
ADVANCED PROBABILITYI.F. BAILLEULIntentionsIn a 
ausal vision of the world, it is not 
lear what should be 
alled a random Naturalphenomenon. Within this framework, and at an intuitive level, probability theory quan-ti�es our la
k of knowledge on the 
auses of what we observe. In its relation with theempiri
al world, probability theory provides results of a subje
tive nature, and a 
hange inour understanding of Nature may 
hange this relation. Whi
h mathemati
al (i.e. logi
al)model for random Natural phenomena should be adopted has been debated for long, andit was not before 1933 and Kolmogorov's work �Foundations of the Theory of Probabil-ity� that a model has been widely a

epted. Building on the works of Lebesgue, Baire,Fré
het and others, Kolmogorov laid the foundations of probability theory on the groundof measure theory.One 
an distinguish two levels in his theory: the random phenomenon itself is modelledby a probability spa
e (Ω,F ,P), and the experimental observation pro
ess is modelled bya random variable or a family of random variables (Xt)t∈T . The motion of a pollen grainin suspension at the surfa
e of a glass of water will for instan
e be represented by the
olle
tion (Xt)t>0 of its positions as time goes.The aim of this 
ourse is to introdu
e some of the most fundamental tools used in thestudy of random phenomena whose des
ription involves in�nitely many parameters.Part I of the 
ourse ta
kles the problem of de�ning models of a given phenomenon forwhi
h experimental observations provide some 
onstraints. The main question will thus beto de�ne a �proper� probability on a measurable spa
e (Ω,F) whi
h assigns to some events,
orresponding to the experimental events, a given probability. Two ways of 
onstru
tingsu
h probabilities will be explored: by using the general ma
hinery of Caratheodory'sextension theorem, or by 
onstru
ting them as limits of other probabilities, de�ned inan elementary way. In this part, the (mathemati
al) observation pro
ess (Xt)t∈T will be
onsidered globally, without paying attention to any notion of dynami
s.Part II of the 
ourse is devoted entirely to the dynami
al des
ription of a phenome-non; no attention will thus be paid to the probability spa
e (Ω,F) itself. In most of themodels we shall 
onsider, (Xt)t∈T will be indexed by some sort of time; and time has anarrow. We shall explore in this se
ond part what natural notions 
ome out of this fa
tand some of their fundamental properties. Roughly speaking, as time passes, the obser-vation pro
ess de�nes a dynami
al system; like in deterministi
 dynami
al systems, theknowledge of whi
h quantities are preserved, in
rease or des
rease, as time runs forwardprovides information on the dynami
s. This role of �
onstant of motion� is played in theprobabilisti
 setting by the notion of (sub/super-)martingale.These notes are intended for use by students of the Mathemati
al Tripos at the University of Cambridge.Copyright remains with the author. Please send 
orre
tions to i.bailleul�statslab.
am.a
.uk.1



2 ADVANCED PROBABILITYThe importan
e of Brownian motion in modern probability theory 
annot be overstated.Not only is it the universal limit of many res
aled random walks (se
tion 2.4), it is also theuniversal model for all 
ontinuous martingales, as will be seen in se
tion 12.1. Chapter IIIopens with a se
tion where we investigate the most fundamental properties of Brownianmotion. To des
ribe the most general martingales (in se
tion 12.2) we shall introdu
e andstudy in se
tion 11 the basi
 stru
ture of Lévy pro
esses.Complements are added to ea
h part, whi
h present interesting fa
ts related to ea
hpart; this is non-examinable material. ContentsPart I. Stati
 theory of sto
hasti
 pro
esses 41. Constru
tion of measures and random pro
esses 51.1. Pro
esses and sample spa
e 51.2. Caratheodory's extension theorem 71.3. A 
onvenient framework 91.4. Good modi�
ations 142. Constru
tive approa
h in separable Bana
h spa
es 162.1. Weak 
onvergen
e on the set of probability measures on a metri
 spa
e 162.2. Spe
i�
 tools in �nite dimension 172.3. Weak 
onvergen
e in separable Bana
h spa
es 202.4. Appli
ation: Universality of Brownian motion 243. Comments and exer
ises 263.1. Referen
es and 
omments 263.2. Exer
ises 284. Complements to part I 304.1. Complement: Separable Bana
h spa
es 304.2. Complement: Lebesgue measure on [0, 1] 324.3. Complement: Isomorphism of Borel probability spa
es 324.4. Complement: Riesz representation theorem 33Part II. Dynami
 theory of sto
hasti
 pro
esses 355. Dynami
s and �ltrations 355.1. Conditional expe
tation 355.2. Filtrations 385.3. Martingales, supermartingales and submartingales 406. Dis
rete time martingale theory 416.1. Chara
terisation of supermartingales 416.2. Almost-sure and L1-
onvergen
e results 426.3. Lp-
onvergen
e results 456.4. Appli
ations 467. Continuous time martingale theory 518. Comments and exer
ises 538.1. Exer
ises 539. Complements to Part II 569.1. Complement: Solving sto
hasti
 di�erential equations 569.2. Complement: Regular 
onditional probability 58
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4 ADVANCED PROBABILITYPart I. Stati
 theory of sto
hasti
 pro
essesModern probability theory starts with the formalism of an experiment through the
on
ept of abstra
t algebra. This is in a sense the 
olle
tion Q of questions we 
an askabout an experiment we are interested in, and whi
h might be repeated; they are of theform: "Do you observe (that)?", shortly written "Observe (that)?" below. This 
olle
tionof questions is supposed to enjoy the following logi
al properties.
• If questions "Observe (A)?" and "Observe (B)?" are in Q then the question "Ob-serve (A and B)?" and "Observe (A or B)?" are meaningful and are in Q. Thefollowing questions always have the same answers:� "Observe (A or (B and C))?" and "Observe ((A or B) and (A or C))?"� "Observe (A and (B or C))?" and "Observe ((A and B) or (A and C))?"
• Q 
ontains a question "Observe (∅)" whose answer is always "no" and a question"Observe (all)?" whose answer is always "yes". The following questions alwayshave the same answers:� "Observe (A or ∅)?" and "Observe (A)?",� "Observe (A and ∅)?" and "Observe (∅)?",� "Observe (A or all)?" and "Observe (all)?",� "Observe (A and all)?" and "Observe (A)?",et
.Stone showed that any abstra
t logi
al stru
ture as the above one 
an always be under-stood as a 
olle
tion of questions of the form "Does this element of Ω belongs to A?",for some set Ω and A belonging to a 
olle
tion A of parts of Ω stable by �nite union,�nite interse
tion, 
omplementation, and 
ontaining the emptyset. The set A togetherwith these operations is 
alled a (
on
rete) algebra1. This theorem gives a 'set repre-sentation' of the logi
al stru
ture with whi
h we 
omprehend Nature. As natural as itmay appear, quantum me
hani
s has taught us that this representation has limits... andthat Nature is subtler than that. Nonetheless, the bene�ts provided by su
h a view onNatural phenomena are tremendous and we shall adopt it without restri
tion.We shall thus suppose given a set Ω, together with an algebra A of parts of Ω des
ribingthe elementary knowledge about some phenomenon we are questioning. Although nohuman being will ever be able to ask more than a �nite number of questions during hislife, it is a useful abstra
tion to think that sin
e this number may be really large, we area
tually able to ask 
ountably many questions. This dire
tly leads to the de�nition of a

σ-algebra F of parts of Ω, whi
h is the good setting in whi
h de�ning a probability.This formalism on whi
h probability theory rests is due to Kolmogorov in his 1933 book�Foundations of the Theory of Probability�. Although the advantages provided by this frameworkare numerous, you should keep in mind the following quotation from Kolmogorov's book on theinterpretation of probability theory.�Even if the sets (events) of A 
an be interpreted as a
tual and (perhaps only approximately)observable events, it does not, of 
ourse, follow from this that the sets of the extended �eld Freasonnably admit an interpretation.Thus there is the possibility that while a �eld of probability (A,P) may be regarded as theimage (idealized, however) of a
tual random events, the extended �eld of probability (F ,P) willstill remian merely a mathemati
al stru
ture.1Stone's theorem is well presented in T. Tao's post: http://terrytao.wordpress.
om/2009/01/12/245b-notes-1-the-stone-and-loomis-sikorski-representation-theorems-optional.



ADVANCED PROBABILITY 5Thus sets of F are generaly merely ideal events to whi
h nothing 
orresponds in the outsideworld. However, if reasonning whi
h utilizes the probabilities of su
h ideal events leads us toadetermination of the probability of an a
tual event of A, then, from an empiri
al point of viewalso, this determination will automati
ally fail to be 
ontradi
tory.�1. Constru
tion of measures and random pro
esses1.1. Pro
esses and sample spa
e. Interesting random natural phenomena are oftendes
ribed in terms of events de�ned by means of an in�nite number of 
oordinates, as is the
ase for random sequen
es or random fun
tions. They 
an be represented by a 
olle
tion
(Xt)t∈T of random variables2, de�ned on some (potentially di�erent) measurable spa
e(s),and indexed by some set; the integers for random sequen
es, and [0, 1], say, for a randomfun
tion from [0, 1] to any (measurable) spa
e. The traje
tory of a Markov 
hain is animportant example of a pro
ess indexed by the integers.Definition 1. A 
olle
tion (Xt)t∈T of random variables, de�ned on some (potentiallydi�erent) measurable spa
e(s) is 
alled a pro
ess; T will be referred to as the set of
oordinates, or index set.In Kolmogorov's theory, a pro
ess is the mathemati
al abstra
tion of the experimentalobservation pro
ess. How 
an we de�ne a random pro
ess? In pra
ti
e, we generally fa
etwo kinds of situations, depending on whi
h obje
t is given as part of the model.(1) A probability measure spa
e (Ω,F ,P) is given and we have to de�ne a pro
ess
X on it satisfying some probabilisti
 requirements. This is sometimes easy but, moreoften, it requires some work as you will see in the 
ourse on sto
hasti
 
al
ulus: de�ningsto
hasti
 integrals, solving sto
hasti
 di�erential equations are tasks of that type. Weshall not en
ounter su
h a situation here, ex
ept in se
tion 1.3.(2) In other 
ases, when the measurable spa
e (Ω,F) we are working with is ni
eenough, the de�nition of the pro
ess X is immediate but not the de�nition of a probability
P on (Ω,F) whi
h would give X the probabilisti
 properties we want it to have; this willbe the 
ase when we take as Ω the spa
e of out
omes of the phenomenon under study.This di
hotomy is analogous to the situation an experimentor 
an meet: Given anexperimental 
ontext, 
onstru
t some measurement devi
es whi
h will enable him/herto measure some given quantities, or, given some measurement devi
es, 
onstru
t anexperiment whi
h will enable him/her to observe what he/she wants with his/her tools.We shall mainly explore situation (2) in the �rst part of this 
ourse, where we shall takeas Ω the sample spa
e of the phenomenon under study. It will for example be the spa
e
RN for a Markov 
hain on R, the spa
e R[0,1] for a random fun
tion from [0, 1] to R, or
{0, 1}E for the 
on�guration spa
e of a spin system over a set E. We �rst des
ribe the
σ-algebra F of observable events of these un
ountable produ
t spa
es.b) Produ
t σ-algebra, or �What 
an we measure?�. Suppose we model the experi-mental observation of a natural phenomenon by a 
olle
tion (Xt)t∈T of random variablesand denote by St the set of possible out
omes of Xt. We model the set of possible out-
omes3 of the phenomenon as a produ
t ∏t∈T St. This produ
t spa
e will be our Ω, witha generi
 element ω = (ωt)t∈T . If ea
h set St has a σ-algebra of observable events, the2That is, measurable fun
tions from (Ω,F) to some (Ω′,F ′).3More pre
isely, the set of experimentally a

essible possible out
omes.



6 ADVANCED PROBABILITY
σ-algebra of observable events in the produ
t spa
e is generated by4 the elementary events{
(ωt)t∈T ; ωt1 ∈ A1, . . . , , ωtn ∈ An

}, with n > 1 �nite and ea
h Ai ∈ Sti ; it is 
alled theprodu
t σ-algebra5. It will be the 
olle
tion of sets to whi
h we shall be able to asso
iatea probability. Let us �rst des
ribe this σ-algebra in some more 
on
rete way.
• The measurable spa
e (RN,B(RN)

). Let us 
onsider as an example the spa
e
RN of real-valued sequen
es; T = N and St = R for all t ∈ T . Introdu
e the metri

ρ(x, y) = |x−y|

1+|x−y| on R; the open sets for ρ are 
ountable unions of open intervals, as forthe usual metri
. De�ne on RN the metri

d(ω, ω′) =

∑

n>1

2−nρ(ωn, ω
′
n),where ω = (ωn)n>1 and ω′ = (ω′

n)n>1; the Borel σ-algebra of RN is the smallest σ-algebraof RN 
ontaining the open balls of the metri
 d.Lemma 2. The produ
t σ-algebra of RN and its Borel σ-algebra 
oin
ide.Proof � As both σ-algebras are de�ned by a 
olle
tion fo elementary sets it su�
es to provethat any of these is an element of the other σ-algebra. To start with, let us 
onsider anelementary produ
t event B =
{
ω = (ωn)n>1 ∈ RN ; ωn(1) ∈ A1, . . . , , ωn(p) ∈ Ap

}, with p�nite and ea
h Ai a Borel set of R. By a monotone 
lass argument, it su�
es to 
onsiderthe 
ase where the Ai's are open intervals (ai − εi, ai + εi). Prove that B 
an be written asa 
ountable union of open balls of (RN, d
), in that 
ase. To prove that open balls 
an bewritten as a union of elementary B's, mimi
 the 2-dimensional 
ase, �lling a 
ir
le with aunion of squares6. �

• The produ
t spa
e RT . The following theorem shows that the produ
t σ-algebraof any produ
t spa
e RT is not ri
her than the produ
t σ-algebra of RN.Lemma 3. Let T be an un
ountable set. To any event A of the produ
t σ-algebra of RTthere 
orresponds a 
ountable set of indi
es (tn)n>1 and a Borel set B in RN su
h that(1.1) A =
{
ω = (ωt)t∈T ∈ RT ;

(
ωtn

)
n>0

∈ B
}
.Proof � Denote by E the 
olle
tion of subsets of RT of the form (1.1). Given a sequen
e

(An)n>1 of elements of E with 
orresponding indi
es T (n), set T (∞) =
⋃

n>1 T
(n); every An
an be written

An =
{
ω ∈ RT ; (ωτ1 , ωτ2 , . . . ) ∈ Bn

}
,where τi ∈ T (∞) and Bn is a Borel event of RN. It follows that the 
olle
tion E is a σ-algebra;as it 
ontains the elementary produ
t events, it 
ontains the produ
t σ-algebra. Conversely,given an event of the form (1.1), lemma 2 proves that it belongs to the produ
t σ-algebra of

RT ; this establishes the 
on
lusion of the theorem. �4The σ-algebra generated by some family of parts of a set is the smallest σ-algebra 
ontaining the givenfamily. It always exists as the family of all parts is a σ-algebra and the interse
tion of any 
olle
tion of
σ-algebras is a σ-algebra.5You 
an think of the elementary events as re
tangles in Rn; this 
olle
tion of sets is su�
ient to des
ribeall open sets, altough not all open sets are re
tangles.6Note that as ρ is bounded above by 1, an elementary event {(ωn)n>1 ∈ RN ; ωn(1) ∈ A1, . . . , ωn(p) ∈ Ap

}and the (in�nite dimensional) 
ube {(ωn)n>1 ∈ RN ; ωn(1) ∈ A1, . . . , ωn(p) ∈ Ap, ωn(p+1) ∈ Ap+1, . . .
} arewithin distan
e ε of one another provided p is big enough. So, �ll the ball by 
ubes, and approximate
ubes by elementary events.



ADVANCED PROBABILITY 7
• The produ
t spa
e ∏t∈T St. In the general 
ase where the sample spa
e of theobserved phenomenon is the produ
t ∏t∈T St of possibly un
ountably many measurablespa
es (St,St), the des
ription of its produ
t σ-algebra ⊗t∈T St is similar to the 
ase of

RT . Given a 
ountable subset S of T , denote by BS the σ-algebra on ∏s∈S Ss generatedby its elementary produ
t events. The proof of the following fa
t is identi
al to the proofof lemma 3.Theorem 4 (Produ
t σ-algebra). To any event A of the produ
t σ-algebra of ∏t∈T Stthere 
orresponds a 
ountable set S of indi
es and a measurable set B in ∏s∈S Ss su
hthat(1.2) A =
{
ω = (ωt)t∈T ∈

∏

t∈T

St ; (ωs)s∈S ∈ B
}
.As the maps

Xt : ω = (ωs)s∈T ∈
∏

t∈T

St 7→ ωt, t ∈ T,are measurable, by de�nition of the produ
t σ-algebra, we de�ne a pro
ess on the measur-able spa
e (∏t∈T St,
⊗

t∈T St

) setting X = (Xt)t∈T . It is 
alled the 
oordinate pro
ess.Definition 5. Our empiri
al knowledge of the investigated phenomenon provides uswith an a priori set of values for the probability of the elementary events: P
(
Xt1 ∈

A1, . . . , Xtn ∈ An

). These quantities are 
alled the �nite-dimensional laws (or distri-butions) of the pro
ess.Under proper 
onditions, Caratheodory's theorem below gives us a mean to de�ne theprobability of any event of the produ
t σ-algebra in an unambiguous way out of thesequantities only.1.2. Caratheodory's extension theorem. The main tool to 
onstru
t abstra
tly prob-ability measures is Caratheodory's extension theorem, of whi
h we give a proof followingJ.L. Doob's exposition, in his book [Doo94℄. Starting with the a priori datum of the�probability� of elementary events7, it gives a su�
ient 
ondition under whi
h this setfun
tion 
an be extended to a bigger set of events. Re
all that an additive set fun
tion
µ on an algebra is a real-valued fun
tion su
h that µ(A∪B) = µ(A) + µ(B) whenever Aand B are disjoint elements of the algebra.Theorem 6 (Caratheodory's extension theorem). Let (Ω,F) be a measurable spa
e,
A ⊂ F be an algebra and µ : A → [0, 1] be an additive fun
tion su
h thati) µ(∅) = 0, µ(Ω) = 1,ii) (
ountable additivity on A) If A1, A2, . . . are disjoint sets of A with union in Athen µ(⋃n>1An

)
=
∑

n>1 µ(An).Then µ has a unique extension into a probability measure on σ(A).Note that 
ondition ii) is equivalent to 
onditionii)' For any sequen
e (An)n>0 of sets of A de
reasing to ∅ we have µ(An) → 0.7Given by repeated measurements in a �xed experimental 
ontext.



8 ADVANCED PROBABILITYProof � Uniqueness. The 
olle
tion of elements of σ(A) on whi
h two possible extensions
oin
ide being a σ-algebra the two measures are equal on σ(A) if they 
oin
ide on A by themonotone 
lass theorem8.Existen
e. Denote by P(Ω) the family of subsets of Ω. The outer measure µ asso
iated with
µ is a set fun
tion de�ned on P(Ω) by the formula

µ(B) = inf
{∑

n>0

µ(An) ; B ⊂
⋃

n>0

An, An ∈ A
}
.

µ is easily seen to be in
reasing and 
ountably sub-additive: µ(⋃n>0Bn

)
6
∑

n>0 µ(Bn),for any sequen
e (Bn)n>0 of sets of Ω. Also, as µ is 
ountably additive on A we see9 that
µ(A) 6 µ(A) for A ∈ A; as the 
onverse inequality trivially holds, µ and µ 
oin
ide on A.Che
k that we de�ne a pseudo-metri
10 on P(Ω) setting11

d(B,C) = µ(B∆C);sin
e µ is sub-additive and B ⊂
(
B∆C

)
∪ C for any subsets B,C of Ω, we have

|µ(B) − µ(C)| 6 µ(B∆C) = d(B,C),so µ(B) = µ(C) if d(B,C) = 0. De�ne Aµ as the 
olle
tion of subsets B of Ω whi
h 
an beapproximated to any a

ura
y by elements of A, using d-(pseudo)-distan
e.Lemma 7. Aµ is a σ-algebra on whi
h µ is additive.Proof � • We start by proving the (�nite) additivity of µ on Aµ as we are going to usethat fa
t in the proof that Aµ is a σ-algebra. Take two disjoint sets B and C in Aµ, an
ǫ > 0, and let AB and AC be elements of A su
h that d(B,AB

)
, d
(
C,AC

)
6 ǫ. As theysatisfy the inequality µ(AB ∩AC) 6 2ǫ, we have by sub-additivity of µ

max
(
d
(
B,AB\(AB ∩AC)

)
, d
(
C,AC\(AB ∩AC)

))
6 3ǫ.It follows that

µ(B) + µ(C) > µ(B ∪ C) > µ
(
A\(AB ∩AC) ∪ A\(AB ∩AC)

)
− 3ǫ

> µ(B) + µ(C) − 5ǫ,from whi
h we get the 
on
lusion as ǫ > 0 is arbitrary.
• Aµ is 
learly stable by 
omplementation; we 
he
k that Aµ is stable by 
ountabledisjoint union, this implies that Aµ is stable by 
ountable union or interse
tion, and sois a σ-algebra. Given ǫ > 0 and a sequen
e (Bn)n>0 of disjoint elements of Aµ; asso
iateto ea
h Bn an An ∈ A su
h that d(An, Bn) 6 2−n−1ǫ. As µ is �nitely additive on Aµ wehave ∑N

n=0 µ(Bn) = µ
(⋃N

n=0Bn

)
6 1, for all N > 0, so the sum ∑

n>N+1 µ(Bn) is lessthan ǫ for N large enough. For su
h a 
hoi
e of N
d
(⋃

n>0

Bn,
⋃

n=0..N

An

)
6 d
(⋃

n>0

Bn,
⋃

n=0..N

Bn

)
+ d
( ⋃

n=0..N

Bn,
⋃

n=0..N

An

)

6 µ
( ⋃

n>N+1

Bn

)
+ µ

({ ⋃

n=0..N

Bn

}
∆
{ ⋃

n=0..N

An

})

6 ǫ+ µ
( ⋃

n=0..N

(Bn∆An)
)

6 ǫ+

N∑

n=0

2−n−1ǫ 6 2ǫ.8Algebras are π-systems.9Repla
ing An by An\
⋃n

k=0 Ak if ne
essary, we 
an suppose that the An's are disjoint.10A metri
 for whi
h two elements at null distan
e are not ne
essarily equal.11B∆C := (B ∪ C)\(B ∩ C).



ADVANCED PROBABILITY 9As ǫ > 0 
an be 
hosen arbitrarily small this proves that ⋃n>0Bn is an element of Aµ.
⊙

µ being in
reasing, additive and sub-
ountably-additive on Aµ
(
⊃ σ(A)

), it is 
ountably-additive on Aµ (
an you see why?); its restri
tion to σ(A) provides the desired extension of
µ. �Despite its elegan
e, Caratheodory's theorem does not rule out all the di�
ulties astheir remains to 
he
k 
onditions i) and ii) (or ii)' ) if one wants to use it. The introdu
tionof the following framework will help greatly in that task; it also provides a framework inwhi
h the use of Caratheodory's theorem is not ne
essary in some 
on
rete situations.1.3. A 
onvenient framework. Although Caratheodory's extension theorem is a fan-tasti
 tool to 
onstru
t probability measures as models of random phenomena, most ofthe time, it is not ne
essary to resort to the full strength of this abstra
t ma
hinery asadditional features 
an help us in our 
onstru
tion task. Indeed, problems 
an often be setin a topologi
al framework where Ω is a topologi
al spa
e and F the σ-algebra generatedby its open sets.Definition 8. We say that two measurable spa
es are isomorphi
 ifdef there exists ameasurable bije
tion from one to the other with a measurable inverse12.The interval [0, 1] will be equiped with its Borel σ-agebra B

(
[0, 1]

), generated by theopen sets.Definition 9. A measurable spa
e (Ω,F) is said to be a Borel spa
e ifdef it is isomorphi
to a measurable subset of [0, 1].Constru
tion problems in Borel spa
es are nothing more than 
onstru
tions problemsin the inno
ent framework ([0, 1],B
(
[0, 1]

)). But powerful tools are available on the spa
e
[0, 1] whi
h are not available in an abstra
t measurable spa
e (basi
ally 
ompa
tness!, i.e.existen
e of limits of subsequen
es). We shall illustrate this fa
t in theorems 18 belowwhere it is used together with Caratheodory's ma
hinery to prove a general existen
eresult. It will also be the framework of the approximation theory developped in se
tion2. Theorem 10 below should 
onvin
e you that the 
lass of Borel spa
es should be su�
ientfor your needs before long. It is proved in the Complement Separable Bana
h spa
es.Theorem 10. Any measurable subset of a separable Bana
h spa
e is a Borel spa
e.a) A �rst appli
ation: existen
e of sequen
es of independent random variables,
onstru
tion of Markov 
hains. As a �rst example of how this property of a spa
e
an be used, let us see how one 
an 
onstru
t on [0, 1], with Lebesgue measure Leb, asequen
e of independently distributed random variables with values in some Borel spa
es.As a �rst step let us 
onstru
t a real-valued random variable with any given distribution.Given a probability measure µ in R denote by F : R → [0, 1] its distribution fun
tion
F (t) = µ

(
(−∞, t]

) and by G : [0, 1] → R its right inverse
G(u) = inf{t ∈ R ; F (t) > u}12In the same way as the inverse of a one-to-one 
ontinuous fun
tion may be non-
ontinuous (
an you�nd a 
ounter-example?), the inverse of a one-to-one measurable fun
tion may be non-measurable.



10 ADVANCED PROBABILITYwith the 
onvention that inf ∅ = +∞; this is a 
àdlàg fun
tion 
hara
terized by theproperty13
u 6 F (t) i� G(u) 6 t.So if U is a uniform random variable in [0, 1]

P
(
G(U) 6 t

)
= P

(
F (t) > U

)
= F (t).Theorem 11 (Existen
e of independent sequen
es). Given probability measures µn onsome Borel spa
es (Sn,Sn), n > 1, we 
an 
onstru
t on ([0, 1],B

(
[0, 1]

)
,Leb) a sequen
e

(Xn)n>0 of independent random variables with respe
tive distributions µn.Proof � It is given under the form of an exer
ise.(1) Given a uniform random variable U on [0, 1] prove that the sequen
e of its binaryexpension is a Bernoulli sequen
e with parameter 1
2 .(2) Dedu
e that there exists measurable fun
tions f1, f2, . . . from [0, 1] to itself su
h thatthe fn(U) are iid uniform on [0, 1].(3) Let ϕi be an isomorphism between (Si,Si) and a Borel subset of [0, 1]; de�ne theprobability νi on [0, 1] setting νi(A) = µi

(
ϕ−1

i (A)
). Set, for t ∈ [0, 1]

fi(t) = sup
{
x ∈ [0, 1] ; νi

(
[0, x]

)
< t
}
.Why is this fun
tion measurable? Prove that if V is uniformly distributed in [0, 1] then

fi(V ) has law νi. Finish the proof.
�As a by-produ
t of the above result we are able to 
onstru
t e�e
tively any Markov
hain in a proper way. Suppose we are given for ea
h x ∈ R a probability measure p(x, .)on R.14Definition 12. A dis
rete time Markov 
hain with transition kernel {p(x, .)}x∈Rand initial distribution ν is a pro
ess (Xn)n>0 de�ned on some probability spa
e (Ω,F ,P)su
h that we have for any n > 0, and any (Borel) sets A0, ..., An of R

P
(
X0 ∈ A0, ..., Xn ∈ An

)
=

∫
· · ·
∫
ν(dx0) 1A1(x1)p(x0, dx1) · · ·1An(xn)p(xn−1, dxn).Proposition 13. Given any transition kernel {p(x, .)}

x∈R
and any initial distribution νtheir exist a Markov 
hain with the 
orresponding 
hara
teristi
s.Proof � Denote by g and fx the right inverses of the distribution fun
tions of ν and µxrespe
tively,

g(u) = inf
{
z ∈ R ; ν

(
(−∞, z]

)
> u

}
, fx(u) = inf

{
z ∈ R ; p

(
x, (−∞, z]

)
> u

}
, u ∈ [0, 1],and let (Un)n>0 be a sequen
e of iid uniform random variables on [0, 1], whose existen
e isguaranteed by theorem 11. I leave you to 
he
k that the indu
tion formula X0 = g(U0) and

Xn+1 = fXn(Un)de�nes a Markov 
hain with transition kernel {p(x, ·)}
x∈R

and initial distribution ν.15 �13The left inverse of F is de�ned by the formula H(u) = sup{t ∈ R ; F (t) < u}. Let D be the image by
F of the 
ountable 
olle
tion of intervals where f is 
onstant. The two inverses G and H 
oin
ide outside
D.14The 
onstru
tion below works equally well with any Borel spa
e as a state spa
e of the Markov 
hain.15To be really 
lean we should make the hypothesis that p(x, .) depends measurably on x, a detail whi
hwe shall leave aside.



ADVANCED PROBABILITY 11Theorem 11 provides us with a reservoir of iid random variables; they 
an be used notonly to 
onstru
t dis
rete time random pro
esses, as Markov 
hains, but also 
ontinuoustime random pro
esses.b) A se
ond appli
ation: Wiener measure and Brownian motion. The spa
e
C
(
[0, 1],R

) 
an be seen from two point of views, either as a subset of the produ
t R[0,1],or as a metri
 spa
e (C([0, 1],R
)
, ‖.‖∞

). Ea
h pi
ture has its own σ-algebra of observableevents: the tra
e on C
(
[0, 1],R

) of the produ
t σ-algebra, and the Borel σ-algebra of(
C
(
[0, 1],R

)
‖.‖∞

), generated by the open balls. We shall prove later, in proposition 32,that the two σ-algebras 
oin
ide, making it the natural obje
t to 
onsider; denote it by
W and write W for C([0, 1],R

). Refering to �a) of the introdu
tion, we 
onstru
t in thisparagraph a 
ontinuous time random pro
ess using the point of view (2): the 
oordinatepro
ess (Xt)t∈[0,1] is naturally de�ned on (W,W) setting Xt : ω ∈ W 7→ ωt for ea
h
t ∈ [0, 1]. So, turning X into a random pro
ess amounts to 
onstru
ting a probabilitymeasure (W,W). We 
onstru
t here what it probably the most fundamental of all su
hmeasures: Wiener measure.Definition 14. A Wiener measure on (W,W) is a probability measure P su
h that

• X0 = 0, P-almost-surely ,
• the pro
ess X has independent in
rements,
• Xt −Xs ∼ N (0, t− s) for all s < t.Theorem 15. There exists a unique Wiener measure on (W,W).The uniqueness statement 
omes from the fa
t that the above three 
onditions de�neuniquely the probability of the elementary events {Xt1 ∈ A1, · · · , Xtn ∈ An

}, for (Borel)subsets Ai of R (
an you see why?). As these events generate the produ
t σ-algebra, whi
h
oin
ides with W, the probability P, if it exists, is uniquely determined by its values onthese elementary events.Denote by D the set of dyadi
 rationals in [0, 1] and write Dn for {k2−n ; k = 0..2n}.The following existen
e proof of Wiener measure takes advantage of the following twofa
ts.
• If one 
an 
onstru
t on some probability spa
e (Ω,F ,Q) an almost-surely 
ontin-uous pro
ess Y satisfying Q-almost-surely some requirements then, denoting by

P the image measure of Q by Y 16, the 
oordinate pro
ess X on (W,W) satis�es
P-almost-surely the same requirements.

• It is easy to 
onstru
t a �Wiener measure� on the spa
e of fun
tions from Dn to
R, for any n > 1.Proof � Use theorem 11 to 
onstru
t on the probability spa
e ([0, 1],B([0, 1]),Leb) a 
ount-able 
olle
tion {Xn

i ; 1 6 i 6 2n−1, n > 1
} of 
entered Gaussian random variables withvarian
e 1. De�ne indu
tively a sequen
e B(n)
t of random 
ontinuous fun
tions spe
ifyingtheir values on the points of Dn and interpolating linearly in between.

• B(0)(0) = 0 and B(0)(1) = X0;
• supposing B(n−1) has been 
onstru
ted and has independent Dn−1-in
rements

{
B

(n−1)

(k+1)2−(n−1) −B
(n−1)

k2−(n−1) ; 0 6 k 6 2−(n−1) − 1
}
,16P is a probability on (W,W).



12 ADVANCED PROBABILITYset B(n)
t = B

(n−1)
t for all t ∈ Dn−1, and for s = k2−(n−1) + 2−n set

B(n)
s =

1

2

(
B

(n−1)

k2−(n−1) +B
(n−1)

(k+1)2−(n−1)

)
+ 2−

n+1
2 Xn

k , 1 6 k 6 2nThe in
rements B(n)
s − B

(n)

k2−(n−1) and B
(n)

(k+1)2−(n−1) − B
(n)
s being Gaussian, we 
he
k theirindependen
e showing they have null 
ovarian
e; they have varian
e 2−n. These two in-
rements being 
onstru
ted from B

(n−1)

k2−(n−1) −B
(n−1)

(k+1)2−(n−1) and Xn
k they are independent ofin
rements over intervals disjoint from (

k2−(n−1), (k+1)2−(n−1)
). An in
rement B(n)

t −B(n)
swill thus have a 
entered Gaussian law with varian
e t− s, for t, s ∈ Dn.Now, by Borel-Cantelli's lemma, for any c >

√
2 log 2 there exists Leb-almost-surely aninteger n0 su
h that for all n > n0 and all 0 6 k 6 2n we have |Xn

k | 6 c
√
n. For su
h

n's we thus have ‖B(n) − B(n−1)‖∞ 6 c
√
n 2−

n
2 , from whi
h it follows that the sequen
eof 
ontinuous fun
tions (B(n)

)
n>0


onverges almost-surely uniformly to some 
ontinuous(random) fun
tion (Bt)t∈[0,1]. It is de�ned on the probability spa
e ([0, 1],B([0, 1]),Leb).We 
he
k that the pro
ess B has independent Gaussian in
rements; this proves the existen
eof Wiener measure by the remarks pre
eding the beginning of the proof.Given times 0 6 t0 < t1 < · · · < tn, approximate ea
h ti by a sequen
e tki of dyadi
s.Write EL for the expe
tation under Lebesgue measure. Use bounded 
onvergen
e and theLeb-almost-sure 
ontinuity of B to write for any real-valued bounded 
ontinuous fun
tion
f on Rn

EL

[
f(Bt1 −Bt0 , . . . , Btn −Btn−1)

]
= lim

k+∞
EL

[
f(Btk1

−Btk0
, . . . , Btkn

−Btkn−1
)
]

= lim
k+∞

EL

[
f
(√

tk1 − tk0 N1, . . . ,
√
tkn − tkn−1Nn

)]

= EL

[
f
(√
t1 − t0N1, . . . ,

√
tn − tn−1Nn

)]
.where N1, . . . , Nn are iidN (0, 1) de�ned on ([0, 1],B([0, 1]),Leb). One reads on that formulathat B has independent Gaussian in
rements. �Definition 16. A (W,W)-valued random variable de�ned on some probability spa
e issaid to be a Brownian motion if its law is Wiener measure.
) Existen
e of random sequen
es and random pro
esses. The pre
eding twoparagraphs make it 
lear that it is not always ne
essary to resort to Caratheodory'sextension theorem to de�ne interesting random pro
esses. Yet, it remains the best tool todeal with more general and abstra
t situations. As emphasized at the end of se
tion 1.2,on eis left with 
he
king the non-trivial 
ondition ii) or ii)' of Caratheodory's theorem ifone wants to apply it. Borel spa
es provide a good framework in whi
h proving ii)', orrather its 
ontraposition. This is typi
ally done as follows.Given a de
reasing sequen
e (An)n>0 su
h that µ(An) is bounded below by some positive
onstant ε, approximate ea
h An from inside by a 
ompa
t Kn. A 
areful 
hoi
e givesa de
reasing sequen
e of �
ompa
t� sets whose measure is bounded below by ε

2
. Theinterse
tion of �nitely many of them having positive (�pre-�)measure is thus non-emptyso, by 
ompa
tness, their interse
tion is non-empty; hen
e ⋂n>0An ⊃ ⋂

n>0Kn 6= ∅,whi
h proves ii)'. These �
ompa
t� sets are what the �Borel hypothesis� provides us with.We are going to illustrate this approa
h in the following framework, whi
h is well suitedto deal with (Markov 
hains and more) general random sequen
es.



ADVANCED PROBABILITY 13Definition 17. Given measurable spa
es (Si,Si), we say that a sequen
e of probabilitymeasures µn on ∏i=0..n Si (17) is proje
tive ifdef
µn+1(· × Sn+1) = µn(·), n ∈ N.Proje
tive families of probabilities are models of dis
rete time random pro
esses withmemory. If for instan
e all the Si's are identi
al, equal to S, and (µn)n>0 is determinedby a family of transition kernels18 {µx(.) ; x ∈ S

} via the formula
µn(A0 × · · · ×An) =

∫

A0

ν0(dx0)

∫

A1

µx0(dx1) . . .

∫

An

µxn−1(dxn),then µn is the law of the �rst n positions of a Markov 
hain on (S,S). In the abovegeneral model the law of the (n + 1)th-position of the pro
ess may depend not only onthe nth position of the pro
ess but also on all its history up to time n. Equip the in�niteprodu
t∏i>0 Si with its produ
t σ-algebra; denote by S0⊗· · ·⊗Sn the produ
t σ-algebraof ∏i=0..n Si.Theorem 18 (Existen
e of random sequen
es � Daniell). Let ((Si,Si)
)

i>0
be a sequen
eof Borel spa
es. Given a proje
tive sequen
e of probability measures µn on∏i=0..n Si, thereexists a probability P on the produ
t σ-algebra of ∏i>0 Si su
h that

P
(
E ×

∏

i>n+1

Si

)
= µn(E)for any E ∈ S0 ⊗ · · · ⊗ Sn, and n ∈ N.Proof � We use Caratheodory's extension theorem; point i) is 
lear. The algebra A =

{
E ×∏

i>n+1 Si ; E ∈ S0 ⊗ · · · ⊗ Sn

} generates the produ
t σ-algebra of ∏i>0 Si. Let (An)n>0be a de
reasing sequen
e of elements of A; we 
an suppose without loss of generality that
An = En ×∏i>n+1 Si and En ∈ ⊗i=0..n Si. We prove the 
ontraposition of 
ondition ii)'of Caratheodory's theorem: if P(An) = µn(An) is bounded below by some positive δ then⋂
n>0

An 
annot be empty. Let ε > 0 be given.Denote by ϕn an isomorphism of ∏i=0..n Si to a Borel subset of [0, 1] and denote by νn theimage measure of µn by ϕn. As νn is inner regular (exer
i
e 5), there exists a 
ompa
t subset
Kn of ϕn(En) su
h that

νn

(
ϕ(En)\Kn

)
6 2−nǫ,i.e.

