ2

r2 :
)
(x)2

]
=

∫
S×S

{
2
(
e−r1∆(H + c)−1e−r1∆(z1, z2)

)2
+ 2
(
e−r2∆(H + c)−1e−r2∆(z1, z2)

)2
− 2
(
e−r1∆(H + c)−1e−r2∆(z1, z2)

)2 − 2
(
e−r2∆(H + c)−1e−r1∆(z1, z2)

)2}
× Pj(x, z1)Pj(x, z2) dz1dz2.

We first start from the decomposition

e−r1∆(H + c)−1e−r2∆(x, y) = e−r1∆

(∫ 1

0

e−t(H+c)dt

)
e−r2∆ + e−r1∆

(∫ ∞
1

e−t(H+c)dt

)
e−r2∆.

Writing ∫ ∞
1

e−t(H+c)dt = e−
1
4 (H+c)

(∫ ∞
1

e−(t− 1
2 )(H+c)dt

)
e−

1
4 (H+c)

with
e−(t− 1

2 )(H+c) : L2(S) 7→ L2(S)

with operator norm bounded by e−(t− 1
2 )k for k > 0, we see that∫ ∞

1

e−(t− 1
2 )(H+c)dt = OB(L2,L2)(1).

Since the operator e− 1
4 (H+c) has continuous positive kernel the map
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x ∈ S 7→ e−
1
4 (H+c)(x, .) ∈ L2(S)

is continuous therefore we deduce that the composite operator

e−
1
4 (H+c)

(∫ ∞
1

e−(t− 1
2 )(H+c)dt

)
e−

1
4 (H+c)

has continuous Schwartz kernel. This means that one has the convergence

e−r1∆

(∫ ∞
1

e−t(H+c)dt

)
e−r2∆ −→

r1,r2→0

∫ ∞
1

e−t(H+c)dt ∈ C0(S × S).

Consider now the term
∫ 1

0
e−t(H+c) dt which decomposes as∫ 1

0

e−t(H+c) dt =

∫ 1

0

(
e−t(∆+c) +A(t)e−tc

)
dt.

Since A(t, x, y) = O
(
t−

β′
2

)
the function

∫ 1

0
A(t)e−tcdt ∈ C0(S×S) converges with a continuous

kernel and

e−r1∆

(∫ 1

0

A(t)e−tcdt

)
e−r2∆ −→

r1,r2→0

∫ 1

0

A(t)e−tcdt ∈ C0(S × S).

It remains to observe that since the only ‘singular’ term in

Br1,r2(z1, z2) := 2
(
e−r1∆(H + c)−1e−r1∆(z1, z2)

)2
+ 2
(
e−r2∆(H + c)−1e−r2∆(z1, z2)

)2
− 2
(
e−r1∆(H + c)−1e−r2∆(z1, z2)

)2 − 2
(
e−r2∆(H + c)−1e−r1∆(z1, z2)

)2
is of the form

∫ 1

0
e−(t+r1+r2)∆(z1, z2)dt, we have the convergence

lim
r1,r2→0

Br1,r2(z1, z2) = 0

in C0(S × S). We recall in identity (B.3) of Appendix B that the kernels Pj satisfy identities
of the form

Pj(x, y) = 2j(
d
2−1)Kj(x, 2

j
2 (x− y))

in well-chosen charts U × U , where Kj is a bounded family of smooth functions. It follows
that one has∣∣∣∣∫

U×U
Br1,r2(z1, z2)Pj(x, z1)Pj(x, z2)d2z1d

2z2

∣∣∣∣ ≤ C2−2j‖Br1,r2‖C0(S×S) −→
r1,r2→0

0

where a positive constant C independent of j, r1, r2. This concludes the proof of the bound
(5.4).

• Define the joint variable
X(φ) :=

(
φ, :φ2 :

)
∈ H−ν(S)×H−2ν(S),

and equip the product space H−ν(S)×H−2ν(S) with the norm

L(a, b)M := ‖a‖H−ν + ‖b‖1/2H−2ν .

We consider X as a measurable function of φ. The Cameron-Martin embedding (5.2) implies
that almost surely one has for all h ∈ CM

X(φ+ h) = X(φ) + 2hφ+ h2,

with a well-defined product hφ since ν+ − ν > 0. The function LX(·)M satisfies then φ-almost
surely the estimate

LX(φ)M . LX(φ− h)M + ‖h‖CM (5.5)
for all h ∈ CM, for an absolute implicit multiplicative constant in the inequality. One then
gets from Friz & Oberhauser generalized Fernique’s theorem [18] that the random variable
LX(φ)M has a Gaussian tail. The random variable exp

(
−λ :φ2 :(1)

)
is thus integrable for λ ∈ C

small enough.
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If one defines similarly
Xr(φ) :=

(
φr, :φ

2
r :
)
∈ H−ν(S)×H−2ν(S),

then he function LXr(·)M also satisfies the estimate

LXr(φ)M . LXr(φ− h)M + ‖h‖CM
with the same implicit constant as in (5.5). The conclusion of Fernique’s generalized theorem
is actually quantitative and can be written in terms of the erf function

erf(z) = 1− erf(z) =
1√
2π

∫ ∞
z

e−a
2/2da.

If one sets

µa,r := P
(
LXr(φ)M ≤ a

)
, a′r := erf−1(µa,r),

for a fixed a > 0 such that 0 < µa,r < 1, then

P
(
LXr(φ)M > m

)
,≤ erf(a′r + σm),

for a positive constant σ that depends only on a and the implicit constant in (5.5). As LXr(·)M
is converging in L2(Ω′,E) to LX(·)M one can choose a constant a such that P

(
LX(·)M ≤ a

)
is

also in (0, 1). It is thus possible to find an a′ such that one has
sup

0<r≤1
P
(
LXr(φ)M > m

)
≤ erf(a′ + σm).

It follows from that estimate that the family of random variables exp
(
−λ :φ2

r :(1)
)
, for 0 <

r ≤ 1 and λ in a small ball of C, is uniformly integrable; so it converges in L1(Ω′,E) to
exp
(
−λ :φ2 :(1)

)
.

• Denote by ‖ · ‖HS the Hilbert-Schmidt norm. One knows from Proposition 9.3.1 in Glimm
& Jaffe’s book [19] and the elementary properties of the Gohberg-Krein det2 determinant on
the space of Hilbert-Schmidt operators that one has the equality of analytic functions

E
[
exp
(
−λ :φ2

r :(1)
)]

= det2

(
Id + λe−2r∆(H + c)−1

)−1/2

(5.6)

on the disc |λ| < ‖e−2r∆H−1‖HS of the complex plane. For r > 0 fixed the analytic contin-
uation property of the Gohberg-Krein determinant tells us that both sides of the equation
extend as a meromorphic function over all of C.

We see the convergence of e−2r∆(H + c)−1 to (H + c)−1 in the space of Hilbert-Schmidt
operators by noting first that the operators (H+ c)−1e−s∆(H+ c)−1 are indeed trace class for
all s ∈ [0, 1] as they are symmetric non-negative and their kernels Ks(x, y) satisfy the estimate∫

S
Ks(x, x) dx <∞

uniformly in s ∈ [0, 1], from the log estimate on G in Lemma 36. As in the proof of Theorem
35, it follows that

trL2

(
(H + c)−1

(
e−2r∆ − 1

)(
e−2r∆ − 1

)
(H + c)−1

)
= trL2

(
(H + c)−1e−4r∆H−1

)
− 2 trL2

(
H−1e−2r∆(H + c)−1

)
+ trL2

(
(H + c)−2

)
=

∫
S
G(x, y) p∆

4r(y, z)G(z, x) dzdydx− 2

∫
S
G(x, y) p∆

2r(y, z)G(z, x) dzdydx+

∫
S
G(x, y)2 dx

is converging to 0.