P
(
An\

{
ϕ−1

n (Kn) ×
∏

i>n+1

Si

})
6 2−nǫ.Writing Vn for ϕ−1

n (Kn) ×∏i>n+1 Si and setting Wn = V1 ∩ · · · ∩ Vn, it follows that
P
(
An\Wn

)
6 ǫ,so Wn 
annot be empty provided ε < δ (it has positive probability under that 
ondi-tion). Choose for ea
h n a point mn in Wn. As the sets Wn are de
reasing, all the points

mn+1,mn+2, . . . belong to Wn, and the ϕn-proje
tion of their �rst n 
oordinates lie in the
ompa
t Kn, so have a 
onverging sub-sequen
e. A diagonal extra
tion then provides a17Equiped with its produ
t σ-algebra S0 ⊗ · · · ⊗ Sn.18p(x, ·) is for every x ∈ S a probability on (S,S); the quantity p(x,A) represents the probability startingfrom x to jump in A. For a dis
rete spa
e S the matrix {p(x, y)}x,y∈S is the usual transition matrix of aMarkov 
hain.



14 ADVANCED PROBABILITYsubsequen
e of mn 
onverging to a point m belonging to all the Wn(⊂ An), proving that⋂
n>0An is not empty. �Kolmogorov's general existen
e theorem below gives a version of Daniell's theorem 18whi
h works on any produ
t spa
e ∏t∈T St. The 
on
eptual improvement is almost-nullas a generi
 element of the produ
t σ-algebra of ∏t∈T St is de�ned by requirements on
ountably many 
oordinates, as theorem 4 makes it 
lear. Kolmogorov's theorem is thusan almost-straightforward 
onsequen
e of Daniell's theorem; details of its proof 
an befound in the proof of theorem 6.16, in Kallenberg's book [Kal02℄.Given �nite sets of indi
es I ⊂ J , denote by the same letter A an event of ∏t∈I St,
onsidered also as an event of ∏t∈J St. Denote by T the set of �nite subsets of T . Afamily of measures µI on ∏t∈I St, I ∈ T, is said to be proje
tive ifdef µJ(A) = µI(A) forany event A as above, and any �nite sets of indi
es I ⊂ J .Theorem 19 (Existen
e of pro
esses � Kolmogorov). Let T be any index set and (St)t∈Tbe a family of Borel spa
es. Given a proje
tive family of probability measures µI on∏t∈I Stthere exists a unique probability measure on ∏t∈T St with proje
tion µI on ea
h ∏t∈I St,

I ∈ T.d) Limits of the abstra
t ma
hinery. However powerful su
h general results may be,they remain unsu�
ient to provide models of real-valued 
ontinuous random paths. Tryfor instan
e to de�ne su
h a pro
ess X = (Xt)t∈[0,1] as a random variable with values in
R[0,1] equiped with its produ
t σ-algebra.Proposition 20. The subset C([0, 1],R

) of R[0,1] is not measurable19.Proof � The main reason for this is that the 
on
ept of 
ontinuity involves a 
ontinuum of
onditions whereas any elements on the produ
t σ-algebra 
ontains only information on whathappens at 
ountably many times. Use theorem 4 to give a neat proof. �To over
ome this di�
ulty in de�ning random 
ontinuous fun
tions as models of randomNatural phenomena we shall rely on the idea that 
ontinuous fun
tions are determined bytheir values on a 
ountable set of times. Our 
onstru
tion of Wiener measure and Brown-ian motion relied on this idea. The next se
tion gives a 
lear example of this philosophy;later, in se
tion 6 on martingales, we shall 
onstru
t 
ontinuous time martingales fromtheir rational skeleton...1.4. Good modi�
ations.Definition 21. • Two random pro
esses (Xt)t∈T and (X̃t)t∈T , indexed by the sameset T of indi
es, are said to be a modi�
ation of one another if they have thesame �nite dimensional laws20: P(X̃t = Xt) = 1 for any t ∈ T .
• (Xt)t∈T and (X̃t)t∈T are said to be indinstiguishable if P( ∀ t ∈ T, X̃t = Xt) = 1.The previous de�nition assumes that the event {∀ t ∈ T, X̃t = Xt} is measurable, whi
hdoes not hold for any index set or any pair of pro
esses. This notion will only be used in a
ontext where this problem does not happen. To be indistinguishable is a mu
h strongerrequirement than to be modi�
ations of one another; however, these two notions 
oin
ide19That is, it does not belong to the produ
t σ-algebra.20This 
ondition is su�
ient to have P(∀i, X̃ti

= Xti
) = 1, for any �nite 
olle
tion of indi
es ti.



ADVANCED PROBABILITY 15if the index set is 
ountable, or if the two pro
esses are right-
ontinuous with value in aHausdor� topologi
al spa
e; prove that fa
t.Caratheodory's theorem typi
ally provides us with pro
esses for whi
h natural require-ments, like 
ontinuity of the sample paths, have no meaning. Yet, if this pro
ess 
anbe 
ontrolled in some way, it admits a modi�
ation with good sample paths properties.From an experimental point of view, working with a given pro
ess or a modi�
ation of itdoes not make any di�eren
e as the only quantities we 
an measure are the elementaryprobabilities P
(
Xt0 ∈ A0, . . . , Xtn ∈ An

), whose values do not depend on whi
h modi-�
ation of X we are working with. As you will see in exer
ise ??, two pro
esses whi
hare modi�
ation of one another may have quite di�erent pathwise properties; this leavessome freedom to 
hoose the best version of a pro
ess for our needs.This se
tion provides the basi
 example of a modi�
ation pro
edure due to Kolmogorov.Re
all we denote by D the set of dyadi
 rationals in [0, 1] and write Dn for {k2−n ; k =
0..2n}.Theorem 22 (Kolmogorov's 
riterion). Let p > 1 and β > 1/p. Suppose X = (Xt)t∈Dis a real-valued pro
ess de�ned on some probability spa
e (Ω,F ,P) and su
h that

E
[
|Xs −Xt|p

]
6 C |s− t|p β, for all s, t ∈ Dfor some �nite 
onstant C. Then, for all α ∈

[
0, β − 1

p

), there exists a random variable
Cα ∈ Lp su
h that one has almost surely

|Xs −Xt| 6 Cα|s− t|α, for all s, t ∈ D.As a 
onsequen
e, and given any α ∈
[
0, β − 1

p

), the pro
ess X has an α-Hölderianmodi�
ation de�ned on [0, 1].Proof � For s, t ∈ D with s < t, let m > 0 be the only integer su
h that 2−(m+1) < t−s ≤ 2−m.The interval [s, t) 
ontains at most one interval [rm+1, rm+1 + 2−(m+1)
) with rm+1 ∈ Dm+1.If so, ea
h of the intervals [s, rm+1) and [rm+1 + 2−(m+1), t

) 
ontains at most one interval[
rm+2, rm+2 + 2−(m+2)

) with rm+2 ∈ Dm+2. Repeating this remark up to exhaustion of thedyadi
 interval [s, t) by su
h dyadi
 sub-intervals, we see that
|Xt −Xs| 6 2

∑

n≥m+1

Sn,where Sn = supt∈Dn
|Xt+2−n −Xt|. So we have

|Xt −Xs|
(t− s)α

6 2
∑

n>m+1

Sn 2(m+1)α
6 Cαwhere Cα = 2

∑
n>0 2nαSn. But as

E[Sp
n] 6 E

[∑

t∈Dn

|Xt+2−n −Xt|p
]

6 2nC(2−n)p β,it follows that
‖Cα‖p 6 2

∑

n>0

2nα‖Sn‖p 6 2C
∑

n>0

2

(
α−β+ 1

p

)
n
<∞,whi
h proves that Cα is almost-surely �nite. Use then the Hölder-
ontinuity of X on D toextend it to [0, 1] in an unambiguous way, setting Yt = Xt for t ∈ D, and

Yt = lim
s→t, s∈D

Xs.



16 ADVANCED PROBABILITYfor t ∈ [0, 1]\D. This de�nes a measurable fun
tion of ω (as a limit of measurable fun
tions),so that (Yt)t∈[0,1] de�nes a random pro
ess; it has by 
onstru
tion α-Hölder paths. �2. Constru
tive approa
h in separable Bana
h spa
esWe have seen in se
tion 1 how one 
an 
onstru
t in a more or less abstra
t way proba-bility spa
es and random pro
esses. A di�erent approa
h to the 
onstru
tion problem istaken in this se
tion. Starting with probabilities on some spa
e de�ned in an elementaryway, we 
onstru
t new probabilities as limits of su
h elementary probabilities; the above
onstru
tion of Wiener measure as a limit of elementary probability measures 
orrespond-ing to random pie
ewise linear 
ontinuous fun
tions is an ar
hetype of su
h a pro
edure.Our �rst task will be to explain what we mean by the limit of a sequen
e of probabilitymeasures. Before investigating further the general 
ase we shall see in se
tion 2.2 howthis 
onvergen
e notion works in R. The general 
ase is addressed in se
tion 2.3. Weshall see in se
tion 2.3 b) how to 
hara
terize the 
ompa
t sets of the set of probabilitymeasures. As is the 
ase of the 
ompa
t segment [0, 1], general 
ompa
t sets have theproperty that any sequen
e of its points have a 
onverging subsequen
e. This setting isthus ideal to 
onstru
t some obje
ts as limits of other obje
ts21. With a view to 
on-stru
ting random 
ontinuous time fun
tions, we shall see in 2.3 
) how the theory worksin the spa
e C([0, 1],Rn
). We shall �nally illustrate the whole se
tion in 2.3 d) by provingDonsker's amazing invarian
e prin
iple: any ni
e random walk, properly res
aled, �is� aBrownian motion.Those of you who are not familiar with metri
 spa
es 
an think about Rd throughoutthe whole se
tion.2.1. Weak 
onvergen
e on the set of probability measures on a metri
 spa
e.Prior to the notion of limit is the notion of neigbourhood; it is the datum of the �neigh-bouring� relations amongst the elements of a given spa
e. We de�ne su
h a notion belowon the spa
e of probability measures of a metri
 spa
e.22Notations. • Given a measurable spa
e (A,A) denote by P(A) the set of probabilitymeasures on (A,A).

• Given a metri
 spa
e (S, d), re
all that the Borel σ-algebra of S is the σ-algebragenerated by the open balls of S; denote it by S.
• Write Cb(S) for the set of bounded real-valued 
ontinuous fun
tions on S, and (f, µ)for ∫ f(x)µ(dx), if µ is any �nite measure on (S,S).The following de�nition formalizes the fa
t that we want to de
lare two probabilitymeasures µ and ν on S 
lose if the integrals of su�
iently many 
ontinuous boundedfun
tions against µ and ν are 
lose.Definition 23. The Cb(S)∗-topology23 on P(S) is de�ned by the following basis ofneighbourhoods of a point µ ∈ P(S):

{
{ν ∈ P(S) ;

∣∣(fi, µ) − (fi, ν)
∣∣ < ai, 1 6 i 6 n} ; n > 1, fi ∈ Cb(S), ai > 0

}
.21The existen
e of a limit obje
t is usually a di�
ult question, ex
ept, pre
isely, when we are working ina 
ompa
t set!22De�nitions 23 and 24 below apply on any topologi
al spa
e, not ne
essarily metri
.23Analysts 
all it the �weak∗ topology�.



ADVANCED PROBABILITY 17So24 a sequen
e (µn)n>0 of probability measures Cb(S)∗-
onverges to µ i� (f, µn) → (f, µ)for all f ∈ Cb(S). We shall adopt the notation µn
Cb(S)∗−→ µ.Definition 24. An S-valued sequen
e of random variables (Xn)n>0, de�ned on someprobability spa
e (Ω,F ,P), is said to 
onverge weakly to X ifdef E

[
f(Xn)

] 
onverges to
E
[
f(X)

] as n goes to in�nity, for any f ∈ Cb(S). We write Xn
w→ X.As is 
lear from the de�nition, Xn 
onverges weakly to X i� its distribution Cb(S)∗-
onverges to the distribution of X. For that reason the Cb(S)∗-topology25 is usually also
alled the weak topology , and Cb(S)∗-
onvergen
e 
alled weak 
onvergen
e.Proposition 25 (Chara
terisation of Cb(S)∗-
onvergen
e, Alexandrov). The followingpropositions are equivalent:(1) µn

Cb(S)∗−→ µ,(2) (f, µn) → (f, µ) for every bounded uniformly 
ontinuous fun
tion f ,(3) µ(O) 6 lim µn(O) for all open set O of S,(4) limµn(F ) 6 µ(F ) for all 
losed set F of S,(5) µn(B) → µ(B) for all Borel set B with µ(∂ B) = 0.Proof � We make a 
ir
ular proof starting with the impli
ation (1) ⇒ (2) ⇒ (3). The �rstimpli
ation is obvious. Given an open set O de�ne the fun
tion fk(x) = 1 ∧ k d(x,Oc): it isbounded, k-Lips
hitz (hen
e uniformly 
ontinuous), smaller than 10, and in
reases pointwiseto 1O; so we have (fk, µn) 6 µn(O). Letting n go to ∞ and then taking the limit k → ∞gives (3). Propositions (3) and (4) are 
learly equivalent. Assume (4) and let B be anyelement of S.
µ
( ◦
B
)

6 limµn(B) 6 limµn(B) 6 µ
(
B
)As left and right members of theses inequalities 
oin
ide if µ(∂B) = 0, proposition (5)follows. Last, supposing (5), noti
e that it is su�
ient to prove(2.1) lim (f, µn) 6 (f, µ)for any 
ontinuous fun
tion to get (1): apply it to f and −f to get (f, µn) → (f, µ). As theset E :=

{
t ∈ R ; µ

(
f−1({t})

)
6= 0
)} is at most 
ountable one 
an �nd a de
reasing sequen
e

(fℓ)ℓ>0 of simple fun
tions26 fℓ =
∑
ti+11f∈[ti,ti+1) 
onverging µ-almost-surely to f and withno ti in E. We then have for every ℓ the inequality lim

n
(f, µn) 6 lim

n
(fℓ, µn) = (fℓ, µ), fromwhi
h (2.1) follows by sending ℓ to in�nity. �2.2. Spe
i�
 tools in �nite dimension. Before investigating further the general 
asewe investigate in this se
tion how the above de�nition spe
ializes on R.24Those of you who are not familiar with general topology 
an skip the pre
eding de�nition and onlykeep in mind the following property.25That is the datum of all the above neighbourhoods.26This is a
tually a �nite sum.



18 ADVANCED PROBABILITYa) Distribution fun
tions. Re
all the 
onstru
tion of a real-valued random variablewith any �xed distribution des
ribed in se
tion 1.2. Given a probability measure µ in Rdenote by F : R → [0, 1] its distribution fun
tion F (t) = µ
(
(−∞, t]

) and by G : [0, 1] → Rits right inverse
G(u) = inf{t ∈ R ; F (t) > u}with the 
onvention that inf ∅ = +∞; this is a 
àdlàg fun
tion 
hara
terized by theproperty

u 6 F (t) i� G(u) 6 t.So if U is a uniform random variable in [0, 1]

P
(
G(U) 6 t

)
= P

(
F (t) > U

)
= F (t).This 
anoni
al way of 
onstru
ting a random variable with distribution µ leads to thefollowing useful representation, or 
oupling, theorem. Given a sequen
e (µn)n>0 of prob-ability measures on R, de�ne the random variables Xn = Gn(U), where Gn is the rightinverse of the distribution fun
tion Fn of µn.Theorem 26 (Representation theorem, Coupling). Suppose the sequen
e (µn)n>0 weakly
onverges to µ, then we 
an 
onstru
t on [0, 1] some random variables Xn with distribution

µn and X with distribution µ, su
h that Xn 
onverges almost-surely to X.Proof � De�ne the random variables U , Xn = Gn(U) and X = G(U) on the probability spa
e(
[0, 1],B

(
[0, 1]

)
,Leb). Denote by C the 
ountable (why?) union of intervals where F is
onstant and by D its image by F (made up by at most 
ountably many points). We provethat for u ∈ [0, 1]\D the sequen
e Gn(u) 
onverges to G(u). Given su
h a u let us takea (small) positive ε su
h that G(u) + ε is a 
ontinuity point of F (27). As Fn

(
G(u) + ε

)
onverges to F (G(u)+ ε
)
> u (by point (4) in Alexandrov's 
hara
terization, with the Borelset (−∞, G(u) + ε]) we have Fn

(
G(u) + ε

)
> u for n large enough, i.e. Gn(u) 6 G(u) + ε.As ε 
an be taken arbitrarily small this shows that limGn(u) 6 G(u). In the same way,
hoosing a small ε > 0 su
h that G(u) − ε is a 
ontinuity point of F , on gets a sequen
e

Fn

(
G(u) − ε

) 
onverging to F (G(u) − ε
)
< u; so Fn

(
G(u) − ε

)
6 u for n large enough, i.e.

G(u) − ε 6 limGn(u). �Note that we have only used one fa
t in the above proof: Fn(x) → F (x) for all x ∈ Rat whi
h F is 
ontinuous28. We see that under this sole hypothesis the 
on
lusion ofthe theorem implies that29 (f, µn) = EL

[
f(Xn)

] 
onverges to EL

[
f(X)

]
= (f, µ), for anybounded 
ontinuous fun
tion f .Corollary 27. A sequen
e (µn)n>0 of probability measures on R 
onverges to µ i�

Fn(x) 
onverges weakly to F (x) for all x ∈ R at whi
h F is 
ontinuous.Theorem 28 (Prohorov's 
ompa
tness theorem in dimension 1). Let (µn)n>0 be a se-quen
e of probability measures su
h that
∀ ε ∃Mε > 0 ∀n > 0, Fn(−Mε) 6 ε and 1 − Fn(Mε) 6 ε.Then the sequen
e (µn)n>0 has a weakly 
onvergent subsequen
e.27F have only 
ountably many dis
ontinuity points.28That is F (x−) = F (x), sin
e F is always 
ontinuous on the right � 
an you see why?29Re
all EL denotes the expe
tation under Lebesgue measure on [0, 1].



ADVANCED PROBABILITY 19The 
ondition of the statement means that the probability measures µn have their massessentially 
on
entrated on the 
ompa
t set [−M,M ], uniformly in n. Su
h a sequen
e issaid to be tight.Proof � Use Cantor's diagonalisation pro
edure to extra
t a subsequen
e su
h that Fnk
(t)
onverges for ea
h rational t to some F (t). This limit fun
tion F : Q → [0, 1] being in
reasinghas a unique extension to R whi
h is 
ontinuous on the right, with left limits30. Che
k thatthe 
onvergen
e Fn(k)(s) → F (s) holds if s is a 
ontinuity point of F . By the hypothesis we
an asso
iate to any ε > 0 a positive Mε su
h that the inequalities

Fn(−Mε) 6 ε and 1 − Fn(Mε) 6 εhold for all n > 0. It follows that
F (s) −→

s→−∞
0 and F (s) −→

s→+∞
1,so F is the distribution fun
tion31 of a probability measure µ and, as a 
onsequen
e ofAlexandrov's 
hara
terization, (µn(k)

)
k>0


onverges weakly to µ. �b) Weak 
onvergen
e and 
hara
teristi
 fun
tions. Corollary 28 
an be used toprove the following useful result due to Paul Lévy. Re
all the 
hara
teristi
 fun
tion of ameasure µ on R is its Fourier transform:
ψ(t) =

∫
eitxµ(dx).Theorem 29. Let (µn)n>0 be a sequen
e of probability measures on R, with 
hara
teristi
fun
tions φn. If the φn 
onverge pointwise to some fun
tion φ, 
ontinuous at 0, the se-quen
e (µn)n>0 
onverges weakly to some probability measure µ and φ is the 
hara
terisiti
fun
tion of µ.The proof is based on the following simple estimate of the tail of a random variable Yin terms of its 
hara
teristi
 fun
tion ψ.(2.2) P

(
|Y | >

1

h

)
6

C

2h

∫ h

−h

(
1 − ψ(t)

)
dtfor some 
onstant C and every positive h. Indeed, apply Fubini's theorem to see that32

1

2h

∫ h

−h

(
1 − ψ(t)

)
dt = E

[
1 − sin(hY )

hY

]
;be
ause 1 − sin(hY )

hY
is non-negative, and no less than 1 − sin 1 on the set {|Y | > 1

h

}, wehave
1

2h

∫ h

−h

(
1 − ψ(t)

)
dt > (1 − sin 1)P

(
|Y | >

1

h

)
.Proof � We prove that the sequen
e (µn)n>0 is tight; then any weakly 
onvergent subsequen
e(whose existen
e is guaranteed by 
orollary 28) will have φ as a 
hara
teristi
 fun
tion. Thiswill show that (µn)n>0 
an have only one limit, so it 
onverges.30Set for s ∈ R\Q, F (s) = inf{F (t) ; t ∈ Q, t > s}. Like any other in
reasing [0, 1]-valued fun
tion, Fhas at most 
ountably many dis
ontinuities.31Use Caratheodory's extension theorem.32We use the 
onvention sin 0

0 = 1.



20 ADVANCED PROBABILITYBut applying inequality (2.2) to Xn we obtain by dominated 
onvergen
e
lim P

(
|Xn| >

1

h

)
6

(1 − sin 1)−1

2h

∫ h

−h

(
1 − φ(t)

)
dt.It now su�
es to use the 
ontinuity of φ in 0 to see that the right hand side 
an be madearbitrarily small for h small enough. �The same result holds for Rn-valued random variables; the proof of this statement is a
osmeti
 
hange of the pre
eding one33.2.3. Weak 
onvergen
e in separable Bana
h spa
es. We now 
ome ba
k to thegeneral 
ase and study in more details the notion of weak 
onvergen
e. This notionwas introdu
ed to provide a framework in whi
h talking about limits of measures and
onstru
ting probability measures (and thus random pro
esses) as limits of other measures(resp. pro
esses). Statements about the existen
e of a limit are pre
ious statements asexisten
e statements are rarely easy to prove. There is yet one ex
eption to this empiri
alrule: one 
an always de
ide whether or not a sequen
e of probability measures on a �niteset 
onverges or not (at least 
omputers 
an do that for us!). As 
ompa
t sets of a metri
spa
e are �nite up to any arbitrarily small a

ura
y, they appear as a good framework inwhi
h ta
kling our 
onvergen
e problem.a) Compa
t sets of a metri
 spa
e. Let (S, d) be a metri
 spa
e. A subset K of Sis said to be 
ompa
t ifdef it is 
losed and for any ε > 0 it 
an be 
overed by �nitelymany balls of radius ε. Think of a 
losed interval of R. This image might be misleadingthough, as although 
ompa
t sets are 
losed and bounded, these two 
onditions alone aregenerally not su�
ient to ensure 
ompa
tness of a set. Indeed, any in�nite dimensionalnormed ve
tor spa
e has a non-
ompa
t unit 
losed ball34. It 
an be proved that a metri
spa
e S is 
ompa
t i� any sequen
e of points of S has a 
onverging subsequen
e.Suppose now that (S, d) is a 
ompa
t metri
 spa
e and let us look at the spa
e P(S)of probability measures on (S,S).35 It is easily seen, using Stone-Weierstrass theorem,that C(S)

(
= Cb(S) here) has a dense sequen
e36, say (fp)p>0. Given any sequen
e (µn)n>0of probability measures on S, we 
an 
onstru
t by a diagonal argument a subsequen
esu
h that ea
h integral (fp, µn(k)) 
onverges as k goes to in�nity. This implies that all theintegrals (f, µn(k)), f ∈ C(S), 
onverges as k goes to in�nity (
an you see why?). In other33The Rn-version of Prohorov's 
ompa
tness theorem needed for the above proof to work is proved in amu
h more general framework below.34Denote by B the unit ball and by B its 
losure. Suppose B is 
ompa
t and 
over it by �nitely manyballs of radius 1

2 . Denoting by F the �nite-dimensional ve
tor spa
e spanned by their 
enters, we have
B ⊂ F + B

2 , implying B
2 ⊂ F + B

4 , and so B ⊂ F + B
4 . An indu
tion bootstraps this in
lusion into

B ⊂ F + B
2n , for all n > 1, out of whi
h it follows that B ⊂ F , as F is 
losed; this proves that the ambiantve
tor spa
e needs to be �nite dimensional. This theorem is due to F. Riesz.35Re
all the notations introdu
ed at the beginning of se
tion 2.1.36For the supremum norm. Consult theorem (81.3) of [RW00℄ for instan
e.
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e of probability measures on a 
ompa
t metri
 spa
e has a weakly
onverging subsequen
e. Also, introdu
ing the metri
 δ(µ, ν) =
∑

p>0

∣∣(fp, µ) − (fp, ν)
∣∣ ∧

2−p on P(S), one sees that its balls de�ne the same notion of neighbourhoods as theweak topology; so the spa
e P(S), with its weak topology, is a 
ompa
t metri
 spa
e.This 
on
lusion holds in parti
ular when we take for (S, d) the 
ompa
t spa
e ([0, 1]N, d
),where d(x, x′) =

∑
n>0 2−n|xn − x′n|.b) What is spe
ial about separable Bana
h spa
es? First of all, this is a generalenough framework to en
ompass most of everyday' spa
es we want to work with: the spa
eof (real-valued) sequen
es, 
ontinuous and 
àdlàg paths are separable Bana
h spa
es.At the same time, a lot of things are known on separable Bana
h spa
es! It is provedin the Comment se
tion Separable Bana
h spa
es that any separable Bana
h spa
e (S, d)is homeomorphi
 to a measurable subset of the 
ompa
t metri
 spa
e [0, 1]N. This im-plies38 that the spa
e (P(S), Cb(S)∗

) of probability measures on S is homeomorphi
 to asubset of the ni
e 
ompa
t metrizable spa
e (P([0, 1]N
)
, C∗

b

(
[0, 1]N

)). So, any sequen
eof probability measures on S, seen as probability measures on [0, 1]N, has a 
onvergingsubsequen
e in P
(
[0, 1]N

), whose limit may give some positive mass to the set [0, 1]N\S,39giving rise to a limit measure in S of mass less than 1. One introdu
es the followingnotion to prevent this phenomenon and obtain limit probability measures supported onthe original spa
e.Definition 30. A family A of measures on (S,S) is said to be tight if one 
an asso
iateto any ε > 0 a 
ompa
t set Kε of S su
h that
∀µ ∈ A, µ(Kc

ε) 6 ε.
) Compa
tness in (P(S), Cb(S)∗
). The following theorem due to Prohorov 
hara
ter-izes a large 
lass of 
ompa
t sets of (P(S), Cb(S)∗

) in terms of tightness. It is the general
ounterpart of theorem 28.Theorem 31 (Compa
tness. Prohorov). Let (S, d) be a separable metri
 spa
e and
A ⊂ P(S).

• If the family A is tight then it is relatively 
ompa
t in (P(S), Cb(S)∗
).

• Suppose in addition that (S, d) is 
omplete. Then the two properties are equivalent.Proof � • Suppose the family A is tight and let (K 1
p

)
p>1

be an in
reasing sequen
e of 
ompa
tsubsets of S for whi
h µ(Kc
1
p

)
6 1

p , for all µ ∈ A. Denote by ϕ the homeomorphism between
(S, d) and a subset40 of [0, 1]N 
onstru
ted in theorem 39 of the Comments se
tion. As ea
h
ompa
t set ϕ(K 1

p

) is measurable, ϕ(⋃p>1K 1
p

) is also measurable, as a union of measurable37We are skipping here a little argument. The subsequen
e 
an be 
hosen su
h that the integrals of anylinear 
ombination of the fp's 
onverge. This implies that the map fp → limk (fp, µn(k)) is a positivelinear map, with unit norm. It 
an be extended to C(S) by a straightforward approximation argument,so the map L : f → limk (f, µn(k)) is a positive linear form on C(S) with unit norm. Riesz representationtheorem ensures us that there exists a probability measure µ on S su
h that L(f) = (f, µ) for all f ∈ C(S).Riesz representation theorem is proved in Complement 4.38See theorem (83.7) in [RW00℄.39I am writing S here for its homeomorphi
 image in [0, 1]N.40This subset of [0, 1]N has no a priori reason to be measurable.
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e all the measures µ ∈ A have support in ⋃p>1K 1
p
it is harmless to repla
e

S by ⋃p>1K 1
p
; we still denote it by S. The map ϕ is then a homeomorphism between (S, d)and a measurable subset of [0, 1]N; we use this fun
tion to transfer any statement about

(S, d) to a statement about a subset of [0, 1]N.We shall asso
iate to any sequen
e (µn)n>0 of P(S) the sequen
e (νn)n>0 of its images by
ϕ in P

(
[0, 1]N

). Given ε > 0, ea
h ϕ(Kε) is a 
ompa
t subset of [0, 1]N with νn-measure noless than 1− ε for any n. But as (P([0, 1]N), Cb

(
[0, 1]N

)∗) is 
ompa
t there is a sub-sequen
e{
νn(k)

}
k>0

that Cb

(
[0, 1]N

)∗-
onverges to some Borel probability measure ν on [0, 1]N. FromAlexandrov's 
hara
terization the limit probability ν satis�es ν(ϕ(Kε)
)

> 1−ε, for all ε > 0,hen
e ν is 
on
entrated on ϕ(S). De�ning µ as the image measure of ν by ϕ−1, the fun
tion
f ◦ ϕ−1 is 
ontinuous and bounded for any f ∈ Cb(S), so we have

(f, µn(k)) =
(
f ◦ ϕ−1, νn(k)

)
→
(
f ◦ ϕ−1, ν

)
= (f, µ),that is, µn(k)

Cb(S)∗−→ µ.
• Suppose now in addition that (S, d) is 
omplete and let A = {µℓ ; ℓ ∈ Λ} be a 
ompa
tsubset of (P(S), Cb(S)∗

). Let (xn)n>0 be a dense sequen
e of (S, d) and de�ne On(r) =⋃
k=1..nB(xk, r). Let us �rst prove that

(⋆) for any ε > 0, r > 0 there exists an integer N(ε, r) su
h that µ(ON(ε,r)

)
> 1 − ε, forany µ ∈ A.Would assertion (⋆) be wrong, there would exist ε0, r0 and for ea
h n and index ℓn ∈ Λsu
h that µℓn(On(r0)) 6 1 − ε0. Any limit µ of a 
onverging subsequen
e (µℓn(k)

)
k>0

(weare in a 
ompa
t!) would then verify for any p > 0

µ
(
On(p)(r0)

)
6 limµn(k)

(
On(k)(r0)

)
6 1 − ε0sin
e On(p) ⊂ On(k) for k > p, and by Alexandrov's proposition 25; this would forbid the
onvergen
e µ(On(p)(r0)

)
→

p+∞
1, a 
ontradi
tion.Fix now η > 0 and set

K :=
⋂

p>1




N
(
2−pη, 1

p

)
⋃

k=1

B
(
xk,

1

p

)

 .

K is a 
ompa
t set whi
h satis�es for any µ ∈ A the inequality
µ(K) > 1 −

∑

p>1

µ


S \

N
(
2−pη, 1

p

)
⋃

k=1

B
(
xk,

1

p

)

 > 1 −

∑

p>1

2−pη = 1 − η.This proves the tightness of the family A of measures. �d) Continuous random pro
esses. We spe
ialize in this paragraph the above generaltheory to the 
ase of measures on the spa
e of 
ontinuous fun
tion from some interval
I of R+ to some Rd. We shall thus be working here on the separable Bana
h spa
e
(S, d) =

(
C
(
I,Rd

)
, ‖ · ‖∞

).We have noti
ed in se
tion 1.3 b) that the spa
e C(I,Rd) 
an be seen from two naturalpoint of views: as a subset of the produ
t (Rd)I or as the metri
 spa
e (C(I,Rd
)
, ‖ · ‖∞

).Ea
h pi
ture has its own notion of σ-algebra. The following proposition states that the
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oin
ide, so there is no problem on whi
h point of view is adopted. Re
allwe denote by Xt : ω ∈ C
(
I,Rd

)
7→ ωt, t ∈ I, the 
oordinate pro
ess.Proposition 32. The σ-algebra on C

(
I,Rd

) generated by the 
oordinate pro
ess 
oin
ideswith the Borel σ-algebra of (C(I,Rd
)
, ‖ · ‖∞

).Proof � The tra
e on C(I,Rd) of the produ
t σ-algebra is generated by the 
olle
tion A ofthe elementary events {Xt1 ∈ A1, ...,Xtn ∈ An}, where n > 1 and the Ai's are open balls of
Rd. The Borel σ-algebra of (C(I,Rd

)
, ‖ · ‖∞

) is generated by the 
olle
tion B of the openballs {ω ∈ C
(
I,Rd

)
; ‖ω − ω0‖∞ < ǫ

}, for ǫ > 0 and ω0 ∈ C(I,Rd). To prove that the two
σ-algebras 
oin
ide it su�
es to prove that any element of A is in σ(B) and any element of
B is in σ(A).Let C :=

{
ω ∈ C

(
I,Rd

)
; Xt1(ω) ∈ A1, ...,Xtn (ω) ∈ An

} be an elementary event, and denoteby (ωp)p>1 a dense sequen
e of (C(I,Rd
)
, ‖ · ‖∞

); denote by (ωp(k))k>1 the subset of it madeup of those ωp's whi
h belong to C. Then, for ea
h ω ∈ C, you 
an �nd some kj for whi
h
‖ω − ωp(kj)‖∞ 6 1

j ; this proves the �rst point.To prove the se
ond point, denote by (tn)n>1 a dense sequen
e of I, and noti
e that {ω ; ‖ω−
ω0‖∞ < ǫ} =

⋂
n>1

{
ω ; ωt1 ∈ B(ω0(t1), ǫ), ..., ωtn ∈ B(ω0(tn), ǫ)

}. �Considering C(I,Rd) as a subset of (Rd)I leads to the following notion of 
onvergen
e.Definition 33 (Convergen
e of �nite-dimensional distributions). • Let µn, n > 0 and
µ be Borel probability measures on C(I,Rd). We say that the �nite-dimensional dis-tributions of µn 
onverge to those of µ ifdef for every �nite 
olle
tion {t1, . . . , tp} oftimes, and any bounded 
ontinuous fun
tion f :

(
Rd
)p → R, we have

∫
f
(
Xt1(ω), . . . , Xtp(ω)

)
µn(dω) →

∫
f
(
Xt1(ω), . . . , Xtp(ω)

)
µ(dω).We write µn

fd→ µ.
• Let (Y (n))n>0 and Y be C(I,Rd)-valued random variable de�ned on some probabilityspa
e (Ω,F ,P). We shall write Y (n) fd→ Y ifdef

E
[
f
(
Y

(n)
t1 , . . . , Y

(n)
tp

)]
→ E

[
f(Yt1, . . . , Ytp)

]for any bounded 
ontinuous fun
tion f :
(
Rd
)p → R, any p > 1 and any �nite 
olle
tion

{t1, . . . , tp} of times.Proposition 34. Some probability measures µn on C(I,Rd) 
onverge weakly to someprobability measure µ i� the following 
onditions hold:
• the �nite dimensional distributions of µn 
onverge to those of µ,
• the family (µn)n>0 is tight.Proof � ⇒ Sin
e the map ω ∈ C(I,Rd) 7→ F (ωt1 , . . . , ωtn) is 
ontinuous for any n > 1, t1, . . . , tnand 
ontinuous fun
tion F , the weak 
onvergen
e of µn to some µ implies the �nite dimen-sional 
onvergen
e of µn to µ. Also, any 
onvergent sequen
e is tight (prove it).
⇐ Suppose the sequen
e (µn)n>1 is tight; by the �rst part of Prohorov's 
ompa
tness theorem31, it is relatively 
ompa
t. Any limit ν of a 
onverging subsequen
e having the same �nitedimensional distribution as µ, we must have ν = µ. This shows that µ is the only 
lusterpoint of the sequen
e (µn)n>1, so (µn)n>0 
onverges weakly to µ. �



24 ADVANCED PROBABILITYDo exer
ise 14 to see that one 
an have �nite dimensional 
onvergen
e without weak
onvergen
e. Given a 
ompa
t interval [a, b] of the real line, As
oli-Arzela's 
ompa
tness
riterion gives a 
hara
terization of 
ompa
t sets of (C([a, b],Rd
)
, ‖ · ‖∞

) in terms ofmodulus of 
ontinuity
Mω(h) = sup

{
|ωt − ωs| ; t, s ∈ [a, b], |t− s| 6 h

}
, h > 0.Theorem 35 (As
oli-Arzela's theorem). A subset A of C([a, b],Rd
) is relatively 
ompa
ti� the following two 
onditions hold:

sup
{
|ω0| ; ω ∈ A

}
<∞,

lim
hց0

sup
ω∈A

Mω(h) = 0.Together with Prohorov's theorem it provides an easy to use 
hara
terisation of 
ompa
tsubsets of the set of probability measures on C
(
[a, b],Rd

).Corollary 36 (Chara
terization of weak 
onvergen
e). Let X,X1, X2, . . . be Rd-valued
ontinuous random pro
esses. Then Xn
w→ X i� Xn

fd→ X and(2.3) lim
hց0

lim
n→+∞

E[MXn(h) ∧ 1] = 0.Proof � It su�
es from 
orollary 34 to prove that 
ondition (2.3) is equivalent to tightness.That the former implies the latter 
omes from As
oli-Arzela's theorem and dominated 
on-vergen
e. Conversely, assume (2.3) and �x h > 0. Sin
e ea
h Xn is 
ontinuous, MXn(h) → 0almost-surely as hց 0 for ea
h n; as a 
onsequen
e of 
ondition (2.3) it is thus possible to�nd a sequen
e (hk)k>0 su
h that
sup

n
P
(
MXn(hk) > 2−k

)
6 2−k−1hfor all k > 0. Also, as Xn

fd→ X, there exists 
ompa
t subsets K1,K2, . . . of Rd su
h that
sup

n
P
(
Xn(a) /∈ Kk

)
6 2−k−1hfor all k > 0. So the set

B :=
{
x ∈ C

(
[a, b],Rd

)
; x(a) ∈ Kk, Mx(hk) 6 2−k, for all k > 0

}satis�es supn P(Xn /∈ B) 6 2h and has 
ompa
t 
losure from As
oli-Arzela's theorem; thisproves the tightness of the laws of Xn. �2.4. Appli
ation: Universality of Brownian motion. The 
entral limit theoremgives a universal status to the Gaussian law among the 
lass of (Borel) probability mea-sures on the line, with �nite �rst two moments. Brownian motion enjoys a similar universalproperty.Theorem 37 (Donsker's invarian
e theorem). Let (Xn)n>0 be a sequen
e of iid 
enteredreal-valued random variables with unit varian
e; set for n > 1 and t ∈ [0, 1]

B
(n)
t =

1√
n

( ∑

16k6nt

Xk+
(
nt− [nt]

)
X[nt]+1

)
.This is a spa
e and time res
aled version of a linearly interpolated random walk; note thes
aling n−1/2 in spa
e and n in time. Denote by P(n) the law of this 
ontinuous randompath. Then the sequen
e (P(n)

)
n>0


onverges weakly to Wiener measure.