The continuity of the det2 function on the ideal of Hilbert-Schmidt operators on L2(S) implies
then the equality

E
[
exp
(
−λ :φ2 :(1)

)]
= lim

r,0
E
[
exp
(
−λ :φ2

r :(1)
)]

= det2

(
Id + λ(H + c)−1

)−1/2

.
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Since the analytic continuation to all of C of the locally defined function λ 7→ det2

(
Id+λ(H+

c)−1
)

has its zero set equal to
{
− z−1 ; z ∈ σ((H + c)−1)

}
we see that the partition function

Z(·) determines the spectrum of H + c, hence the spectrum of H. The formula involving the
an comes from identity (5.6) and the general identity

det2(1 + λA) = exp

−∑
n≥2

(−λ)n

n
tr(An)

 ,

valid for any Hilbert-Schmidt operator A on L2(S). �

The proof of Theorem 37 actually tells us that for every non-negative function f in B
1/p
p,∞(S)

with 1/p < 2ν, one has the formula

Z(f) := E
[
e−:φ2:(f)

]
= det2

(
Id +Mf1/2(H + c)−1Mf1/2

)−1/2

. (5.7)

Indicators of subsets of S with finite perimeter are elements of the spaces B1/p
p,∞(S) with 1/p < 2ν

– see e.g. Theorem 2 in Sickel’s survey [36]. We emphasize here that the real valued quantities
Z(λ) and cn are random and their law depend on the Riemannian metric space (S, g) by writing
Z(λ)(S, g) and cn(S, g). The next statement gives a characterization of the law of the spectrum of
H, a function of (S, g), in terms of the law of the cn(S, g). Write here H(S, g) to emphasize this
dependence.

Corollary 38 – Let (S1, g1) and (S2, g2) be two Riemannian closed surfaces. Then the spectra
of the operators H(S1, g1) and H(S2, g2) have the same law iff the sequences

(
cn(S1, g1)

)
n≥2

and(
cn(S2, g2)

)
n≥2

have the same law.

Either condition is equivalent to the fact that the functions Z(·)(S1, g1) and Z(·)(S2, g2) have
the same law.

Proof – Use Skorohod representation theorem to turn equality in law into almost sure equality
on a different probability space.
If the two sequences

(
cn(S1, g1)

)
n≥2

and
(
cn(S2, g2)

)
n≥2

are equal the two functions Z(·)(S1, g1)

and Z(·)(S2, g2) are equal, and the functions det2

(
1+λH(S1, g1)

)
and det2

(
1+λH(S2, g2)

)
of

λ coincide on a small disk, hence on all of C. Given the relation between the zero set of these
functions and the spectrum of the operators H(S1, g1) and H(S2, g2) these spectra need to
coincide. The function Z is determined by the spectrum of H since the an have that property
from (5.3). �

Corollary 38 somehow says that the law of the partition function of :φ2 : determines the law of
the spectrum of H.

6 – The polymer measure

The polymer measure describes the evolution of a Brownian particle in a white noise environ-
ment. Section 6.1 is dedicated to the construction of the polymer measure and the proof of some
of its properties. We relate in Section 6.2 the occupation measure of a Poisson point process of
polymer loops with the Wick square of the Anderson Gaussian free field. We prove Theorem 5 in
Section 6.3; it provides large deviation results for the polymer measure and its bridges.

The polymer measure on path space over the 2-dimensional torus was first constructed by
Cannizzaro & Chouk in [10]. Their approach consists in building the polymer measure on a time
interval [0, T ] as the law of the solution to a stochastic differential equation of the form

dXt = ∇h(T − t,Xt) dt+ dBt

with B a Brownian motion and h a solution of a KPZ-type singular stochastic partial differential
equation

(∂t −∆)h = |∇h|2 + ξ
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with space white noise ξ. Note that the drift in the dynamics of X needs to be a time-dependent
distribution. They develop a paracontrolled approach to the study of such (partial or stochastic)
equations in the setting of a 2 or 3 dimensional torus. They further proved that the law of the
polymer measure is singular with respect to the law of Brownian motion; we get back that property
in our setting in Proposition 40. One can find in [28] variations of the approach by Cannizzaro &
Chouk – and much more.

We work throughout this section with a coupling function h identically equals to 1.

6.1 Construction and properties of the polymer measure

We construct the polymer measure in Section 6.1.1 from the semigroup e−t(H−λ0(ξ̂ )) and provide
a conditional spectral gap estimate for H. We show in Section 6.1.2 that the polymer diffusion has
a deterministic quadratic variation process and reprove in Section 6.1.3 that the polymer measure
is singular with respect to Wiener measure.

6.1.1 – Construction of the polymer measure. We construct the polymer measure as the law of the
time homogeneous Markov process with generator H − λ0(ξ̂ ). Shifting H by λ0(ξ̂ ) will produce
probability measures on path space and will be more convenient than working with time dependent
measures. This makes no essential difference as long as we work on a finite time interval. It follows
from the ‘scaling’ bound (4.8) on the heat kernel of H and Kolmogorov regularity criterion that
this random process (has a modification that) takes values in the space of γ-Hölder paths, for any
γ < 1/2. We denote by Qx the polymer measure on Cγ([0, T ],S), for 0 < γ < 1/2, corresponding
to an initial starting point x for the (doubly) random process. It is a random measure that depends
on the enhancement ξ̂ of the white noise ξ used in the definition of Anderson operator and its heat
kernel. We call the random process associated with the polymer measure the polymer diffusion.
When working on the infinite time interval [0,∞) the family of probability (Qx)x∈S turns the
canonical coordinate process Xt : ω 7→ ωt into a Markov process that enjoys the strong Markov
property. All the elements in the domain D(H) of H are in the domain of the generator of the
Markov process. It follows in particular from Dynkin’s formula that if u stands for an eigenfunction
of H with eigenvalue λ then the process

e(λ−λ0(ξ̂ ))tu(Xt) (6.1)
is a martingale – with respect to the universal completion of the canonical filtration, under any
probability measure Qx. This elementary fact has the following non-trivial consequence on the
spectral gap of H when S has small volume. Recall from Proposition 25 the almost sure estimate

1

mct
exp

(
−cd(y, x)2

t

)
≤ p(t, x, y) ≤ mc

t
exp

(
−d(y, x)2

ct

)
, (0 < t ≤ 1), (6.2)

for the kernel of e−t(H−λ0(ξ̂ )), with c := c(osc(u0)) ≥ 1 and m := maxu0

minu0
= 1 + osc(u0)

minu0
– so mc ≥ 1.

Proposition 39 – Assume µ(S) < 1. Then the spectral gap of H is bigger than 1
mcµ(S) log

(
1

mcµ(S)

)
on the event

{
mc < 1/µ(S)

}
.

The interest of the above conditional and rough lower bound on the spectral gap of H is that it
only depends on the volume of S and requires no geometric assumption on (S, g) unlike the almost
sure spectral gap results of Theorem 27 and Theorem 28. We will denote in the proof below by Ex
the expectation operator associated with the probability measure Qx.