ADVANCED PROBABILITY 25Proof � The strategy is simple and follows the pattern des
ribed in 
orollary 36: i) establishthe 
onvergen
e of �nite dimensional distributions and ii) prove the tightness of the sequen
e(
P(n)

)
n>0

using the equi-
ontinuity 
riterion (2.3).i) We need to prove that for any p > 1, any 
hoi
e of times ti ∈ R+ and 
onstants ai, therandom variables ∑i=1..p aiB
(n)
ti


onverge in law to ∑i=1..p aiBti , where B is a Brownianmotion. Setting ∆B
(n)
j = B

(n)
tj

−B
(n)
tj−1

, with t0 = 0, write
∑

i=1..p

aiB
(n)
ti

=
∑

j=1..p

( ∑

i=1..p

ai

)
∆B

(n)
j ;as ea
h term ∆B

(n)
j 
onverges in law to Btj −Btj−1 by the 
entral limit theorem, the resultfollows from the independen
e of the random variables B(n)

tj
−B

(n)
tj−1

and Btj −Btj−1 .ii) We shall use the following simple estimate to verify tightness.Lemma 38 (Ottaviani). For n > 1, set Sn = X1+· · ·+Xn and S∗
n = max

{
|Sk| ; 1 6 k 6 n

}.Then for any r > 1 and n > 1

(
1 − r−2

)
P
(
S∗

n > 2r
√
n
)

6 P

( |Sn|√
n

> r

)
.Proof � De�ne the random time T as inf

{
n > 1 |Sn|√

n
> 2r

}. We shall justify later thatone 
an apply the strong Markov property41 to the random walk (Sn)n>0 at time T ; it isused in the third inequality below.
P
(
|Sn| > r

√
n
)

> P
(
S∗

n > 2r
√
n, |Sn| > r

√
n
)

> P
(
T 6 n, |Sn − ST | 6 r

√
n
)

> P
(
T 6 n

)
min

16k6n
P
(
|Sk| 6 r

√
n
)The inequality of the lemma follows from Cheby
hev's inequality

min
16k6n

P
(
|Sk| > r

√
n
)

> min
16k6n

(
1 − k

nr2

)
> 1 − r−2.

⊙The following rough estimate 
omes out as a 
onsequen
e of Ottaviani's lemma42.(2.4) lim
r+∞

lim
n+∞

r2 P
( S∗

n√
n

> 2r
)

6 lim
r+∞

r2 P
(
N (0, 1) > r

)
= 0As we have for any h > 0, t ∈ [0, 1 − h], and ℓ > 0 (43)

P
(

sup
06r6h

∣∣B(n)
t+r −B

(n)
t

∣∣ > ℓ
)

= P


 sup

06r6h

∣∣∣
∑[n(t+r)]

k=[nt]+1Xk +
(
n(t+ r) − [n(t+ r)]

)
X[n(t+r)]

∣∣∣
√
n

> ℓ




6 P
(S∗

[nh]+1√
nh

>
ℓ√
h

)
,41Independen
e of what happen after and before time T , 
onditionnally on what happens at time T . Theproof given in se
tion 10.3 for Brownian motion works equally well for a random walk.42N (0, 1) stands here for a 
entered Gaussian random variable with unit varian
e.43The S∗ in the inequality below is asso
iated with the X[nh]+i, i > 1; it has the same law as the S∗asso
iated with the Xi, i > 1.



26 ADVANCED PROBABILITYidentity (2.4) implies that P
(

sup
06r6h

∣∣B(n)
t+r − B

(n)
t

∣∣ > ℓ
)

= o(h), for ea
h ℓ > 0, uniformly in
t ∈ [0, 1] and n > 0. Cutting the interval [0, 1] into sub-intervals [kh, (k + 1)h

] and notingthat MB(n)(h) 6 2max
k

{
sup

06r6h

∣∣B(n)
kh+r −B

(n)
kh

∣∣
}, it follows that we have uniformly in n > 0

E
[
MB(n)(h) ∧ 1

]
=

∫ ∞

0
P
(
MB(n)(h) ∧ 1 > ℓ

)
dℓ 6

∫ 1

0
P
(
MB(n)(h) > ℓ

)
dℓ

6

∫ 1

0
P
(
2max

k

{
sup

06r6h

∣∣B(n)
kh+r −B

(n)
kh

∣∣
}

> ℓ
)
dℓ 6

∫ 1

0
h−1 o(h) dℓ = oh,0+(1);we have used dominated 
onvergen
e in the last equality, where h−1 o(h) is a fun
tion of

ℓ whi
h is o(1) as h de
reases to 0. The above inequality proves that the equi-
ontinuity
ondition (2.3) holds. �3. Comments and exer
ises3.1. Referen
es and 
omments. Introdu
tion. Don't hesitate to read Kolmogorov's(small) treatise Mathemati
al foundations of probability theory, as it is amazing of moder-nity and 
larity. Chapter 2 of Shiryaev's book [Shi96℄ is ni
e reading, as well as theintrodu
tion 
hapter of Gikhman and Skorokhod's book [GS04℄.Se
tion 1. • Kallenberg's book [Kal02℄, (Chap. 2, 6) 
ontains all the material exposedin this se
tion, with mu
h more details. Chapters 2 and 3 of Doob's book [Doo94℄ are wellworth being read. Chapter 3 of Rogers and Williams' book [RW00℄ is also an ex
ellentsour
e.
• Read Chapter 1 of [RW00℄ for an ex
iting and fas
inating des
ription of Brownianmotion.Se
tion 2.1 • I 
an't see any better referen
e than the �rst 
hapter of Ikeda & Watan-abe's book [IW89℄. Doob's book [Doo94℄, Chap. 8, is also a valuable sour
e for thisse
tion (and all measure theory). Dudley's book [Dud02℄, 
hap. 11, is also quite ni
e.Se
tion 2.2 • You will �nd the 
lassi
al proof of Donsker's theorem using Skorokhodembedding in Chapter 1, se
tion 8, of [RW00℄.The following 
omments on measure theory might help you understand some subtleand potentially unnoti
ed points44.1. σ-additivity of a probability is not obvious. Set Ω = Q ∩ [0, 1] and de�ne on

Ω the algebra A as the 
olle
tion of disjoint (tra
es on Q of) intervals with rational ends(open or not at both ends). I leave you to 
he
k that we de�ne an additive set fun
tionsetting P
(
{a, b}

)
= b − a and P

(⋃n
i=1{ai, bi}

)
=
∑n

i=1(bi − ai), for ⋃n
i=1{ai, bi} ∈ A. Asany singleton {r} ∈ A has null P-measure and Ω is 
ountable P 
annot be σ-additive.2. The 
oin
iden
e of two probability measures on a given 
lass does notalways imply their 
oin
iden
e on the σ-algebra generated by this 
lass. Let Ωbe any set and C be a 
olle
tion of subsets of Ω. It is well-known that if C is stable byinterse
tion then any two probabilities de�ned on (Ω, σ(C)

) 
oin
iding on C are a
tually44Most of these remarks are borrowed from [Sto87℄.



ADVANCED PROBABILITY 27equal (on σ(C)!). This is no longer the 
ase if C is non stable by interse
tion as thefollowing 
ounter-example shows.On a four point set Ω = {a, b, c, d} de�ne
P(a) = P(d) = Q(b) = Q(c) =

1

6
,

P(b) = P(c) = Q(a) = Q(d) =
1

3
.Set C =

{
{a, b}, {c, d}, {a, c}, {b, d}

} and 
he
k that σ(C) is the σ-algebra of all parts of
Ω. Clearly, P and Q 
oin
ide on C, yet they do not take the same values on the singletons
{a}, {b}, {c}, {d}.3. Is Daniell's theorem obvious? Let us restate it with a slightly di�erent pointof view and in a spe
ial 
ase su�
ient for our needs. Identify ea
h Rn as a subset of
RN sending x ∈ Rn to (x, 0, · · · ) ∈ RN; this identi�es the Borel σ-algebra of Rn to a
σ-algebra Fn of RN, in
reasing with n. Let us then 
onsider a proje
tive sequen
e (µn)n>1of probability measures on Rn as a set fun
tion P on ⋃n>1 Fn equal on ea
h Fn to µn.Daniell's theorem states that P 
an be extended to σ(⋃n>1 Fn

).Given a spa
e Ω, an in
reasing sequen
e of σ-algebras Fn in Ω and a set fun
tion P on⋃
n>1 Fn su
h that P is a 
onsistently de�ned probability measure on ea
h (Ω,Fn), the setfun
tion P need not extend to a probability on σ(⋃n>1 Fn

).Consider the (non-
omplete) spa
e Ω = (0, 1] and set hn(ω) = 1(0, 1
n

)(ω) for ea
h n > 1and ω ∈ Ω. Write Cn =
{
∅, (0, 1

n
),
[

1
n
, 1
]
, (0, 1]

} for the σ-algebra generated by hn andde�ne Fn = σ(h1, · · · , hn) =
{
∅; (0, 1

n
),
[

1
k
, 1

k−1

]
, k = n..2, and their unions; (0, 1]

}. Set
P
(
(0, 1]

)
= 1, and for A ∈ Fn, with A 6= (0, 1] and 1A = an1(0, 1

n
) +
∑2

k=n bk1[ 1
k
, 1
k−1

], with
an, bk ∈ {0, 1}, set

P(A) = an;this probability has support in (0, 1
n
). Che
k that the (Pn)n>1 are a 
onsistent familyof probabilities: Pn+1(A) = Pn(A) for A ∈ Fn. Would there exists a probability on

σ
(⋃

n>1 Fn

) with restri
tion Pn to ea
h Fn, it should give unit mass to any interval (0, 1
n
)and satisfy at the same time the 
ontinuity property45 limn P

(
(0, 1

n
)
)

= 0, a 
ontradi
tion.4. Measurable events. Let (Ω,F) be a measurable spa
e whose σ-algebra is generatedby some algebra A. The de�nition of F as the smallest σ-algebra 
ontaining A is non-
onstru
tive, and it is quite tempting to believe that one 
an 
onstru
t any element of
F by repeated �nite and 
ountable set-theoreti
 operations starting from A. Pre
isely,set A0 = A and de�ne indu
tively An+1 as the 
lass of sets of Ω that 
onsists of thesets of An, their 
omplements, and the �nite and 
ountable union of those. Surprisingly,this pro
edure does not exhaust all the elements of F , and ⋃n>1 An is generally stri
tlyin
luded in F ! Consult 
hapter 2 of Dudley's book [Dud02℄ for a proof in [0, 1]. What istrue, yet, is that if we are working in a probability spa
e (Ω,F ,P) then any measurableset is equal to a set of ⋃n>1 An up to a set of null P-measure; this is a 
onsequen
e ofCaratheodory's extension theorem.45Whi
h is equivalent to σ-additivity.



28 ADVANCED PROBABILITYTo be written: 
omments on weak 
onvergen
e in spa
es of 
àdlàg paths3.2. Exer
ises. 1. Give a formal 
onstru
tion of a pro
ess whose dynami
s 
orresponds to thefollowing heuristi
 des
ription. This is a variant of the symmetri
 random walk on Z3 whi
h 
annever 
ome ba
k to any position where it has already been. Ex
ept from that requirement, it
hooses ea
h time its future lo
ation uniformly amongst the set of available nearest neighbours.If it has visited all its neighbours at some point, it stops and stays forever where it is.2. Give a formal 
onstru
tion of a pro
ess whose dynami
s 
orresponds to the following heuristi
des
ription. This time we are looking at a variant of the simple random walk in Z3 where the sitesalready visited gain attra
tiveness. If the pro
ess is at time n in x, it 
hooses its next lo
ationamongst the nearest neighbours {xi}i=1..6 of x, it jumps on xi at time n + 1 with probabilityproportional to Nn(i) + 1, where Nn(i) is the number of times that the pro
ess has visited site
xi by time n.3. Let λ > 0. Can you 
onstru
t on some probability spa
e a sequen
e (Xi)i>1 of Rd-valuedrandom variables su
h that, if one writes N(A) for ♯{i ; Xi ∈ A} for ea
h measurable set A of
Rd, then

• ea
h random variable N(A) is a Poisson random variable with parameter λ,
• for any n-uple of distin
t sets Ai the random variables N(Ai) are independent?4. Gaussian pro
esses. Let T be any index set. A real-valued random pro
ess (Xt)t∈T issaid to be Gaussian ifdef for any n > 1, t1, . . . , tn ∈ T, c1, . . . , cn ∈ R, the random variables

c1Xt1 + · · · + cnXtn are Gaussian. It is said to be 
entered ifdef any Xt has null mean.a) Prove that, if it exists, the distribution of a Gaussian pro
ess (Xt)t∈T is determined by themean and 
ovarian
e fun
tions.b) Let (H, (·, ·)) be a Hilbert spa
e. A 
entered Gaussian pro
ess (Xh)h∈H with 
ovarian
e
E[XhXh′ ] = (h, h′) (for all h, h′ ∈ H) is 
alled an isonormal Gaussian pro
ess. Suppose H isseparable, and let (en)n>0 be a basis of H. Let (Gn)n>0 be a sequen
e of iid N (0, 1). Prove thatwe de�ne an isonormal Gaussian pro
ess asso
iating to any h =

∑
n>0 h

nen ∈ H the randomvariable Xh =
∑

n>0 h
nGn.
) (i) Taking for Hilbert spa
e the spa
e L2(R+) and 
onstru
ting (Xh)h∈L2 as above, provethat the pro
ess Bt = X1[0,t]

, t > 0, has independent stationary Gaussian in
rements.(ii) Prove that B has a modi�
ation whi
h is 
ontinuous; this modi�
ation is thus a Brow-nian motion.(iii) As a 
onsequen
e, 
hara
terize Brownian motion as the unique 
entered Gaussianpro
ess with 
ovarian
e E[XsXt] = min(s, t).(iv) S
aling. Given a Brownian motion B, prove that the pro
ess Xt = tB 1
t
, X0 = 0, isalso a Brownian motion.5. Let P be a probability measure on [0, 1], equipped with its Borel σ-algebra Bor.a) Use a monotone 
lass argument to prove that the 
olle
tion C of measurable subsets B su
hthat

P(B) = inf
{
P(O) ; O open set 
ontaining B} = sup

{
P(C) ; C 
losed subset of B}is a σ-algebra.b) Dedu
e that for any ε > 0 and any measurable set A ∈Bor there exists a 
ompa
t subset

K of A su
h that P(A\K) 6 ε. (P is said to be inner regular.)



ADVANCED PROBABILITY 296. Let (S, d) be a metri
 spa
e. An S-valued sequen
e (Xn)n>0 of random variables 
onvergesin probability to X ifdef P
(
d(Xn,X) > ε

)
−→
n+∞

0 for any ε > 0, or, equivalently (why?), if
E[d(Xn,X) ∧ 1] −→

n+∞
0.a) Prove that if (Xn)n>0 
onverges almost-surely or in probability to X then it 
onvergesweakly to X.b) Find a weakly 
onverging sequen
e whi
h does not 
onverge in probability.7. Denote by Bb(R) the set of real-valued bounded measurable fun
tions on R and de�ne the

Bb(R)∗-topology as in de�nition 16, with Bb(R) in pla
e of Cb(R). What di�eren
e is therebetween the notions of Cb(R)∗ and Bb(R)∗ 
onvergen
e?8. Let (µn)n>0 be a sequen
e of probability measures on R. Prove that it 
onverges weakly tosome probability µ i� (f, µn) → (f, µ) for any 
ontinuous fun
tion with 
ompa
t support.9. Suppose µn
d→ µ. Prove that the 
hara
teristi
 fun
tion of µn 
onverges uniformly on boundedsets of R to the 
hara
teristi
 fun
tion of µ.10. Equi
ontinuity and tightness. Let (µn)n>0 be a sequen
e of probability measures on R and

{φn}n>0 be the sequen
e of their 
hara
teristi
 fun
tions. Prove that the sequen
e (µn)n>0 istight i� the family {φn}n>0 is equi
ontinuous at 0.11. Glivenki-Cantelli lemma. Use the representation Xn = Gn(U) of a random variable given in�2.3 to prove the following statement, due to Glivenko and Cantelli. Given a sequen
e (Xk)k>0of iid random variables with distribution F , denote by F̂n the empiri
al distribution of the n-uple
(X1, . . . ,Xn):

F̂n(t) =
1

n

n∑

k=1

1Xk6t.Prove that
sup
t∈R

∣∣F̂n(t) − F (t)
∣∣→ 0as n goes to ∞.12. Use the almost-surely representation of weakly 
onverging random variables (theorem 26)to answer part or all of the following questions.a) Find a sequen
e (Xn)n>0 of real-valued random variables 
onverging weakly but not inprobability. Prove yet that if the weak limit is a 
onstant random variable then the 
onvergen
eholds in probability.b) Use this result to prove the following fa
t, due to Slutski (and useful in statisti
s). Suppose

(Xn)n>0 has values in an interval I and that there exists some 
onstant m su
h that √n(Xn −
m) 
onverges in law to a 
entered Gaussian random variable with varian
e σ2. Let f be adi�erentiable fun
tion de�ned on I. Prove that √n(f(Xn)−f(m)) 
onverges in law to a 
enteredGaussian arv with varian
e σ2

(
f ′(m)

)2.13. Find a modi�
ation X of the 
onstant pro
ess Y ≡ 0 whi
h is not indistinguishable of Y .14. The purpose of this exer
i
e is to give an example in whi
h we have 
onvergen
e of �nite-dimensional distributions without 
onvergen
e in law.a) Let (S, d), (S′, d′) be metri
 spa
es and f : S → S′ be a 
ontinuous map. Let (µn)n>0 bea weakly 
onvergent sequen
e of probability measures on (S,S), with limit µ. Prove that theimage measure of µn by f 
onverge weakly to the image measure of µ by f .



30 ADVANCED PROBABILITYb) Set f(t) = 1− |t| for |t| 6 1 and 0 elsewhere. Let U be a random variable 
arried by someprobability spa
e (Ω,F ,P) and uniformly distributed on [1
3 ,

2
3

]. For ω ∈ Ω and t ∈ [0, 1], de�nefor n ∈ N,
Xn(t, ω) := f

(
3n(t− Uω)

)
, and X(t, ω) := 0.Make a pi
ture of Xn(·, ω) for a �xed ω. Consider Xn and X as C

(
[0, 1],R

)-valued randomvariables. Prove that Xn does not 
onverge in law to X despite the almost-surely 
onvergen
e
Xn(t) → X(t) for every t. What is missing?15. Brownian motion 
onditionned to be equal to 0 at time 1. Let P be Wiener measure on
C
(
[0, 1]

) and X the 
anoni
al 
oordinate pro
ess (a Brownian motion under P). Given ε > 0,de�ne the law Pε of X 
onditionned to have value in [0, ε] at its �nal time: Pε(A) = P
(
A |X1 ∈

[0, ε]
), for any Borel set A of C

(
[0, 1]

). De�ne also X0
t = Xt − tX1, for any t ∈ [0, 1], anddenote by P0 the distribution of X0. The aim of this problem is to prove that Pε 
onverges indistribution to P0. In this sense, X0 represents a Brownian motion 
onditionned to have value 0at time 1; it is 
alled a Brownian bridge. Re
all why it is su�
ient to prove that(3.1) lim

εց0
Pε(F ) 6 P0(F ),for any 
losed set F of C([0, 1]).a) Given any times ti ∈ [0, 1] and real (measurable) sets B, (Bi)i=1..n, n > 1, prove that wehave

P
(
X0

t1 ∈ B1, . . . ,X
0
tn ∈ Bn,X1 ∈ B

)
= P

(
X0

t1 ∈ B1, . . . ,X
0
tn ∈ Bn

)
P(X1 ∈ B).Why does this imply that P

(
X0 ∈ A | 0 6 X1 6 ε

)
= P

(
X0 ∈ A

), for any Borel set A of C([0, 1])?b) Show how to get (3.1) from that point.4. Complements to part I4.1. Complement: Separable Bana
h spa
es. Re
all that a Bana
h spa
e is a 
om-plete metri
 spa
e. The spa
e [0, 1]N, equipped with the distan
e d(x, x′) =
∑

n>0 2−n|xn−
x′n| is for example a separable Bana
h spa
e. Its universal role is emphasized by the fol-lowing theorem46.Theorem 39. Any separable Bana
h spa
e is homeomorphi
 to a measurable subset of
[0, 1]N.Proof � Given a separable metri
 spa
e (E, d), denote by (zp)p>0 a dense sequen
e of pointsof E and de�ne for ea
h p > 0

fp(x) =
d(x, zp)

1 + d(x, zp)
, x ∈ E;this is a 
ontinuous (and hen
e measurable) [0, 1]-valued fun
tion on E. Therefore, theformula

f(x) =
(
fp(x)

)
p>0de�nes a 
ontinuous inje
tive fun
tion from E into [0, 1]N (
he
k it). Supposing that f(xn)
onverges to f(x), we must have d(xn, zp) → d(x, zp) for ea
h p > 0, from whi
h we easilydedu
e that xn 
onverges to x. This proves that f−1 is 
ontinuous on f(E), that is, f is ahomeomorphism from E to f(E).46The next two theorems and their proofs are essentially taken from Appendix 1 from Dynkin andYushkevi
h's book [DY79℄.



ADVANCED PROBABILITY 31Suppose in addition that the spa
e is 
omplete, so that it is a separable Bana
h spa
e. Tosee that f(E) is a measurable subset of [0, 1]N, re
all that we have seen in the proof ofProhorov's theorem that E 
an be written as an in
reasing union of 
ompa
t sets47 Kn.As ea
h f(Kn) is a 
ompa
t set of [0, 1]N, by 
ontinuity, it is measurable. This shows that
f(E) =

⋃
n>1 f(Kn) is measurable48. �Theorem 40. The spa
e [0, 1]N, equipped with its Borel σ-algebra, is isomorphi
 to ameasurable subset of [0, 1]. As a 
onsequen
e, any measurable subset of a separable Bana
hspa
e49 is a Borel spa
e.Proof � Equip {0, 1}N with its produ
t σ-algebra. It is easily seen that if ϕ is an isomorphismfrom a measurable spa
e X into Y then the formula

(xn)n>0 7→
(
ϕ(xn)

)
n>0de�nes an isomorphism from XN into Y N. Theorem 40 will thus be established if we 
ana) 
onstru
t an isomorphism ϕ from [0, 1] into {0, 1}N,b) prove that the spa
es {{0, 1}N

}N and {0, 1}N are isomorphi
,
) prove that the spa
e {0, 1}N is isomorphi
 to a measurable subset of [0, 1].a) Denote by D the 
ountable subset of {0, 1}N made up of sequen
es with only �nitelymany zeros. The fomula ψ : ǫ 7→ ∑
n>1 ǫn2−n de�nes an inje
tive measurable map from

{0, 1}N\D onto [0, 1]. To show that its inverse map ϕ : [0, 1] 7→ {0, 1}N\D is also measurableit su�
es to show that the preimages ϕ−1(Γk) = ψ(Γk) of Γk = {ǫ ∈ {0, 1}N\D ; ǫk = 0} aremeasurable; this is 
learly the 
ase as ψ(Γk) =
⋃

p=0..2k−1−1

[ 2p
2k ,

2p+1
2k

].b) Given a sequen
e (ǫ(p)
)
p>0

of elements of {0, 1}N, write ǫ(p) =
(
ǫ
(p)
n

)
n>0

and set
ǫ = ǫ

(0)
0 ǫ

(0)
1 ǫ

(1)
0 ǫ

(0)
2 ǫ

(1)
1 ǫ

(2)
0 . . . ,identifying N2 to N. This de�nes a bije
tive map F from {

{0, 1}N
}N onto {0, 1}N. Denoteby B(n)

k the subsets of {{0, 1}N
}N de�ned by the 
ondition ǫ(n)

k = 0; these sets generate theprodu
t σ-algebra of {{0, 1}N
}N and the sets F (B(n)

k

) the produ
t σ-algebra of {0, 1}N. Thisproves that the maps F and F−1 are measurable, so F is an isomorphism.
) We show that {0, 1}N 
an be mapped 
ontinuously and inje
tively into a measurablesubset of [0, 1]. To see that this map G is an isomorphism from {0, 1}N onto its image50 itsu�
es to see that the elementary produ
t events {ǫ ∈ {0, 1}N ; ǫn = 0
} are mapped ontomeasurable sets; this is the 
ase as these events being 
ompa
t sets, their image by the
ontinuous map G are 
ompa
t, hen
e measurable, subsets of [0, 1].The map G is simply de�ned by the formula

G(ǫ) =
∑

n>0

2ǫn3−n−1;its 
ontinuity and inje
tive 
hara
ter are easily 
he
ked. �47The 
ompa
t set K 
onstru
ted in the proof of theorem 31 is a typi
al element of this union, obtainedby letting η de
rease to 0. The 
ompleteness hypothesis on the spa
e is needed to prove that the set K
onstru
ted in that proof is 
ompa
t.48With a little bit of extra work, it also shows that f(E) is a 
ountable interse
tion of open sets of [0, 1]N.49Equipped with the tra
e σ-algebra of the ambient spa
e.50To see in parti
ular that G({0, 1}N) is a measurable subset of [0, 1].



32 ADVANCED PROBABILITY4.2. Complement: Lebesgue measure on [0, 1]. Let (S,S) be a Borel spa
e. We haveseen in the proof of theorem 10 that any (S,S) is isomorphi
 (�rst to a measurable sub-set of [0, 1], by de�nition, and then) to a measurable subset of {0, 1}N; so, 
onstru
tinga probability measure on (S,S) amounts to 
onstru
t a (Borel) probability measure on
{0, 1}N. The enormous advantage of this spa
e is that is has an extremelly simple gen-erating algebra: the 
ountable 
olle
tion A of 
ylindri
al sets51. As these sets are at thesame time open and 
losed, and so 
ompa
t, a �nitely additive set fun
tion on A willautomati
ally satisfy 
ondition ii)' of Caratheodory's extension theorem.Theorem 41. Borel probability measures on {0, 1}N 
orrespond bije
tively to additiveset fun
tions on A, equal to 0 on ∅ and 1 on Ω.Setting µ({0}) = 1

2
and µ({1}) = 1

2
, it follows that the produ
t probability measure

µ⊗N is well de�ned on the produ
t σ-algebra of {0, 1}N. The image measure of µ⊗N bythe map (εn)n>0 →
∑

εn2−n−1 ∈ [0, 1] is Lebsegue measure.4.3. Complement: Isomorphism of Borel probability spa
es. A Borel spa
e (S,S)is by de�nition isomorphi
 to a measurable subset of [0, 1]. Theorem 43 below essentiallystates that any probability measure on (S,S) 
an be 
onstru
ted as the image measureof Lebesgue measure on [0, 1] by some "isomorphism". This means that all the theorydeveloped in this 
ourse has a
tually a unique framework: [0, 1] with Lebesgue measure; inparti
ular no abstra
t measure theory is needed. The statement of theorem 43 requiresthe following de�nition.Definition 42. Two probability sap
e (Ω,F ,P) and (Ω′,F ′,P′) are said to be isomorphi
modulo zero ifdef there exists Ω0 ∈ F , Ω′
0 ∈ F ′ with P(Ω0) = P′(Ω′

0) = 1 and anisomorphism f between Ω0 and Ω′
0 su
h that P′ is the image measure of P by f(52).We shall write λ for Lebesgue measure on [0, 1] and D for the λ-
ompletion of its Borel

σ-algebra.Theorem 43. Any Borel probability spa
e (S,S,P), without atoms, is isomorphi
 modulozero to ([0, 1),D, λ
).Proof � The proof is simple and starts by identifying (S,S) to a measurable subset of [0, 1]and then to a measurable subset of {0, 1}N (as in the proof of theorem 40). We shall now
onsider P as a probability on the produ
t σ-algebra F of {0, 1}N. Adopt the notations

Cp for {0, 1}J0,pK and Xp : {0, 1}N → {0, 1} for the pth proje
tion, p > 0. We are goingto 
onstru
t by indu
tion for any z = (z0, . . . , zp) ∈ Cp an interval I(z) =
[
α(z), β(z)

) ofLebesgue measure β(z) − α(z) = P(X0 = z0, . . . ,Xp = zp).Set I(0) =
[
0,P(X0 = 0)

) and I(1) =
[
P(X0 = 0), 1

). Suppose I(z) was 
onstru
ted for any
z ∈ Ck, k 6 p and let z = (z0, . . . , zp, zp+1) ∈ Cp+1; set z̃ = (z0, . . . , zp).

• If zp+1 = 0, set α(z) = α(z̃) and β(z) = α(z̃) + P(X0 = z0, . . . ,Xp = zp,Xp+1 = zp+1).
• If zp+1 = 1, set α(z) = α(z̃) + P

(
X0 = z0, . . . ,Xp = zp,Xp+1 = zp+1

) and β(z) = β(z̃).Set then for any n > 1

Bn =
⋃

ez∈Cn−1

I
(
(z̃, 1)

)
;51Where only a �nite number of 
oordinates are spe
i�ed.52P′ and P have to be understood as de�ned on the σ-algebras {Ω′

0 ∩A′ ; A′ ∈ F ′} and {Ω0 ∩A ; A ∈ F}respe
tively.



ADVANCED PROBABILITY 33it is easily 
he
ked that I(z) = I
(
(z0, . . . , zn)

)
= Bz0

0 ∩ · · · ∩ Bzn
n , where we write B0 for

[0, 1)\B and B1 for B. One has sup
z∈Cn

λ
(
I(z)

)
−→
n+∞

0. Indeed, would the 
onverse happen we
ould 
onstru
t by indu
tion an element z ∈ {0, 1}N su
h that λ(I(z0, . . . , zn)
)

> ε for all
n > 0 and a positive 
onstant ε. We would then have on the one hand P

(
{z}
)

= 0, sin
e Phas no atoms, and on the other hand
P
(
{z}
)

= lim
n+∞

ց P(X0 = z0, . . . ,Xn = zn) = lim
n+∞

ց λ
(
I(z0, . . . zn)

)
> ε,leading to a 
ontradi
tion. It follows that the family B = (Bn)n>0 is a basis of the topologyof [0, 1). De�ne

φB : x ∈ [0, 1) 7→
(
1Bn(x)

)
n>0∈{0,1}Nand 
he
k that P is the image measure of λ by φB: this map is an isomorphism modulo zerobetween ([0, 1),D, λ) and ({0, 1}N,F ,P

). �You will �nd in appendix 1 of Dynkin and Yushkevi
h's book [DY79℄, or 
hapter 13 ofDudley's book [Dud02℄, a 
lear and de�nitive a

ount on Borel spa
es. Up to isomorphism(and not only isomorphism modulo 0) there exists only three types of Borel spa
es: the�nite spa
es, N and the interval [0, 1].4.4. Complement: Riesz representation theorem. We show in this 
omplement howthe proof of Caratheodory's extension theorem given in se
tion 1.2 qui
kly leads to F.Riesz representation theorem. Given a topologi
al spa
e (X,X), denote by Cc(X) theset of 
ontinuous real-valued fun
tions on X with 
ompa
t support, equipped with thesupremum norm.Theorem 44. Let (X,X) be a lo
ally 
ompa
t topologi
al spa
e and E : Cc(X) → R bea positive linear form of norm 1. Then there exists a probability measure P on the Borel
σ-algebra of X su
h that E(f) =

∫
f(x)P (dx), for all f ∈ Cc(X).Proof � We �rst 
he
k that the suitable analogues of the 
onditions of Caratheodory'stheorem hold here. Condition i) states that µ(∅) = 0 and µ(Ω) = 1. Its analogue here,

E(0) = 0 and E(1) = 1, is guaranteed by the linearity and the positivity and unitnorm of the operator E. Countable additivity of E on Cc(X) is automati
! Indeed, anyde
reasing sequen
e of elements of Cc(X) 
onverging to 0 pointwise a
tually 
onvergesuniformly to 0. As E has unit norm, it follows that E(fn) de
reases to 0 if fn ∈ Cc(X)de
reases pointwise to 0 ∈ Cc(X).We 
an now 
opy word by word our proof of Caratheodory's extension theorem, butwith C+
c (X) in the role of the algebra A, the set of non-negative real-valued fun
tionson X in the role of P(Ω), and the operation f∆g := f + g − 2f ∧ g in the role of

A∆B. The σ-algebra generated by a family B0 of fun
tions is the smallest 
lass offun
tions B 
ontaining B0 and 
losed by pointwise passage to the limit.As a result, E has a unique extension into a linear fun
tional of norm 1 on the set ofbounded53 fun
tions belonging to the σ-algebra generated by Cc(X). This σ-algebrais also generated by the indi
ators of sets of the form f−1
(
(a, b)

), a < b reals. As thespa
e is lo
ally 
ompa
t, it 
oin
ides with the σ-algebra of Borel-measurable boundedfun
tions.53Use the monotone 
lass theorem for fun
tions for the uniqueness part of the statement; it deals withbounded fun
tions only.



34 ADVANCED PROBABILITYDenote by P the restri
tion of E to the indi
ators of Borel sets. It remains to provethat E(f) =
∫
f(x)P (dx). As f is a uniform limit of elementary fun
tions ∑ ai1Ai

,with ai ∈ R and Borel sets Ai, the results follows from the de�nition of the integralwith respe
t to P and the fa
t that the extension of E has unit norm. �
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 theory of sto
hasti
 pro
essesRe
all that Kolmogorov's view on Natural random phenomena is a two levels theory:the random phenomenon itself is modelled by a probability spa
e (Ω,F ,P), where Ω isthe set of possible out
omes and F is the set of observable events, while our experimen-tal observations are modelled by a pro
ess (Xt)t∈T , whose index set 
orresponds to thedi�erent types of measures of the phenomenon one 
an make. A random surfa
e will forinstan
e be des
ribed by a random pro
ess with index set a subset of R2 (or S2 as we liveon Earth).The �rst part of the 
ourse was devoted to 
onstru
ting model probability spa
es andpro
esses. This task being done, we are now going to study random pro
esses for them-selves without paying attention to the ba
kground (Ω,F) anymore. More spe
i�
ally, weare going to study random pro
esses indexed by some sort of time: {1, . . . , n},N or aninterval of [0,+∞]. In this framework, it is natural to enri
h our des
ription of Natureby adding to (Ω,F ,P) the information on everything whi
h has happened up to time t.This information is en
oded under the form of an in
reasing family (Ft)t∈T of σ-algebras.Being non-ubiquitous, our knowlegge of the history of the world up to time t is onlypartial (we 
annot observe everything, but information also needs some time to travel,may be damaged during that travel, we may only be able to understand part of it...), sowill be represented by an in
reasing family of σ-algebras Gt ⊂ Ft. (Note the optimisti

hara
ter of this model: we do not forget our past.)How 
an we then understand some events on whi
h we have only a partial information?The introdu
tion of the 
on
ept of 
onditional expe
tation will provide a mathemati
alanswer; it will also provide a 
on
eptual framework in whi
h talking about �
onstantsof motion�, in
reasing/de
reasing predi
tions, under the form of martingales, sub/super-martingales. Our main task in this part will be to understand the asymptoti
 behaviourof these �
onstants of motion�, �rst in a dis
rete time setting, and then in a 
ontinuoustime setting.No topologi
al hypotheses are made on the measurable spa
es (Ω,F) used in this part.Given a probability P on a measurable spa
e (Ω,F) and a sub-σ-algebra G of F , we write
L1(G) for the 
lass of integrable fun
tions whi
h are G-measurables. We simply write L1for L1(F). 5. Dynami
s and filtrations5.1. Conditional expe
tation. Let us 
ome ba
k a moment to the 
onsiderations ofthe introdu
tion. We saw there that the mathemati
al abstra
tion of the logi
al pro
essof experimental resear
h is the 
on
ept of algebra. Imagine we study a phenomenon X,with asso
iated algebra A. We asso
iate to the known information about X a sub-σ-algebra B of A. It is everyday's task of s
ientists to ask what 
an be infered on the'law' of the phenomenon from the knowledge of B. What predi
tions 
an we make? Canwe quantify their quality? et
. These questions are easier to handle mathemati
allyin the idealised framework of measurable spa
es, where algebras have been repla
ed by
σ-algebras. Roughly speaking, we may ask: Given a probability spa
e (Ω,F ,P) and asub-σ-algebra G of F , how well 
an we approximate an F -measurable random variable bya G-measurable random variable?
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L2 spa
es, with their Hilbert stru
ture, provide a good framework in whi
h talkingabout approximation; a dis
rete framework also provides a playground where intuitionis easy to formalise; we shall start with it. The 
onstru
tion of 
onditional expe
tationgiven below will make it 
lear that both views 
oin
ide.5.1.1. Dis
rete 
ase. The dis
rete 
ase 
onsists of the datum of a 
ountable partition of aprobability spa
e (Ω,F ,P) into events An of non-null probability. Set G = σ(An ; n > 0).Let X ∈ L1(F). As G-measurable fun
tions are 
onstant on ea
h atom An of G, any

G-measurable approximation of X is of the form ∑
αn1An. It is natural54 to 
hoose αnas the mean of X on An: the 
onditional expe
tation of X given G is the randomvariable

Y :=
∑

n>0

E[X1An ]

P(An)
1An.It is 
hara
terized by the properties

• Y is G-measurable,
• Y is integrable and E[X1A] = E[Y 1A] for all A ∈ G.For G generated by an in
reasing sequen
e of dis
rete σ-algebras Gn we 
ould try to de�ne

E[X|G] as the limit of the E[X|Gn] if it exists. Although this 
onstru
tive approa
h works(see theorem 65 below), the above 
hara
terization suggests a simpler and more generalde�nition/
onstru
tion pro
edure in a

ordan
e with the L2 idea of best approximationas a proje
tion.5.1.2. General 
ase: Existen
e and uniqueness.Definition/Proposition 45. Let (Ω,F ,P) be a probability spa
e and G be a sub-σ-algebra of F . Let X ∈ L1(F). Then there exists a random variable Y su
h that(1) Y is G-measurable,(2) Y is integrable and E[X1A] = E[Y 1A] for all A ∈ G;two su
h random variables are equal P-almost-surely.Proof � Uniqueness. If Y ′ also satis�es 
onditions (1) and (2) the event A = {Y > Y ′}belongs to G, so
E[(Y − Y ′)1A] = E[Y 1A] − E[Y ′

1A] = E[X1A] − E[X1A] = 0by property (2). This equality prevents A from having a positive probability. We prove inthe same way the P(Y < Y ′) = 0.Existen
e. Assume to begin that X ∈ L2(F). Sin
e V := L2(G) is a 
losed subspa
e of
L2(F), we have X = Y +W for some Y ∈ V and W ∈ V ⊥. Then, for any A ∈ G, we have
1A ∈ V , so

E[X1A] − E[Y 1A] = E[W1A] = 0.Hen
e Y satis�es (1) and (2).Assume now that X is any non-negative random variable. Then Xn = X ∧ n ∈ L2(F) and
0 6 Xn ↑ X as n→ ∞. We have shown, for ea
h n, that there exists Yn ∈ L2(G) su
h that,for all A ∈ G,

E[Xn1A] = E[Yn1A]54We may be guided in this 
hoi
e by the fa
t that for a random variable U with a se
ond moment, E[U ]is the 
onstant whi
h minimizes the quantity E
[
|U − c|2

], seen as a fun
tion of c.



ADVANCED PROBABILITY 37and moreover that 0 6 Yn 6 Yn+1 a.s.. Set Y = limn→∞ Yn, then Y is G-measurable and,by monotone 
onvergen
e, for all A ∈ G,
E[X1A] = E[Y 1A].In parti
ular, if E[X] is �nite then so is E[Y ]. Finally, for a general integrable randomvariable X, we 
an apply the pre
eding 
onstru
tion to X− and X+ to obtain Y − and Y +.Then Y = Y + − Y − satis�es (1) and (2). �5.1.3. Properties of 
onditional expe
tation.Proposition 46 (Simple properties). 1. Let π be a π-system generating G. If Y ∈

L1(G) satis�es E[Y 1A] = E[X1A] for any A ∈ π, then Y = E[X|G].2. • For any Z ∈ L∞(G) we have E
[
Z E[X|G]

]
= E[ZX].

• E[X|G] > 0 if X > 0.
• If G and σ(X) are independent then Y is 
onstant equal to EX.
• We have E[αX + βX ′|G] = αE[X|G] + β E[X ′|G], for any α, β ∈ R, X ′ ∈ L1,3. (Conditional Jensen's inequality) For any 
onvex fun
tion f su
h that f(X) ∈

L1(F) we have
f
(
E[X|G]

)
6 E[f(X)|G].In parti
ular, if X ∈ Lp for some p ∈ [1,+∞) then ∥∥E[X|G]

∥∥
p

6 ‖X‖p.4. (We 
an take out what is known) If Z is bounded and G-measurable, then E[ZX|G] =
Z E[X|G] almost-surely.Proof � 1. Use the monotone 
lass theorem for fun
tions.2. Use the monotone 
onvergen
e theorem to prove the �rst statement. For the se
ondnote that we 
an have E

[
1E[X|G]<0E[X|G]

]
= E[1E[X|G]<0X] > 0 only if P

(
E[X|G] < 0

)
=

0. The two other properties are 
he
ked verifying that the asserted quantities satisfy the
hara
terization of 
onditional expe
tation.3. As f is 
onvex it is the supremum of a 
ountable family of a�ne fun
tions:
f(x) = sup

i
(aix+ bi), x ∈ R.Hen
e, almost-surely , for all i,

ai E[X|G] + bi 6 E[f(X)|G],that is f(E[X|G]
)

6 E[f(X)|G].4. Che
k that Z E[X|G] satis�es the properties (1) and (2). �Proposition 47 (Conditional versions of 
onvergen
e theorems). 5. (Monotone 
on-vergen
e) If one has almost-surely 0 ≤ Xn 6 X then one has almost-surely
E[Xn|G] 6 E[X|G].6. (Fatou lemma) If Xn > 0 for all n, then one has almost-surely E[lim inf Xn|G] 6

lim E[Xn|G].7. (Dominated 
onvergen
e) If Xn 
onverges almost-surely to X and |Xn| is domi-nated by an integrable random variable for all n, then E[Xn|G] 
onverges alomst-surely to E[X|G].Proof � 5. If 0 6 Xn in
reases almost-surely to some random variable X, then E[Xn|G]in
reases almost-surely to some G-measurable random variable U ; so, by monotone
onvergen
e, for all A ∈ G,
E[X1A] = lim E[Xn1A] = lim E

[
E[Xn|G]1A

]
= E[U1A]



38 ADVANCED PROBABILITYFatou lemma (6) and dominated 
onvergen
e (7) follow by essentially the same argu-ments as in the original results. �To state the fundamental property 10, re
all that a family (Xt)t∈T of real-valued randomvariables is uniformly integrable ifdef
sup
t∈T

E
[
|Xt|1|Xt|>m

]
→ 0 as m→ +∞.Proposition 48 (E(X|G) as a fun
tion of G). 8. (Tower property) If H ⊂ G, then

E
[
E[X|G]

∣∣H
]

= E[X|H].9. If σ(X,G) is independent of H, then E
[
X
∣∣σ(G,H)

]
= E[X|G].10. (Uniform integrability) Let X ∈ L1. Then the set of random variables Y of theform Y = E[X|G], where G ⊂ F is a σ-algebra, is uniformly integrable.Proof � 8. Just 
he
k 
onditions (1) and (2).9. Using property 1 it is su�
ient to 
he
k that we have

E
[
E[X|σ(G,H)]1A∩B

]
= E

[
E[X|G]1A∩B

]for any A ∈ G and B ∈ H, as the set of su
h A ∩ B is a π-system generating σ(G,H). Butthe left hand side equals
E[X1A∩B ]

hyp.
= E

[
E[X|G]1A

]
P(B) = E

[
E[X|G]1A∩B

]
.10. We 
an �nd δ > 0 so that E

[
|X|1A

]
6 ε whenever P(A) 6 δ. Then 
hoose λ < ∞ sothat E[|X|] 6 λδ. Suppose Y = E[X|G], then |Y | 6 E

[
|X|
∣∣G
]. In parti
ular, E[|Y |] 6 E[|X|]so

P(|Y | > λ) 6 λ−1E[|Y |] 6 δ.Then
E
[
|Y |1|Y |>λ

]
6 E

[
|X|1|Y |>λ

]
6 ε.Sin
e λ was 
hosen independently of G, we are done. �5.2. Filtrations. Dynami
s be
omes real through the a

umulation of knowledge as timepasses55; �ltrations are the probabilisti
 
ounterpart of this a

umulation pro
ess.5.2.1. Generalities. Let I be a time index, it may be �nite {1, · · · , n}, 
ountable N, oran interval of R+ ∪ {∞}.Definition 49. Let (Ω,F) be a measurable spa
e. A �ltration on (Ω,F) is a monotoni
family (Ft)t∈I of sub-σ-algebras of F . We shall talk of the �ltered spa
e (Ω,F , (Ft)t∈I

).Filtrations are the mathemati
al 
ounterpart of the a

umulation/loss of knowledgeabout a phenomenon as time passes; we shall give in theorem 65 and 67 a quantitativeversion of this fa
t. Note that we do not require F0 to be trivial or F∞ to be equal to F(if ∞ ∈ I).Definition 50. Let X = (Xt)t∈I be a random pro
ess de�ned on a measurable spa
e
(Ω,F). The �ltration generated by X is de�ned by the formula

FX
t = σ(Xs ; s ∈ I, s 6 t).55There is no dynami
s without memory, whi
h enables one to 
ompare what happens at di�erent times.



ADVANCED PROBABILITY 39Given t ∈ I we denote by ∨s<t Fs the σ-algebra generated by56 ⋃s<t Fs. Be 
areful,�ltrations have no reason to be a priori 
ontinuous on the left: we may have ∨s<t Fs ( Ft.Think of a pro
ess whi
h is 
onstant on [0, t) and has a random (non-null) jump at time
t. We may as well have ⋂s>t Fs 6= Ft. These fa
t motivate the following de�nition. Givena �ltration (Ft

)
t∈I

on some probability spa
e (Ω,F ,P), set for any t > 0

Ft+ :=
⋂

s>t

Fs.This de�nes a new (and bigger) �ltration where we allow ourselves to look slightly aheadin time; it is 
ontinuous on the right.Definition 51. • Let (Ω,F , (Ft

)
t>0

) be a �ltered spa
e. A random pro
ess X =

(Xt)t∈I on (Ω,F) is said to be adapted to (Ft)t>0 ifdef FX
t ⊂ Ft for all t ∈ I.

• Let (Ω,F , (Fn

)
n>0

) be a �ltered spa
e. A random pro
ess X = (Xn)n>0 on (Ω,F)is said to be (Fn

)
n>0

-previsible ifdef FX
n ⊂ Fn−1 for all n > 1 and FX

0 ⊂ F0.We shall just say previsible when the 
ontext is 
lear.5.2.2. Stopping times. Re
all �rst that a random time is an I-valued random variable; itindi
ates the moment at whi
h some event of interest happens; the σ-algebra Ft 
orre-sponds to our knowledge of the world at time t. Although an event may happen at time
t we may not be aware of it immediately; events of whi
h we have immediate knowledgeare 
alled stopping times.Definition 52. A stopping time is a random time T su
h that {T 6 t} ∈ Ft for any
t ∈ I. It is equivalent to say that the pro
ess (1T6t

)
t∈I

is adapted.Fundamental example of previsible pro
ess. Given a �ltered spa
e (Ω,F , (Fn

)
n>0

) and astopping time T , the pro
ess (1n6T

)
n>0

is previsible.As above, denote by (S, d) a metri
 spa
e.Definition 53 (First entran
e and hitting times). Let (Xt)t>0 be an S-valued pro
ess and
Γ be a Borel subset of S. The �rst entran
e of X in Γ is the random time DΓ = inf{t >

0 ; Xt ∈ Γ}; the hitting time of Γ by X is the random time HΓ = inf{t > 0 ; Xt ∈ Γ}.These two 
lasses of random times will be our main examples of stopping times.Proposition 54. Suppose (Xt)t>0 is an S-valued 
ontinuous random pro
ess, and let Fand O be some subsets of S, respe
tively 
losed and open. Then,
• DF is an (Ft)t>0-stopping time;
• DO and HF are (Ft+)t>0-stopping times.Proof � DF : Sin
e the map x ∈ S 7→ d(x, F ) is 
ontinuous (it is Lips
hitz), the fun
tions
ω → d(Xq(ω), F ) are measurable, for all q ∈ Q+. For t > 0, we have by 
ontinuity,

{DF 6 t} =
{
inf{d(Xq , F ) ; q ∈ Q ∩ [0, t)} = 0

}
,from whi
h the (Ft)t>0-stopping time property follows.56Re
all that the union of two σ-algebra may not be a σ-algebra; �nd a 
ounter-example.
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DO: {DO < t} =

⋃
q∈Q∩[0,t]{Xq ∈ O} ∈ Ft. Note that we may fail to have {DO 6 t} ∈ Ft:if for some ω, Xt(ω) 6 1, for t ∈ [0, 1), and X1(ω) = 1, we 
annot tell wether D(1,+∞) = 1or not without looking slightly ahead in time.

HF : I leave you this 
ase as an exer
ise. The fa
t that we just have an (Ft+)t>0-stoppingtime 
omes from the fa
t that we 
annot tell at time 0 if HF is 0 or not... �Given a stopping time T set
FT =

{
A ∈ F ; A ∩ {T 6 t} ∈ Ft for all t ∈ I

}
.Che
k that if T is 
onstant equal to t then FT = Ft. Given a pro
ess X we shall set

XT (ω) = XT (ω)(ω) whenever T (ω) < ∞. We also de�ne the stopped pro
ess XT by
XT

t = Xt∧T . The following fa
ts are easily proved from the de�nitions.Proposition 55. Let T and T ′ be stopping times on a �ltered spa
e (Ω,F , (Ft)t∈I

), andlet X = (Xt)t∈I be an adapted pro
ess. Then
• T ∧ T ′ is a stopping time,
• if T 6 T ′ then FT ⊂ FT ′,
• XT is adapted, when I = N.It is also easy to prove that XT1T<∞ is FT -measurable if T is 
ountable; this is nolonger automati
 if the time index is un
ountable. We shall state and prove a su�
ient(and useful) 
ondition to have the 
on
lusion later in proposition 83; this 
ondition willessentially mean that the pro
ess is determined by its restri
tion to a 
ountable set ofindi
es.5.3. Martingales, supermartingales and submartingales. Constants of motion playa dominant role in the theory of di�erential equations (and so in 
lassi
al me
hani
s):knowledge of a 
onstant of motion redu
es the dimension of a problem, so if su�
ientlymany independent 
onstants of motion are known then the system is integrable (at leasttheoreti
ally). Liapounov fun
tions57 usually also provide pre
ious informations on thedynami
s; they are for instan
e used to prove the stability of hyperboli
 zeros of ve
tor�elds under perturbation. The probabilisti
 
ounterpart of these notions are martingalesand sub/supermartingales. In our framework the dynami
s is not provided by the da-tum of a di�erential equation but by the datum of a �ltration representing our evolvingknowledge of a system as time passes.Definition 56. • Let (Ω,F , (Ft)t∈I

) be a �ltered probability spa
e. A martingaleis an adapted integrable pro
ess (Mt)t∈I su
h that E[Mt|Fs] = Ms for any s 6 t.
• A submartingale is an adapted pro
ess (Mt)t∈I su
h that E[Mt|Fs] > Ms for any
s 6 t.

• A supermartingale is an adapted pro
ess (Mt)t∈I su
h that E[Mt|Fs] 6 Ms forany s 6 t.So, roughly speaking, submartingales play the role of in
reasing fun
tions and super-martingales the role of de
reasing fun
tions. Do martingales play well their role of 
on-stant of motion? Yes: We shall see later for instan
e that if Ω = C(R+,R), F is theBorel σ-algebra, Xt(ω) = ωt is the 
oordinate pro
ess and Ft = FX
t then a probability57A Liapounov fun
tion for a di�erential equation ẏt = f(yt) is a fun
tion g su
h that g(yt) is monotonealong any solution.



ADVANCED PROBABILITY 41on (Ω,F) is the Wiener measure i� the 
omplex-valued pro
ess (eiλXt+
λ2t
2

)
t>0

is a mar-tingale. Similarly, a Markov 
hain is 
ompletely determined by the datum of a 
ertainfamily of martingales. These fa
ts should warn you of the importan
e of this 
on
ept.As a 
onsequen
e of the 
onditional version of Jensen's inequality the 
onvex image of amartingale (resp. 
on
ave) is a submartingale (resp. supermartingale).6. Dis
rete time martingale theoryLet us �x a �ltration (Fn

)
n>0

on a given probability spa
e (Ω,F ,P). Adaptedness,previsibility, martingales... are de�ned with respe
t to this set up in this se
tion.6.1. Chara
terisation of supermartingales. Martingales (resp. sub/super-martingales)are de�ned above by the �proje
tion identities� at deterministi
 times. The possibility touse similar identities with random times is the very reason why this 
lass of pro
esses willhappen to be so powerful.Theorem 57 (Optional stopping theorem (1)). An adapted pro
ess X is a supermartin-gale i� one of the following 
onditions hold.1. For all bounded stopping time T and any stopping time S
E[XT |FS] 6 XS∧T .2. For all bounded stopping times S, T , with S 6 T

E[XT ] 6 E[XS].Proof � We make a 
ir
ular argument proving statement 1 �rst. Suppose the stopping times
S and T bounded above by a 
onstant n; we 
an write

XT = XS∧T +
∑

k=0..n

(Xk+1 −Xk)1S6k<T .To prove 1 amounts to prove that we have for any A ∈ FS

E[XT1A] 6 E[XS∧T1A].But as A ∩ {S 6 k < T} ∈ Fk we have
E
[
(Xk+1 −Xk)1S6k<T

]
6 0;the result follows. Statement 2 is a 
onsequen
e of 1. Last, to prove that X is a supermartin-gale if it enjoys property 2, take integers p < q, an event A ∈ Fp, and set T = p1A + q1Ac .This formula de�nes a stopping time bounded by q, so

E[Xq] ≤ E[XT ],i.e. E[Xq] 6 E[Xp1A +Xq1Ac ], or E[Xq1A] 6 E[Xp1A]. �We have a similar statement for martingales, with equalities instead of inequalities.Corollary 58. Given a martingale (Mn)n>0 and a stopping time T , the stopped pro
ess
MT is a martingale.



42 ADVANCED PROBABILITY6.2. Almost-sure and L1-
onvergen
e results.6.2.1. Non-negative martingales. Given a non-negative martingale (Mn)n>0 and two pos-itive real numbers a < b de�ne the stopping time σ1 = inf
{
p > 0 ; Mp 6 a

} and de�neindu
tively the stopping times58
τk = inf

{
p > σk ; Mp > b

}
, σk+1 = inf

{
p > τk ; Mp 6 a

}
.The number of up
rossings from a to b by the martingale (Mn)n>0 is equal to

Ua,b = sup{k ; τk <∞} ∈ N ∪ {∞}.Proposition 59 (Dubins). We have P(Ua,b > k) 6
(

a
b

)k, for any k > 0. In parti
ular
Ua,b is almost-surely �nite.Proof � As we have {σk < ∞} ⊂ {τk−1 < ∞} it is su�
ient to prove that P(τk < ∞) 6

a
b P(σk <∞). We know from the optional stopping theorem 57 that we have for any n > 0

E[Mτk∧n] = E[Mσk∧n],i.e.
E[Mτk

1τk6n] + E[Mn1τk>n] = E[Mσk
1σk6n] + E[Mn1σk>n].Sin
e the �rst term on the left is > bP(τk 6 n) and the �rst on the right is 6 aP(σk 6 n),we have

bP(τk 6 n) 6 bP(τk 6 n) + E
[
Mn1σk6n<τk

]
6 aP(σk 6 n)as M is non-negative; the inequality of the proposition follows sending n to +∞. �As a 
onsequen
e of Dubins' result, almost-surely Ua,b is �nite for all rationals a < b.Corollary 60 (Almost-sure 
onvergen
e). A non-negative martingale 
onverges almost-surely to an integrable random variable.Proof � If not there would exists positive rational numbers a < b su
h that Ua,b = ∞ on anevent of positive probability, 
ontradi
ting Dubins' proposition. Denote by M∞ the almost-sure limit of Mn. We prove the integrability of M∞ applying Fatou lemma in the equality

E[Mn] = E[M0]. �Let Sn denote the simple symmetri
 random walk on Z, stopped at the random time Twhen it hits −1. The pro
ess Mn = Sn + 1 is a non-negative martingale whi
h 
onvergesalmost surely to 0; yet Mn does not 
onverge to 0 in L1, as E[Mn] = 1.Definition 61. A martingale (Mn)n>0 is said to be 
losed ifdef it 
onverges almost-surely to an integrable random variableM∞ for whi
h we 
an write the martingale identity
Mn = E[M∞|Fn], for all n > 0.6.2.2. Almost-sure 
onvergen
e of supermartingales. The proof of Dubins' proposition 59makes a 
ru
ial use of the non-negativeness of the martingale. The pri
e to pay to get ridof this hypothesis is to impose to the martingale to be bounded in L1. This a
tually worksfor supermartingales as is implied by the following result due to Doob59. Let (Xn)n>0 bea supermartingale. Given two real numbers a < b, denote by, Ua,b(n) the number ofup
rossings of X from a to b made by time n; almost surely Ua,b(n) in
reases to Ua,b as
n→ +∞. The stopping times τk, σk are de�ned as above.58Che
k that they are indeed stopping times. We adopt the 
onvention inf ∅ = +∞.59A result prior to Dubins' result.
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rossing inequality). For any supermartingale X we have forany n > 1

E
[
Ua,b(n)

]
6

E
[
(Xn − a)−

]

b− a
.Proof � Given n > 1, set

S =
∑

k>1

(
Xτk∧n −Xσk∧n

)
.As τk and σk are no less than k, only the �rst Ua,b(n) + 1(6 n+ 1) terms may be non-null;so S =

∑n+1
k=1

(
Xτk∧n −Xσk∧n

). Ea
h of the �rst Ua,b(n) terms are no smaller than b− a asthey 
orrespond to up
rossings. The last (potentially non-null) term, Xn −XσUa,b(n)+1∧n isgreater than or equal to −(Xn − a)−. So we have(6.1) n+1∑

k>1

(
Xτk∧n −Xσk∧n

)
> Ua,b(n) (b− a) − (Xn − a)−.But as X is a supermartingale and τk∧n, σk∧n bounded stopping times, we have E[Xτk∧n] 6

E[Xσk∧n], by the optional stopping theorem 57; the result follows. �The same reasonning as in 
orollary 60 proves the following extension of 
orollary 60.Theorem 63 (Almost-sure 
onvergen
e theorem for supermartingales). A supermartin-gale bounded in L1 
onverges almost-surely to an integrable random variable.6.2.3. Closed martingales. a) Main theorem. To state the following ne
essary and suf-�
ient 
ondition of 
losedness of a martingale re
all that a sequen
e (Xn)n>0 of integrablerandom variables 
onverges in L1 to some X(∈ L1) i� it 
onverges in probability to Xand is uniformly integrable. This fa
t is a well known appli
ation of Egorov's theorem60.You are asked to prove that result in the example sheet.Theorem 64 (L1-
onvergen
e theorem for martingales). A martingale is 
losed i� it isuniformly integrable.Proof � ⇒ has been proved in proposition 48. To establish the 
onverse it su�
es to note thata uniformly integrable martingale (Mn)n>0 is bounded in L1, so it 
onverges almost-surely(hen
e in probability) to some M∞ ∈ L1, by theorem 63. As a 
onsequen
e of the abovementionned result it 
onverges in L1 to M∞. Passing to the limit in the martingale identityyields Mn = E[M∞|Fn]. �As a dire
t appli
ation of this 
riterion we obtain Lévy's famous 
onvergen
e theorem.Theorem 65 (Lévy's 'upward' theorem and 0−1 law). For every X ∈ L1 the martingale
E[X|Fn] 
onverges almost-surely and in L1 to E[X|F∞]. In parti
ular, P(A|Fn) 
onvergesalmost-surely to 1A, for every A ∈ F∞.b) Appli
ations. We present here two important appli
ations of the above two results.
• We �rst show that the optional stopping time theorem 
an be applied with any stoppingtime when working with a 
losed martingale.Corollary 66 (Optional stopping theorem (2)). For any uniformly integrable martin-gale M and any stopping times S, T , we have

E[MT |FS] = MS∧T .60Egorov's theorem states that almost-sure limits are uniform outside sets of arbitrarily small measure.



44 ADVANCED PROBABILITYProof � We have already proved the result when T is bounded (theorem 57). For an un-bounded stopping time, approa
h it by T ∧ n and use theorem 57 to write(6.2) E[MT∧n|FS ] = MS∧T∧n.By Lévy's upward theorem 65, the right hand side MS∧T∧n = E
[
M∞

∣∣FS∧T∧n

] 
onverges(almost-surely and) in L1 to E
[
M∞

∣∣FS∧T

]
= MS∧T . As we bhave MT∧n = E[Mn|FT ], bythe optional stopping theorem proved so far, we dedu
e from the uniform integrability of themartingale (hen
e its L1 
onvergen
e) that61 MT = E[M∞|FT ]. Also, sin
e

∥∥E[MT∧n −MT |FS ]
∥∥

1
6 E

[
E
[
|MT∧n −MT |

∣∣FS

]]

6 E
[
E
[
|MT∧n −MT |

∣∣FS

]]
6 E

[
E
[
E
[
|Mn −M∞|

∣∣FT

]∣∣∣FS

]]

6 E
[
|Mn −M∞|

]the result follows on passing to the limit in (6.2). �

• Martingales with respe
t to de
reasing �ltrations (ba
kward martingales). Let · · · ⊂
Fn+1 ⊂ Fn · · · ⊂ F0 ⊂ F be a de
reasing �ltration and set F∞ =

⋂
n>0 Fn. A ba
kwardmartingale is a sequen
e (Mn)n>0 of L1-random variables su
h that

Mn is Fn-measurable and E[Mn−1|Fn] = Mn.The great di�eren
e with (usual) martingales is that ba
kward martingales satisfy theidentity
Mn = E[M0|Fn]for every n > 0. The sequen
e (Mn)n>0 is thus uniformly integrable and the L1-
onvergen
etheorem implies the following result62.Theorem 67 (Lévy's 'downward' theorem). For all X ∈ L1 the ba
kward martingale

E[X | Fn] 
onverges almost-surely and in L1 to E[X | F∞]. In parti
ular, if (Yn)n>0 is asequen
e of independent random variables and Fn = σ(Yp ; p > n), we have E[X | Fn] →
E[X] for any integrable random variable X.Corollary 68 (Strong law of large numbers). Let (Xn)n>0 be a sequen
e of independentand identi
ally distributed random variables in L1. Then X1+···+Xn

n

onverges almost-surelyand in L1 to the 
onstant random variable E[X1].Proof � Set S0 = 0 and Sn = X1 + · · · +Xn for n > 1; de�ne also the de
reasing �ltration

Fn = σ(Sp ; p > n) = σ(Sn,Xp ; p > n+ 1).Sin
e X1 is independent of σ(Xp ; p > n+1), we have E[X1|Fn] = E[X1|Sn] for all n. Now, bysymmetry, E[Xk|Sn] = E[X1|Sn] for all 1 6 k 6 n, so we have almost-surely E[X1|Fn] = Sn
n .The sequen
e (Sn

n

)
n>0

if thus a ba
kward martingale, so it 
onverges almost-surely and in
L1 to E[X1|F∞]. As this random variable is also, for ea
h k > 0, the limit of Xk+···+Xn

n , itis measurable with respe
t to ⋂k>0 σ(Xp ; p > k). Sin
e this σ-algebra is trivial under P, byKolmogorov's 0 − 1 law, E[X1|F∞] is 
onstant, equal to E[X1]. �61The stopped martingale (MT∧n)n>0 is uniformly integrable if M is uniformly integrable.62We have not used the fa
t that the �ltration 
onsidered in se
tion 6.2 is in
reasing to prove the resultsof that se
tion. They also hold for de
reasing �ltrations.
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onvergen
e results. Given a pro
ess (Xn)n>0, set X∗ = supn>0 |Xn|. The keyto the Lp-
onvergen
e results is Doob's Lp inequality (6.4) below. It provides a 
ontrolof the behaviour of the whole traje
tory in terms of its behaviour at �xed times. Doob'sup
rossing inequality plaid the same role above, in the almost-surely 
onvergen
e results.Theorem 69 (Doob's maximal inequality). Let X be a martingale or a non-negativesubmartingale. Then, for all λ > 0,
λP(X∗ > λ) 6 sup

n>0
E
[
|Xn|

]
.Proof � As X∗ is the in
reasing limit of X∗

ℓ := supn6ℓ |Xn| it su�
es to prove that theinequality λP(X∗
ℓ > λ) 6 supn6ℓ E

[
|Xn|

] holds for all ℓ > 1. Also, as |X| is a non-negativesubmartingale, it su�
es to 
onsider the 
ase where X is a non-negative submartingale, forwhi
h we prove that λP(X∗
ℓ > λ) 6 E[Xℓ].Set T = inf{n > 0 : Xn > λ}∧ℓ. Then T 6 ℓ is a bounded stopping time so, by the optionalstopping theorem,

E[Xℓ] > E[XT ] = E
[
XT1X∗

ℓ >λ

]
+ E

[
XT1X∗

ℓ <λ

]
> λP(X∗

ℓ > λ) + E
[
Xℓ1X∗

ℓ <λ

]
.As X is non-negative it follows that we have(6.3) λP(X∗

ℓ > λ) 6 E
[
Xℓ1X∗

ℓ >λ

]
6 E[Xℓ].

�Theorem 70 (Doob's Lp-inequality). Let X be a martingale or non-negative submartin-gale. Then, for all p > 1 and q = p/(p− 1),(6.4) ‖X∗‖p ≤ q sup
n>0

‖Xn‖p.Proof � As above it su�
es to 
onsider the 
ase of a non-negative submartingale indexed bythe �nite set {1, . . . , ℓ}. We adopt the same notations. Fix C < ∞. By Fubini's theorem,equation (6.3) and Hölder's inequality,
E[(X∗

ℓ ∧ C)p] = E

∫ C

0
pλp−1

1X∗
ℓ >λ dλ =

∫ C

0
pλp−1P(X∗

ℓ > λ) dλ

6

∫ C

0
pλp−2E

[
Xℓ1X∗

ℓ >λ

]
dλ = q E

[
Xℓ(X

∗
ℓ ∧C)p−1

]
6 q ‖Xℓ‖p ‖X∗

ℓ ∧ C‖p−1
p .Hen
e ‖X∗

ℓ ∧ C‖p 6 q ‖Xℓ‖p and the result follows by monotone 
onvergen
e on letting
ℓ→ ∞. �Theorem 71 (Lp-martingale 
onvergen
e theorem for p > 1). (1) Let M be a mar-tingale bounded in Lp. ThenMt 
onverges almost-surely and in Lp to some randomvariable M∞ ∈ Lp. Moreover, Mn = E[M∞|Fn] a.s. for all n.(2) Suppose Y ∈ Lp(F∞) and set Mn = E[Y |Fn]. Then M = (Mn)n>0 is a martingalebounded in Lp whi
h 
onverges almost-surely and in Lp to Y .Proof � (1) As an Lp-bounded martingale is also bounded in L1 the martingale Mn 
onvergesalmost-surely to some M∞, by the almost-sure martingale 
onvergen
e theorem 63. ByDoob's Lp-inequality,

‖M∗‖p 6 q sup
n>0

‖Mn‖p <∞.Sin
e |Mn −M∞|p 6 (2M∗)p for all n, we 
an use dominated 
onvergen
e to dedu
e that
Mn 
onverges to M∞ in Lp. It follows that Mn = E[M∞|Fn] almost-surely.



46 ADVANCED PROBABILITY(2) Suppose now that Y ∈ Lp(F∞) and set Mn = E[Y |Fn]. Then M is a martingale by thetower property and
‖Mn‖p =

∥∥E[Y |Fn]
∥∥

p
6 ‖Y ‖pfor all n, so M is bounded in Lp. Hen
e Mn 
onverges almost-surely and in Lp, with limit

M∞ ∈ Lp(F∞), say, and we 
an show that M∞ = Y a.s., as in the proof of Lévy's upwardtheorem 65. �It is worth noting that one does not need Doob's results to analyse L2-martingales andthat basi
 tools are su�
ient in that 
ase. This fa
t entirely 
omes from the elementaryidentity obtained by 
onditioning on Fp(6.5) E
[
(Mq −Mp)

2
]

= E
[
M2

q

]
− E

[
M2

p

]
, p < q.As a 
onsequen
e we see that the sequen
e (E[M2

n]
)

n>0
in
reases with n.Theorem 72. Let (Mn)n>0 be an L2-martingale. The following propositions are equiva-lent.(1) (Mn)n>0 is bounded in L2,(2) (Mn)n>0 
onverges almost-surely and in L2 to some M∞ ∈ L2,(3) Mn = E[M∞ | Fn] for some M∞ ∈ L2.Proof � (2) ⇒ (1) ⇒ L2-
onvergen
e: The �rst impli
ation is obvious. For the se
ond one,note that if (E[M2

n]
)
n>0

is bounded, it 
onverges as it is in
reasing; it follows from identity(6.5) that (Mn)n>0 is a Cau
hy sequen
e in (the 
omplete spa
e) L2, so it 
onverges.
L2-
onvergen
e ⇒ (3): L2-
onvergen
e implies L1-
onvergen
e...
(3) ⇒ (2): The almost-sure 
onvergen
e was established above in 
orollary 60 or theorem63, the L2-
onvergen
e is a basi
 result of Hilbert spa
e theory. �6.4. Appli
ations.6.4.1. Martingale 
hara
terization of Markov 
hains. Let (S,S) be a Borel probabilityspa
e (i.e. nothing worst than a measurable subset of [0, 1]) and let {p(x, ·) ; x ∈ S} bea transition kernel in S: p(x, ·) is a probability measure on (S,S) for every x ∈ S, andfor any A ∈ S the fun
tion p(·, A) is measurable. The quantity p(x,A) represents theprobability starting from x to jump into A. We have seen an expli
it 
onstru
tion ofMarkov 
hains in proposition 13. Daniell's theorem 18 provides another 
onstru
tion: it
onstru
ts a probability measure P on (SN,S⊗N

) with the pres
ribed �nite dimensionallaws, under whi
h the 
oordinate pro
ess is a Markov 
hain with the given transitionkernel. This probability P is the distribution of the Markov 
hain; it 
an be 
hara
terizedin terms of martingales. Denote by (Xn)n>0 the 
oordinate pro
ess on SN and by (Fn

)
n>0the indu
ed �ltration.Proposition 73. (Xn)n>0 is a Markov 
hain with transition kernel {p(x, ·) ; x ∈ S} i�for all bounded measurable fun
tion f : S → R the pro
ess

Mf
n = f(Xn) − f(X0) −

n−1∑

k=0

∫

S

(
f(y) − f(Xk)

)
p(Xk, dy)is an (Fn

)
n>0

-martingale.



ADVANCED PROBABILITY 47This statement should be understood in the light of the following heuristi
: martingalesare the �
onstants of motion� of the dynami
s; the above 
olle
tion of martingales is bigenough to 
hara
terize 
ompletely the dynami
s. This is in a

ordan
e with what happensin deterministi
 dynami
al systems.Proof � ⇒: Note that ∫S(f(y) − f(Xk)
)
p(Xk, dy) = E

[
f(Xk+1) − f(Xk)

∣∣Fk

] is the meanjump of f between times k and k + 1, knowing Fk. Simply write
E
[
Mf

n+1

∣∣Fn

]
= E

[
f(Xn+1)

∣∣Fn

]
− f(X0) −

n−1∑

k=0

E
[
f(Xk+1) − f(Xk)

∣∣Fk

]

= E
[
f(Xn+1) − f(Xn)

∣∣Fn

]
+ f(Xn) − f(X0) −

n−1∑

k=0

E
[
f(Xk+1) − f(Xk)

∣∣Fk

]
= Mf

n .

⇐: We only need to 
he
k that we have for any n > 0 and any A ∈ S
P(Xn+1 ∈ A|Fn) = p(Xn, A).This dire
tly 
omes from the martingale property of Mf

n for the fun
tion f = 1A(·). �6.4.2. Radon-Nikodym theorem. Let P and P̃ be two probability measures on a measurablespa
e (Ω,F). Re
all that P̃ is said to be absolutely 
ontinuous with respe
t to P ifdef
P(A) = 0 implies P̃(A) = 0. It is a well known fa
t that this 
ondition is equivalent tothe following: For any ε > 0 there exists η > 0 su
h that for all A ∈ F , the 
ondition
P(A) 6 η implies P̃(A) 6 ε; prove it.Theorem 74 (Radon�Nikodym theorem). Let (Ω,F) be a measurable spa
e su
h thatthe σ-algebra F is generated by an in
reasing sequen
e (Fn

)
n>0

of �nite σ-algebras. Let Pand P̃ be two probability measures on (Ω,F). Then P̃ is absolutely 
ontinuous with respe
tto P i� there exists a non-negative random variable X su
h that P̃(A) = E[X1A] for all
A ∈ F .The random variable X, whi
h is unique P̃-a.s., is 
alled (a version of) the Radon-Nikodym derivative of P̃ with respe
t to P. We write X = dP̃/dP. The theoremextends immediately to �nite measures by s
aling, then to σ-�nite measures by breaking
Ω into pie
es where the measures are �nite. The assumption that F is 
ountably generated
an also be removed but we do not give the details here.Without loss of generality, we shall write Fn = σ(An

1 , . . . , A
n
pn

), for disjoint sets An
i ofpositive P̃-probability.Proof � Re
all the dis
ussion on the 
onstru
tion of 
onditional expe
tation in the dis
rete
ase. In the same spirit, de�ne the non-negative random variable

Mn =

pn∑

k=1

P̃(An
k)

P(An
k)

1An
k
;it satis�es the identity P̃(A) = E[Mn1A] for all A ∈ Fn. As Fn is in
reasing63, it followsthat the pro
ess (Mn)n>0 is an ((Fn)n>0,P

)-martingale. We are going to show that it isuniforlmy integrable with respe
t to P. By the L1-martingale 
onvergen
e theorem, therewill exist a random variable X > 0 su
h that E[X1A] = E[Mn1A] for all A ∈ Fn. De�ne63So that ea
h An
k 
an be written as a union of An+1

j .
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Q(A) = E[X1A] for A ∈ F . Then Q is a probability measure and Q = P̃ on ⋃n Fn, whi
his a π-system generating F . Hen
e Q = P̃ on F .To prove the uniform integrability of (Mn)n>0 with respe
t to P we use the above 
hara
-terization of absolute 
ontinuity: as P(Mn > m) 6

E[Mn]
m = 1

m 6 η for m large enough, wehave for su
h m's P̃(Mn > m) 6 ε, independently of n. So E[Mn1Mn>m] = P̃(Mn > m) 6 εfor all n. �6.4.3. Cameron-Martin theorem. You are asked to prove the following statement in exer-
ise.Proposition 75. Let (Ω,F ,
(
Fn

)
n>0

,P) be a �ltered probability spa
e on whi
h a non-negative martingale (Mn)n>0 is de�ned. Suppose a probability P̃ is de�ned on (Ω,F) su
hthat P̃(A) = E[Mn1A] for all A ∈ Fn and all n > 0. Then P̃ is absolutely 
ontinuous withrespe
t to P i� the martingale M is uniformly integrable.As an appli
ation we are going to prove a result due to Cameron and Martin whoseimportan
e for sto
hasti
 analysis is di�
ult to overstate. We shall denote by γ theGaussian measure on R (with density (2π)−
1
2 exp

(
−x2

2

) with respe
t to Lebesgue measure)and by γ⊗N the produ
t measure on RN. Given h ∈ RN denote by τh the translation on
RN: (xk)k>0 → (xk + hk)k>0, and by τ ∗hγ⊗N the image measure of γ⊗N by τh; it is anothermeasure on RN. Last re
all that two measures P and Q on a measurable spa
e (Ω,F)are said to be equivalent ifdef they are absolutely 
ontinuous with respe
t to ea
h other.Theorem 76 (Cameron-Martin). The measures γ⊗N and τ ∗hγ⊗N are equivalent i� h ∈
ℓ2(N) :

∑
n>0

h2
k <∞.Denote by Xn : (xk)k>0 → xn the nth 
oordinate map and write Fn for σ(Xp ; p 6 n);denote by X the identity map from RN to itself.We shall denote by E the expe
tation operator with respe
t to γ⊗N and by Ẽ the expe
-tation operator with respe
t to τ ∗hγ⊗N, meaning nothing else than Ẽ

[
f(X)

]
= E

[
f(X+h)

].The proof will rely on the elementary identity below. Set
Mn = exp

( n∑

k=0

hkXk −
1

2

n∑

k=0

h2
k

)
.The random pro
ess (Mn)n>0 is a martingale as all the Xk are Gaussian independentrandom variables. Given a bounded fun
tion f : RN → R depending only on the �rst n
oordinates, an elementary 
hange of variable leads to the equality

Ẽ
[
f(X)

]
= E

[
f(X + h)

]
= (2π)−

n
2

∫
f(x1 + h1, . . . , xn + hn) e−

x2
1+···+x2

n
2 dx1 . . . dxn

= (2π)−
n
2

∫
f(y1, . . . , yn) e

Pn
k=0 hkyk− 1

2

P
k=0..n h2

k e−
y2
1+···+y2

n
2 dy1 . . . dyn

= E
[
Mnf(X)

]Proof � By proposition 75, the probabilities γ⊗N and τ∗hγ⊗N are equivalent i� the martingale
(Mn)n>0 is uniformly integrable.
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⇐: Let p > 0. Supposing h ∈ ℓ2(N) and repla
ing h by ph, we see immediately that

E
[
exp
(
p

n∑

k=0

hkXk − p2

2

n∑

k=0

h2
k

)]
= 1,so E[Mp

n] 6 exp
(p2−p

2

∑n
k=0 h

2
k

)
6 exp

(p2

2 ‖h‖2
2

) and the martingale is bounded in Lp for any
p > 1; the result then follow from the Lp-
onvergen
e theorem 71.
⇒: Suppose (Mn)n>0 uniformly integrable, then it 
onverges almost-surely and in L1 tosome non-negative random variable M∞ ∈ L1, with E[M∞] = 1. Would we have ‖h‖2 = ∞,then we would have E[Mp

n] 6 exp
(p2−p

2

∑n
k=0 h

2
k

)
→

n+∞
0, for any p ∈ (0, 1); Fatou's lemmawould imply E[Mp

∞] = 0, a 
ontradi
tion. �Girsanov's theorem whi
h you will en
ounter in any sto
hasti
 
al
ulus 
ourse is nothingelse than a variation of this theorem, despite its elaborated appearan
e. In this 
ontinuoustime setting, the 
ounterpart of theorem 76 will read as follows. Denote by P Wienermeasure on C
(
[0, 1]

) and by (Xt)t∈[0,1] the 
oordinate pro
ess.Theorem 77. Let H : [0, 1] → R be a 
ontinuous fun
tion. The law under P of the�drifted� pro
ess (Xt +Ht)t∈[0,1] is abolutely 
ontinuous with respe
t to P i� there exists afun
tion h ∈ L2
(
[0, 1]

) su
h that Ht = H0 +
∫ t

0
hs ds, for all t ∈ [0, 1].The 
omputation of the Radon-Nikodym derivative of the law of the drifted pro-
ess with respe
t to Wiener measure involves a sto
hasti
 integral and is analogous to

exp
(∑∞

k=0 hkXk − 1
2

∑∞
k=0 h

2
k

).6.4.4. A glimpse at the 
on
entration of measure phenomenon. Con
entration of measureis the following phenomenon. Given a (Borel) probability P on a metri
 spa
e, anyLips
hitz fun
tion64 X is 
lose to its mean m on a set of (surprisingly) big probability:
P(|X − m| > r) 6 exp(−cr) or exp(−cr2) for some positive 
onstant c. This kindof inequality have a wide range of appli
ations ranging from 
ombinatori
s, statisti
alphysi
s to fun
tional analysis and probability in Bana
h spa
es. Although big progresseshave been made re
ently, numerous open questions remain in this extremely lively areaof resear
h65. A breadth of di�erent views and tools 
an lead to 
on
entration results; inthis se
tion we give an example of how martingales 
an sometimes lead to them.Let (Ω,F ,P) be a probability spa
e and {∅,Ω} ⊂ F1 ⊂ · · · ⊂ Fn = F be a �ltration.Let Y be any real-valued integrable random variable and set for every i ∈ J1, nK(6.6) Di = E[Y |Fi] − E[Y |Fi−1].Note that Y − E[Y ] =

∑n
i=1Di.Theorem 78. Suppose there exists some 
onstants ci su
h that one has almost-surely

|Di| 6 ci for all i = 1..n; set C2 =
∑

i=1..n c
2
i . Then for r > 0

P
(∣∣Y − E[Y ]

∣∣ > r
)

6 2e−
r2

2C2 .64That is, any one dimensional pi
ture of the metri
 spa
e in whi
h geometry is not too mu
h expanded.65The heart of the phenomenon itself remains somewhat un
lear.