Proof – Let u1 stand for an eigenfunction of H with eigenvalue λ1(ξ̂ ). Without loss of gener-
ality, and trading possibly u1 for −u1, one can assume ε small enough so that we have

0 < µ
(
{u1 > ε}

)
,

so the hitting time τ of the set {u1 > ε} is almost surely finite under any Qx. We know
from the Krein-Rutman theorem applied to the compact and positivity improving operator
e−(H−λ0(ξ̂ )) that the ground state is the only eigenfunction that has constant sign; any other
eigenfunction changes sign. This is particular the case of u1, so µ

(
{u1 > ε}

)
< µ(S). Let
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x ∈ S be a point where u1 is null. Would the expectation Ex
[
e|λ1(ξ̂ )−λ0(ξ̂ )|τ ] be finite we

could use the optional stopping theorem on the martingale (6.1) and write

0 = u1(x) = Ex
[
e|λ1(ξ̂ )−λ0(ξ̂ )|τu1(Xτ )

]
= εEx

[
e|λ1(ξ̂ )−λ0(ξ̂ )|τ ] > 0;

a contradiction. As one always has

Ex
[
e|λ1(ξ̂ )−λ0(ξ̂ )|τ

]
≤
∑
n≥1

e|λ1|nQx(τ ≥ n− 1),

a geometric bound Qx(τ ≥ n − 1) . bn, entails that e|λ1(ξ̂ )−λ0(ξ̂ )| b ≥ 1, that is
∣∣λ1(ξ̂ ) −

λ0(ξ̂ )
∣∣ ≥ ln 1

b . Now given t ∈ (0, 1] and integers n, k such that n − 1 > kt, one has from the
heat kernel bound (6.2) the estimate

Qx
(
τ ≥ n− 1

)
≤
∫
pt(x, y1) · · · pt(yn−2, yk)1{u1≤ε}(y1) . . .1{u1≤ε}(yk) dy1 . . . dyk

≤
(mcµ(S)

t

)n/t
so the result follows by taking t = mcµ(S) < 1. �

Appendix C shows how the reasoning used in the preceding proof gives back some nice spectral
gap bounds of Faber-Krahn type for the Laplace-Beltrami operator on Riemannian manifolds of
arbitrary dimension and finite volume subject to a mild heat kernel bound.

6.1.2 – Quadratic variation process. We prove here that the quadratic variation of the canonical
process on path space is a well-defined random variable under Qx. This means that

n∑
i=0

d(wti+1
, wti)

2

converges in L2(Qx) to (the constant random variable) t, for each t when the mesh of a partition
0 < t1 < · · · < tn < t of an interval [0, t], with t0 := 0 and tn+1 := 1, goes to 0. (Do not
mingle the fact for a process to have a finite quadratic variation process and the property of its
sample paths to be almost surely of finite 2-variation. Brownian motion has for instance a finite
quadratic variation process on any finite interval but has almost surely an infinite 2-variation on
any finite interval.) To prove the preceding convergence in probability it suffices to notice that the
fine asymptotic from Theorem 17 for the heat kernel of H gives

Ex
[
d(wti+1 , wti)

2
]

= ti+1 − ti +O(ti+1 − ti)b (6.3)
for a constant b > 1, and that

Ex
[
d(wti+1 , wti)

4
]

= O(ti+1 − ti)b,
from the ‘scaling’ bound (4.8) – or the Gaussian upper bound (4.9). Chebychev inequality then
gives the result. We note here for later purpose that for each t there is a sequence of partitions of the
interval [0, t] such that the corresponding sum of squared increments converges almost surely to t.
The quadratic variation process thus depends only on the equivalence class of a finite non-negative
measure on path space under the equivalence relation given by reciprocal absolute continuity.

Note that the Gaussian lower and upper estimates on the heat kernel pt proved in Proposition
25 are not sufficient to get back the exact scaling relation (6.3). One really needs the result of
Theorem 17 for that purpose.

6.1.3 – Singularity with respect to Wiener measure. The Wiener measure PW ,x on S is the law of
the Brownian motion started from x. Given a positive time horizon T it is convenient to denote
by QTx and PTW ,x the restrictions to Cα([0, T ],S) of the measures Qx and PW ,x. We denote by ETx
and ETW ,x their associated expectation operators. We can follow Cannizzaro & Chouk [10] to prove
the following result. We define the measure QTr,x by its density

Dr(w) :=
dQTr,x
dPW ,x

(w) := exp

(
−
∫ T

0

(
ξr +

log r

4π

)
(wt)dt

)
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with respect to PW ,x – it is associated with the renormalized regularized Anderson operator ∆ +

ξr + log r
4π .

Proposition 40 – Pick x ∈ S. The polymer measure QTx is P-almost surely singular with respect
to the Wiener measure PTW ,x.

Proof – The proof proceeds as in the proof of Theorem 1.4 of [10] given in Section 7.2 of the
work; we recall the main points of the details for the reader’s convenience. Pick a sequence
(rn)n≥0 decreasing to 0 and look at the event lim supn

{
Yrn < 1

}
. We show that it has

PTW ,x-probability 1 and QTx -probability 0.
• First, we have

ETW ,x

[
D1/2
rn

]
= ETW ,x

[
e−

1
2

∫ T
0

(
ξrn+log r/(4π)

)
(wt) dt

]
=
(
e−T (∆+ξrn/2+(log rn)/(8π))1

)
(x).

One has(
e−T (∆+ξrn/2+(log rn)/(8π))1

)
(x) = eT (log rn)/(16π)

(
e−T (∆+ξrn/2+(log rn)/(16π))1

)
(x)

where the last term converges as n goes to infinity as it involves the semigroup of the Anderson
operator with noise ξ/2 – recall the quadratic dependence of the renormalization constant on
the coupling constant. So

lim
n→∞

ETW ,x

[
D1/2
rn

]
= 0

and PTW ,x(Yn > 1) tends to 0 from Chebychev inequality. One has as a consequence

PTW ,x

(
lim sup

n

{
Drn < 1

})
≥ lim sup

n
PTW ,x(Drn < 1) = 1.

• Now for a fixed k ≥ 1 we have
QTx (Drk < 1) ≤ lim inf

n
QTrn,x(Drk < 1),

and
QTrn,x(Drk < 1) = ETW ,x

[
e−

∫ T
0

(ξrn+(log rn)/(4π))(wt) dtD1/2−1/2
rk

1Drk<1

]
≤ ETW ,x

[
e−

∫ T
0

[ξrn+(log rn)/(4π)−1/2(ξrk+(log rk)/(4π))](wt) dt
]

≤ e−T (log rk)/(16π) ETW ,x

[
e−

∫ T
0

[ξrn+(log rn)/(4π)−(1/2ξrk+(log rk)/(16π))](wt) dt
]
.

As
Π
(
Xrn +

1

2
Xrk , ξrn +

1

2
ξrk

)
− log rn

4π
+

5

4

log rk
4π

is converging in probability in C2α−2(S), under PTW ,x, as n goes to ∞ then k goes to ∞, one
sees that the quantity

ETW ,x

[
e−

∫ T
0

[ξrn+(log rn)/(4π)−(1/2ξrk+(log rk)/(16π))−(log rk)/(4π)](wt) dt
]

is converging as n goes first to ∞ then k goes to ∞. It follows that

QTrn,x(Drk < 1) . e
3T
4

log rk
4π

uniformly in n and k, so
QTx (Drk < 1) . e

3T
4

log rk
4π .

Choosing a sequence rk that decreases sufficiently fast to 0 provides then an upper bound for
QTrn,x(Drk < 1) that allows to conclude with Borel-Cantelli lemma that

QTx

(
lim sup

k
{Drk < 1}

)
= 0.

(The speed of convergence of rk to 0 will depend on T .) �
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6.2 Wick square of Anderson Gaussian free field and polymer measure

The study of the links between Markov fields and Poissonian ensembles of Markov loops goes
back to Symanzik’ seminal work [41]. It was elaborated in a large number of works and we take
advantage here of the general result proved by Le Jan in [30], giving a correspondance between the
occupation measure of a loop ensemble and Wick square of some Gaussian free field – see Section
9 therein. It allows at no cost to relate (a measure built from) the polymer measure to the Wick
square of the Anderson free field that was the object of Theorem 37. We dress the table before
bringing the dish.