50 ADVANCED PROBABILITYProof � Let r > 0. As −Y satis�es the same hypothesis as Y it su�
es to prove that P
(
Y −

E[Y ] > r
)

6 e−
r2

2C2 . Use for that Cheby
hev's exponential inequality
P
(
Y − E[Y ] > r

)
6 e−λrE

[
eλ

Pn
i=1 Di

]
,introdu
ing a non-negative parameter λ whi
h will be optimize at the end. If we 
an boundabove ea
h E

[
eλDi

∣∣Fi−1

] by some 
onstant, by a repeated use of the tower property weshall be able give an upper bound for E
[
eλ

Pn
i=1 Di

]
= E

[
eλ

Pn−1
i=1 Di E

[
eλDn

∣∣Fn−1

]], et
. Butnoting that λDi = 1+Di/ci

2 λci + 1−Di/ci

2 (−λci) and using the 
onvexity of the exponentialmap, we get for any λ > 0

eλDi 6
1 +Di/ci

2
eλci +

1 −Di/ci
2

e−λci ,and so, as E[Di|Fi−1] = 0,
E
[
eλDi

∣∣Fi−1

]
6 cosh(λci) 6 e

λ2c2i
2 .This leads to the estimate E

[
eλ

Pn
i=1 Di

]
6 e−λr+ λ2

2
C2 ; it remains to optimize over λ > 0 toget the result. �In the following 
orollary the dis
rete spa
e {0, 1}n is endowed with the ℓ1 metri


d(x, y) =
∑n

i=1 |xi − yi| = #{i ∈ J1, nK ; xi 6= yi} and the uniform probability P.Corollary 79. Let Y : {0, 1}n → R be a 
ontra
tion: |Y (x) − Y (y)| 6 d(x, y) for all
x, y ∈ {0, 1}n. Then for any r > 0

P(Y > E[Y ] + r) 6 2e−
2r2

n .Proof � Using the 
oordinate maps Xk : (xi)i=1..n → xk on {0, 1}n we de�ne the �ltration
(Fk)k=1..n setting F0 =

{
∅, {0, 1}n

} and Fk = σ(Xp ; 1 6 p 6 k) for 1 6 k 6 n. Set for
onvenien
e Yk = E[Y |Fk] and de�ne the martingale di�eren
e Dk = Yk − Yk−1 as above.Let us estimate D1 = Y1 − E[Y ]. Observe that Y1 takes only two values: the average of
Y on the fa
es {π1 = 0} and {π1 = 1}. These averages 
annot di�er too mu
h as we gofrom a point of one fa
e to a point of the other 
hanging only one 
oordinate, so that Y
annot 
hange by more than 1 sin
e it is a 
ontra
tion. So we see that |D1| 6 1

2 . The sameargument holds for estimating the other Dk; apply theorem 78 to 
on
lude. �The pre
eding proof also justi�es the following statement. Let (Ωi,Fi,Pi)i=1..n be prob-ability spa
es and de�ne (Ω,F ,P) as the produ
t probability spa
e.Corollary 80. Let Y be an integrable fun
tion on (Ω,F) su
h that there exist 
onstants
ci with |Y (x) − Y (y)| 6 ci if x and y di�er only by their ith 
oordinate. Then for any
r > 0

P
(∣∣Y − E[Y ]

∣∣ > r
)

6 2 exp
(
− r2

2
∑n

i=1 c
2
i

)
.



ADVANCED PROBABILITY 517. Continuous time martingale theoryAlthough se
tion 6 was written in the setting of a �ltered probability spa
e with a�ltration (Fn

)
n>0

, all the de�nitions given above are meaningful for a �ltration indexedby any other 
ountable subset I of R+, with ∞ to be understood as sup I. Write Q+ for
Q∩R+. Our basi
 setting to 
onstru
t 
ontinuous time martingales will be a probability�ltered spa
e (Ω,F , (Ft

)
t∈Q+

,P
) on whi
h a martingale (Mt)t∈Q+ is de�ned; this is theskeleton of the 
oming extension. It is a remarkable result due to Doob that nothing elsethan the martingale property is needed to extend (Mt)t∈Q+ to R+. Demanding 
ontinuityfor (Mt)t>0 will be too mu
h, we shall get 
àdlàg paths; 
àdlàg = 
ontinue à droite, limiteà gau
he = 
ontinuous on the right with left limit. We shall suppose that F0 
ontains allthe P-null sets.Theorem 81 (Regularization of martingales. Doob). Let (Ω,F , (Ft

)
t∈Q+

,P
) be aprobability �ltered spa
e and let (Mt)t∈Q+ be an (Ft

)
t∈Q+

-martingale. For t ∈ R+ set
Ft+ :=

⋂
s>t, s∈Q+

Fs. Then one 
an 
onstru
t on (Ω,F ,P) an (Ft+)t>0-martingale (M̃t)t>0with 
àdlàg paths su
h that one has P-almost-surely for all t ∈ Q+

E[M̃t|Ft] = Mt.Proof � Given real numbers a < b denote by Ua,b

(
[0,N ]

) the number of up
rossings of
(Mt)t∈Q+ from a to b in [0, N ], and set M∗

N = supt∈Q+∩[0,N ] |Mt|. By Doob's up
rossinginequality the Ua,b

(
[0, N ]

) are almost-surely �nite66 for all rational a < b and N > 0; also,all the M∗
N are �nite67, for all N > 0, by Doob's maximal inequality. Denote by Ω0 thisevent of probability 1 where all these quantities are �nite; the following limits exists on Ω0

Mt+ = lim
s↓t, s∈Q+

Ms, t > 0

Mt− = lim
s↑t, s∈Q+

Ms, t > 0.De�ne, for t > 0,
M̃t =

{
Mt+ , on Ω0,
0, otherwise.Then M̃ is 
àdlàg and (Ft+

)
t>0

-adapted. To prove that it is an (Ft+
)
t>0

-martingale, given
s < t 
hoose rationals sn < tn de
reasing to s and t respe
tively. By the 
onvergen
e theoremfor ba
kward martingales, Msn (resp. Mtn) 
onverges almost-surely and in L1 to Ms+ (resp.
Mt+), so we have for any event A ∈ Fs+

E[Ms+1A] = lim E[Msn1A] = lim E[Mtn1A] = E[Mt+1A],i.e. E[Mt+ |Fs+ ] = Ms+ , or E[M̃t|Fs+ ] = M̃s. The proje
tion property E[M̃t|Ft] = Mt, for
t ∈ Q+, is also a dire
t 
onsequen
e of the 
onvergen
e theorem for ba
kward martingales.
�Definition 82. Filtrations whi
h are 
ontinuous on the right (Ft+ = Ft) and for whi
h

F0 
ontains the P-null sets are said to satisfy the usual 
onditions.66Work �rst with a �nite index set D, for whi
h Doob's up
rossing lemma says us that (Mt)t∈D willalmost-surely have only a �nite number of up
rossings between any two rational times; let then in
rease
D to Q+: a 
ountable interse
tion of events of probability 1 being of probability 1 the result follows.67Play the same game here as above.



52 ADVANCED PROBABILITYDoob's regularization theorem shows that we do not lose mu
h in restri
ting our atten-tion to 
àdlàg martingales and �ltrations satisfying the usual 
onditions. A 
omment isneeded here, however: all martingales are not 
ontinuous on the right, and quite venerable�ltrations do not satisfy the usual 
onditions(!). Let for example Y be a binomial randomvariable with parameter 1
2
. De�ne

Xt =

{
1
2

for 0 6 t 6 1
2
,

Y for 1
2
< t 6 1.Set also

Ft =

{
{∅,Ω} for 0 6 t 6 1

2
,

σ(Y ) for 1
2
< t 6 1.Then X is an (Ft)t∈[0,1]-martingale who is not 
ontinuous on the right at time 1

2
. The�ltration (Ft)t∈[0,1] also fails to be 
ontinuous on the right at time 1

2
.Doob's regularization pro
edure transforms in a non-trivial way a pro
ess: working onthe 
anoni
al spa
e of 
ontinuous fun
tions from R+ to R, with the 
oordinate pro
ess

(Xt)t>0 and its �ltration (Ft)t>0, under Wiener measure, the pro
ess Mt = 1Xt=1 is an
(Ft)t>0-martingale whi
h is almost-surely equal to 0 for ea
h �xed t > 0 and does not
onverge to 0 as time goes to in�nity. The 
àdlàg regularization pro
edure �smoothes�these irregularities and gives as a regularized pro
ess the 
onstant 0.The 
àdlàg property of regularized martingales implies that their pathwise propertiesare entirely determined by their Q+-skeleton. It follows that all theorems of se
tion6 (Doob's inequalities, 
onvergen
e, optional stopping theorems...) hold for
àdlàg martingales, for a �ltration satisfying the usual 
onditions. As an ex-ample we give the details of the proof of the optional stopping theorem.Theorem 83 (Optional stopping theorem). Let us work on a �ltered probability spa
ewith a �ltration satisfying the usual 
onditions, and let M be a 
àdlàg adapted pro
ess.Then the following are equivalent:1. M is a martingale,2. for all bounded stopping times T and all stopping times S, MT is integrable and(7.1) E[MT |FS] = MS∧T ,3. for all stopping times T , the stopped pro
ess MT is a martingale,4. for all bounded stopping times T , the random variable MT is integrable and

E[MT ] = E[M0].Moreover, if M is uniformly integrable, then 2 and 4 hold for all stopping times T .Proof � Suppose M is a martingale. Let S and T be stopping times, with T bounded, T 6 tsay. For n > 0, set
Sn = 2−n⌈2nS⌉, Tn = 2−n⌈2nT ⌉.The random times Sn and Tn are stopping times de
reasing to S and T respe
tively. Sin
e

(Mt)t>0 is right 
ontinuous, MTn 
onverges almost-surely to MT . By the dis
rete-timeoptional stopping theorem, MTn = E[Mt+1|FTn ] so (MTn)n>0 is uniformly integrable and so
MTn 
onverges to MT in L1; in parti
ular, MT is integrable. Similarly, MSn∧Tn 
onvergesalmost-surely and in L1 to MS∧T . So, by the dis
rete-time optional stopping theorem again,we have for any A ∈ FS ⊂ FSn

E[MTn1A] = E[MSn∧Tn1A].



ADVANCED PROBABILITY 53On letting n → ∞, we dedu
e that identity (7.1) holds. For the rest of the proof we argueas in the dis
rete-time 
ase. �

8. Comments and exer
isesReferen
es. Williams' book [Wil91℄ is 
ertainly a good referen
e for this se
tion part ofthe 
ourse; so is Rogers and Williams' book [RW00℄. The book [BMP02℄ on martingalesand Markov 
hains is an ex
ellent sour
e of worked out examples, under the form of solvedexer
ises; spending some time with it will undoubtedly bring you some a
quaintan
e withthe subje
t.Filtrations indexed by R+ are subtle and sometime mysterious obje
ts. The following
omments are here to guide your �rst steps in this suje
t.1. Filtrations generated by a pro
ess. LetX be a pro
ess de�ned on some probabilityspa
e (Ω,F ,P) and FX the �ltration it generates. The following two exmples 
larify therelationship between the regularity of X and the regularity of FX .a) A 
ontinuous pro
ess 
an generate a dis
ontinuous �ltration. Suppose Ω has at leasttwo points, so we 
an de�ne on it a non-
onstant real-valued random variable ξ. Set
Xt(ω) = tξ(ω). One easily 
he
ks that FX

0 is trivial while FX
t = σ(ξ) is non-trivial for

t > 0; so FX is not right 
ontinuous despite the 
ontinuity of X.b) A dis
ontinuous pro
ess 
an generate a 
ontinuous �ltration. Given any dis
ontin-uous fun
tion h : R+ → R set Xt(ω) = h(t) for all ω ∈ Ω and t > 0. The σ-algebra FX
tis then trivial for all t > 0, so the �ltration is 
ontinuous.2. Usual assumptions.8.1. Exer
ises. 1. a) Suppose (U, V ) is an R2-valued random variable with a density fun
tion

fU,V (u, v) with respe
t to Lebesgue measure on R2. Then (why?) U has a density fun
tion fUwith respe
t to Lebesgue measure on R, given by
fU(u) =

∫

R

fU,V (u, v) dv.The 
onditional density fun
tion of V given U is de�ned by the formula
fV |U (v|u) =

fU,V (u, v)

fU (u)where 0/0 = 0, by 
onvention. Given a bounded measurable fun
tion h : R → R, set
g(u) =

∫

R

h(v)fV |U(v|u) dv.Prove that g(U) = E
[
h(V )|σ(U)

].b) Let (U, V ) be an R2-valued Gaussian random variable with null mean and 
ovarian
e matrix
Λ. Find E[V |σ(U ].
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) More generally, let (Ω,F ,P) be a probability spa
e and U, V be two integrable real-valuedrandom variables de�ned on it. Prove that there exists a measurable fun
tion g : R → R su
hthat E
[
V |σ(U)

]
= g(U).2. Let (Ω,F ,

(
Fn

)
n>0

,P) be a �ltered probability spa
e. Suppose T is a stopping time su
h thatfor some N ∈ N and some ǫ > 0 we have almost-surely for every n > 0

P(T 6 n+N |Fn) > ǫ.Prove by indu
tion that
P(T > kN) 6 (1 − ǫ)k, k ∈ N,and dedu
e that E[T ] is �nite.3. a) Find an example of a measurable spa
e (Ω,F), with two �ltrations (Ft)t>0 and (Gt)t>0on it, on whi
h there exists a random time T whi
h is an (Ft)t>0-stopping time but not a

(Gt)t>0-stopping time. Note that we do not need a probability measure to talk about stoppingtimes.b) Let us work on the 
anoni
al spa
e C([0, 1],R), with its 
oordinate pro
ess and the indu
ed�ltration (Ft)t∈[0,1]. Given any a ∈ [0, 1] and ω ∈ C
(
[0, 1],R

), de�ne the last zero of ω beforetime a as
γa(ω) = max{s ∈ [0, a] ; ωs = 0}.Show that the random variable γa is Fa-measurable, while the event {γa < t} is not in Ft forany t < a.4. Let (Ω,F , (Ft)t>0

) be a �ltered spa
e, and T be a stopping time. a) Re
all the de�nitionof the σ-algebra FT : it 
onsists of those events whose o

uren
e or no-o

uren
e 
an be de
idedfrom what we know up and in
luding time T . It seems tempting then to re-de�ne it as ⋂s6T Fs.What goes wrong with that �de�nition�?b) Let S be another stopping time. Prove that FS∧T = σ(FS ,FT ).5. Prove that a sequen
e of integrable random variables Xn 
onverges in L1 to some X ∈ L1 i�
Xn 
onverges in probability to X and the family (Xn)n>0 is uniformly integrable.6. Let P and Q be two probability measures on a measurable spa
e (Ω,F). Prove that P isabsolutely 
ontinuous with respe
t to Q i� for any ǫ > 0 there exists an η > 0 su
h that for all
A ∈ F , Q(A) 6 η implies P(A) 6 ǫ.7.. Let (Ω,F ,

(
Fn

)
n>0

,P) be a �ltered probability spa
e on whi
h a non-negative martingale
(Mn)n>0 is de�ned. Suppose a probability Q is de�ned on (Ω,F) su
h that Q(A) = E[Mn1A]for all A ∈ Fn and all n > 0. Prove that Q is absolutely 
ontinuous with respe
t to P i� themartingale M is uniformly integrable.8. Kolmogoro'v 0−1 law. The following result was used in the proof of the strong law of largenumbers given in the notes and does not use martingale theory. Let (Fn)n>0 be the �ltrationgenerated by some pro
ess (Xn)n>0 de�ned on some probability spa
e (Ω,F ,P). De�ne the tail
σ-algebra of the pro
ess as the sub-σ-algebra T =

⋂
n>0 σ

(
Xk ; k > n

) of F on Ω. Suppose allthe Xn are independent under P. Prove that any event of T has P-probability 0 or 1. Does theresult remains true if we do not suppose the Xn are independent?9. We give here the details of the proof of Lévy's upward 
onvergen
e theorem, 65, seen as a
orollary of the L1-
onvergen
e theorem, 64.a) Prove that any F∞-measurable bounded random variable is an L1-limit of elements of
L1
(
Fn

).b) Using then an approximation argument, prove that ⋃n>0 L1
(
Fn

) is dense in L1
(
F∞
).
) Give a neat proof of Lévy's upward 
onvergen
e theorem and 0-1 law.



ADVANCED PROBABILITY 55d) Remark that this theorem provides a 
onstru
tive approa
h of E[X|F∞] when the �ltration(
Fn

)
n>0

is made up of �nite σ-algebras (why?). We say in this 
ase that the measurable spa
e
(Ω,F∞) is separable.(i) Prove that a measurable spa
e (Ω,F∞) is separable i� L1(F∞) is separable (i.e. has adense sequen
e).(ii) Prove that Borel spa
es are always separable.10. Simple random walks. Let (Xn)n>0 be a sequen
e of iid random variables with law
pδ1 + qδ−1, and Sn = X1 + · · · +Xn. Denote by Fn the �ltration generated by X1, . . . ,Xn. Allnotions are relative to this �ltration. Given a < 0, b > 0 and x ∈ R, de�ne the stopping times
Tab = inf{n > 1 ; Sn = a or b} and Tx = inf{n > 1 ; Sn = x}.a) Case p > q. Prove �rst that the random times Tb and Tab are almost-surely �nite.(i) Prove that the pro
ess ( q

p

)n is a martingale, and dedu
e the law of STab
.(ii) Using the martingale Sn − n(p− q) (prove it), �nd E[Tab],E[Tb] and E[Ta].b) Case p = q = 1

2 : Symmetri
 random walk. Prove �rst that Tab is almost-surely �nite, andusing the martingale Sn �nd the law of STab
. Using then the martingale S2

n − n (prove it), �nd
E[Tab],E[Tb] and E[Ta].
) Case p > q For λ ∈ R set φ(λ) = peλ + qe−λ. Prove that Yn := eλSnφ(λ)−n is a martingale.Dedu
e from that the generating fun
tion of Tb and �nd ba
k E[Tb].11. Bran
hing pro
esses. a) In this question we 
onsider a Galton-Watson bran
hing pro
essin whi
h the number of 
hildren of ea
h individual is 0 or 2, equally probably. Denote by Znthe size of the nth generation, starting zith Z0 = 1. Prove that (Zn)n>0 is a martingale (withrespe
t to its own �ltration), and that it 
onverges almost-surely to 0.b) Consider now a general 
ase in 
hiwh
 the distribution of the number of 
hildren takes valuesin N and is integrable. Denote by µ its mean. We 
hall write Zn+1 = X

(n+1)
1 + · · · + X

(n+1)
Zn

,where the X(n+1)
i are iid, 
onditionally on Zn.(i) Prove that Mn = Zn

µn is a martingale.(ii) Prove that (Zn)n>0 
onverges almost-surely to 0 if µ 6 1.(iii) Suppose µ > 1. Prove that (Mn)n>0 
onverges almost-surely to a �nite limit M∞.Setting p = P(M∞ = 0), prove that pZn 
onverges almost-surely to 1M∞=0 and des
ribe thebehaviour of (Zn)n>0 in terms of M∞.
) Suppose in this question that the o�spring distribution is not only integrable but also hasa �nite varian
e σ2. Prove that (Mn)n>0 is a martingale bounded in L2 and that it 
annot
onverge to 0 almost-surely. What is the varian
e of M∞?12. Find an example of a martingale whi
h 
onverges almost-surely but not in L1.13. Let M be a martingale bounded in L1 and T be a stopping time. Prove that MT is in L1.Give an example where E[MT ] 6= E[M0].14. Let f : [0, 1] → R be a Lips
hitz fun
tion, and denote by fn the simplest pie
ewise linearfun
tion agreeing with f on Dn =
{
k2−n ; k = 0..2n

}. Set Mn = f ′n outside Dn. Introdu
-ing a proper �ltered probability spa
e, prove that Mn 
onverges Lebesgue-almost-surely and in
L1(Leb) to some bounded f ′∞ whi
h satis�es f(t) =

∫ t
0 f

′
∞(s) ds for any t ∈ [0, 1].15. Re
all the 
onstru
tion of the isonormal Gaussian pro
ess X indexed by a separable Hilbert

H given in exer
ise 4 in example sheet 1. Take h ∈ H. Prove that the series de�ning Xh
onverges almost-surely and in L2(P).16. Let a be a real 
onstant. Let P denote Wiener measure on C
(
[0, 1],R

), X the 
oodinatepro
ess and P1 the law of the pro
ess {Xt + at}t∈[0,1]. Prove that P1 is absolutely 
ontinuouswith respe
t to P and �nd dP1

dP
.



56 ADVANCED PROBABILITY17. Equip the symmetri
 group Sn with the Hamming distan
e: d(σ, τ) = #{i ∈ J1, nK ; σi 6= τi}and the uniform probability. Prove that for any fun
tion f : Sn → R, and any r > 0, we have
P
(∣∣f(σ) − E[X]

∣∣ > r
)

6 2e−
r2

2n .18. Let (Ft)t>0 be the �ltration generated by the 
oordinate pro
ess on C
(
[0, 1],R

). Prove thatthis �ltration is not 
ontinuous on the right.19. a) Let (Ω,F ,P) be a probability spa
e, and let G1,G2, . . . and G be some sub-σ-algebrasindependent under P. Prove that any event of ⋂n>1 σ(Gn,Gn+1, . . . ;G) 
oin
ides almost-surelywith an event of G.b) Denote now by Ft the �ltration generated by a Brownian motion de�ned on some prob-ability spa
e (Ω,F ,P). As we have seen in the pre
eding exer
ise, the P-null sets may 
auseunexpe
ted and unpleasant things. Denote by N the σ-algebra of P-null sets, and repla
e ea
h
Ft by Gt := σ(N ,Ft). Set as usual Gt+ =

⋂
s>t Gs, for all t > 0. Using a) and the independen
eof the in
rements of Brownian motion, prove that the σ-algebras Gt and Gt+ 
oin
ide up to P-nullsets. 9. Complements to Part IIWe show in the �rst 
omplement how ideas from martingale theory 
an be used to givesome meaning and solve sto
hasti
 di�erential equations, without using the ma
hinery ofsto
hasti
 integrals.The se
ond 
omplement is dedi
ated to elu
idate the question: Is the 
onditional ex-pe
tation operator an integral with respe
t to a random measure?9.1. Complement: Solving sto
hasti
 di�erential equations. Let (Bt)06t61 be aBrownian motion de�ned on some probability spa
e (Ω,F ,P). Given two fun
tions b, σ 6=

0, and a starting point x0 ∈ R, de�ne for every integer n > 1 a pro
ess (Y n(t)
)
06t61setting Y n(0) = x0, and for k−1

n
< t 6 k

n
, k ∈ {1, . . . , n},(9.1) Y n

t = Y n
k−1

n

+ b
(
Y n

k−1
n

) (
t− k − 1

n

)
+ σ
(
Y n

k−1
n

) (
Bt −Bk−1

n

)
.When σ = 0 this dynami
s is nothing else than the Euler approximation of the di�eren-tial equation ẋt = b(xt). A well-known 
orollary of As
oli-Arzela's 
ompa
tness theoremstates that the Euler approximations has a 
onverging subsequen
e whose limit is a solu-tion of the di�erential equation. The following theorem says the same in our sto
hasti

ontext. Re
all we denote by (W,W) the spa
e C

(
[0, 1],R

) with its Borel σ-algebra andwrite X for the 
oordinate pro
ess. We suppose σ non-identi
ally null.Theorem 84. Suppose the fun
tions b and σ are bounded. Then the laws Pn of Y n forma tight sequen
e of probability measures on (W,W).This statement and Prohorov's 
ompa
tness theorem ensure us that the sequen
e of
Pn's has at least one weak limit Q, say. It seems reasonnable to say that under Q the
oordinate pro
ess on (W,W) solves the sto
hasti
 di�erential equation(9.2) dxt = b(xt) dt+ σ(xs) dBt,where dBs is a Brownian in
rement over a time interval ds, with varian
e equal to ds.Let En be the expe
tation operator asso
iated with the probability Pn. The followingproposition is the heart of the proof of theorem 84.



ADVANCED PROBABILITY 57Proposition 85. Suppose there exists a positive 
onstant C su
h that we have(9.3) En
[
|Xt −Xs|4

]
6 C|t− s|2for all s, t in [0, 1] and n > 1. Then the sequen
e (Pn

)
n>1

is tight.Proof � Kolmogorov's regularity 
riterion states that if En
[
|Xt −Xs|4

]
6 C|t− s|2 for some
onstant C and all s, t ∈ [0, 1] then there exists a random variable C(ω) in L4

(
Pn
) su
h thatwe have Pn-almost-surely |Xt − Xs| 6 C(ω)|t − s|α, for all s, t ∈ [0, 1] and any α ∈

[
0, 1

4

).This implies in parti
ular that the modulus of 
ontinuity MX(δ) of X is Pn-almost-surelybounded above by C(ω)δα, so we have En
[
MX(δ)4

]
6 En[C(ω)] δα for all n > 0. As the proofof Kolmogorov's 
riterion provides an upper bound for En

[ ∣∣C(ω)
∣∣4
] depending only on the
onstant C of (9.3) we a
tually have En

[
MX(δ)4

]
6 C ′δ4 for some 
onstant C ′. This inequal-ity implies the equi-
ontinuity 
ondition (2.3) of 
orollary 36: lim

δ↓0
lim
n

En
[
MX(δ) ∧ 1

]
= 0.As X0 is Pn-almost-surely equal to 0, it follows from the As
oli-Arzela theorem that theprobabilities Pn have support in a 
ompa
t set of W . �We are now going to see that 
ondition (9.3) 
an be obtained as a simple appli
ationof martingale ideas.Lemma 86. There exists a positive 
onstant C ′ su
h that we have(9.4) E

[
|Y n

t − Y n
s |4
]

6 C ′ |t− s|2for all s, t ∈ [0, 1] and all n > 1.Proof � Denote by (Ft)t∈[0,1] the �ltration on (Ω,F) generated by B. The pro
ess Mt 
on-taining all the expli
it Brownian terms in the de�nition of Y n and de�ned for t ∈ (k−1
n , k

n

]by
Mt :=

k−2∑

j=0

σ
(
Y n

j
n

) (
B j+1

n
−B j

n

)
+ σ

(
Y n

k−1
n

) (
Bt −B k−1

n

)is an (Ft)t∈[0,1]-martingale. This is easily 
he
ked by indu
tion. Also, 
onditioning su

es-sively on Fk−1
n
,Fk−2

n
, . . . we see that

E
[
|Mt|2

]
6 A2t,where A denotes an upper bound for σ. Clearly, the same proof gives E

[
|Mt − Ms|2

]
6

A2|t − s|. It is not harder to prove that E
[ ∣∣Y n

t − Y n
s

∣∣4 ] 6 9A4 |t − s|2; it su�
es to do itfor s = 0. Write σj for σ(Y n
j
n

). Expanding the sum de�ning Mt and keeping only the termswith non-vanishing expe
tation we get
E
[
|Mt|4

]
= E




k−1∑

j=0

σ4
j

(
Bt∧ j+1

n
−Bt∧ j

n

)4

+ 6 E


 ∑

06j<ℓ6k−1

σ2
jσ

2
ℓ

(
Bt∧ j+1

n
−Bt∧ j

n

)2(
Bt∧ ℓ+1

n
−Bt∧ ℓ

n

)2



+ 12 E


 ∑

06j<ℓ<m6k−1

σjσℓσ
2
m

(
Bt∧ j+1

n
−Bt∧ j

n

)(
Bt∧ ℓ+1

n
−Bt∧ ℓ

n

)(
Bt∧m+1

n
−Bt∧m

n

)2

The �rst term is bounded above by 3A4t2 and the sum of the two other terms is equal to

6

k−1∑

ℓ=0

E
[
M2

ℓ−1
n

σ2
ℓ

(
Bt∧ ℓ+1

n
−Bt∧ ℓ

n

)2]
.
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onditioning with respe
t to F ℓ
n
in ea
h expe
tation we get the upper bound

6A2
k−1∑

ℓ=0

(
t ∧ ℓ+ 1

n
− t ∧ ℓ

n

)
E
[ ∣∣M ℓ−1

n

∣∣2
]

6 6A2 tE
[ ∣∣M ℓ−1

n

∣∣2
]

6 6A4 t2.Fix s < t in [0, 1] and let k and k′ be the integer parts of n t and n s respe
tively. Using theelementary inequality (a+ b)4 6 8 (a4 + b4) and Jensen's inequality we get
E
[
|Y n

t − Y n
s |4
]

6 8 E
[ ∣∣∣ 1
n

k−2∑

j=k′

b
(
Y n

j−1
n

)
+ b
(
Y n

k−1
n

)(
t− k − 1

n

)∣∣∣
4 ]

+ 8 E
[
|Mt −Ms|4

]
.The se
ond upper bound is bounded above by 9A4 |t − s|2, while the term inside | · |4 isbounded above by A |t − s|, where A is 
hosen big enough to be an upper bound for b; theupper bound (9.4) follows.

�9.2. Complement: Regular 
onditional probability . Let (Ω,F ,P) be a probabilityspa
e and G be a sub-σ-algebra of F . As one has almost-surely
• E[1∅|G] = 0 and E[1Ω|G] = 1,
• E[

∑
n>0 1An |G] =

∑
n>0 E[1An |G], for any sequen
e of disjoint An ∈ F ,the map A ∈ F 7→ P(A|G) := E[1A|G] has the properties of a probability, ex
ept that

P(A|G) is a random variable (i.e. an equivalen
e 
lass of fun
tions, and so the aboveidentities hold only almost-surely). It is thus natural to ask whether the random variables
P(·|G) 
an be written as Pω(·) for some random probability measure ω → Pω (but wemust be 
areful with measurability issues). Although su
h a Pω 
an be de�ned for agiven sequen
e of sets An ∈ F , the problem is that, ex
ept in trivial 
ases, there areun
ountably many sequen
es of disjoint sets (hen
e meaurability problems); it is thereforenot at all 
lear how to 
hoose Pω. And indeed, there is no su
h family of probabilities if nohypothesis on (Ω,F) is made: you 
an �nd the 
lassi
al 
ounter-example of J. Dieudonnéin �43 of the book [RW00℄. Yet one 
an 
onstru
t su
h probabilities Pω when we areworking on a Borel probability spa
e. To sti
k to the previous notations I will denote aBorel spa
e by (S,S). Let (Ω,F ,P) be any probability spa
e and G be a sub-σ-algebra of
F(68).Definition 87. A regular 
onditional probability of P given G is a family (Pω)ω∈Ωof probability measures on (Ω,F) su
h that the fun
tion ω 7→ Pω(A) is measurable andbelongs to the equivalent 
lass of P(A|G), for every A ∈ F .Theorem 88 (Existen
e and uniqueness of regular 
onditional probability in Borelspa
es). Let (S,S,P) be a Borel probability spa
e and G be a sub-σ-algebra of S. Thenthere exists a regular 
onditional probability of P given G, unique up to equivalen
e.Proof � Existen
e. We have seen in part a) of the proof of theorem 40 that [0, 1] is isomorphi
to a measurable subset of {0, 1}N; we 
an thus suppose without loss of generality that S is ameasurable subset of {0, 1}N, that S is the restri
tion to S of the produ
t (or Borel) σ-algebraof {0, 1}N, and that P is a probability on {0, 1}N, with support on S. Our main ingredientto prove the existen
e of regular 
onditional probabilities will be theorem 41, stated in the68The end of this se
tion follows 
losely B. Tsirelson's le
ture notes Probability for mathemati
ians,available at the webpage http://tau.a
.il/ tsirel/Courses/ProbMath/main.html. This proof is essentiallythe same as that of Ikeda-Watanabe, in [IW89℄.



ADVANCED PROBABILITY 59Complement Lebesgue measure on [0, 1], in part I of the 
ourse: Borel probability measureson {0, 1}N 
orrespond bije
tively to additive set fun
tions on A, equal to 0 on ∅ and 1 on Ω.The generating algebra A being 
ountable we 
an de�ne Pω(A) = P(A|G)(ω) for all A ∈ A
hoosing a fun
tion in ea
h equivalent 
lass. As P(·|G) is almost-surely �nitely additive (on
S), Pω(·) 
an be turned into a �nitely additive set fun
tion on the 
ountable 
olle
tion Afor all ω, by 
hanging it adequately on a set of null probability. By theorem 41 ea
h Pω(·)has an extension to a probability measure on (S,S); we still denote it by Pω(·). Given any
B ∈ S, write P•(B) for the measurable69 fun
tion ω 7→ Pω(B).
B ∈ S and ε > 0 being given, we shall see below that there exists C,D ∈ S su
h that

• C ⊂ B ⊂ D, P(D\C) 6 ε,
• C is a de
reasing limit of elements of A and D an in
reasing limit of elements of A.As P•(An) = P(An|G) almost-surely, we have almost-surely P•(C) = P(C|G) and P•(D) =

P(D|G) by monotone 
onvergen
e (for P•(·) and P(·|G)). As a 
onsequen
e,
{

P(C|G) = P•(C) 6 P•(B) 6 P•(D) = P(D|G),
P(C|G) 6 P(D|G) 6 P(D|G),and so ∣∣P•(B) − P(D|G)
∣∣ 6 P(D|G) − P(C|G). Also, E

[
P(D|G) − P(C|G)

]
= P(D\C) 6 ε.Taking a sequen
e (εn)n>0 de
reasing fastly enough to 0 we get

∣∣P•(B) − P(B|G)
∣∣ 6 inf

n
P(Dn|G) − P(Cn|G) = 0 almost-surely.Uniqueness. As two possible regular 
onditional probabilities 
oin
ide almost-surely on A(whi
h is 
ountable) they must be equal on S by the monotone 
lass theorem. �It remains to justify the approximation result used in the existen
e proof; we do it for

C, the argument for D being similar. Let B ∈ S be given. It 
omes out from the proofof Caratheodory's theorem given in se
tion 1.2 that for any ε > 0 there exists an element
A of A with the property that P(B∆A) 6 ε. Apply this result indu
tively �rst to B and
ε = η (we get A1), then to B ∩ A1 and ε = 2−1η (we get A2), then to B ∩ (A1 ∩A2) and
ε = 2−2η (we get A3)...The set C =

⋂
n>0An is the de
reasing limit ot the ⋂k6pAk and

P(B∆C) 6 2η. I let you 
on
lude.

69Prove that it is indeed measurable.



60 ADVANCED PROBABILITYPart III. Brownian motion, Lévy pro
esses andmartingalesLet us 
onsider a physi
al system subje
t to an impredi
table evolution. We model itsrandom evolution by a �ltered probability spa
e (Ω,F , (Ft)t>0,P
), where we 
an thinkof Ω as the set of all physi
ally possible histories of the system through time, of F asthe set of all observations one 
an make and of Ft as our information at time t of thehistory of the system up to that time. In that setting, (sub/super)-martingales representquantitative informations about the system whi
h (�in
rease�/�de
rease�) remain �
on-stant�70. Sub/super-martingales have thus a universal status in the des
ription Naturalphenomena evolving randomly. In that lands
ape, Brownian motion plays a prominentrole as we shall see that any 
ontinuous time 
ontinuous martingale 
an be understood asa Brownian motion run at a random speed. Being also a Markov pro
ess and a Gaussianpro
ess71, we 
an say without hesitation that it is a 
ornerstone of modern probabilitytheory. Se
tion 10 is devoted to the study of some of its elementary features. Se
tion 11presents Lévy pro
esses, with the help of whi
h we shall des
ribe the most general 
àdlàg
ontinuous time martingale.Re
all that the martingale property is not an absolute property: it is related to a �ltra-tion. When unspe
i�ed, it will be impli
it that we are working with the �ltration generatedby the pro
ess under study. Also, all �ltrations will be supposed to be 
omplete.10. Brownian motion10.1. Di�erent point of views on Brownian motion.a) Lévy's 
onstu
tion of Brownian motion as a series.b) Markov pro
ess. By its very de�nition, Brownian motion is a Markov pro
esswith Gaussian transition kernels.
) Gaussian pro
ess. In exer
i
e 4 of example sheet 1, Brownian motion is 
har-a
terized as the unique 
entered Gaussian pro
ess with 
ovarian
e s ∧ t.d) S
aling limit. Donsker's invarian
e prin
iple provides a 
onstru
tion based on as
aling limit of random walks,a) Sin
e Brownian motion has Gaussian in
rements, we know from Kolmogorov's reg-ularity 
riterion that, for all α < 1

2
, it has almost-surely α-Hölder-
ontinuous paths; soits paths does not seem to be too bad. Yet, we shall prove in proposition 93 that it isalmost-surely not di�erentiable anywhere and that it is almost-surely nowhere α-Hölder-
ontinuous for α > 1

2
. From this pi
ture, it 
omes as a good news that Lévy's 
onstru
tionprovides almost for free the following pre
ise des
ription of the lo
al behaviour of Brow-nian motion.Proposition 89 (Modulus of 
ontinuity for Brownian motion). There exists a 
onstant

C and a positive random variable δ su
h that one has P-almost surely
|Xt −Xs| 6 C

√
|t− s| ln 1

|t− s|for all t, s ∈ [0, 1], with |t− s| 6 δ.70In the sense that the predi
tion E[Mt|Fs] of their future value equals their present value Ms.71Two fundamental 
lasses of random pro
esses for modelization purposes.



ADVANCED PROBABILITY 61Proof � Re
all Lévy's 
onstru
tion of Brownian motion as a series ∑n>1

(
B(n) − B(n−1)

) of
ontinuous pie
ewise linear fun
tions. Given c > √
2 log 2, there exists a random integer n0su
h that ∥∥B(n) −B(n−1)

∥∥
∞ 6 c

√
n 2−

n
2 for n > n0. As we have by 
onstru
tion

∥∥(B(n) −B(n−1)
)′∥∥

∞ 6 2
‖B(n) −B(n−1)‖∞

2−n
6 2c

√
n e

n
2 ,the mean-value theorem gives us, for t, t+ h in [0, 1], and any p > n0,

|Bt+h −Bt| 6
∑

n>1

∣∣(B(n)
t+h −B

(n−1)
t+h

)
−
(
B

(n)
t −B

(n−1)
t

)∣∣

6

p∑

n=1

h
∥∥(B(n) −B(n−1)

)′∥∥
∞ + 2

∞∑

n=p+1

∥∥B(n) −B(n−1)
∥∥
∞

6

n0∑

n=1

h
∥∥(B(n) −B(n−1)

)′∥∥
∞ + 2ch

p∑

n=n0+1

√
n 2

n
2 + 2c

∞∑

n=p+1

√
n 2−

n
2As the se
ond sum is dominated by a 
onstant multiple of its biggest element, bound abovethe sum of the last two terms by c′(h√p2p

2 +
√
p2−

p
2

), for some positive 
onstant c′. One
an take p = ⌊log2
1
h⌋ for h small enough. A simple 
al
ulus gives us a 
onstant C satis-fying the inequality 2c
(
hp

√
pe

p
2 +

√
p2−

p
2

)
6 C

√
h ln 1

h . As C√h ln 1
h is also bigger than

∑n0
n=1 h

∥∥(B(n) −B(n−1)
)′∥∥

∞, for h small enough, this proves the statement. �b) The Markovian approa
h to Brownian motion is extremely fruitful. Let X be aBrownian motion de�ned on some probability spa
e (Ω,F ,P); we write (Ft

)
t>0

for itsnatural (
ompleted) �ltration. Denote by Px the law of the Brownian motion x + Xstarting from x ∈ Rd and set for any non-negative fun
tion f
Ttf(x) = Ex

[
f(Xt)

]
= (2πt)−

1
2

∫
f(y)e−

|y−x|2

2t dy.Last, re
all that Ft+ :=
⋂

s>t Fs, for any t > 0.Theorem 90 (Simple Markov property). Let t > 0 be given.(1) Given any x ∈ Rd, the Brownian motion (Xt+s − Xt)s>0 is independent of Ft+under Px.(2) Given any x ∈ Rd and A ∈ σ(Xt+s ; s > 0), we have Px-almost-surely72(10.1) Px(A|Ft+) = PXt(A).(3) For any C2 bounded fun
tion f
Ttf − f =

1

2

∫ t

0

Ts(△f) ds =
1

2

∫ t

0

△(Tsf) ds.Proof � (1) First, it 
omes dire
tly from the independen
e of the in
rements of Brownianmotion that the Brownian motion (Xt+s −Xt)s>0 is independent of Ft under P. It follows inparti
ular that the pro
ess (Xt+ε+s−Xt+ε)s>0 is independent of Ft+ε, so of Ft+ , for any ε >
0. The ve
tors (Xt+s1 −Xt, . . . ,Xt+sn −Xt

)
= limε→0

(
Xt+ε+s1−Xt+ε, . . . ,Xt+ε+sn −Xt+ε

),are thus independent of Ft+ for any s1, . . . , sn > 0; we are done as this is a Gaussian ve
torwith the awaited 
ovarian
e matrix. This means that, 
onditionally on Ft+ , the pro
ess72Note that the measurability of the map x 7→ Px(A) is trivial for elementary events A; it follows thatthe map is measurable for any event A ∈ F .
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(
Xt+s

)
s>0

is a Brownian motion starting from Xt; 
all it (X ′
s)s>0. This implies in parti
ularthat we have for any bounded fun
tion f and any s, t > 0

Ts+tf(x) = Ex

[
f(Xs+t)

]
= Ex

[
Ex

[
f(Xs+t)

∣∣Ft+
]]

= Ex

[
EXt

[
f(X ′

s)
]]

= Tt

(
Tsf

)
(x)(2) By the monotone 
lass theorem, it su�
es to prove that we have

Ex[1A1B ] = Ex

[
PXt(A)1B

]for any A ∈ σ(Xt+s ; s > 0) of the elementary form {
Xt+s1 ∈ A1, . . . ,Xt+sn ∈ An

}, with
si > 0, and B ∈ Ft of a similar form. But for su
h A and B we have by the �rst point

Ex[1A1B ] = Ex

[
Ex[1A1B | Ft+ ]

]
= Ex

[
1BEx[1A | Ft+ ]

]
= Ex[PXt(A)1B ].(3) This point expresses the fa
t that for any C2 bounded fun
tion, and any x, the map t 7→

Ttf(x) is di�erentiable, with derivative 1
2Tt(△f)(x)

(
= 1

2△(Ttf)(x)
). This 
an be 
he
kedby a trivial integration by parts using the fa
t that the heat kernel ϕ : (t, y) 7→ exp

(
− |y−x|2

2t

)solves the heat equation ∂tϕ = 1
2△ϕ. �Corollary 91 (Blumenthal's 0 − 1 law). Events of F0+ are trivial under any Px: wehave Px(A) ∈ {0, 1}, for any A ∈ F0+ , x ∈ Rd.Proof � Indeed, for A ∈ F0+ we have Px-almost-surely 1A = Ex[1A | F0+ ] = PX0(A) = Px(A).

�This 0 − 1 law has deep and far-rea
hing 
onsequen
es, of whi
h the exer
ises providea few examples.Proposition 92. Given a one-dimensional Brownian motion X de�ne τ = inf{t >
0 ; Xt > 0} and τ ′ = inf{t > 0 ; Xt < 0}. Then almost-surely τ = τ ′ = 0.Proof � One easily 
he
k that the events {τ = 0} and {τ ′ = 0} belong to F0+ . As −X hasthe same law as X we have P(τ = 0) = P(τ ′ = 0). To prove that τ is almost-surely equal to

0 it su�
es, by Blumenthal's law, to see that P(τ = 0) > 0. But as we have for any t > 0,
P(τ 6 t) > P(Xt > 0) = 1

2 , this is straightforward. �Here is another pathwise property of Brownian motion easily obtained from the Mar-kovian point of view.Proposition 93. Let α > 1
2
. Brownian motion is almost-surely nowhere α-Hölder 
on-tinuous. In parti
ular, it is almost-surely nowhere di�erentiable.Proof � Let p > 2 be an integer to be 
hosen later. Fixing some K > 0, de�ne an in
reasingsequen
e of events

An =
{for some s ∈ [0, 1], |Xt −Xs| 6 K|t− s|α, whenever |t− s| 6

p

n

}
, n > 2,and name the in
rements ∆k,n =

∣∣X k
n
−Xk−1

n

∣∣, k = 1..n. Then
An ⊂

n⋃

k=2

{
∆j,n 6 2K

pα

nα
for ea
h j ∈ {k − 1, . . . , k + p− 1}

}
,and so

P(An) 6 (n− 2) P
(
∆1,n 6 2K

pα

nα

)p
6 nP

(∣∣N (0, 1)
∣∣ 6 2K

pα

nα− 1
2

)p
6 c n

p+2
2

−pα
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onstant c. The upper bound 
onverges to 0 as n goes to in�nity if we
hoose p su
h that α > p+2
2p . As the events An in
rease, P(An) = 0 for all n. �
) The Gaussian 
hara
terization provides deep insight, starting with a straightforwardjusti�
ation of the following fa
ts.Proposition 94. Let X be an Rd-valued Brownian motion starting from 0(73). Thefollowing pro
esses are also Brownian motions.(1) Invarian
e by isometries: AX, for any linear isometry A.(2) (Xt+s −Xt)s>0, for any t > 0,(3) (cXc−2t

)
t>0

, for any c > 0,(4) Time inversion: (tX1/t

)
t>0

, with value 0 in t = 0,The time inversion property implies in parti
ular that Xt

t

onverges almost-surely to 0as t→ +∞.Proof � The only non-trivial point is the 
ontinuity at 0 of the pro
ess Bt := tX1/t. Sin
e

B is almost-surely 
ontinuous on (0,∞) one 
an des
ribe the event {B →
t↓0

0} in terms of
onditions on the values of B at 
ountably many points of (0,∞). But B and X beingGaussian, with the same 
ovarian
e and the same value at time 1, they have the same lawon (0,∞); so P
(
Bt →

t↓0
0
)

= P
(
Xt →

t↓0
0
)

= 1. �Proposition 95 (Quadrati
 variation of Brownian motion ). • Let t > 0 be given. For
n > 0 and k > 0, set tnk = t∧k2−n. The quadrati
 variation of X over the dyadi
 partition
〈X〉nt :=

∑
k>0

(
Xtnk

−Xtnk−1

)2 
onverges almost-surely and in L2 to t.Proof � As Xs+h −Xs ∼ N (0, h) we have E
[
(Xs+h −Xs)

2
]

= h and Var((Xs+h −Xs)
2
)

=Var(N)h2, where N is the square of a normal random variable. Hen
e, for �xed t, therandom variable 〈X〉nt has mean t and varian
e Var(N) 2−n. The result follows. �d) The s
aling limit approa
h provides an immediate proof of the following fa
t.Proposition 96. We have almost-surely lim
t→+∞

Xt = − lim
t→+∞

Xt = +∞,Mu
h deeper insights 
an be gained from that pi
ture, like the fa
t that some Galton-Watson bran
hing pro
esses and some 
ontinuous random trees are hidden in Browniantraje
tories... But this is another story.10.2. Constru
ting martingales. The use of martingales 
onstru
ted from Brownianmotion 
an provide mu
h information about it. The following theorem provides a 
anoni-
al way of 
onstru
ting martingales asso
iated with an Rn-valued Brownian motion. Youshould 
ompare it with proposition 73 
hara
terizing the law of a Markov 
hain in termsof martingales.Theorem 97. Let B be a Brownian motion de�ned on some �ltered probability spa
e(
Ω,F , (Ft)t>0,P

), and let f ∈ C1,2
(
R+ × Rd

) be su
h that
∣∣f(t, x)

∣∣ +
∣∣∂tf

∣∣(t, x) +
∑

i=1..d

∣∣∂xi
f
∣∣(t, x) +

∑

i=1..d

∣∣∂2
xi,xj

f
∣∣(t, x) 6 KeK(t+|x|)73The pre
ise probability spa
e on whi
h it is de�ned is irrelevant.



64 ADVANCED PROBABILITYfor some positive 
onstant K. Then the pro
ess
Mt = f(t, Bt) − f(0, B0) −

∫ t

0

( ∂
∂r

+
1

2
△
)
f(r, Br) dris a martingale with respe
t to the Brownian �ltration.Proof � The hypotheses are designed so as to ensure the integrability of any Mt. We haveto show that we have almost-surely E

[
Ms+t −Ms

∣∣Fs

]
= 0, for all 0 6 s, t. Write F̃t for

Fs+t and B̃t = Bt+s − Bs; it is an F̃t-Brownian motion independent of Fs 
onditionally on
Bs = B̃0. Noting that

Ms+t −Ms = f(s+ t, Bs+t) − f(s,Bs) −
∫ s+t

s

( ∂
∂r

+
1

2
△
)
f(r,Br) dr

= f̃
(
t, B̃t + B̃0

)
− f̃

(
0, B̃0

)
−
∫ t

0

( ∂
∂r

+
1

2
△
)
f̃
(
r, B̃r + B̃0

)
dr,where f̃(t, x) = f(s+ t, x), we see that it su�
es to prove that

E
[
f̃
(
t, B̃t + B̃0

)
− f̃

(
0, B̃0

)
−
∫ t

0

( ∂
∂r

+
1

2
△
)
f̃
(
r, B̃r + B̃0

)
dr
∣∣∣F̃0

]
= 0,or, equivalently, that Ex[Mt] = 0 for any starting point x ∈ Rd. Write pr(x, y) = (2π r)−

d
2 exp

(
− |y−x|2

2

)for the Gaussian kernel. Noting that we have for 0 < s < t

Ex[Mt −Ms] =

∫

Rd

f(t, y)
(
pt(x, y) − ps(x, y)

)
dy −

∫ t

s

(∫

Rd

pr(x, y)
( ∂
∂r

+
1

2
△
)
f(r, y) dy

)
dr,and that pr(x, y) satis�es the heat equation ( ∂

∂r − 1
2△y

)
pr(x, y) = 0, for r > 0, an integrationby parts (twi
e with respe
t to y and on
e with respe
t to r) gives

∫ t

s

(∫

Rd

pr(x, y)
( ∂
∂r

+
1

2
△
)
f(r, y) dy

)
dr =

∫ t

s

∂

∂r

(
pr(x, y) f(r, y)

)
dydr

=

∫

Rd

f(t, y)pt(x, y) dy −
∫

Rd

f(s, y)ps(x, y) dy,from whi
h the identity Ex[Mt −Ms] = 0 follows. It remains to noti
e that Ex[Ms] goes to
0 as s goes to 0 to 
on
lude. �Corollary 98 (Re
urren
e and transien
e of Brownian motion). (1) Given any start-ing point di�erent from 0, the 2-dimensional Brownian motion has probability 0of ever hitting {0}, but it hits almost-surely any neighbourhood of 0 at arbitrarilylarge times.(2) In dimension bigger than 3, we have almost-surely |Bt| → +∞ as t→ +∞.Proof � (1) i) Let 0 < a < |x| < b. The fun
tion log |x| satis�es the identity △f = 0 on
R2\{0}. Let f : R2 → R be a smooth fun
tion de�ned on R2 and 
oin
iding with x 7→ log |x|outside the ball of radius a. As f has a sub-exponential growth, we 
an use it to 
onstru
tthe martingale Mt used in theorem 97. Let T be the hitting time inf

{
t > 0 ; |Xt| ∈ {a, b}

};as f and log |x| 
oin
ide outside the ball of radius a we haveMt∧T = log |Xt∧T |, for all times;also this stopped martingale is bounded, from the de�nition of T . Applying the optionalstopping theorem, we then have
Ex

[
log |BT |

]
= Ex

[
log |B0|

]
= log |x|;so Px

(
|BT | = a

)
=

log
|x|
b

log a
b
. Sending a to 0 gives the �rst result.
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ase B0 = 0, use the Markov property to write
P0

(
Bt = 0 at some time t > ǫ

)
= E0

[
PBǫ

(
Bt = 0 at some time t > 0

)]
= 0;as this holds for any ǫ > 0 we 
on
lude that P0

(
Bt = 0 at some time t > 0

)
= 0.iii) Fixing now a and sending b to in�nity we see that B hits Px-almost-surely the ball ofradius a if |x| = 1. Pro
eeding as in ii) this fa
t is seen to be true for all every startingpoint. The result now follows from Markov property as the Px-probability that B hits theball of radius a after time n equals Ex

[
PBn

(
Bt = a at some time t > 0

)]
= 1.(2) Use the fun
tion |x|2−d to prove as above that we have Px(Ha < Hb) = |x|2−d−b2−d

a2−d−b2−d when
a < |x| < b. Con
lude as above. �10.3. Strong Markov property. In this se
tion we take as a framework a probabilityspa
e (Ω,F ,P) on whi
h a Brownian motion X is de�ned, and denote by (Ft

)
t>0

the(
ompleted) �ltration generated by X.Theorem 99 (Strong Markov property). Let T be a stopping time su
h that P(T <
∞) > 0. De�ne the XT by XT

t = XT+t − XT on the event {T < ∞}, and by XT
t ≡ 0on the event {T = ∞}. Then, 
onditionally on {T < ∞}, the pro
ess XT is a Brownianmotion independent of FT . This means that for any A ∈ FT , any times 0 < t1 < · · · < tn,and any bounded measurable fun
tion F : Rn → R, we have(10.2) E

[
1A∩{T<∞} F

(
XT

t1 , . . . , X
T
tn

)]
= P

(
A ∩ {T <∞}

)
E
[
F (Xt1 , . . . , Xtn)

]
.Proof � By a monotone 
lass argument, it su�
es to prove (10.2) for bounded 
ontinuousfun
tions F . Take su
h a fun
tion and note that due to the 
ontinuity (from the right!) of

X and F the quantity E
[
1A∩{T<∞}F

(
XT

t1 , . . . ,X
T
tn

)] is, by dominated 
onvergen
e, equal to
lim

p→+∞

∑

k>0

E
[
1A∩{(k−1)2−p<T6k2−p}F

(
Xk2−p+t1 −Xk2−p , . . . ,Xk2−p+tn −Xk2−p

)]
.Note that we have approximated XT+ti by Xk2−p+ti . As the event A belongs to FT the event

A ∩ {(k − 1)2−p < T 6 k2−p} belongs to Fk2−p ; so the simple Markov property enables usto write the generi
 term of the above sum as
P
(
A ∩ {(k − 1)2−p < T 6 k2−p}

)
E
[
F (Xt1 , . . . ,Xtn)

]
.Summing over k > 0 and taking the limit p→ +∞ gives (10.2). �This fundamental property of Brownian motion has tremendously many appli
ations,of whi
h the following ones are remarkable.Corollary 100 (Re�e
tion prin
iple). Let X be a Brownian motion starting from 0and T be a �nite stopping time. Set Yt = Xt for t 6 T , and Yt = 2XT − Xt for t > T .Then Y is also a Brownian motion.Proof � We need to prove that we have for any times 0 < t1 < · · · < tn and any 
ontinuousbounded fun
tion F : Rn → R(10.3) E

[
F (Yt1 , . . . , Ytn)

]
= E

[
F (Xt1 , . . . ,Xtn)

]
.Setting t0 = 0 and tn+1 = ∞, we have

E
[
F (Yt1 , . . . , Ytn)

]
=

∑

i=1..n+1

E
[
F (Yt1 , . . . , Ytn)1ti−16T<ti

]

=
∑

i=1..n+1

E
[
F
(
Xt1 , . . . ,Xti−1 ,XT + (XT −Xti), · · · ,XT + (XT −Xtn)

)
1ti−16T<ti

]
.



66 ADVANCED PROBABILITYBut the generi
 term of the above sum equals
E
[
E
[
F
(
Xt1 , . . . ,Xti−1 ,XT + (XT −Xti), · · · ,XT + (XT −Xtn)

)
1ti−16T<ti

∣∣FT

]]
=

E
[
E
[
F
(
Xt1 , . . . ,Xti−1 ,Xti , · · · ,Xtn

)
1ti−16T<ti

∣∣FT

]]by the strong Markov property and be
ause the opposite of a Brownian motion is a Brownianmotion; summing these terms gives identity (10.3). �Corollary 101 (Maximum pro
ess � Ba
helier). Given a real-valued Brownian motion
X, and t > 0, de�ne MX

t := max
s6t

Xs, for t > 0. Then
MX

t
d
= MX

t −Xt
d
= |Xt|.Proof � Denote again by Y the pro
ess de�ned in 
orollary 100. Let a > 0 and b be two realnumbers su
h that a > max{b, 0}. Let T = inf{s > 0 ; Xs = a}, this is an almost-surely�nite stopping time (why?). The re�e
tion prin
iple justi�es the �rst identity below; drawa pi
ture to understand the third identity.

P
(
MX

t > a,Xt 6 b
)

= P
(
MY

t > a, Yt 6 b
)

= P
(
MX

t > a, Yt 6 b
)

= P(Xt > 2a− b).This identity gives the law of the pair (MX
t ,Xt

), from whi
h the result follows. �10.4. Brownian motion and the Diri
hlet problem. Let B be a bounded open setof some Rd, with non-empty boundary ∂B, and f be a measurable real-valued fun
tionde�ned on ∂B. To solve the Diri
hlet problem in B with boundary 
ondition f isto �nd a fun
tion g de�ned on the 
losure B of B whi
h is
• of 
lass C2 in B, with △g = 0 in B,
• 
ontinuous on B, with restri
tion to ∂B equal to f.(10.4)Fun
tions g of 
lass C2 satisfying the 
ondition △g = 0 in B are said to be harmoni
 in

B. You are asked to prove in exer
ise the following 
hara
terization of harmoni
 fun
tionsin terms of spheri
 means. For an open ball B(x, r) ⊂ B we write σx,r(dy) for the uniformprobability on the sphere {y ∈ B ; |y − x| = r
}.Proposition 102 (Gauss). A non-negative fun
tion g su
h that g(x) =

∫
g(y)σx,r(dy)for any ball B(x, r) ⊂ B is either ≡ ∞ or harmoni
 in B.Proof � You 
an also �nd the proof in Kallenberg's book [Kal02℄, lemma 24.3, p. 473. �Denote by (Xt)t>0 the 
oordinate pro
ess on C(R+,R

d) and by P Wiener measure. Givenany starting point x ∈ B and any set U ⊂ B, denote by Sx
U = inf{t > 0 ; x + Xt /∈ U}the exit time from U by the Brownian motion starting from x. These random times arealmost-surely �nite for bounded sets U (why?); note that the distribution of XSx

B(x,r)
isuniform distribution over the sphere.Suppose the boundary 
ondition f is non-negative and set74

HBf(x) = E
[
f(x+XSx

B
)
]
.74Justify that this fun
tion is measurable with respe
t to x.



ADVANCED PROBABILITY 67Then by the strong Markov property, we have for any ball B(x, r) ⊂ B

HBf(x) = E
[
E
[
f(x+XSx

B
)
∣∣XSx

B(x,r)

]]

=

∫
E
[
f(y +XSx

B
)
]
σx,r(dy) =

∫
HBf(y) σx,r(dy),

(10.5)soHBf is harmoni
 on B if, for instan
e, f is bounded. This simple remark gives us a good
andidate for a solution to Diri
hlet problem; yet something remains to be 
lari�ed as thefollowing shows. The only harmoni
 fun
tions on B(0, 1)\{0} are of the form α log |x|+βfor some 
onstant α, β (prove this): they either explode to ∞ near 0 or are 
onstant. Thisfa
t is a hint that not only the boundary 
ondition is important in Diri
hlet problem, butalso the shape of ∂B in�uen
es the issue. We give here a 
ondition around ea
h point
z ∈ ∂B whi
h prevents explosion and ensures that HBf is 
ontinuous at z.75Definition 103. A boundary point z ∈ ∂B is said to be regular ifdef the Brownianmotion starting from z almost-surely exits B immediately:

E[Sz
B] = 0.It is said to be irregular otherwise.In the above example the point 0 is irregular. By Blumenthal's 0− 1 law, z is irregulari� P(Sz

B > 0) = 1. Also, from exer
ise 31, the point z is regular if it belongs to theboundary of a 
one 
ontained in the 
omplementary of B.Theorem 104. Let B ⊂ Rd be a bounded open set and f : ∂B → R be a boundedBorel fun
tion. Suppose z ∈ ∂B is regular and f is 
ontinuous at point z, then HBf is
ontinuous at point z:
lim

x→z, x∈B
HBf(x) = f(z).Corollary 105. HBf solves the Diri
hlet problem if B is bounded, any point of ∂B isregular and the boundary 
ondition f 
ontinuous.You will prove in exer
ise that HBf is the unique solution to Diri
hlet problem underthese 
onditions. The proof of theorem 104 essentially rests on the following fa
t.Lemma 106. The map x ∈ Rd 7→ E[Sx

B] is upper semi-
ontinuous.Proof � Let us re
all that these fun
tions are de
reasing pointwise limits of 
ontinuous fun
-tions and that they are 
hara
terized by the inequalities
∀x ∈ Rd, lim

y→x
f(y) 6 f(x).Che
k �rst the integrability of Sx

B . Choosing R > 0 being enough for B to be in
luded in
B(0, R), the exit time Sx

B is no greater than the hitting time of the levels ±R by the �rst
o-ordinate of X (a real-valued Brownian motion), so is integrable. For the same reason,
Sx,ε

B := inf{t ; ε < t, x + Xt /∈ B} is integrable. These de
reasing approximations of Sx
B
onverge almost-surely to Sx

B as ε de
reases to 0, so we have by monotone 
onvergen
e
E[Sx

B] = lim
ε↓0

↓ E[Sx,ε
B ].75The remainder of this se
tion is essentially taken from K.L. Chung's ex
ellent little book [Chu02℄ onBrownian motion.



68 ADVANCED PROBABILITYBut as the strong Markov property enables us to write E[Sx,ε
B ] = E

[
g(x+Xε)

], where g(y) :=
E[Sy

B ] is bounded (
an you see why?), E[Sx,ε
B ] appears as a (smooth and so) 
ontinuousfun
tion of x. So

lim
y→x

E[Sy
B] 6 lim

y→x
E[Sy,ε

B ] = lim
y→x

E[Sy,ε
B ] = E[Sx,ε

B ].It remains to send ε to 0 to 
on
lude. �The proof of theorem 104 is now easy.Proof � Let z ∈ ∂B be a regular point. From lemma 106 we have
E[Sx

B ] −→
x→z, x∈B

0,i.e. Sx
B 
onverges in L1(P) to 0. So one 
an extra
t from any sequen
e {xn}n>0 
onvergingto z a subsequen
e {xn(p)}p>0 su
h that the exit times Sxn(p)

B 
onverge almost-surely to 0.The 
ontinuity of Brownian motion ensures us that the exit points xn(p) +X
S

xn(p)
B


onvergealmost-surely to z +X0 = z. As a 
onsequen
e, if f is bounded on ∂B and 
ontinuous at z,dominated 
onvergen
e justi�es the 
onvergen
e
E
[
f
(
xn(p) +X

S
xn(p)
B

)]
−→

p→+∞
f(z),that is

HBf(xn(p)) −→
p→+∞

f(z).As the limit value does not depend upon the subsequen
e, HBf(x) 
onverges to f(z) as xtends to z. �11. Lévy pro
essesWe study in this se
tion models of random phenomena whose properties are insensitiveto time shifts. As will be
ome 
lear in se
tion 12, they are the basi
 obje
ts out of whi
hall reasonnable martingales 
an be des
ribed.The de�nition of Lévy pro
esses is given se
tion 11.1, whose main result is a kindof stati
 des
ription of su
h pro
esses through the analyti
 des
ription of their Fouriertransform at a �xed time. We address the 
onstru
tion problem of su
h pro
esses inse
tion 11.2, where we 
onstru
t a general Lévy pro
ess as a limit of the sum of a Brownianmotion with a drift and of (
ompensated) Poisson jump pro
esses.11.1. Basi
s.Definition 107. By a (real-valued) Lévy pro
ess we shall understand a real-valued
àdlàg pro
ess starting from 0 and with stationary independent in
rements.Given time 0 < t1 < · · · < tn the in
rements Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 areindependent and the law of Xti −Xti−1
depends on the time in
rement ti − ti−1.A Brownian motion with 
onstant drift is a Lévy pro
ess, so are Poisson pro
esses; were
all their de�nition. These are 
ontinuous time Markov pro
esses whose dynami
s is
hara
terized by two parameters: a �nite positive 
onstant λ and a probability measure

J(·) on R. Denote by (Sn)n>0 an iid sequen
e of exponential random variables with pa-rameter λ, and by (Jn)n>1 an iid sequen
e of random variables with 
ommon distribution
J . The pro
ess X starts almost-surely from 0 and is 
onstant on the interval [0, S1); it hasa jump J1 at time S1 : XS1 = J1. Then it remains 
onstant on the interval [S1, S1 + S2)and has a jump J2 at time S1 +S2 : XS1+S2 = J1 +J2; and so on. It is not di�
ult, using



ADVANCED PROBABILITY 69the memoryless property of the exponentials, to prove that this pro
ess is a Lévy pro
ess� you are asked to prove that fa
t in exer
ise. Surprisingly, Brownian motion and Poissonpro
esses are all we need to des
ribe the most general Lévy pro
ess, as theorem 113 willmake it 
lear. Note that Poisson pro
esses have that name as the number of jumps theymake in a time interval of lenght t is a Poisson random variable with parameter λt. Canyou prove this fa
t?We start our study of Lévy pro
esses looking at their �xed time distributions.Lemma 108. Denote by ϕt(λ) the 
hara
teristi
 fun
tion of Xt : ϕt(λ) = E
[
eiλXt

]
, λ ∈

R, t > 0. There exists a 
ontinuous 
omplex-valued fun
tion g(λ) su
h that ϕt(λ) = etg(λ).This fun
tion is 
alled the 
hara
teristi
 exponent of the Lévy pro
ess.The fun
tion g 
hara
terizes 
ompletely the �nite dimensional laws of X. Given 0 =
t0 < t1 < · · · < tn, lemma 108 and the independen
e of in
rements of X imply
E
[
exp
(
iλ1Xt1 + · · ·+ iλnXtn

)]
= E

[
ei
(Pn

ℓ=1 λℓ

)
Xt1+i

(Pn
ℓ=2 λℓ

)
(Xt2−Xt1)+···+iλn(Xtn−Xtn−1 )

]

=
n∏

k=1

E
[
ei
(Pn

ℓ=k λℓ

)
(Xtk

−Xtk−1
)
]

= exp

(
n∑

k=1

(tk − tk−1) g
( n∑

ℓ=k

λℓ

))Proof � Note �rst that sin
e X is 
àdlàg and has stationary independent in
rements we have
P
(
|Xt −Xs| > ǫ

)
= P(X|t−s| > ǫ) −→

s→t
0for all ǫ > 0. As

∣∣ϕt(λ) − ϕs(λ
′)
∣∣ 6 E

[∣∣eiλ(Xt−Xs) − 1
∣∣
]

+ E
[∣∣ei(λ−λ′)Xs − 1

∣∣
]

6 sup
|x|6ǫ

∣∣eiλx − 1
∣∣+ 2 P

(
|Xt −Xs| > ǫ

)
+ E

[∣∣ei(λ−λ′)Xs − 1
∣∣
]it follows (by dominated 
onvergen
e) that ϕ is a 
ontinuous fun
tion of (t, λ). As a 
on-sequen
e, ϕt(λ) 6= 0 for t small enough, sin
e ϕ0(λ) = 0. Using the independen
e andstationarity of the in
rements, it follows that we have for all t > 0, λ ∈ R

ϕt(λ) = E
[
eiλXt

]
=

N∏

j=1

E
[
e
iλ
(
X j

N
t
−X j−1

N
t

)]
=
{
ϕ t

N
(λ)
}N 6= 0,provided N is big enough. We 
an thus write ϕt(λ) = eat(λ)+ibt(λ), where a and b are
ontinuous fun
tions of (t, λ) and a0(λ) = b0(λ) = bt(0) = 0. Using again the stationarityand independen
e of the in
rements, we see that ϕs+t(λ) = ϕs(λ)ϕt(λ); as a and b are
ontinuous, this implies that they are both linear fun
tions of t. �The general form of g was found by Lévy and Khin
hin.Theorem 109 (Lévy-Khin
hin). Given λ ∈ R and x ∈ R, set

f(λ, x) =
(
eiλx − 1 − iλ sin x

)1 + x2

x2



70 ADVANCED PROBABILITYfor x 6= 0 and f(λ, 0) = −λ2

2
; this formula de�nes a 
ontinuous fun
tion. There exists a�nite non-negative Borel measure µ on R and a 
onstant b ∈ R su
h that(11.1) g(λ) =

∫
f(λ, x)µ(dx) + ibλ.Proof � We start76 with the identity −g(λ) = lim

tց0

1−ϕt(λ)
t , g(0) = 0, where the limit isuniform for λ in a 
ompa
t set. Denoting by νt the law of Xt and taking t = 1

n above, weget(11.2) −g(λ) = lim
n→+∞

∫ (
1 − eiλx

)
nν 1

n
(dx),and for h > 0 (77)(11.3) − 1

2h

∫ h

−h
g(λ) dλ = lim

n→+∞

∫ (
1 − sinhx

hx

)
nν 1

n
(dx).As the fun
tion (1−eiλx

) is 
ontinuous and bounded it is fair to try and use some 
ompa
tnessargument in the set of measures to write equation (11.2) under the form ∫ (
1 − eiλx

)
µ(dx),where µ is a weak limit of the sequen
e nν 1

n
. But as this measure has mass in
reasing nwe need to be 
areful. Would its mass be bounded away from 0 and ∞, we 
ould write itas anρn, with an > 0 and ρn a probability measure. The tightness of the sequen
e of �nitemeasures (anρn)n>0 would then equivalent to the tightness of the sequen
e of probabilitymeasures (ρn)n>0. Choosing a subsequen
e along whi
h both (an)n>0 and (ρn)n>0 
onvergewould provides a 
luster point for the sequen
e of measures (anρn)n>0 for the weak topology.Noting that there exists a positive 
onstant C su
h that y2

1+y2 6 C(1 − sin y
y ) for all y,equation (11.3), with h = 1, tells us that the sequen
e of measures ( x2

1+x2 nν 1
n
(dx)

)
n>1

hasmass uniformly bounded above. If the 
orresponding an 
onverge to 0 the measures 
onvergeweakly to 0. Elsewhere, we see the tightness of this family of measures noting that sin
e
1− sin hx

hx > 0 is no less than 1
2 for |hx| > 2, all the integrals ∫|x|>2

h
nν 1

n
(dx) are uniformly smallprovided h is small enough; this is a fortiori the 
ase for the integrals ∫|x|>2

h

x2

1+x2 nν 1
n
(dx).Choose a subsequen
e for whi
h the measures x2

1+x2 n(p)ν 1
n(p)

(dx) 
onverge weakly, say to µ.Our intuition about how to turn the limit (11.2) into a proper integral thus takes the followingform.
−g(λ) = lim

n+∞

∫ (
1 − eiλx

)
nν 1

n
(dx)

= lim
p+∞

(∫ (
1 − eiλx + iλ sinx

)
n(p)ν 1

n(p)
(dx) + iλ

∫
(sinx)n(p)ν 1

n(p)
(dx)

)

= lim
p+∞

(
−
∫
f(λ, x)

x2

1 + x2
n(p)ν 1

n(p)
(dx) + iλ

∫
(sinx)n(p)ν 1

n(p)
(dx)

)
(11.4)As f(λ, x), is a bounded 
ontinuous fun
tion of x, the �rst term 
onverges to− ∫ f(λ, x)µ(dx);it follows that the integrals ∫ (sinx)n(p)ν 1

n(p)
(dx) have a limit as p goes to in�nity, whi
hde�nes the 
onstant −b. �76This proof of Lévy-Khin
hin's representation theorem is essentially taken from N.V. Krylov's book[Kry02℄.77You 
an inter
hange the integral with respe
t to λ and the limit as the terms ∫ (1 − eiλx

)
nν 1

n

(dx) areuniformly bounded with respe
t to n > 1 and λ in a bounded set.
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 mass at 0 in µ, we 
an write(11.5) g(λ) =

∫ (
eiλx − 1 − λ sin x

)
Λ(dx) − λ2σ2

2
+ ibλ,with µ′(dx) = 1+x2

x2 µ(dx), σ2 = µ′(0) and Λ = µ′ − µ′(0) δ0 has no mass on {0}. The 
ase
Λ = 0 
orresponds to a Brownian motion with drift b and varian
e σ2(78).Theorem 110 (Uniqueness). Lévy-Khin
hin's de
omposition for g is unique.Proof � It su�
es to note that sin
e we have for any λ ∈ R and h > 0

g(λ) − g(λ+ h) + g(λ− h)

2
=

∫
eiλx 1 − cos(hx)

x2
(1 + x2)µ(dx),the measures µh := 1−cos(hx)

x2 (1 + x2)µ(dx) are uniquely determined by g, as their Fouriertransforms are given by the above formula. But we have for any bounded Borel set A ⊂[
− 1

h ,
1
h

],
µ(A) =

∫
1A

x2

1 − cos(hx)
(1 + x2)−1µh(dx);the result follows. �A triple (b, σ2 ; Λ), where Λ is a non-negative measure on R∗ su
h that

∫
(1 ∧ x2)Λ(dx) <∞is 
alled a Lévy triple. Lévy-Khin
hin formula gives a stati
 des
ription of a Lévy pro
essin terms of a Lévy triple; it is not 
lear at all whether or not there 
orresponds a Lévypro
ess to ea
h su
h triple. This is indeed the 
ase, and the proof given below will revealthe dynami
al 
ontent of the Lévy-Khin
hin formula. Theorem 113 below proves thatany Lévy pro
ess has a modi�
ation whi
h is the limit of a sum of independent pro
esses

bt+ σBt + P
(0)
t +

n∑

k=1

P̃
(k)
t ,where bt+σBt is a Brownian motion with drift b and varian
e σ2, the pro
ess P (0) is a Pois-son pro
ess with intensity Λ

(
{|x| > 1}

) and jump measure J (0) = Λ
(
{|x| > 1}

)−1
1|x|>1Λ,and the pro
esses P̃ (k) Poisson pro
esses with intensity Λ

(
{ 1

k+1
6 |x| < 1

k
}
), jump mea-sure J (k) = Λ

({
1

k+1
6 |x| < 1

k

})−1
1 1

k+1
6|x|< 1

k
}Λ, and a drift −

∫
x1 1

k+1
6|x|< 1

k
}Λ(dx). Wedenote by P (k) the Poisson pro
ess without drift.It will 
larify the 
onstru
tion below to rewrite the 
hara
teristi
 exponent g of a Lévypro
ess under the form

g(λ) = −σ
2λ2

2
+ ib′λ+

∫ (
eiλx − 1 − iλx1|x|<1

)
Λ(dx),repla
ing the former b by79 b′ = b +

∫ (
x1|x|<1 − sin x

)
Λ(dx). We shall write b instead of

b′ below. Note that we have78Note that the sin fun
tion appearing in the above formula for the exponent g(λ) has nothing 
anoni
al;it 
ould equally well be repla
ed by any bounded 
ontinuous fun
tion whi
h is equivalent to x near 0.This would 
hange b a

ordingly.79This integral 
onverges as ∫ (x2 ∧ 1)Λ(dx) <∞.
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∫ (

eiλx − 1− iλx1|x|<1

)
Λ(dx) =

∫ (
eiλx − 1

)
1|x|>1 Λ(dx)+

∫ (
eiλx − 1− iλx

)
1|x|<1 Λ(dx).11.2. Constru
tion of Lévy pro
esses. Denote by (Ft

)
t>0

the �ltration generated by
B,P (0) and all the P̃ (k).Lemma 111. (1) The Lévy pro
ess P (0) has 
hara
teristi
 exponent ∫ (eiλx−1

)
1|x|>1Λ(dx).(2) Ea
h Lévy pro
ess P̃ (k) is a 
àdlàg (Ft

)
t>0

-martingale with 
hara
teristi
 exponent
∫ (

eiλx − 1 − iλx
)
1 1

k+1
6|x|< 1

k
Λ(dx).(3) The pro
ess (P̃ (k)

t

)2 − t
∫
x2

1 1
k+1

6|x|< 1
k
Λ(dx) is a 
àdlàg (Ft

)
t>0

-martingale.It follows from this lemma that the 
hara
teristi
 exponent of our approximating Lévypro
ess σBt + bt+ P
(0)
t +

∑n
k=1 P̃

(k)
t is

−σ
2λ2

2
+ ibλ +

∫ (
eiλx − 1

)
1|x|>1Λ(dx) +

n∑

k=1

∫ (
eiλx − 1 − iλx

)
1 1

k+1
6|x|< 1

k
Λ(dx),that is(11.6) −σ

2λ2

2
+ ibλ +

∫ (
eiλx − 1 − iλx1 1

n+1
6|x|<1

)
Λ(dx).Proof � (1) The 
omputations of the 
hara
teristi
 fun
tions of P (0)
t and P̃ (k)

t are done in thesame way and use the following elementary fa
t. The distribution of the number Nt of jumpsby time t of a Poisson pro
ess of intensity ρ is a Poisson random variable with parameter ρt.Writing ρ for Λ
(
{|x| > 1}

) we thus have
E
[
eiλP

(0)
t
]

=
∑

n>0

E
[
eiλP

(0)
t
∣∣σ(Nt)

]
P(Nt = n) =

∑

n>0

(1

ρ

∫
eiλx

1|x|>1Λ(dx)
)n
e−ρρ

n

n!