Rather than working with the polymer measure built from the operator H − λ0(ξ̂ ) we pick a
positive constant a and work with the measure built from H − λ0(ξ̂ ) + a. With the notations
of Section 5 one takes here c = −λ0(ξ̂ ) + a. This choice ensures that the Green function of the
corresponding operator is finite and has the properties stated and used in Section 5. This amounts
to add killing at constant rate for the process built in Section 6.1.1. This does not change its
properties and we have in particular that the corresponding polymer paths have an associated
quadratic variation process equal to the traveling time and defined on the random lifetime interval
[0, ζ). Denote by pt(x, y) the transition density of the process built from H−λ0(ξ̂ ) +a and denote
by P tx,x the unnormalized excursion measure of duration t started from x ∈ S. It is characterized
by the identity

P
t

x,x

(
Xt1 ∈ dx1, . . . Xtk ∈ dxk

)
= pt1(x, x1)pt2−t1(x1, x2) . . . pt−tk(xk, x) dx1 . . . dxk

for all 0 ≤ t1 ≤ · · · ≤ tk ≤ t. This non-negative measure has finite mass equal to pt(x, x). A
standard argument using the symmetry of pt(x, y) as a function (x, y) shows that the measure P
is supported on (rooted) loops of Hölder regularity strictly less than 1/2. The loop measure is
defined as

M (·) :=

∫
S

∫ ∞
0

1

t
P
t

x,x(·) dt µ(dx).

It follows from the result of Section 6.1.2 that the factor 1/t in this integral accounts for the
intrinsic lifetime of the loop – so this non-negative measure is indeed a measure on unrooted loops.
Note that it has an infinite mass that comes from the mass of small loops. Denote by EM the
expectation operator associated with M and by ζ(`) the lifetime of a loop `. For such a loop we
define a measure on S setting ̂̀(·) :=

∫ ζ(`)

0

δ`(s)(·) ds.

One has for any non-negative function f on S and all n ≥ 1

EM

[̂̀(f)n
]

= (n− 1)!

∫
Sn
G(x1, x2)f(x2)G(x2, x3)f(x3) · · ·G(xn, x1)f(x1) dx1 . . . dxn, (6.4)

and
EM

[
e−z

̂̀(f) + z ̂̀(f)− 1
]

= − log det2

(
Id + zMf1/2GMf1/2

)
,

from an elementary series expansion and the preceding equality. (We used here the same notation
for the Green kernel G and its associated operator. Le Jan’s proof [30] of identity (6.4) applies
verbatim here.)

Given γ ≥ 0 denote by Λγ a Poisson process on the space of (unrooted) loops over S with
intensity γM . It is characterized by its characteristic function

E
[
eiΛγ(F )

]
= exp

(
γ

∫ (
eiF (`) − 1

)
M (d`)

)
,

for all functions F on loop space that are null on loops of sufficiently small lifetime – so the resulting
quantity Λγ(F ) is almost surely well-defined. Denote by Aγ the support of Λγ , so Λγ =

∑
`∈Aγ δ`.

The regularized renormalized occupation measure of Λγ is defined for each r > 0 as the non-negative
measure on S

Orγ(f) :=
∑
`∈Aγ

1η(`)>r
̂̀(f)− γ EM

[
1η(`′)>r

̂̀′(f)
]
;
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the expectation is over `′ and f is a generic non-negative continuous function on S. For γ and
f fixed the continuous time random process γ 7→ Orγ(f) is actually a Lévy process with positive
jumps with characteristic function

E
[
e−O

r
γ(f)

]
= exp

(
−γ EM

[
1ζ(`′)>r

(
e−

̂̀(f) + ̂̀(f)− 1
)])

converging to its natural limit as r goes to 0. The limit Lévy process is denoted by (Oγ(f))γ≥0. (All
this is explained in detail in Le Jan’s work [30].) The following result follows from the preceding
analysis and formula (5.7) for the partition function of the Wick square of the Anderson Gaussian
free field.

Theorem 41 – One has for every continuous function f on S the identity

E
[
e−O1/2(f)

]
= E

[
e−:φ2:(f)

]
.

One deduces from this identity that the renormalized occupation measure of the loop measure
of polymer paths has the same distribution as the Wick square of the Anderson Gaussian free field.
It has in particular a version that has almost surely regularity −2η in the Sobolev scale. This
identification does not tell us that O1/2 is a measure, despite its name.

6.3 Large deviation principles for the polymer measure and its bridges

We prove in this section that the polymer measure on free end paths and bridges satisfies the
same large deviation results as Wiener measure and its induced bridge measures. These results
were stated as Theorem 5 in the introduction. The effect on these measures of the white noise
environment is thus evanescent as the traveling time goes to 0. On a technical level one can trace
this fact back to Theorem 17. This statement implies in particular that the effect of the random
environment is contained in the correction term to the Riemannian heat kernel. The conclusion
will follow from the fact that large deviation results are essentially driven by the dominant term
in the small time heat kernel expansion – the proof below will make that point clear.

Our proof of the large deviation results of Theorem 5 follows partly the proofs of the analogue
statements for Wiener measure on S and its bridges. We give some details on the large deviation
result for Qx, as we give a non-classical proof, and give the essential ingredients of the proof of the
corresponding result for the bridges of polymer paths. Pick 0 < γ < 1/2. Given 0 < r ≤ 1 let Q(r)

x

be the image measure of the restriction to Cγ([0, r],S) by the time change map s ∈ [0, 1] 7→ sr –
this is a non-negative finite measure on Cγ([0, 1],S) for all 0 < r ≤ 1.

6.3.1 – Large deviation principle for Q(r)
x . Pick x ∈ S. Most proofs of the large deviation principle

for the Wiener measure PW ,x use its dynamical description as the law of a diffusion process solution
of a stochastic differential equation, for which one can resort to Freidlin & Wentzell theory of large
deviations. (Rough paths theory provides an economical way of understanding the large deviation
principles obtained in this way from a unique large deviation principle satisfied by the Brownian
rough path.) We cannot proceed similarly here as stochastic differential equations cannot be used
to describe the typical dynamics of a polymer path.

We use a different way of proving a large deviation principle, by proving a large deviation
principle for the finite dimensional time marginals of the process and proving that the family of
measures is (P-almost surely) exponentially tight. One can then resort to the general theory, such as
exposed for instance in Section 4.7 of Feng & Kurtz textbook [17], to conclude. The identification
of the (good) rate function as the function I (·) from (1.4) comes from the fact that the finite
dimensional large deviation principle involves the squared geodesic distance, a consequence of the
asymptotic behaviour of the heat kernel of H stated in item (i) of Theorem 17.

Proposition 42 – Fix 0 < s1 < · · · < sn ≤ 1 and subsets A1, . . . , An of S. One has

lim sup
r→0+

r logQ(r)
x

(
ws1 ∈

◦
A1, . . . , wsn ∈

◦
An
)

≥ inf

{ n∑
i=0

(si+1 − si) d(xi+1, xi)
2 ; x0 = x, x1 ∈

◦
A1, . . . , xn ∈

◦
An

}
,
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and
lim inf
r→0+

r logQ(r)
x

(
wt1 ∈ A1, . . . , wtn ∈ An

)
≤ inf

{ n∑
i=0

(si+1 − si) d(xi+1, xi)
2 ; x0 = x, x1 ∈ A1, . . . , xn ∈ An

}
.

We recognize in the infimum the rate function satisfied by the finite dimensional marginals of
Brownian motion on S.

Proof – This is a direct consequence of the exact formula∫
ps1r(x, x1)1x1∈B1

p(s2−s1)r(x1, x2) · · · p(sn−sn−1)r(xn−1, xn)1xn∈Bn dxn · · · dx1

for
Q(r)
x

(
ws1 ∈ B1, . . . , wsn ∈ Bn

)
,

valid for any subsets B1, . . . , Bn of S, the sharp Gaussian asymptotic giving pt as a O(t−β
′/2)

perturbation of the heat kernel of the Laplace operator, and an elementary change of variable.
�

Here again we note that lower and upper Gaussian estimates on pt would not be sufficient
to prove Proposition 42. Pick 0 < γ < 1

2 . We obtain the exponential tightness of the family(
Q

(r)
x

)
0<r≤1

by proving that the γ-Hölder norm ‖w‖γ of a typical polymer path has a Gaussian
moment. We denote by E

(r)
x the expectation operator associated with the finite non-negative

measure Q(r)
x .