= exp
(∫ (

eiλx − 1
)
1|x|>1Λ(dx)

)
.(2) As the non-drifted pro
ess P (k) is a Poisson pro
ess (hen
e a Lévy pro
ess) it has inde-pendent in
rements. It follows that

E
[
P

(k)
t − P (k)

s

∣∣Fs

]
= E

[
P

(k)
t − P (k)

s

]
= (t− s)

∫
x1 1

k+1
6|x|< 1

k
Λ(dx),whi
h proves that P̃ (k) is an (Ft

)
t>0

-martingale.(3) I leave you to justify the fa
t that P̃ (k)
t ∈ L2. As the pro
ess P̃ (k) has independent
entered in
rements it su�
es to see that E

[(
P̃

(k)
t

)2]
= t

∫
x2

1 1
k+1

6|x|< 1
k
Λ(dx) for ea
h

t > 0. Writing P̃
(k)
t = P

(k)
t − bt, with b =

∫
x1 1

k+1
6|x|< 1

k
Λ(dx), it amounts to provingthat E

[(
P

(k)
t

)2]
= b2t2 + t

∫
x2

1 1
k+1

6|x|< 1
k
Λ(dx). This is done by a dire
t 
omputation,
onditionning on the number of jumps of P (k) by time t, whi
h is a Poisson random variablewith parameter tΛ({ 1

k+1 6 |x| < 1
k

}). �The next proposition provides a good fun
tional framework where to take the limit ofour approximations.



ADVANCED PROBABILITY 73Proposition 112. Denote by H the spa
e of (Ft

)
t>0

-martingales bounded in L2 andde�ne on H the metri
 d(X, Y ) =
(
E
[
sup06s61

∣∣Xs − Ys

∣∣2]
) 1

2 . Then the metri
 spa
e
(H, d) is 
omplete.Proof � Let (Y n)n>0 be a Cau
hy sequen
e of elements of H. Ea
h (Y n

t )n>0 is then a Cau
hysequen
e in L2, so 
onverges to some random variable Yt ∈ L2. We get the martingaleproperty of Y by passing to the limit in the 
orresponding identity for Y n. It su�
es thento apply Doob's L2-inequality to get
E
[

sup
06s61

|Y n
s − Ys|2

]
6 2 sup

06s61
E
[
|Y n

s − Ys|2
]

6 2 E
[
|Y n

1 − Y1|
]
→ 0,whi
h proves that Y n 
onverges to Y in (H, d). �Theorem 113 (Constru
tion of Lévy pro
esses). To any Lévy triple there 
orrespondsa Lévy pro
ess with 
hara
teristi
 exponent given by formula (11.5).Proof � Set Y (n)

t =
∑n

k=1 P̃
(k)
t , for t ∈ [0, 1]. Using the fa
t that E

[
P

(k)
1 P

(ℓ)
1

]
= 0 for k 6= ℓ,and Doob's L2-inequality we have, for m > n,

E
[

sup
06s61

∣∣Y m
s − Y n

s

∣∣2
]

= E

[
sup

06s61

∣∣∣
m∑

k=n+1

P̃ (k)
s

∣∣∣
2
]

6 4 E

[∣∣∣
m∑

k=n+1

P̃
(k)
1

∣∣∣
2
]

= 4

m∑

k=n+1

E
[∣∣P̃ (k)

1

∣∣2
]

6 4

∫
x2

1 1
m+1

6|x|< 1
n+1

Λ(dx).The last inequality 
omes from point (3) of lemma 111. Sin
e the integral ∫ x2
1|x|61Λ(dx)
onverges, the above quantity is arbitrarily small provided m and n are big enough. Thisproves that Y (n) is a Cau
hy sequen
e in the 
omplete spa
e (H, d); denote by Y its limit.I leave you to 
he
k that Y has independent stationary in
rements, simply by passing tothe limit in the 
orresponding identities. Also, as sup06s61

∣∣Ys − Y
(n)
s

∣∣ 
onverges in L2 to 0,a subsequen
e 
onverges almost-surely to 0; this makes the pro
ess Y appear as a uniformlimit of 
àdlàg paths, so Y is itself 
àdlàg, and hen
e is a Lévy pro
ess.Re
all the expression of the 
hara
teristi
 exponent of X(n)
t = bt+ σBt + P

(0)
t + Y

(n)
t givenin equation (11.6); set Xt = bt + σBt + P

(0)
t + Yt. Using the almost-sure 
onvergen
e of asubsequen
e of Y (n)

t , the estimate ∣∣(eiλx − 1 − λx
)
1|x|<1

∣∣ 6 Cx2
1|x|<1 (for some 
onstant

C > 0) and dominated 
onvergen
e80, we obtain
E
[
eiλXt

]
= exp

(
−σ

2λ2

2
t+ iλbt+ t

∫ (
eiλt − 1 − λy1|x|<1

)
Λ(dx)

)
,this proves that the Lévy pro
ess X has Lévy triple (b, σ ; Λ). �12. (...) and martingales12.1. Representation of 
ontinuous martingales. We prove in this se
tion that any
ontinuous martingale 
an be seen as a time 
hange of a Brownian motion. This willhappen to be a beautiful appli
ation of the strong Markov property. To set notations,write (Ω0,F0) for C(R+,R), equipped with its Borel σ-algebra, X for the 
oordinate80We have ∫ x2

1|x|61Λ(dx) <∞.



74 ADVANCED PROBABILITYpro
ess and P0 for Wiener measure on (Ω0,F0). Write also R for the Borel σ-algebra of
R+.Theorem 114 (Brownian motion as the father of all 
ontinuous martingales). Let (Mt)t>0be a 
ontinuous martingale de�ned on some probability spa
e (Ω,F ,P) and starting from
0. Then one 
an de�ne on (Ω0×Ω,F0⊗F ,P0⊗P

) a Brownian motion B and a measurabletime 
hange φ : (t, ω0, ω) 7→ φt(ω0, ω) ∈ R+ on (R+ × Ω0 × Ω,R⊗F ′ ⊗ F
) su
h that forea
h t > 0 we have P0 ⊗ P-almost-surely

Mt(ω) = Bφt(ω0, ω)(ω0, ω).In this sense, M appears as a random time-
hange of a Brownian motion.It will be useful to introdu
e the following notations where ǫ is any positive 
onstant,and where we use the 
onvention inf ∅ = +∞. Given a 
ontinuous fun
tion x = (xt)t∈[0,T ]de�ned on some interval [0, T ] and starting from 0, de�ne by indu
tion
Sx

1 (ǫ) = inf{t ∈ [0, T ] ; xt = ǫ}, Sx
n+1(ǫ) = inf{t ∈

[
Sx

n(ǫ), T
]
;
∣∣xt − xSx

n(ǫ)

∣∣ = ǫ}.Denote by Nx(ǫ) the biggest n > 1 for whi
h Sx
n(ǫ) < ∞ and set T x(ǫ) =

{
Sx

n(ǫ) ; n =

1..Nx(ǫ)
}. Note the in
lusions(12.1) T x

( ǫ
2

)
⊂ T x(ǫ).Proof � 1) The proof rests on the following simple observation. Let x = (xt)t>0 be a 
on-tinuous real-valued path for whi
h all the Sn(ǫ) are �nite, whatever n > 1 and ǫ > 0. Let

y = (yt)t∈[0,T ] be a non-
onstant 
ontinuous fun
tion de�ned on some interval [0, T ]; provided
ǫ0 > 0 is small enough, the 
olle
tion of times T y(ǫ) is non-empty for 0 < ǫ 6 ǫ0.Lemma 115. One 
an 
onstru
t a fun
tion xy and a 
ontinuous non-de
reasing time 
hange
φ from [0, T ] to [0, φ(T )

] su
h that
xy(s) = yt, if s = φ(t),and φ(Sy

n(ǫ)
)

= Sx
n(ǫ), for ǫ small enough and n ∈

{
1, ..,Ny(ǫ)

}.Proof � Taking ǫ of the form 2−p, there exists a unique 
ontinuous pie
ewise linear map
φp for [0, T ] to R+ su
h that

• φp(0) = 0, φp

(
Sy

n(2−p)
)

= Sx
n(2−p), and

• φp(t) = c+ t, for some 
onstant c and t > Sy
Ny(2−p)

(2−p).We de�ne a 
ontinuous fun
tion xp on [0, φp(T )
] setting

xp(s) = yt, if s = φp(t).Note that due to the in
lusion (12.1), for ea
h p0 and n ∈ {1, ..,Ny(2−p0)}, the sequen
eof times {φp

(
Sy

n(2−p0)
)}

p>0
is 
onstant for p > p0. Using the 
ontinuity of x and y,it is then a simple thing to prove that the sequen
e of time 
hanges (φp)p>0 
onvergesuniformly to some non-de
reasing time 
hange φ : [0, T ] →

[
0, φ(T )

]. Che
k that thefun
tion xy de�ned on [0, φ(T )
] by the formula

xy(s) = yt, if s = φ(t)has the desired properties. ⊙



ADVANCED PROBABILITY 752) Re
all we denote by X the 
oordinate pro
ess on Ω0 and that it is a Brownian motionunder Wiener measure P0. So almost-all paths X(ω0) have all their Sn(ǫ) �nite. Applyinglemma 115 to x = X(ω0) and y =
(
Mt(ω)

)
t∈[0,T ]

, we get a time 
hange φ : [0, T ] →[
0, φ(T )

] and a path (XM
s

)
s∈[0,φ(T )]

; this random path is de�ned on the probability spa
e(
Ω0 × Ω,F0 ⊗F ,P0 ⊗ P

).Lemma 116. The pro
ess (XM
s

)
s∈[0,φ(T )]

is a Brownian motion (de�ned on a randominterval).Proof � Noti
e �rst that, for 2−p small enough and n ∈
{
0, ..,NM (2−p)

}, we have by themartingale property of M
P
(
MSM

n+1(2−p) = MSM
n (2−p) ± ǫ

∣∣FSM
n (2−p)

)
=

1

2
.Denote the above {±1}-valued random variable by ǫpn and de�ne a new 
ontinuous path

X̂p requiring that
X̂p

. − X̂p
SX

n (2−p)
= ǫpn

(
X. −Xp

SX
n (2−p)

)on the interval [SX
n (2−p), SX

n+1(2
−p)
]. The pro
ess X̂p is by the strong Markov propertya Brownian motion. Note that X̂p

s = XM
s at all times s of the form SX

n (2−p). It followsfrom this fa
t that P0 ⊗ P-almost-surely the fun
tions X̂p 
onverge uniformly to XM onthe interval [0, φ(T )
]. As ea
h of them is a Brownian motion, the pro
ess XM is also aBrownian motion. ⊙Lemmas 115 and 116 together prove the representation theorem, up to the measurabilitystatements. These 
an be proved examining the above 
onstru
tion, and are not reallyimportant for us. �You will see an improved (and more sophisti
ated) version of that result in the 
ourseon sto
hasti
 
al
ulus: there exists an (FM

t )t>0-adapted random time 
hange 〈M〉t and aBrownian motion B (with respe
t to some other �ltration) su
h that Mt = B〈M〉t for all
t > 0.12.2. Representation of general martingales. Although getting a proper des
riptionof the stru
ture of the most general martingales would require the introdu
tion of new
on
epts, we have all the tools needed to understand this stru
ture perfe
tly. In the sameway as a C1 fun
tion from R to R is in�nitesimally well-approximated by its tangentline (so well that we 
an re
over the fun
tion from the family of its tangents: f(t) =

f(0)+
∫ t

0
f ′(s) ds), any 
àdlàg martingaleM is in�nitesimally well-approximated by a Lévypro
ess. Roughly speaking, at ea
h time t there exists a random Lévy triple (0, σ2

t ; Λt),measurable with respe
t to Ft, su
h that the martingaleM is δt-
lose to the 
orrespondingLévy pro
ess over the time interval [t, t+δt]. To get the martingale property at time t+δtwe ask the measure Λt to be symmetri
.As we have seen, Lévy pro
esses with Lévy triples (b, σ2 ; Λ) are 
hara
terized by theidentity E[eiλXt ] = egt(λ), where
gt(λ) = iλbt− λ2σ2t

2
+

∫ (
eiλx − 1 − ix1|x|61

)
tΛ(dx);by the independen
e of the in
rements, this holds i� exp(iλXt)/ exp
(
gt(λ)

) is a martingale.The above �in�nitesimal� euristi
s gets a proper rephrasing in the following statement.



76 ADVANCED PROBABILITYTheorem 117 (
f. [JS03℄, Chap. II, �2). Given any 
àdlàg martingale (Mt)t>0 thereexists an adapted pro
ess (σ2
t )t>0 and an adapted random measure-valued pro
ess (Λt)t>0su
h that (0, σ2

t ; Λt) is a Lévy triple for all t > 0, the measures Λt are symmetri
, andthe pro
ess
exp(iλMt)/ exp

(
ψt(λ)

)is a martingale, where ψt(λ) = −λ2σ2
t

2
+
∫ (
eiλx − 1 − ix1|x|61

)
Λt(dx). There is only onesu
h pro
ess (0, σ2

t ; Λt), t > 0, whi
h is previsible.In short, a 
ontinuous time pro
ess (t, ω) ∈ R+ × Ω 7→ Yt(ω) is said to be previsibleifdef it is measurable with respe
t to the σ-algebra on R+ × Ω generated by the adapted
ontinuous pro
esses. Allowing general (previsible) Lévy triples (bt, σ
2
t ; Λt) in the abovedes
ription leads to the 
lass of semi-martingales, whi
h is the good 
lass of pro
essesto 
onsider when 
onstru
ting the theory of sto
hasti
 integration. You will 
ertainlyen
ounter it under a di�erent 
ostume: (Yt)t>0 is a semi-martingale ifdef one 
an �nd anadapted pro
ess A with �nite variation, an in
reasing sequen
e of �nite stopping times

T n, and a sequen
e (Mn)06t6T n of 
losed martingales su
h that
∀n > 0, ∀ t 6 T n, Yt = Mn

t + At.But this is the beginning of another story...



ADVANCED PROBABILITY 7713. Comments and exer
isesReferen
es. The book [Chu02℄ of Kai Lai Chung will give you a ni
e view on Brownianmotion. Rogers and Williams' book, [RW00℄, as always, is re
ommended.You will �nd interesting material on Lévy pro
esses in Krylov's book [Kry02℄. You willalso �nd in the �rst 
hapter of Sato's book [Sat99℄ useful and basi
 informations on Lévypro
esses.To be written: Comments on the �Poisson random measure� approa
h to Lévy pro-
esses.13.1. Exer
ises. B denotes a real-valued or Rd-valued Brownian motion 
onstru
ted on someprobability spa
e (Ω,F ,P); the distribution of x+X is denoted by Px.1. Kolmogorov's 0−1 law. This exer
ise is the 
ompanion to exer
ise 8 of example sheet 2. Let uswork in Rd. De�ne the tail σ-algebra : T =
⋂

t>0 σ(Bs+t ; s > 0). Using the inversion propertyof Brownian motion and Blumenthal's 0− 1 law, prove that all the events of T are trivial under
P.2. Let A be an open subset of the (d − 1)-dimensional sphere and U the 
one {ta ; a ∈ A, 0 6

t 6 ε} of vertex 0 (for some ε > 0). Prove that the hitting time τU = inf{t > 0 ; Bt ∈ U} of Ufor a Brownian motion starting from 0 is almost-surely equal to 0. This result is useful to solveDiri
hlet problem by the probabilisti
 method in 
on
rete 
ases as it ensures that all points of theboundary of an open set O are regular if any point of ∂O is the vertex of a 
one 
ontained in Oc.3. Using the martingale property of Brownian motion, prove that we have for any positive a, b
P(H−a < Hb) =

b

b+ a
and E[H−a ∧Hb] = ab.4. Let B be a real-valued Brownian motion and σ ∈ R.a) Show that the pro
ess (eσBt−σ2

2
t
)
t>0

is a martingale with respe
t to the �ltation of B.b) Dedu
e, by di�erentiating with respe
t to σ, that the following pro
esses are also martin-gales: (B2
t − t

)
t>0

,
(
B3

t − 3tBt

)
t>0

,
(
B4

t − 6tB2
t + 3t2

)
t>0

.5. Given c ∈ R, the pro
ess Bc
t = Bt + ct, is 
alled the Brownian motion with drift c. For �xed

x > 0 and −a < 0 < b, set Hc
x = inf{t > 0 ; Bc

t = a}.a) Fix λ > 0. Under whi
h 
onditions on θ ∈ R is the pro
ess exp
(
θBc

t − λt
) a martingale?b) Supposing θ 
hosen appropriately, dedu
e from a) that

E
[
e−λHc

x
]

= exp
(
−x
√
c2 + 2λ− c

)
,and so, that the distribution of Hc

x has density x√
2πt3

exp
(
− (x−ct)2

2t

). Is it surprising?
) Con
lude that
P(Hc

x <∞) = 1 if c > 0, and e−2|c|x if c < 0.6. a) Given a > 0, set Ha = inf{s > 0 ; Bs = a}. Prove that the distribution of Ha has adensity with respe
t to Lebesgue measure on R+, equal to a
(2πt3)1/2 exp

(
−a2

2t

).b) Prove that the pro
ess of hitting times (Ta)a>0 has stationnary independent in
rements.Is it a Lévy pro
ess?7. Given any a > 0, set Sa = inf{t > 0 ; Bt > a} and Ta = inf{t > 0 ; Bt > a}.a) Prove that Sb and Tb are almost-surely equal.



78 ADVANCED PROBABILITYb) Let L be a non-negative random time independent of the �ltration generated by B. Provethat the event {TL 6= SL} is measurable and P(TL 6= SL) = 0.
) Find a random time L for whi
h P(TL = SL) = 0.8. O

upation time. Let D be an open ball of Rd and x be any starting point for Brownianmotion.a) Prove that Px

(∫∞
0 1D(Bt) dt = ∞

)
= 1, if d = 1 or 2.b) Prove that Ex

[∫∞
0 1D(Bt) dt

]
<∞, for d > 3.9. Let B = (B1, B2) be a 2-dimensional Brownian motion starting from the point with 
oordi-nates (1, 0). Setting T = inf{t > 0 ; B2

t = 0}, what is the law of B1
T ?10. Let B be here an Rd-valued Brownian motion, r > 0 and x ∈ Rd with ‖x‖ < r. Set

H = inf{s > 0 ; ‖Bs‖ = r}. Prove that Ex[T ] = r2−‖x‖2

d .11. Uniqueness in Diri
hlet problem. Let O be a bounded open set and g be a solution to Diri
hletproblem, with 
ontinuous boundary 
ondition f . Prove that
max
x∈O

g(x) = max
y∈∂O

g(y)
(
= max

y∈∂O
f(y)

)
.Con
lude that the Diri
hlet problem has at most one solution.12. Let N be a Poisson pro
ess of intensity λ. Prove that the number of jumps of N by time

t > 0 is a Poisson random variable with parameter λt.13. Prove that a Poisson pro
ess is a Lévy pro
ess.14. A Poisson pro
ess of rate λ is observed by someone who believes that the �rst holding timeif longer than all the other holding times. How long on average will it take before the observeris proved wrong?15. Let N be a Poisson pro
ess of intensity λ. Given any time t > 0, denote by Tt = inf{s >

t ; Ns 6= Nt} the next jump time after time t.a) Prove that we have almost-surely Tt > t.b) Prove that Tt − t is exponentially distributed, with parameter λ. This is surprising as theinterval [t, Tt−t] is 
ontained in one of the intervals between jumps, all of whi
h are exponentiallydistributed, with parameter λ(!). Can you explain that paradox?16. Is the sum of two Lévy pro
esses always a Lévy pro
ess?17. Can a pro
ess with stationnary and independent in
rements not be a Lévy pro
ess?18. Given a Lévy pro
ess X, set ∆Xt := Xt −Xt− . Prove that we have almost-surely ∆Xt = 0for any �xed t > 0, so Lévy pro
esses do not have jumps at �xed times. This result generalizesthe 
orresonding result for Poisson pro
esses proved in question a) in the exer
ise 15.19. Let X be a Lévy pro
ess with jump measure ΛX of �nite mass.a) Prove that X has almost-surely �nitely many jumps in any bounded interval of time.b) Denote by (∆X)n the nth jump of X, and let (ǫn)n>1 a 
olle
tion of independent Bernoullirandom variables , with parameter p ∈ (0, 1), independent of X. Let Y be the pro
ess obtainedfrom X by removing from X all the jumps of X for whi
h ǫn = 0, at the time when they o

ur:If X has made nt jumps by time t we have Yt = Xt −
∑nt

j=1(1 − ǫj)(∆X)j . The pro
ess Y is
àdlàg . Prove that Y is a Lévy pro
ess and �nd its jump measure ΛY .20. Using the same method as was used for Brownian motion in the 
ourse, state and prove thestrong Markov property for a Lévy pro
ess.



ADVANCED PROBABILITY 7921. Using the same method as in exer
ise 19 in example sheet 2, prove that the �ltrationgenerated by a Lévy pro
ess, 
ompleted with null sets, is 
ontinuous on the right.22. a) Prove that a Lévy pro
ess 
an always be written as the sum of two independent Lévypro
esses.b) Dedu
e from a) and exer
ise 17 that a Lévy pro
ess is almost-surely 
ontinuous i� it is aBrownian motion with drift. 14. Complement to Part III14.1. Complement: In�nite sums of in�nitesimal independent random vari-ables. As is 
lear from the de�nition of a Lévy pro
ess X, the random variable X1 
anbe de
omposed for all n > 1 as a sum of n iid random variables: X1 =
∑n

k=1

(
X k

n
−X k−1

n

).Random variables whi
h have this property are 
alled in�nitely divisible. The proof ofLévy-Khin
hin's formula 
an be 
opied word by word to prove that any in�nitely divis-ible random variable has a 
hara
teristi
 fun
tion of the form eg(λ) for a Lévy-Khin
hinfun
tion g. Rather than using the measure Λ with support in R∗ we shall use the measure
µ and the �drift� b obtained initially in formula (11.1), out of whi
h Λ was derived byisolating the mass at 0. With this formalism, Lévy triples be
ome Lévy pairs (b ;µ). Thefollowing stability property is worth being noted.Lemma 118. If a sequen
e of in�nitely divisible random variables 
onverges weakly thenits weak limit is in�nitely divisible.Proof � Let ϕ be the 
hara
teristi
 fun
tion of the weak limit of a sequen
e of in�nitelydivisible random variables, with 
hara
teristi
 fun
tions ϕ(k). As ea
h ϕ(k) =

{
ϕ

(k)
n

}n, forsome 
har
ateristi
 fun
tion ϕ(k)
n , the fun
tions ∣∣ϕ(k)

∣∣ 2
n are 
hara
teristi
 fun
tions81. Sin
ethey 
onverge to the 
ontinuous fun
tion |ϕ| 2

n as k → ∞, the latter is a 
hara
teristi
fun
tion, by Lévy's 
ontinuity theorem; so |ϕ|2 is in�nitely divisible, as n is arbitrary. Assu
h, it 
annot vanish, and ϕ 
annot either. All the fun
tions ϕ 1
n = lim

k→∞

{
ϕ

(k)
n

} 1
n are thuswell-de�ned 
hara
teristi
 fun
tions (as they are 
ontinuous at 0), whi
h proves the 
laim.

�Definition 119. By a triangular array we mean a sequen
e of �nite 
olle
tions{
Xnk ; 1 6 k 6 k(n)

} of independent random variables.Set Sn = Xn1 + · · · + Xnk(n). We are going to prove that Sn 
onverges to an in�nitedivisible random variable under quite general 
onditions.Assumptions. • All the random variables Xnk are in L2,
• sup

16k6k(n)

Var(Xnk) −→
n→∞

0,
• ∑k(n)

k=1 Var(Xnk) is bounded above by a 
onstant independent of n, say C.It will be 
onvenient to denote by µnk the law ofXnk and by µnk the law of the re
enteredrandom variable Xnk − E[Xnk].81Denote by X(k)
n a random variable whose distribution has 
hara
teristi
 fun
tion ϕ(k)

n , and let X̂(k)
n bean independent 
opy of −X(k)

n . Then ∣∣ϕ(k)
∣∣ 2

n is the 
hara
teristi
 fun
tion of X(k)
n + X̂

(k)
n .



80 ADVANCED PROBABILITYProposition 120. The random variables Sn 
onverge weakly i� the sequen
e of in�nitedivisible laws with exponent
ψn(λ) =

k(n)∑

k=1

(
iλE[Xnk] +

∫
(eiλx − 1)µnk(dx)

)
onverges, in whi
h 
ase the two limits are equal.Proof � Write ϕnk(λ) for the 
hara
teristi
 fun
tion of Xnk − E[Xnk], and set ank(λ) =
ϕnk(λ) − 1 =

∫
(eiλx − 1)µnk(dx). We have

ϕSn(λ) = eiλ
Pk(n)

k=1 E[Xnk]

k(n)∏

k=1

ϕnk(λ) = eiλ
Pk(n)

k=1 E[Xnk ]

k(n)∏

k=1

(
1 + ank(λ)

)
.Note that sin
e ∫ xµnk(dx) = 0, one 
an write ank(λ) =

∫ (
eiλx − 1 − iλx

)
µnk(dx). Asthe absolute value of the integrand is bounded above by λ2x2

2 , the estimate ∣∣ank(λ)
∣∣ 6

λ2

2 Var(Xnk) follows and shows that ank(λ) 
onverges to 0, uniformly for λ in a 
ompa
t.The statement is then obtained dire
tly from the following inequalities and our assumptions.
∣∣∣logϕSn(λ) −

k(n)∑

k=1

(
iλE[Xnk] + ank(λ)

)∣∣∣ =
∣∣∣
k(n)∑

k=1

(
logϕnk(λ) − ank(λ)

)∣∣∣

6

k(n)∑

k=1

∑

k>2

∣∣ank(λ)
∣∣p

p
6

1

2

k(n)∑

k=1

∣∣ank(λ)
∣∣2

1 −
∣∣ank(λ)

∣∣

6 max
k=1..k(n)

∣∣ank(λ)
∣∣

k(n)∑

k=1

∣∣ank(λ)
∣∣ 6

λ2

2
C max

k=1..k(n)

∣∣ank(λ)
∣∣.

�This statement brings ba
k the study of the behaviour of Sn to the study of a sequen
e ofin�nite divisible random laws. Denote by (bn ; νn) the Lévy pair asso
iated to the exponent
ψn 
onstru
ted in proposition 120. We shall write ID(b ; ν) for a generi
 in�nitely divisiblerandom variable with Lévy pair (b ; ν).Theorem 121. The random variables Sn 
onverge weakly to some in�nite divisiblerandom variable with Lévy pair (b ; ν) i�(1) the measures νn 
onverge weakly to ν,(2) bn 
onverges to b.Before proving this statement let us single out the following two important pra
ti
al 
ases.Corollary 122 (Convergen
e to normal and Poisson laws). • The random variables
Sn 
onverge weakly to a normal random variable i� b = 0 and for all ǫ > 0 we have∑k(n)

k=1

∫
|x|>ǫ

x2 µnk(dx) −→
n→∞

0 and ∑k(n)
k=1

∫
|x|<ǫ

x2 µnk(dx) −→
n→∞

1,
• Suppose ∑k(n)

k=1 E[Xnk] −→
n→∞

λ and ∑k(n)
k=1 Var(Xnk) −→

n→∞
λ. Then Sn 
onverge weaklyto a Poisson random variable i� for all ǫ > 0 we have ∑k(n)

k=1

∫
|x−1|>ǫ

x2 µnk(dx) −→
n→∞

0.Proof � A

ording to proposition 120, everything amounts to prove that ID(bn ; νn) 
onvergesweakly to ID(b ; ν) i� νn 
onverges weakly to ν and bn 
onverges to b. Denote by ψ(λ) the
hara
teristi
 exponent of ID(b ; ν). The impli
ation ⇐ is obvious sin
e the 
hara
teristi
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tion of ID(bn ; νn) 
onverges to the 
hara
teristi
 fun
tion of ID(b ; ν) in that 
ase82, soLévy theorem on 
hara
teristi
 fun
tions applies.To prove the 
onverse impli
ation, note that sin
e the weak 
onvergen
e of ID(bn ; νn) toID(b ; ν) implies the 
onvergen
e of their 
hara
teristi
 fun
tions, uniformly on boundedintervals, ψn 
onverges to ψ in that sense. We now play the same game as in the proof ofthe uniqueness of Lévy-Khin
hin's representation. Namely, de�ne
ρ(λ) =

∫ 1

−1

(
ψ(λ) − ψ(λ+ s)

)
ds = 2

∫
eiλx

(
1 − sinx

x

)1 + x2

x2
ν(dx),and ρn by a similar formula. As ρn 
onverges uniformly on 
ompa
ts to ρ the measures (1−

sin x
x

)
1+x2

x2 νn(dx) 
onverge weakly to the measure (1 − sin x
x

)
1+x2

x2 ν(dx), by Lévy's theorem.Sin
e the integrand is 
ontinuous and bounded away from 0 the measures νn themselves
onverge weakly to ν. The 
onvergen
e of bn to b follows. �15. Solutions to the exer
ises15.1. Exer
ises on part I. 4. a) Suppose there exists a probability spa
e (Ω,F ,P) anda 
olle
tion of real-valued random variables X = (Xt)t∈T de�ned on (Ω,F) whi
h form aGaussian pro
ess. Their distribution Q is a probability measure on the produ
t spa
e RT ,equipped with its produ
t σ-algebra. As the 
lass of elementary events {x ∈ RT ; xt1 ∈
A1, . . . , xtn ∈ An}, for some 1 6 n < ∞, t1, . . . , tn ∈ T and A1, . . . , An Borel sets of R,is a π-system generating the produ
t σ-algebra, Q is entirely determined by its values onthese elementary sets. Fixing n and t1, . . . , tn,

Q(x ∈ RT ; xt1 ∈ A1, . . . , xtn ∈ An) = P(ω ∈ Ω ; Xt1(ω) ∈ A1, . . . , Xtn(ω) ∈ An).Now, the distribution of the Rn-valued random variable (Xt1 , . . . , Xtn) is 
hara
terizedby its Fourier transform, so if we know E
[
ei

P
k=1..n ckXtk

] for all ci ∈ R, we (formally)know P(Xt1 ∈ A1, . . . , Xtn ∈ An) for all A1, . . . , An. This is pre
isely the 
ase as
E
[
ei

P
k=1..n ckXtk

]
= eim(c1,...,cn)−σ2(c1,...,cn)

2 is determined by the mean and 
ovarian
e fun
-tions m(·) and σ2(·) respe
tively. As n > 1 and t1, . . . , tn are arbitrary we are done.b) Let denote by (Ω,F ,P) the produ
t spa
e RN with the produ
t probabilityN (0, 1)⊗N.Note �rst that as the random variables Gn are independent we have for any 1 6 p <
q <∞

∥∥∥
q∑

n=p

hnGn

∥∥∥
2

=

q∑

n=p

(hn)2,the sequen
e (∑q
n=0 h

nGn

)
q>0


onverges in L2(P), so the random variableXh =
∑

n>0 h
nGnis well-de�ned in L2(P) and almost-surely, and has null mean. From the independen
e ofthe Gn: E[XhXh′] =

∑
n>0 h

n(h′)n = (h, h′).
) (i) Pi
k 0 6 s1 < s2 < · · · < sn. As the random ve
tor (Bs1 , Bs2 − Bs1, · · · , Bsn −
Bsn−1) =

(
X1[0,s1]

, X1(s1,s2]
, · · · , X1(sn−1,sn]

) is a Gaussian ve
tor, its 
omponents are inde-pendent i� it has diagonal 
ovarian
e matrix, i.e. i�
E
[
X1(si−1,si]

X1(sj−1,sj ]

]
= 0for i 6= j, whi
h holds sin
e the expe
tation equals ∫ 1(si−1,si](x)1(sj−1,sj ](x) dx = 0.82Re
all the fun
tion f(λ, x) appearing in Lévy-Khin
hin's formula is 
ontinuous and bounded.
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[
|Bt − Bs|4

]
= |t− s|2, Kolmogorov's regularity 
riterion applies.(iii) This modi�
ation retains the �nite dimensional properties of the original pro
ess,so it has 
ovarian
e E[BsBt] = min(s, t). Question a) shows that this property 
hara
ter-izes Brownian motion amongst the Gaussian pro
esses.(iv) Che
k that X is 
entered, Gaussian, with the above 
ovarian
e fun
tion. The onlynon-trivial point is the 
ontinuity at 0 of the pro
ess Bt := tX1/t. Sin
e B is almost-surely
ontinuous on (0,∞) one 
an des
ribe the event {B →

t↓0
0} in terms of 
onditions on thevalues of B at 
ountably many points of (0,∞). But B and X being Gaussian, withthe same 
ovarian
e and the same value at time 1, they have the same law on (0,∞); so

P
(
Bt →

t↓0
0
)

= P
(
Xt →

t↓0
0
)

= 1.5. a) As the 
omplementary set of an open set if a 
losed set, the 
olle
tion C is stableby 
omplementation; it 
ontains [0, 1]. Let ǫ > 0 be given, (Bn)n>0 be a sequen
e ofdisjoint elements of C and, for ea
h n > 0, let On (resp. Cn) be an open (resp. 
losed) set
ontaining (resp. 
ontained in) Bn, with P(On\Bn) 6 ǫ 2−n and P(Bn\Cn) 6 ǫ 2−n. Pi
k
N large enough to have P

(⋃
n>0Bn\

⋃N
n=0Bn

)
= P

(⋃
n>N+1Bn

)
6 ǫ. The set ⋃N

n=0Cn is
losed and
P
(⋃

n>0

Bn\
N⋃

n=0

Cn

)
6 P

( ⋃

n>N+1

Bn

)
+ P

( N⋃

n=0

Bn\
N⋃

n=0

Cn

)
6 ǫ+ P

( N⋃

n=0

(Bn\Cn)
)

6 ǫ+
N∑

n=0

ǫ 2−n 6 3 ǫ.Also, the set ⋃n>0On is open and
P
(⋃

n>0

On\
⋃

n>0

Bn

)
6 P

(⋃

n>0

(On\Bn)
)

6
∑

n>0

P(On\Bn) 6 2 ǫ.As ǫ > 0 is arbitrary, this proves that ⋃n>0Bn ∈ C, from whi
h it follows that C is a
σ-algebra.b) Trivially, intervals are in C, so the σ-algebra they genearate is in
luded in C. This
σ-algebra is Bor, whi
h proves the inner and outer regularity of P.6. a) Re
all that (Xn)n>0 
onverges weakly to X i� E

[
f(Xn)

]
→ E

[
f(X)

] for anybounded uniformly 
ontinuous fun
tion f (2nd statement of Alexandrov's 
hara
teriza-tion). For su
h an f we have for ea
h ǫ > 0
∣∣E
[
f(Xn) − f(X)

]∣∣ 6 E
[
2‖f‖∞1|Xn−X|>ǫ

]
+ E

[∣∣f(Xn) − f(X)
∣∣1|Xn−X|<ǫ

]

6 2‖f‖∞ P
(
|Xn −X| > ǫ

)
+ oǫ(1),by the uniform 
ontinuity of f . The upper bound 
onverges to oǫ(1) as n goes to in�nity,whi
h 
an be made arbitrarily small by 
hoosing small ǫ.b) Let X be equal to 0 or 1 with equal probability, and Xn = X for all n > 1. Then

Xn has the same distribution as 1 −X but does not 
onverge to 1 −X in probability.
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e (µn)n>0 
onverging to µ in Bb(R)∗ also 
onverges to µ in Cb(R)∗. The
onverse does not hold: δ 1
n

onverges to δ0 in Cb(R)∗ but not in Bb(R)∗ sin
e we have

0 =
(
1[−1,0], δ[

1
n
]
)
6=
(
1[−1,0], δ0

)
= 1, for all n > 0.8. Again, we use here as in exer
ise 6 the fa
t that (µn)n>0 
onverges weakly to µ i� theintegrals (f, µn) 
onverge to (f, µ) for all bounded uniformly 
ontinuous fun
tions f .Suppose this 
onvergen
e holds a priori only for all 
ontinuous fun
tions with 
ompa
tsupport, and let f be a bounded uniformly 
ontinuous fun
tions. Pi
k ǫ > 0 and let

0 6 φ 6 1 be a fun
tion with 
ompa
t support, equal to 1 in an interval [−M,M ], bigenough so that we have (φ, µ) > 1 − ǫ, and so ((1 − φ), µ
)

6 ǫ. Then
∣∣(f, µn) − (f, µ)

∣∣ 6
∣∣(fφ, µn) − (fφ, µ)

∣∣+
∣∣((1 − φ)f, µn

)
−
(
(1 − φ)f, µ

)∣∣The �rst term on the rhs 
onverges to 0 sin
e fφ has 
ompa
t support. The se
ond termis bounded above by
‖f‖∞

(
(1 − φ, µn) + (1 − φ, µ)

)
6 ‖f‖∞

(
1 + ǫ− (φ, µn)

)
.As (φ, µn) → (φ, µ) > 1 − ǫ, the upper bound is smaller than 2ǫ ‖f‖∞ for n big enough.9. Using the almost-sure representation of weak 
onvergen
e, one 
an write φn(λ) =

E
[
eiλXn

] and φ(λ) = E
[
eiλX

], for some random variables Xn with law µn and X with law
µ, de�ned on some probability spa
e ([0, 1], a
tually!), with Xn 
onverging almost-surelyto X. Given M > 0 and ǫ > 0, η > 0, we have |Xn − X| 6 ǫ

M
on a set of probabilitybigger than 1 − η, for n > N(ǫ, η). So

sup
λ∈[−M,M ]

|φn(λ) − φ(λ)| = sup
λ∈[−M,M ]

∣∣E
[
eiλXn − eiλX

]∣∣

6 sup
λ∈[−M,M ]

E
[∣∣eiλXn − eiλX

∣∣1|λXn−λX|6ǫ

]
+ 2η

6 2 sin
ǫ

2
+ 2η,for n > N(ǫ, η). The result follows as ǫ > 0 and η > 0 are arbitrary.10. Suppose the family (µn)n>0 tight and asso
iate to any ǫ > 0 an Mǫ > 0 su
h that

µn

([
−Mǫ,Mǫ

])
> 1 − ǫ, for all n > 0. Then

∣∣φn(λ) − 1
∣∣ 6

∣∣∣E
[(
eiλXn − 1

)
1[−Mǫ,Mǫ

]
]∣∣∣+ 2ǫ.For λ 6

η
Mǫ

, we have (eiλXn − 1
)
1[−Mǫ,Mǫ

] 6 2 sin η
2
, from whi
h the result follows.Re
ipro
ally, if the φn's are equi
ontinuous at 0, use formula just before the proof oftheorem 29 to 
on
lude that the family (µn)n>0 of probabilities is tight.11. We pro
eed in steps, proving �rst the statement for an iid sequen
e (Un)n>0 ofuniformly distributed random variables. Given t ∈ [0, 1], the random variables 1Xn6t areiid. The SLLN gives in that 
ase the almost-sure 
onvergen
e F̂n(t) → E

[
1U06t

]
= t. Asa �nite interse
tion of events of probability 1 has probability 1, we have almost-surely

sup
t∈F

∣∣F̂n(t) − t
∣∣→ 0



84 ADVANCED PROBABILITYfor any �nite family F of elements of [0, 1]. Now, by monotono
ity of F̂n, and given sometimes 0 = t0 < t1 < · · · < tp = 1,
sup

t∈[0,1]

∣∣F̂n(t) − t
∣∣ 6 max

k∈{0,··· ,p}

∣∣F̂n(tk) − tk
∣∣+ max

k∈{0,··· ,p−1}

∣∣tk+1−tk

∣∣.Sending n to in�nity and re�ning the partition, we get the result in that 
ase.To deal with the general 
ase, we use the representation of a random variable as theimage of a uniformly distributed random variable. Let G denote the distribution fun
tionof the 
ommon law of the Xn's. Set g(t) = sup {y ; G(y) < t}, so that g(Un) 6 x i�
Un 6 G(x), that is, the sequen
e (g(Un)

)
n>0

has the same law as (Xn)n>0. We are thusbrought ba
k to prove that we have almost-surely
sup
x∈R

∣∣∣ 1

n + 1

∑

k=0..n

1g(Un)6x −G(x)
∣∣∣→ 0As the lhs equals

sup
t∈[0,1]

∣∣F̂n(t) − t
∣∣by a 
hange of variable, this is 
lear.12. b) Using the almost-sure representation theorem for weakly 
onvergent sequen
es,one 
an write almost-surely by Taylor's theorem for C1 fun
tions

√
n
(
f(Xn)−f(m)

)
= f ′(m)

√
n(Xn−m)+

√
n o
(
|Xn−m|

)
= f ′(m)

√
n(Xn−m)+o

(√
n|Xn−m|

)
.As √

n(Xn − m) is almost-surely 
onverging to some random variable Y the rhs above
onverges almost-surely to f ′(m) Y , hen
e the statement.14. b) The appli
ation φ : x ∈ C
(
[0, 1],R

)
→ max

t∈[0,1]
xt is 
ontinuous. Denote by µn thelaw of Xn under P. All the µn's have support in the set {x ∈ C

(
[0, 1],R

)
; max

t∈[0,1]
xt = 1

},so the image measure of µn by φ is the Dira
 mass at 1. The image measure of the law of
X by φ is the Dira
 mass at 0, so (Xn)n>0 
annot 
onverge wakly to X by a).15. a) The ve
tor (X0

t1
, . . . , X0

tn , X1

) is Gaussian under P, with X1 ∼ N (0, 1). We 
he
kby a dire
t 
omputation that its 
ovarian
e matrix has the form (
A (0)
(0) 1

), for somesymmetri
 n × n matrix A. It follows that X1 is independent under P of the Rn-valuedGaussian random ve
tor (X0
t1 , . . . , X

0
tn

); in parti
ular
P
(
X0

t1
∈ A1, . . . , X

0
tn ∈ An

∣∣0 6 X1 6 ε
)

= P
(
X0

t1
∈ A1, . . . , X

0
tn ∈ An

)
,so X0 has under Pε the same �nite dimensional laws as X0 under P, that is P0. As the�nite dimensional distributions 
hara
terize uniquely the distribution it follows that thedistribution of X0 under Pε is independent of ε and equal to P0.b) Let now F be a 
losed set of (C([0, 1],R

)
, ‖·‖∞

), and F ǫ =
{
x ∈ C

(
[0, 1],R

)
; d(x, F ) 6

ǫ
} be the ǫ-beighbourhood of F ; this is a 
losed set, and ⋂ǫ>0 F

ǫ = F . As we have almost-surely |X0 −X| 6 ǫ under Pǫ, the random path X0(ω) is Pǫ-almost-surely in F ǫ if X(ω)is in F . So, �xing η and taking 0 < ǫ < η, we have
Pǫ(X ∈ F ) 6 Pǫ(X

0 ∈ F ǫ) 6 Pǫ(X
0 ∈ F η) = P(X0 ∈ F η).



ADVANCED PROBABILITY 85Send �rst ǫ to 0 to get
lim
ǫց0

Pǫ(X ∈ F ) 6 P(X0 ∈ F η),then send η to 0 (using monotone 
onvergen
e)
lim
ǫց0

Pǫ(X ∈ F ) 6 P
(
X0 ∈

⋂

ηց0

F η
)

= P(X0 ∈ F ).15.2. Exer
ises on part II. This se
tion was 
ontributed by Bati Sengul; thanks to himfor his work.1. a) We need to prove that we have E
[
h(V )1A

]
= E[g(U)1A], for ea
h A ∈ σ(U); anysu
h event is by de�nition of the form 1B(U), for some measurable subset B of R. UsingFubini's theorem, we have

E
[
h(V )1B(U)

]
=

∫

R

∫

R

fU,V (u, v)h(v)1B(u) dudv =

∫

R

1B(u)

∫

R

fU,V (u, v)h(v) dvdu

=

∫

R

1B(u)g(u)fU(u) du = E
[
g(U)1B(u)

]
.b) Consider

X := V − Cov(U, V )

V ar(U)
Uthen X is a 
entred Gaussian random variable, moreover

E[XU ] = E[UV ] − Cov(U, V )

V ar(U)
E
[
U2
]

= E[UV ] − Cov(U, V ) = 0hen
e X is independent of U , so E[X|σ(U)] = 0. Now
E
[
V |σ(U)

]
= E

[Cov(U, V )

V ar(U)
U +X

∣∣∣σ(U)
]

=
Cov(U, V )

V ar(U)
U.
) Let us prove more generally that any σ(U)-measurable almost-surely �nite randomvariable X is of the form f(U) for some measurable fun
tion f : R → R.Suppose �rst that X takes only �nitely many values x1, . . . , xn. As ea
h set Ai =

X−1
(
{xi}

) belongs to σ(U), it is of the form U−1(Bi) for some measurable Bi ⊂ R; the
Bi's are disjoint. Set f(x) = xi if x ∈ Bi for some i, and f(x) = 0 elsewhere. We 
he
kdire
tly that f(U) = X.For X > 0, we de�ne a σ(U)-measurable random variable setting

Xn =

n2n∑

j=0

j

2n
1X∈(j2−n,(j+1)2−n].As it takes only �nitely many values, it is of the form fn(U). Note that Xn ↑ X almost-surely. Set f = lim fn and f = f1f<∞ and 
he
k that f(U) = X as X is almost-surely�nite.2. The trivial 
ase k = 1 is obvious. So suppose that the statement holds for k, i.e.

P(T > kN) 6 (1 − ǫ)k.



86 ADVANCED PROBABILITYThen by using P(T > n+N |Fn) 6 1 − ǫ and the fa
t {T > (k + 1)N} ⊂ {T > kN} wehave that83
E[1T>(k+1)N ] = E[E[1T>(k+1)N |FkN ]]

= E[E[1T>(k+1)N1T>kN |FkN ]]

= E[1T>kNE[1T>(k+1)N |FkN ]]

6 E[1T>kN(1 − ǫ)] 6 (1 − ǫ)k(1 − ǫ).3. a) Work with Ω = C
(
R+,R

), the 
oordinate pro
ess and its �ltration (Ft)t>0, and set
Gt = {∅,Ω} for t 6 1, and Gt = Ft−1 for t > 1. Look at the hitting time of some level.b) For any b 6 a we have by the 
ontinuity of ω

{γa 6 b} = {ω ∈ Ω ; ωt > 0 for all t ∈ (b, a]} =
⋂

t∈(b,a]∩Q

{ω ∈ Ω ; ωt > 0} ∈ Fa.Next we show that {γa < t} /∈ Ft for t < a. Intuitively this fails ultimately be
auseat time t < a we 
annot dedu
e if γa has happened or not, given the path up to time t.More rigorously
{γa < t} = {ωs 6= 0 ∀s ∈ [t, a]} = {ωs 6= 0 ∀s ∈ [t, a] ∩ Q} =

⋂

s∈[t,a]∩Q

{ωs 6= 0}where we have used the 
ontinuity in the se
ond equality. Now the last part is not in Ftand hen
e {γa < t} /∈ Ft.4. b) Obviously we have that FS∧T ⊂ σ(FS,FT ). For the 
onverse noti
e �rst that
σ(FS, FT ) is generated by events in FS and FT , hen
e by the monotone 
lass theorem, itsu�
es to 
he
k that FS and FT are in
luded in FS∧T . Let A ∈ FS, then it su�
es toshow that A ∩ {S ∧ T > t} ∈ Ft for ea
h t > 0. Noti
e that

A ∩ {S ∧ T > t} = A ∩ {S > t} ∩ {T > t}.Now B := A ∩ {S > t} ∈ Ft, by de�nition of FS, and as T is a stopping time B ∩ {T >
t} ∈ Ft and hen
e A ∈ FS∧T . Similarly for A ∈ FT .5. Suppose that Xn → X in L1. Then by Markov's inequality Xn → X in probability:

P
(
|Xn −X| > ǫ

)
6 ǫ−1E

[
|Xn −X|

]
→ 0 as n→ ∞.Fix ǫ > 0, then there exists an N ∈ N su
h that E
[
|Xn − X|

]
< ǫ for n > N . Thesequen
e X,X1, ..., XN is �nite and hen
e uniformly integrable, so there exists a K > 0su
h that E

[
|Xn|1|Xn|>K

]
< ǫ for all n 6 N and E

[
|X|1[X|>K

]
< ǫ. For n > N we have

E
[
|Xn|1|Xn|>K

]
6 E

[
|Xn −X|1|Xn|>K

]
+ E

[
|X|1|Xn|>K

]
< ǫ+ E

[
|X|1|Xn|>K

]
.Then the se
ond term is small if P

(
|Xn| > K

) is small, uniformly in n. But then byMarkov's inequality and the fa
t that E[|Xn|] 6 E[|X|] + ǫ we have
P
(
|Xn| > K

)
6 K−1E

[
|Xn|

]
6 K−1(E

[
|X|
]
+ ǫ)whi
h 
an be made small by 
hoosing K large.83Here I will use the fa
t that 1T>(k+1)N1T>kN = 1T>(k+1)N .
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onverse suppose that Xn is UI and Xn → X in probability. Consider thefollowing approximation
E
[
|Xn−X|

]
6 E

[
|Xn−X|1|Xn−X|6K

]
+E
[
|Xn−X|1|Xn−X|>K

]
6 K+E

[
|Xn−X|1|Xn−X|>K

]
.Now by the uniform integrability the term on the RHS 
an be made small given that

P
(
|Xn − X| > K

) is small. Pi
k K = ǫ small and let n > N be su�
iently large su
hthat E
[
|Xn −X|1|Xn−X|>K

]
< ǫ.6. Suppose that P << Q then by the Radon-Nikodym theorem we have that P(A) =

EQ[X1A] where X ∈ L1(Q) and 0 6 X 6 1, so in parti
ular P(A) 6 Q(A).Conversely let Q(A) = 0, then for ea
h epsilon P(A) < ǫ, i.e. P(A) = 0.7. Suppose �rst that Q << P, then by the Radon-Nikodym theorem Q(A) = EP[X1A]for all A ∈ F with X ∈ L1(P) and 0 6 X 6 1. In parti
ular we have that Mn = E[X|Fn]and hen
e Mn is uniformly integrable.Suppose on the other hand that Mn is uniformly integrable (with respe
t to P), then
Mn 
onverges in L1(P) and a.s. to some M∞, so that Mn = E[M∞|Fn].8. The idea is to prove that T is independent of itself. To that end de�ne Fn :=
σ(Xk : k 6 n), then Fn is independent of σ(Xk : k > n) (as the random variables areindependent), and in parti
ular independent from T . This holds for all n ∈ N and hen
e
T is independent of F∞ :=

∨
n>1 Fn. However T ⊂ F∞ and hen
e T is independent ofitself. Now for any A ∈ T , we have that P(A) = P(A ∩ A) = P(A)P(A) so P(A) is either

0 or 1.The trivial 
ounterexample to when Xi are not independent is by 
onsidering Xi = Xfor some non-trivial random variable, then T = σ(X) whi
h is non-trivial.9. a) Let X ∈ F∞ be bounded, then Xn := E[X|Fn] makes sense and is bounded by thesame bound. Then by the martingale 
onvergen
e Xn → X in L1 and hen
e the result.b) By part a), the bounded elements of L1(F∞) are limit points of E[·|Fn] ∈
⋃

k>0 Fk.Now if X ∈ L1(F∞) is not bounded, then it 
an be approximated by bounded fun
tions.
) Kolmogorov's 0-1 Law: We have that for any A ∈ T
E[1A|Fn] → 1Aso as before A is independent of Fn, hen
e E[1A|Fn] = P(A).d) In the 
ase Fn is �nite, then

E[X|Fn] =
∑ E[X1An]

P(An)
1Anwhi
h is 
omputable. So then the limits also may be 
omputed expli
itly.(i) Suppose that the measure spa
e is separable. First note that L1(Fn) has 
ountablymany simple fun
tions with rational 
oe�
ients and they are dense. Now ⋃L1(Fn) has a
ountable dense subset. By using double approximation, this set is also dense in L1(F∞).10. a) Noti
e that Sn is a submartingale and STab

n is bounded and hen
e by the optionalstopping theorem
E[S0] = 0 6 E[STab

] = aP(Ta 6 Tb) + bP(Tb < Ta).



88 ADVANCED PROBABILITYThe equation above gives a lower bound
P(Tb < Ta) >

−a
b− a

.Now as a → −∞, Ta → ∞ and the right hand side 
onverges to 1, whi
h gives that
P(Tb <∞) > 1. From this it follows that both Tb and Tab are �nite.(i) Dire
t 
omputation shows that
E

[(
q

p

)Sn

−
(
q

p

)Sn−1

|Fn−1

]
= E

[(
q

p

)Sn−1
((

q

p

)Xn

− 1

)
|Fn−1

]
=

(
q

p

)Sn−1
(

E

(
q

p

)Xn

− 1

)
.It su�
es to 
he
k that E[(q/p)Xn] = 1:

E[(q/p)Xn] = p
q

p
+ q

p

q
= p + q = 1.The martingaleXn := (q/p)Sn is bounded by 1, hen
e we may apply the optional stoppingtheorem to obtain

E[X0] = 1 = E[XTab
] = (q/p)aP(Ta < Tb) + (q/p)bP(Tb < Ta).Rearranging the above gives that

P(STab
= a) = P(Ta < Tb) =

1 − (q/p)b

(q/p)a − (q/p)b
.(ii) Let Xn : Sn − n(p − q), then Xn is a martingale. Noti
e that XTab is bounded by

−a ∨ b, so by the optional stopping theorem
E[X0] = 0 = E[XTab

] = E[STab
] − (p− q)E[Tab].11. a) Let Xn

i be i.i.d Bernoulli {0, 2} with equal probability and Fn := σ(Xk
i : i >

1, k 6 n) then Zn :=
∑Zn−1

i=1 Xn
i . Then E[Zn|Fn−1] = Zn−1E[Xn

1 ] = Zn−1 so Zn is amartingale. The martingale Zn is positive so by the martingale 
onvergen
e theorem it
onverges to some Z∞ a.s. Now we show that the limit must be 0. For any k > 0 we havethat P(Zn+1 = k|Zn = k) = 1/2 and so
P(Zn = k; ...;Zn+N = k) 6 2−N .But now P(limZn = k) 6 2−N for ea
h N ∈ N.(ii) The 
onvergen
e again follows from non-negative martingale 
onvergen
e. First
onsider the 
ase µ < 1. Then we have that E[Zn] = µn and so

P(Zn > 0) =
∑

k>1

P(Zn = k) 6
∑

k>1

kP(Zn = k) = µn.By taking n→ ∞ we see that Zn = 0 a.s.Now for the 
ase µ = 1 we ignore the 
ase P(Z1 = 1) = 1 otherwise the result doesnot hold, nor do we have any interesting a
tivities. So then p := P(Z1 = 0) > 0 as theexpe
tation is 1. Following the idea as above, let k > 0, then we have instead
P(Zn = k; ...;Zn+N = k) 6 (1 − p)Nand hen
e P(limZn = k) whi
h is the union of events of the form {∀n > N,Zn = k} iszero.



ADVANCED PROBABILITY 89(iii) Let p = P(M∞ = 0). There are a possible number of 
ases to 
onsider. If p = 0or 1, then the result follows easily. If 0 < p < 1 then on the set {M∞ = 0}, Zn → 0and hen
e pZn → 1. On the set {M∞ > 0} we have that as µ > 1, Zn → ∞, now as
p < 1 this implies that pZn → 0. Thus pZn → 1M∞=0. Zn roughly behaves like M∞µnasymptoti
ally.
) First by the tower law

V ar[Zn] = E
[
V ar[Z2

n|Zn−1]
]

= E[Zn−1σ
2] = µn−1σ2so then V ar(Mn) = µ−n−1σ2 whi
h shows the bound in L2. An appli
ation of Cau
hy-S
hwartz gives that E[Zn1Zn>0]

2 6 P(Zn > 0)E[Z2
n] so that

P(Zn > 0) >
E[Zn]2

E[Z2
n]

=
µ2n

µn−1σ2 + µ2n
>

1

1 + σ2
> 0.Thus the probability of survival is stri
tly positive.12. Take {Xi}i>1 to be i.i.d. Bernoulli {0, 2}, i.e. P(Xi = 0) = P(Xi = 2) = 1/2.Consider Mn :=

∏n
i=1Xi, then we have that

E[Mn −Mn−1|Fn−1] = E
[
(Xn − 1)Mn−1|Fn

]
=
(
E[Xn] − 1

)
Mn−1 = 0so Mn is a martingale. Next noti
e that E[Mn] = 1 by the independen
e of the Xi, sothat Mn 
annot 
onverge in L1 to 0. On the other hand observe that

P(Mn 6= 0) =
n∏

i=1

P(Xi 6= 0) =
1

2nand hen
e by Borel-Cantelli Mn → 0 a.s.13. First as M is bounded in L1, it 
onverges in L1 to M∞. On the event {T = ∞},
MT = M∞ ∈ L1, and on the event {T < ∞}, by dominated 
onvergen
e E

[
|MT |

]
=

limt→∞ E
[
|MT∧t|

] and as |M | is a submartingale E
[
|MT∧t|

]
6 E

[
|Mt|

]
6 E

[
|M∞|

].For the 
ounterexample take Mt = Bt a standard Brownian motion and T := inf{t >

0 : Bt = 1}, then E[BT ] = 1 6= 0 = E[B0].14. Let Fn := σ([a, b) : a, b ∈ Dn), then Fn in
reases to F∞ whi
h is the Borelsigma-algebra. With this set up Mn is nothing but the proje
tion of f ′ on to Fn, i.e.
Mn = E[f ′|Fn]. Indeed for any [a, b) being a basi
 set in Fn, we have that ∫ b

a
f ′

n(x)dx =∫ b

a
f ′(x)dx. So now by Lévy's upward theorem Mn → E[f ′|F∞] = f ′ a.s and in L1 as f ′is 
ontinuous and hen
e Borel measurable.15. Let en be an orthonormal basis of H , we wish to show that ∑n

k=1 hkGk → Xh in L2and a.s., where Gk are i.i.d. normal and h =
∑
hnen. We have seen before that Xh ∈ L2.Let Fn := σ(G1, ..., Gn), then 
onsider the martingale Mn := E[Xh|Fn] =

∑n
k=1 hkGk.Now by theorem 72, the 
onvergen
e is a.s. as well.16. The Borel σ-algebra of C

(
[0, 1],R

) is generated by the 
oordinate pro
ess, withelementary events {Xt1 ∈ B1, . . . , Xtn ∈ Bn}, for 0 6 t1 < · · · < tn 6 1 and Bi mea-surable subsets of R. It is also generated by the events of the form A = {Xt1 − X0 ∈
C1Xt2 − Xt1 ∈ C2, . . . , Xtn − Xtn−1 ∈ Cn}, for Ci measurable subsets of R. Can youprove it? To prove that P1 is absolutely 
ontinuous with respe
t to P and �nd its Radon-Nikodym derivative, it su�
es then to 
ompare P1(A) and P(A). Using the indepen-den
e of the in
rements and their Gaussian nature, you 
an easily see that P1(A) =
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E
[
e−aXtn− a2t2n

2 1A

]
= E

[
e−aX1− a2

2 1A

], sin
e the pro
ess (e−aXt− a2t2

2

)
06t61

is a martingale.It follows that dP1

dP
= e−aX1− a2

2 .17. This is pretty mu
h the same argument as Corollary 79. Let P be the uniformmeasure on Gn, X be the 
oordinate map and Fk := σ(X1, ..., Xk). Then we are doneif we 
an estimate ∣∣E[f |Fk+1] − E[f |Fk]
∣∣. Noti
e that E[f |Fk] is the average of f on

{σ : σi = xi, i 6 k} so that moving between the two averages, the fun
tion f 
ould thenat most di�er by one 
hange of 
oordinate, and hen
e ∣∣E[f |Fk+1] − E[f |Fk]
∣∣ 6 1 as f isa 
ontra
tion. Hen
e by the Theorem 78, the result follows.18. The idea is to 
onstru
t a set whi
h 
an be determined by f(t) for any t > 0. So take

{f : inf{t > 0 : f(t) 6= f(0)} = 0}. Noti
e that
{f : inf

{
t > 0 : f(t) 6= f(0)

}
= 0} =

⋂

t>0

{
f : f(t) 6= f(0)

}
∈ Ftfor any t > 0. However this set 
annot be in F0 as this 
annot be determined by sets ofthe form {

f : f(0) ∈ A
}.19. a) Take A ∈ ∩n>1σ(G,Gn, ...) and 
onsider X := 1A − E[1A|G]. Now as E[X|G] = 0,

X is independent of G. By de�nition X ∈ σ(G,Gn, ...) for ea
h n > 1 and hen
e X ∈
σ(Gn, ...), therefore X ∈ ∩n>1σ(Gn, ...).84Then Kolmogorov's 0-1 law gives that X is 
onstant, but E[X] = 0, so X = 0 a.s. Inother words 1A = E[1A|G], i.e. there exists a set B ∈ G su
h that 1A = 1B a.s.b) By the independen
e of the in
rements Tn := σ

(
Bt+1/n − Bt+ 1

n+1

) are independentfrom ea
h other and from Gt. Then as Gt+ = ∩n>1σ
(
Gt, Tn, ...

) from the previous partwe have that Gt and Gt+ 
oin
ide up to null events. The result now follows as they both
ontain all the null events.15.3. Exer
ises on part III. 1. Set B̃t = tB1/t for t > 0 and B̃0 = 0. We know fromproposition 94 that B̃ is a Brownian motion. Also, as F eB0+ = T , Blumenthal's 0-1 lawapplied to B̃ shows that T is made up of trivial events for P. (They might be non-trivialfor a di�erent probability!)2. We pro
eed as in the proof of proposition 92, denoting by C the 
one. As the event
{τU = 0} ∈ F0+ , it su�
es to prove that P(τU = 0) > c for some positive 
onstant cto prove that it has probability 1, by Blumenthal's 0-1 law. Let ǫ > 0 be given. As
P(τU 6 ǫ) > P(Bǫ ∈ C) and the law of B is invariant by rotations, we have P(Bǫ ∈ C) =

|A|
(∫

e−r2/2ǫ

(2πǫ)d/2 1r6a r
d−1dr

)
= |A|

(∫
1u6aǫ−1/2

2−u2/2

(2π)d/2 u
d−1du

)
> c, where |A| is the surfa
eof A ⊂ Sd−1. Sending ǫ to 0 gives the 
on
lusion.3. We make the same reasonning as in exer
ise 10 in example sheet 2. Set T =

min{H−a, Hb} and write p for P(H−a < Hb). As the stopped pro
esses (Bt)t>T is abounded martingale, the optionnal stopping theorem gives us: 0 = p(−a) + (1 − p)b,hen
e the value of p. Use the martingale B2
t − t to 
ompute E[T ].4. b) Given 0 6 s < t and A ∈ Fs, we have E

[
eσBt−σ2

2
t
1A

]
= E

[
eσBs−σ2

2
s
1A

] forall σ. Expanding the exponential on both sides in power series of σ, use the fa
t that84This is true as the L2 is the sum of orthogonal 
omponents.
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E[B2k] =

∏k−1
p=0(2k−2p−1) (indu
tion) to justify the inter
hange of E and∑k. The term

E
[
(B2

t − t)1A

] appears as the 
oe�
ient of σ on the lhs and the term E
[
(B2

s − s)1A

] asthe 
oe�
ient of σ on the rhs. Their identi�
ation gives the martingale property of the�rst pro
ess as we 
an take any 0 6 s < t and A ∈ Fs. Look at the 
oe�
ients of σ2 and
σ3 to obtain the martingale property of the two other pro
esses.855. a) We need θ to satisfy λ− θc = θ2

2
, that is θ =

√
c2 + 2λ− c, sin
e it is positive.b) As the stopped martingale (eθBc

t−λt
)

06t6T
is bounded, the optionnal stopping the-orem implies: 1 = E

[
eθx−λHc

x
], hen
e the formula. We 
he
k that this fun
tion of λ > 0
oin
ides with the Lapla
e transform of the given density. As the Lapla
e transform
hara
terizes the distribution Hc

x has the mentionned density/
) It su�
es to let λ de
rease to 0.6. b) Re
all the strong Markov property: Given any �nite stopping time T , the pro
ess
(BT+t −BT )t>0 is a Brownian motion independent of FT . Apply it to Ta for some a > 0.The fa
t that it is a Brownian motion says that if b > a then Tb − Ta is distributed as
Tb−a, giving the stationnarity of the pro
ess (Ta)a>0. The independen
e of the in
rements
omes from the se
ond pie
e of information provided by the strong Markov property:the independen
e of (BT+t − BT )t>0 with respe
t to FT . Given a1 < a2 < · · · < an, astraightforward indu
tion enables to prove that the in
rements Ta2 − Ta1 , . . . , Tan − Tan−1are independent. It is not a Lévy pro
ess though, as it is not 
àdlàg but 
ontinuous onthe left with right limits. Prove it!7. a) We have Ta 6 Sa and Sa = Ta + inf{t > 0 ; Bt+Ta − BTa > 0}. The strong Markovproperty gives Sa = Ta, almost-surely.
) Take for L the time in [0, 1] where Bt is maximum. Prove that it is almost-surely
< 1. It follows that we have almost-surely SL > 1 and SL 6= TL.8. a) Set T0 = 0 and de�ne indu
tively Sn = inf{t > Tn−1 ; Bt ∈ D} and Tn = inf{t >

Sn ; Bt /∈ B(0, 2r)}. By the strong Markov property and the invarian
e of the law of Brow-nian motion by rotations, the random variables ∫ Tk

Sk
1D(Bs) ds are iid. As they have pos-itive mean, the strong law of large numbers gives ∫∞

0
1D(Bs) ds >

∑∞
n=0

∫ Tk

Sk
1D(Bs) ds =

∞, almost-surely.b) Denote by pt(x, y) the transition kernel of Brownian motion. By Fubini's theorem,we have Ex

[∫∞
0
f(Bt) dt

]
=
∫ (∫∞

0
pt(x, y)

)
f(y) dy, for any non-negative fun
tion f . Thetime integral equals |y − x|2−d up to a multipli
ative 
onstant C. (Do the 
omputation!We see why we need d > 3.) This fun
tion of y is lo
ally integrable with respe
t to y.869. We know from exer
ise 7 the distribution of T . As it is independent of B1, we have

E
[
f(B1

T )
]

=

∫ ∞

0

2−
1
2t√

2πt3
f(B1

t ) dt =

∫
f(x)

(∫ ∞

0

2−
1
2t√

2πt3
2−

x2

2t√
2πt

dt
)
dx =

∫
f(x)

dx

π(1 + x2)
,85Note that I have not tried to work dire
tly with the 
onditionnal expe
tation identity E

[
eσBt−

σ
2

2
t
∣∣Fs

]
=

eσBs−
σ
2

2
s as this identity involves random variables de�ned only almost-surely, so it is not obvious howto di�erentiate with respe
t to σ in a mathemati
ally neat way.86If x is not in the domain of integration, no problem; otherwise, use polar 
oordinates near x.



92 ADVANCED PROBABILITYfor any bounded measurable fun
tion f : R → R. We read the distribution of B1
T above:it is a Cau
hy random variable.10. The pro
ess Mt = |Bt|2 − t d

(
=
∑d

i=1 |Bi
t|2 − t, sum of independent martingales)is a martingale. We would like to use the optionnal stopping theorem to the stoppedmartingale (Mt)t6T ; yet this pro
ess is not bounded, so it is 
onvenient ot repla
e �rst T by

T ∧n (rather than proving for instan
e that (Mt)t6T is uniformly integrable, whi
h 
an bedone). The new stopped martingale is bounded. So we have |x|2 = E
[
|BT∧n|2−d(T ∧n)

],that is E
[
T ∧ n

]
=

E

[
|BT∧n|2

]
−|x|2

d
. Use monotone 
onvergen
e on the lhs, and dominated
onvergen
e on the rhs, to 
on
lude by sending n to in�nity.11. Suppose g has a maximum M at a point x0 inside O. As it has the mean valueproperty, g needs to be equal toM near x0; this shows that the 
losed set where g attainsits maximum is also open. As O is 
onne
ted, g is 
onstant, equal to its maximum, onthe whole of O.Would a given Diri
hlet problem have two solutions, their di�eren
e would be a solutionto the Diri
hlet problem with null boundary 
ondition, so would have a null maximum.As the opposite of this di�eren
e is also a solution, it would also have a null maximum,leading to the equality of the two fun
tions.13. Let denote by (Nt)t>0 a Poisson pro
ess of intensity λ and jump measure J . Can yousee why it su�
es to 
onsider the 
ase where J(·) = δ1(·)? In that 
ase, we need to provethat given any n > 1, any times t1 < · · · < t− n and any integers i1, . . . , in, we have

P
(
Nt2 −Nt1 = i1, . . . , Ntn −Ntn−1 = in−1

)
=

n−1∏

k=1

(
λ(tk − tk−1)

)ik

ik!
e−λ(tk−tk−1).We pro
eed by indu
tion on n > 1. The 
ase n = 1 is treated in exer
ise 12. To makethe indu
tion step, it su�
es to prove that(15.1)

P
(
Ntn+1 −Ntn = in

∣∣Ntk −Ntk−1
= ik−1, for k = 1..n

)
=

(
λ(tn − tn−1)

)in

i!
e−λ(tn+1−tn)Set i = i1 + · · ·+ in−1 and denote by Hi the hitting time of {i} by the pro
ess N . Then,
onditionally on the event {Hi < tn−1 < Hi + Si}, time Hi + Si − tn−1 to wait after tn−1before the next jump is exponentially distributed, with parameter λ, by the memorylessproperty of Si. Identity (15.1) follows as P

(
Ntn+1 −Ntn = in

∣∣Ntk −Ntk−1
= ik−1, for k =

1..n
)

= P
(
Ntn+1 − Ntn = in

∣∣Hi < tn−1 < Hi + Si

), by the strong Markov property of theMarkov 
hain (Nt)t>0.14. Denote by S1 the �rst holding time. The obvserver is proved wrong if at some time
t he observes that {Nt = Nt−S1}. Given s > 0, let de�ne the stopping time Ts = inf{t >

s ; Nt = Nt−s} � with respe
t to whi
h �ltration? Then, 
onditionning on the �rst jump,the strong Markov property gives
E
[
Ts

]
= se−λs +

∫ s

0

(
a+ E[Ts]

)
λe−λa da,



ADVANCED PROBABILITY 93so E
[
Ts

]
= eλS1−1

λ
. The mean time until one sees a holding time bigger than S1 is thus

∫ ∞

0

(
s+ E[Ts]

)
λe−λs ds = ∞.15. a) It su�
es to prove, for all n > 1, that S1 + · · ·+Sn is almost-surely di�erent from

t. (Can you see why?) This follows from the fa
t that the random variable S1 + · · ·+ Snhas a density with respe
t to Lebesgue measure on R+.b) Note that
P(Tt > t+ s) =

∞∑

k=1

P(Nt = k,Nt+s = k) =

∞∑

k=1

P(Nt = k,Nt+s −Nt = 0)

=
∞∑

k=1

P(Nt = k) P(, Nt+s −Nt = 0) =
∞∑

k=1

P(Nt = k) e−λs = e−λs.

(15.2)So Tt − t is exponentially distributed, with parameter λ.16. It's even worse! The sum of two Brownian motions 
an be non-Brownian! To see that,let us work on the subset Ω of C(R+,R
2) made up of paths starting from 0, equipped withits Borel σ-algebra. Let X be the 
oordinate pro
ess Xt(ω) = ω(t) = (ω1(t), ω2(t)) ∈ R2,for ω ∈ Ω, and let P be Wiener measure. Let P′ be the measure on (Ω,F) under whi
h Xis a Wiener measure with 
orrelation −1. Let Q = P+P′

2
. I let you prove that the pro
esses

ω1 and ω2 are Wiener pro
esses under Q. Can you prove by a simple 
al
ulation that thepro
ess ω + ω2 is not Gaussian? As Brownian motion with dift (a Gaussian pro
ess!) isthe only 
ontinuous Lévy pro
ess (see exer
ise 21), this proves the 
laim.17. Let87 Ω be an arbitrary spa
e and F be the trivial σ-algebra over it. (We workwith deterministi
 pro
esses!). Let also (xα)α be a Hamel basis of Haar over the rationalnumbers. For every t > 0, let Xt be the sum of the 
oordinates of t in the Hamel basis. As
Xt+s = Xt +Xs, the pro
ess X has stationnary independent in
rements. As X is highlydis
ontinuous (it takes values in Q!), it does not have a modi�
ation whi
h is 
àdlàg .18. For s < t, we have E

[
eiλ(Xt−Xs)

]
= e(t−s)g(λ). Senging s ↑ t we 
on
lude that

E
[
eiλ(∆Xt)

]
= 1, so ∆Xt has the same �stribution as the 
onstant 0, that is ∆Xt isalmost-surely null.19. a) We know, from the general 
onstru
tion of Lévy pro
esses given in the 
ourse,that X has the same law as the sum of a difted Brownian motion, an independent Poissonpro
ess with �nite intensity, and a in�nite sum of independent 
ompensated Poissonpro
esses. (This sum takes 
are of the fa
t that the jump measure 
an have an in�nitemass.) In the 
ase of a �nite jump measure, only the �rst two termsare needed; as Poissonpro
esses have almost-surely �nitely many jumps in any �nite time interval, we are done.b)We 
an forget the 
ontinuous part (drifted Brownian motion) and work only with thePoisson pro
ess. Let Si, Ji be the su

essive holding and jump times of the pro
ess; theyare all independent. By 
onstru
tion, the pro
ess Y is 
onstru
ted out of the sequen
eof jump times ((S1 + · · · + Si)1ǫi=1

)
i>1

and the 
orresponding jumps. The time betweentwo jumps will have the same law as S1 + · · · + SN , where N is a geometri
al randomvariable with parameter p. A straightforward 
omputation shows that this random sum87This solution is taken from the ex
ellent book [Med07℄ by P. Medvegyev.
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