Proposition 43 – There is a positive constant c0 such that one has
E(r)
x

[
exp(c0‖w‖2γ)

]
<∞, (6.5)

uniformly in 0 < r ≤ 1 and x ∈ S.

Proof – We use Besov inequality

‖w‖2kγ .γ

∫ 1

0

∫ 1

0

(
d(wt, ws)

|t− s|1/2

)2k

dsdt,

valid for any continuous path w, any integer k ≥ 1 and 0 < a < 1/2, to get from the scaling
bound (4.8) and a time change of variable the bound

E(r)
x

[
‖w‖2kγ

]
.γ

∫ 1

0

∫ 1

0

|t− s|−k E(r)
x

[
d(wt, ws)

2k
]
dsdt .γ r

(1+o(1))k2kk! (6.6)

– the conclusion follows. �

The exponential tightness of the family
(
Q

(r)
x

)
0<r≤1

of finite non-negative measures on the space
Cγ([0, 1],S) and the identification of the large deviation principle satisfied by its finite dimensional
marginals entail that the family

(
Q

(r)
x

)
0<r≤1

satisfies itself a large deviation principle in C([0, 1],S)

with rate function determined by the rate function of the finite dimensional large deviation principle
– see for instance Theorem 4.30 in [17]. As the latter rate function is identical to the rate function
of the large deviation principle satisfied by the finite dimensional marginals of Brownian motion,
this leads to the identification of the rate function I (·) as the functional (1.4). This is a good rate
function. This proves the first item of Theorem 5.

6.3.2 – Large deviation principle for the bridge probability measures Q(r)
x,x,. The proof of the large

deviation result for the bridges of polymers follows from the large deviation result for Q(r)
x proved

in Section 6.2.1 and the following two analytic estimates that are consequences of our estimates
on the heat kernel of H. One has

lim
r↘0

r log pr(x, y) = −d(x, y)2

2
, (6.7)
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uniformly in x, y ∈ S, and
pr(x, y) ≤ cr−1, (6.8)

for a positive constant c and all x, y ∈ S and 0 < r ≤ 1. The pattern of proof was devised in [25]
by E. P. Hsu in his study of the large deviation principle for the bridges of Brownian motion. As
it works almost verbatim here we will only sketch the lines of the reasoning, refering to [25] for the
details. We fix for the remainder of this section two distinct points x, y of S. Recall the notations
of Section 1.

� Step 1. Exponential tightness of the Q(r)
x,y in Cγ([0, 1],S). We describe below how to prove

this fact. As the inclusion of Cγ([0, 1],S) into C0([0, 1],S) is continuous it suffices, by the inverse
contraction principle, to prove that the probability measures Q(r)

x,y satisfy a large deviation principle
in C([0, 1],S) with good rate function I (·) − d2(x, y), to prove the second point of Theorem 5.
This is the object of Step 2. Set

Ωx,y :=
{
ω ∈ C([0, 1],S) ; ω(0) = x, ω(1) = y

}
;

Given an integer n ≥ 1 and kn ∈ N\{0} to be fixed later, the formula

Cnx,y :=

{
ω ∈ Ωx,y ; sup

s,t∈[0,1]

0<t−s≤1/n

|ωt − ωs|
|t− s|γ

≤ 1

}

defines a compact subset of both C([0, 1],S) and Cγ([0, 1],S). We prove that one has the expo-
nential tightness estimate

lim
r↓0

r logQ(r)
x,y

(
Ωx,y\Cnx,y

)
≤ −n1−2γ .

It is convenient for that purpose to introduce the two sets

Cn,1x,y :=

{
ω ∈ Ωx,y ; sup

s,t∈[0,2/3]

0<t−s≤1/n

|ωt − ωs|
|t− s|γ

≤ 1

}
, Cn,2x,y :=

{
ω ∈ Ωx,y ; sup

s,t∈[1/3,1]

0<t−s≤1/n

|ωt − ωs|
|t− s|γ

≤ 1

}

and prove separately
lim
r↓0

r logQ(r)
x,y

(
Ωx,y\Cn,ix,y

)
≤ −n1−2γ , (6.9)

for i ∈ {1, 2}. One can concentrate on the i = 1 case as one gets the estimate for i = 2 from the
estimate for i = 1 by using the symmetry of H to say that

Q(r)
x,y

(
Ωx,y\Cn,2x,y

)
= Q(r)

y,x

(
Ωy,x\Cn,1y,x

)
.

First, the inequality

(?)r := Q(r)
x,y

(
Ωx,y\Cn,1x,y

)
≤ n

3
sup

0≤s0≤2/3

Q(r)
x,y

(
sup

s0≤t1<t2≤s0+2/n

|ωt2 − ωt1 |
|t2 − t1|γ

> 1

)
,

guarantees by (6.8) that one has

(?)r . n sup
0≤s′0≤(2r)/3

Ex

[
pr−s′0−(2r)/n(ωr(s′0+(2r)/n), y)

pr(x, y)
; sup
s′0≤t1<t2≤s′0+(2r)/n

|ωt2 − ωt1 |
|t2 − t1|γ

> 1

]
.

nr−1

pr(x, y)
sup
z∈S

Pz

(
sup

0≤t1<t2≤(2r)/n

|ωt2 − ωt1 |
|t2 − t1|γ

> 1

)
.

(6.10)
If one rewrites the bound (6.6) under the form

E(r1)
z

[
exp

(
c0r
−1
1 ‖ω‖2γ

)]
. 1

for an implicit multiplicative constant uniform in 0 < r1 ≤ 1 sufficiently small and z ∈ S, one can
use the exponential form of Chebychev inequality to estimate the term

Pz

(
sup

0≤t1<t2≤(2r)/n

|ωt2 − ωt1 |
|t2 − t1|γ

> 1

)
= P (2r/n)

z

(
‖ω‖γ > (2r/n)γ

)
in (6.10) and get from (6.7) the estimate
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r log(?)r . −r log pr(x, y) + r log(nr−1) + r log
(

sup
z
Pz(· · · )

)
.
d(x, y)2

2
+ or(1)− (n/r)1−2γ .

As 0 < γ < 1/2 this proves (6.9) for i = 1. (Remark that the only thing that matters here in the
term r log pr is the fact that it is uniformly bounded in r on S2. The precise asymptotic has no
importance here, while it is fundamental in the details of the proof of the upper and lower bounds
in Step 2.)

� Step 2. Upper and lower bounds for the large deviation principle. The proofs of the upper and
lower bounds for the large deviation principle satisfied by the Q(r)

x,y follow verbatim Hsu’s proof [25]
of the corresponding principle for the Brownian bridge measure, as the only ingredients he uses are
the heat kernel estimates (6.7) and (6.8) and the Brownian equivalent of the exponential tightness
result established in the first step. We do not repeat the proof here and refer the reader to Hsu’s
proof, pp. 109-112. (Hsu works in an unbounded complete Riemannian manifold. The details
of [25] were reworked in the simpler setting of a compact manifold, for hypoelliptic diffusions, in
Section 2 of [3].)

A – Meromorphic Fredholm theory with a parameter

We prove Theorem 7 in this section. As a guide to the subject of this appendix the reader will
find in Appendix D of Zworski’s book [42] an elementary account of the usual, parameter free,
meromorphic Fredholm theory.

Proof – Our proof follows closely the proof given by Borthwick in Theorem 6.1 of [8]. It suffices
to prove the result near any z0 ∈ U which contains only finitely many poles of K. With this
assumption, we may decompose

K(z,a) = A(z,a) + F (z,a),

where F (z,a) is a meromorphic family of finite-rank operators for z ∈ U and A(z,a) is a holomor-
phic family of compact operators. Both operators depend continuously on the parameter a. Using
the approximation of the compact operator A(z0,a) by finite-rank operators, and assuming U is
sufficiently small and that we choose a sufficiently small neighborhood of a0, we can find a fixed
finite-rank operator B such that ∥∥A(z,a)−B

∥∥ < 1

for all z ∈ U . Note that implies that Id− A(z,a) + B is holomorphically invertible for z ∈ U , by
the usual Neumann series as(

Id−A(z,a) +B
)−1

=

∞∑
k=1

(
A(z,a)−B

)k
.

Since the Neumann series converges absolutely in B(H,H) uniformly in (z,a) in some neighborhood
of (z0,a0) and each term (A(z,a)−B)

k is continuous in u, it follows that the map
a 7→ (Id−A(z,a) +B)

−1 ∈ B(H,H)

is continuous. Thus if we set
G(z,a) :=

(
F (z,a) +B

) (
Id−K(z,a) +B

)−1

then we can write
Id−K(z,a) =

(
Id−G(z,a)

) (
Id−K(z,a) +B

)−1
.

It is immediate that G(z,a) has finite rank and depends continuously on a by its construction
involving the finite rank operators F (z,a), B. We already know that (Id−K(z,a) +B)

−1 is
holomorphic in z near z0 and depends continuously on a, so the problem is reduced to proving
the meromorphic invertibility of (Id−G(z,a)) and the continuity with respect to the parameter
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a. Recall that G(z,a) is meromorphic in z, continuous in a, with finite rank, so we can always
represent it as

G(z,a) =
∑

16i,j6p

aij(z,a) |ϕi >< ψj |

where the coefficients aij(z,a) are meromorphic in z, continuous in a and (ϕi)
p
i=1 is a finite family

of linearly independent vectors in H. To solve
(
Id−G(z,a)

)
v = w where w is given, we make the

ansatz v = w +
∑p
i=1 biϕi therefore the equation becomes(

Id−G(z,a)
)
v =

(
Id−G(z,a)

) (
w +

p∑
i=1

biϕi

)

= w +

p∑
i=1

biϕi −
∑

16i,j6p,k

bkaij(z,a)ϕi 〈ψj , ϕk〉 −
∑

16i,j6p

aij(z,a)ϕi 〈ψj , w〉

that simplifies to the simpler relation
p∑
i=1

biϕi −
∑

16i,j6p,k

bkaij(z, u)ϕi 〈ψj , ϕk〉 =
∑

16i,j6p

aij(z,a)ϕi 〈ψj , w〉 .

By linear algebra, the above equation can be solved on the complement of the zero locus of the
polynomial

det

δik −∑
j

aij(z,a) 〈ψj , ϕk〉


which depends meromorphically on z and continuously on a. So away from the zero locus of the
determinant we can meromorphically invert Id−G(z,a) hence Id−K(z,a) and everything depends
continuously on the parameter a. The fact that the poles have finite rank comes from the fact that
they only appear through the finite rank operator G(z,a). �

B – Geometric Littlewood-Paley decomposition

We recall from Klainerman & Rodnianski’s work [27] the basics of Littlewood-Paley decompo-
sition in a manifold setting. We use if to provide a self-contained proof of Proposition 8 on the
renormalization of Π(hξr, Xh,r), and Lemma 9 and Lemma 10, both used in the construction of
the resolvent of H in Section 3.1.

Theorem 44 – Given ` ∈ N there exists a Schwartz function m such that∫ ∞
0

tk1∂k2
t m(t) dt = 0 (∀(k1, k2), k1 + k2 6 `) (B.1)

and such that the self–adjoint smoothing operators

Pk =

∫ ∞
0

22km(22kt)e−t∆ dt (k ∈ N ∪ {−1}) (B.2)

enjoy the following properties.

(a) Resolution of the identity. One has
∑
k≥−1 Pk = Id.

(b) Bessel inequality. One has ∑
k≥0

‖Pkf‖L2 . ‖f‖L2 .

(c) Finite band property. One has
‖∆Pkf‖Lp . 22k‖f‖Lp ,

and
‖Pkf‖Lp . 2−2k‖∆f‖Lp ;

also we have the dual estimate ‖Pk∇f‖L2 . 2k‖f‖L2 ,
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(d) Flexibility property. There exists a function m̃ satisfying (B.1) such that ∆Pk = 22kP̃k and
the family (P̃k)k is a Littlewood–Paley decomposition which might not satisfy the resolution
of identity equation.

We quickly recall the main features of the heat calculus we shall use in the sequel. The heat
calculus is a way to encode the salient features of the Euclidean heat kernel (4πt)−

d
2 e−

‖x−y‖2
4t and

of the first approximation of the heat kernel on manifolds K1(t, x, y) = (4πt)
d
2 e−

‖x−y‖2
g(y)

4t , which
are

• the prefactor t− d2 ,
• the exponential factor, which is a smooth function of X = x−y√

t
and y, exponentially decay-

ing as ‖X‖ → +∞.
This motivates the following definition, in which the notation C∞([0,+∞) 1

2
) stands for the set of

functions f(t) which are smooth as functions of
√
t, for t > 0.

Definition 45 – Pick a non-positive index γ. The space Ψγ
H is defined to be the set of functions in

C∞((0,+∞)× S2) satisfying the following axioms
• A is smooth, if x 6= y then A(t, x, y) = O(t∞),
• For any p ∈M , there exists a chart U containing p and Ã ∈ C∞

(
[0,+∞) 1

2
×U ×Rd

)
such

that for (x, y) ∈ U2 one has

A(t, x, y) = t−
d+2

2 −γÃ
(√

t,
x− y√

t
, y
)

where Ã has rapid decay in the second variable∥∥Dγ√
t,X,y

Ã
∥∥ = O

(
‖X‖−∞

)
when ‖X‖ → +∞.

The use of the heat calculus gives a familiar form to the operators Pk. Set

M(t) :=

∫ t

0

m(s)ds

and use the presentation of the heat calculus in the chart from definition 45 to write∫ ∞
0

2jm(2jt)e−t∆(x, y)dt = 2−j
∫ ∞

0

M(t)2k
d
2 t−

d
2 Ã
(

2−kt, x, 2
k
2
x− y√

t

)
dt.

Then for any pair of test functions χ1, χ2

̂(Pkχ1)χ2(ξ, η) = 2−k
∫
U×R2

χ1(x)χ2(h)ei(ξ.x+h.η)

∫ ∞
0

M(t)2k
d
2 t−

d
2 Ã
(

2−kt, x, 2
k
2
h√
t

)
dtdx2h

= 2−k
∫
U×R2

χ1(x)χ2(2−
k
2 h)ei(ξ.x+2−

k
2 h.η)

∫ ∞
0

M(t)t−
d
2 Ã
(

2−kt, x,
h√
t

)
dtdxdh.

Using the rapid decay in the h variable for all values of t ∈ [0,+∞), x ∈ U

sup
x∈U

∣∣∣Ã(2−kt, x,
h√
t

)∣∣∣ 6 CN
(
1 + |h|

)−N
and the fact that χ1(x)χ2(2−

k
2 h)

∫∞
0
M(t)t−

d
2 Ã
(
2−kt, x, h√

t

)
dt is bounded in C∞(U × R2) uni-

formly in the parameter k, we have an estimate of the form∣∣ ̂(Pkχ1)χ2(ξ, η)
∣∣ 6 CN2−k

(
1 + |ξ|+ 2−

k
2 |η|

)−N
In position space, in the local chart U × U from definition 45, the estimate reads

Pk(x, y) = 2−k2k
d
2Kk

(
x, 2

k
2 (x− y)

)
, (B.3)

where the (Kk)k form a bounded family of smooth functions in C∞
(
U ×

{
|h| 6 1

})
.

Let P and P̃ be a family of geometric Littlewood-Paley projectors built from functions m and
m̃ that vanish at t = 0. It will be convenient in the proof of Proposition 8 to control the kernel
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∑
i,j>0

(
(∆αPi)Pj

)
(x, y) in terms of α. We know from p.140 of [27] that we have the exact identity(

P̃iPj
)
(x, y) = −2−2|i−j|

∫ ∞
0

∫ ∞
0

∫ 1

0

e−(t1+st2)∆m̃i(t1)t2mj(t2) dsdt1dt2.

Using the structure of the heat kernel which follows from the heat calculus we may write in local
coordinate chart x ∈ U, h ∈ R2(

P̃iPj
)
(x, x+ h) =: 2−2|i−j|Kij(x, h)

where
sup
x∈U

∣∣∣∂βh∂αxKij(x, h)
∣∣∣ 6 Cα,β 2−i2i

d
2 2i

|β|
2 (B.4)

uniformly in (i, j). These are actually the seminorms for the topology of distributions whose wave
front set is concentrated on the conormal bundle of the diagonal.

Now in [27] we also find that ∆αPiP̃j = 22iαQiPj , where (Qi)i is an admissible family of LP
projectors. We deduce from this observation an estimate of the form

(∆αPi)Pj(x, x+ h) = 22iα2−2|i−j|Kij(x, h),

where the kernel Kij satisfies the same estimate B.4. This is all we need to prove the following
technical lemma.

Lemma 46 – Let the Littlewood-Paley projectors (Pi)i be constructed from a function m that
vanishes at t = 0. Fix k ≥ 1 and (α1, . . . , αk) ∈ Zk. The series of Schwartz kernels∑

i1,...,ik,j1,...,jk

∑
|i1−i2|≤1,...,|i1−ik|61

(
(∆α1Pi1)Pj1

)
(x, y) . . .

(
(∆αkPik)Pjk

)
(x, y) (B.5)

converges absolutely in the space of pseudodifferential kernels of order 2(α1 + · · ·+αk) + (k− 1)d2 .

Proof – Using the above discussion we may rewrite(
(∆α1Pi1)Pj1

)
(x, y) . . .

(
(∆αkPik)Pjk

)
(x, y)

= 22(i1α1+···+ikαk)2−2(|i1−j1|+···+|ik−jk|)Ki1j1(x, y) . . .Kikjk(x, y)

where the smooth functions Kinjn(x, y) satisfy the estimate (B.4). So one has for all tuples
(i1, . . . , ik, j1, . . . , jk) such that |i1 − i2| ≤ 1, . . . , |i1 − ik| 6 1 an estimate of the form∣∣∣∂bh∂axKi1,j1(x, x+ h) . . .Kik,jk(x, x+ h)

∣∣∣
6 Cab 2−(i1+···+ik)2(i1+···+ik) d2 22 inf(i1,...,ik,j1,...,jk)

|b|
2

where the constant Cab does not depend on the indices (i1, . . . , ik, j1, . . . , jk). This estimate
ensures that the sum (B.5) convergences in the space of conormal distributions of order 2(α1 +
· · ·+ αk) + (k − 1)d2 . �

We give here the proof of Proposition 8 performing the Wick renormalization of the resonant
term Π(hξ,Xh).

Proof – Step 1 – Singular part. Since the two paraproduct terms in the decomposition of the
product hξrXh,r are converging as r goes to 0 the quantities E

[
Π(hξr, Xh,r)

]
and E

[
hξrXh,r

]
differ by a converging quantity. Use now the Markov property of the heat operator and the
definition of white noise to see that

E
[(

(∆− z0)
−1
hξr

)
(x)hξr(x)

]
= h2(x)

(
e−2r∆ (∆− z0)

−1 )
(x, x).

An immediate computation yields

e−2r∆ (∆− z0)
−1

=

∫ 1

2r

e(z0−2r)se−s∆(Id− π0)ds+

∫ ∞
1

e−s∆(Id− π0)ez0sds

where π0 is the orthogonal projector on the subspace of constant functions. Recall that z0 is
large and negative so the integral over [1,∞) converges absolutely and defines a smoothing
operator; it does not contribute to the singular part of

(
e−2r∆ (∆− z0)

−1 )
(x, x) when r goes
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to 0. Now using the asymptotic expansion of the heat kernel yields the identity(
e−s∆(Id− π0)

)
(x, x) =

1

4πs
+O(1),

with an error term O(1) bounded in s and smooth in the x variable. It follows that(
e−2r∆ (∆− z0)

−1 )
(x, x) =

∫ 1

2r

e(z0−2r)s 1

4πs
ds+O(1) =

| log(r)|
4π

+O(1).

We see here that the singular part of E
[
hξrXh,r

]
only depends on the point x only through

h(x).
Step 2 – Stochastic estimates. Write

E


 ∑
|i−j|61

∆−s :
(
Pi(hξr)∆

−1Pj(hξr)
)
:

2
 = I1 + I2,

where I1 equals∑
|i1−j1|61,|i2−j2|61

∫
∆−s(x1, y1)∆−s(x1, y2)

(
∆−2Pj1Pj2

)
(y1, y2) (Pi1Pi2) (y1, y2)h4(y2) dy1dy2

and I2 equals∑
|i1−j1|61,|i2−j2|61

∫
∆−s(x1, y1)∆−s(x1, y2)

(
∆−1Pj1Pj2

)
(y1, y2)

(
∆−1Pi1Pi2

)
(y1, y2)h4(y2) dy1dy2.

Lemma 46 shows that the series∑
|i1−j1|61,|i2−j2|61

(
∆−2Pj1Pj2

)
(y1, y2) (Pi1Pi2) (y1, y2)

converges to some pseudodifferential kernel in Ψ−2(S), so I1 is the diagonal restriction of
an element in Ψ−2−2s(S), by composition of pseudodifferential operators, and is therefore
bounded in x1 ∈ S. Since we are in dimension 2 Lemma 46 shows that∑

|i1−j1|61,|i2−j2|61

(
(∆−1Pj1)Pj2

)2
(y1, y2)

represents a pseudodifferential kernel in Ψ−2(S) so I2 is also the diagonal restriction of an
element in Ψ−2−2s(S) and is therefore bounded in x ∈ S.
We conclude using the hypercontractivity property of Gaussian measures and Besov embed-
ding. For every integer p ∈ N, one has an inequality of the form

E
[
‖ :Π(hξr, Xh,r): ‖2pW s,2p

]
= E

[∫
S

(
(Id + ∆)

s
2 : Π(hξr, Xh,r) :

)2p
]

.p E

[∫
S

(
(Id + ∆)

s
2 :Π(hξr, Xh,r):

)2
]p

.p E
[∥∥ :Π(hξr, Xh,r):

∥∥2

Hs(S)

]p
.

Sending now r to 0 the upper bound remains bounded. The same computations show moreover
that

E
[
‖ :Π(hξr, Xh,r): − :Π(hξr′ , Xh,r′): ‖2pW s,2p

]
is bounded above by a constant multiple of

E
[∥∥ :Π(hξr, Xh,r): − :Π(hξr′ , Xh,r′):

∥∥2

Hs(S)

]p
with an upper bound that goes to 0 as r and r′ go to 0. One can thus define the element
: Π
(
hξ,∆−1(hξ)

)
: as the limit of a Cauchy family in the space W s,2p(S); Besov embedding

does the remaining job. �

The following observation will be useful in the proof of Lemma 9.
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Lemma 47 – For any bounded family of smooth functions (Aj)j∈N in C∞(S × S), the series
∞∑
j=0

(AjPj) (x, y)

converges in the space of pseudodifferential kernels in Ψε(S), for all ε > 0, and the partial sums N∑
j=0

(AjPj) (x, y)


N∈N

are bounded in Ψ0(S).

Proof – We would like to show that
∑∞
j=1 Pj(x, y) converges in the space of co-normal dis-

tributions. The convergence of
∑∞
j=1 Pj(x, y) as a distribution is an obvious consequence of

the Bessel inequality and the fact that a bounded operator from L2(S) into itself has a well–
defined distributional kernel. We see from the representation (B.3) of the Littlewood-Paley
projectors that the series

∑∞
k=1 Pk converges absolutely as a co-normal distribution of the

diagonal I(N∗d2) of the form
∫
eiξ.(x−y)a(x; ξ)dξ where the symbol a has order 0. In other

words, the series
∑∞
k=1 Pk converges as pseudodifferential kernels in Ψ+0(S). �

We provide now a proof of Lemma 9, which says that for each regularization parameter r > 0
the operator M+

r is a pseudodifferential operator of order 0.

Proof – As ξr is smooth the resonant part of M+
r is smoothing. The paraproduct part if given

by
f 7→

∑
j16j2−2

(Pj1ξr)Pj2(hf).

Observe that the sequence
(∑

k6j Pjξr

)
j

converges in all Sobolev spaces since ξr is smooth.

Moreover the family of operators Pj ◦Mh is bounded in Ψ0(S) and the series
∑∞
j=1 Pj ◦Mh

converges absolutely in pseudodifferential kernels in Sa(S), for all a > 0, therefore the product
((Pjξr)(x)Pj(x, y)h(y))j also forms the general term of a convergent series in Sa(S) for all
a > 0, by Lemma 47. �

We finish with the proof of Lemma 10.

Proof – Since one has Q(z) : Hs(S) 7→ Hs+b(S) ⊂ Hs(S) the map Q(z) : Hs(S) 7→ Hs(S)

is compact and the operators
(
Id + P−1Q(z)

)−1 and
(
Id + Q(z)P−1

)−1 are well-defined by
the meromorphic Fredholm theory. For every compact subset of the complex plane one can
decompose Q(z), for z in the compact set, as a sum

Q(z) = Π(z) + E(z)

of a finite rank part Π(z) : Hs(S) 7→ Hs(S) that depends holomorphically on z, and a part
E(z) : Hs(S) 7→ Hs(S) with small operator norm. �

C – Spectral gap

We obtained in Theorem 17 an upper bound on the heat kernel of Anderson operator of the
form c1/t, for 0 < t ≤ 1. Had we been working on an unbounded Riemannian manifold S we
could have ended up with a similar bound holding for all positive times. We would then have
been in a position to prove an elementary and interesting lower bound on the spectral radius of H.
Without going into the details of the construction of Anderson operator in an unbounded setting
– others are working on it, we illustrate the probabilistic mechanics of the spectral gap/radius
in the classical setting of the Laplace-Beltrami operator on a d-dimensional smooth Riemannian
manifold that is either complete unbounded or compact with a smooth boundary on which we put
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a Dirichlet condition. Denote by µ the Riemannian volume measure. The spectral radius of the
Laplace Beltrami operator is defined

λ1 := inf
Ω
λ1(Ω)

with λ1(Ω) the spectral gap of the Laplace Beltrami operator on a relatively compact open subset
Ω of M with Dirichlet boundary condition, and an infimum over such sub-domains Ω. It coincides
with the spectral gap of the operator ∆ when the manifold is compact.

Theorem 48 – Assume the heat kernel of the Laplace-Beltrami operator satisfies the uniform ‘on-
diagonal’ estimate

pt(x, y) ≤ (Ct)−d/2, ∀x, y ∈M, (C.1)
for all times. Then one has

|λ1| ≥
22/d−1C

e

d

µ(M)2/d
. (C.2)

Proof – We prove that one has

|λ1(Ω)| ≥ 22/d−1C

e

d

µ(Ω)2/d

for any bounded open set Ω ⊂M . The heat kernel of the Laplace Beltrami operator ∆Ω on Ω
with Dirichlet condition is bounded above by p. The decreasing character of λ1 as a function
of the domain does the rest.
We know from Krein-Milman theorem applied to the compact and positivity improving op-
erator e∆Ω that the ground state is the only eigenvector that has constant sign; all other
eigenvectors change sign. Denote by u1 the eigenvector associated with λ1 < 0 and write B
for Brownian motion on Ω, killed on the boundary of Ω. The function

e−λ1tu1(Bt) = e|λ1|tu1(Bt)

is a martingale under any Pm. Denote by τ the hitting time of the boundary of Ω. It is almost
surely finite under any Pm. Pick 0 < α < 1. Without loss of generality, and trading possibly
u1 for −u1, one can assume ε small enough so that we have

µ
(
{u1 ≥ ε}

)
≥ α µ(Ω)

2
.

(We implicitly use here the fact that µ
(
{u1 = 0}

)
= 0 – a consequence of the unique continu-

ation principle.) Let x ∈ M be a point where u1 is attains its maximum; one has necessarily
u1(x) > 0. Would the expectation Ex

[
e|λ1|τ

]
be finite we could use dominated convergence to

write
0 < u1(x) = Ex

[
e|λ1|τu1(Bτ )

]
= 0;

a contradiction. Now
Ex
[
e|λ1|τ

]
≤
∑
n≥1

e|λ1|n Px(τ ≥ n− 1),

so a geometric bound Px(τ ≥ n− 1) . cn, entails that e|λ1|c ≥ 1, that is |λ1| ≥ ln 1
c .

Given t > 0 and integers n, k such that n− 1 > kt one has from the decay assumption (C.1)
on the heat kernel

Px
(
τ ≥ n− 1

)
≤
∫
pt(x, y1) · · · pt(yn−2, yk)1{u1<ε}(y1) . . .1{u1<ε}(yk) dy1 . . . dyk

≤
(

(Ct)−d/2(2− α)
µ(Ω)

2

)k
≤
(

(Ct)−d/2(2− α)
µ(Ω)

2

)n/t
.

Optimizing over the choice of time t leads to choose

t =
e

C

(
(2− α)

µ(Ω)

2

)2/d

and gives the lower bound (C.2) as α < 1 can be chosen arbitrarily close to 1, independently
of λ1. �
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Grigor’yan’s lecture notes [23] give a nice account of an analytical proof of Theorem 48 and
many references on related matters – see in particular Section 6.2 of [23]. The uniform upper
bound (C.1) on the heat kernel turns out to be equivalent to different functional inequalities (Nash,
H1−L2d/(d−1)-Sobolev, log-Sobolev and Faber-Krahn inequalities). The lower bound (C.2) is thus
uniform in the class of closed Riemannian manifolds that satisfy condition (C.1). Curvature bounds
of the form Ric ≥ Kg give constants C in (C.1) that depend only on K.

Note that the above proof applies if one has any kind of decay 1/f(t) in (C.1) rather than a
polynomial decay. For instance, with f(t) � (ln t)α, with α ≥ 1, one gets exp(−e1/αµ(M)/2) as a
lower bound for the spectral gap. With f(t) � ect

α with α > 0, one gets
(

c
1+ln(µ(M)/2)

)1/α as a
lower bound for the spectral radius. We also note that our method of proof gives gives the same
conclusion as in Theorem 48 when working on a manifold equipped with a positive smooth density
and its associated Laplace operator, or when working on a graph or a Dirichlet space.
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• V. Dang – Sorbonne Université – Université de Paris, CNRS, UMR 7586, Paris, France.
E-mail: nguyen-viet.dang@imj-prg.fr
• A. Mouzard – ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
E-mail: antoine.mouzard@ens-lyon.fr


	Introduction
	Tools for the analysis
	A construction of the Anderson operator
	Definition and approximation of the resolvent
	Construction of the operator H

	Heat operator for the Anderson operator
	Heat kernel and properties of H
	A sharp asymptotic for the heat kernel of Anderson operator
	Moment bounds for the heat kernel and spectral gap
	Bounds for the eigenvalues and eigenfunctions of H

	Anderson Gaussian free field
	The polymer measure
	Construction and properties of the polymer measure
	Wick square of Anderson Gaussian free field and polymer measure
	Large deviation principles for the polymer measure and its bridges

	Meromorphic Fredholm theory with a parameter
	Geometric Littlewood-Paley decomposition
	Spectral gap

