ADVANCED PROBABILITY
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INTENTIONS

In a causal vision of the world, it is not clear what should be called a random Natural
phenomenon. Within this framework, and at an intuitive level, probability theory quan-
tifies our lack of knowledge on the causes of what we observe. In its relation with the
empirical world, probability theory provides results of a subjective nature, and a change in
our understanding of Nature may change this relation. Which mathematical (i.e. logical)
model for random Natural phenomena should be adopted has been debated for long, and
it was not before 1933 and Kolmogorov’s work “Foundations of the Theory of Probabil-
ity” that a model has been widely accepted. Building on the works of Lebesgue, Baire,
Fréchet and others, Kolmogorov laid the foundations of probability theory on the ground
of measure theory.

One can distinguish two levels in his theory: the random phenomenon itself is modelled
by a probability space (2, F,P), and the experimental observation process is modelled by
a random variable or a family of random variables (X;);cr. The motion of a pollen grain
in suspension at the surface of a glass of water will for instance be represented by the
collection (X3);>o of its positions as time goes.

The aim of this course is to introduce some of the most fundamental tools used in the
study of random phenomena whose description involves infinitely many parameters.

Part T of the course tackles the problem of defining models of a given phenomenon for
which experimental observations provide some constraints. The main question will thus be
to define a “proper” probability on a measurable space (€2, F) which assigns to some events,
corresponding to the experimental events, a given probability. Two ways of constructing
such probabilities will be explored: by using the general machinery of Caratheodory’s
extension theorem, or by constructing them as limits of other probabilities, defined in
an elementary way. In this part, the (mathematical) observation process (X;);er will be
considered globally, without paying attention to any notion of dynamics.

Part I of the course is devoted entirely to the dynamical description of a phenome-
non; no attention will thus be paid to the probability space (2, F) itself. In most of the
models we shall consider, (X;);er will be indexed by some sort of time; and time has an
arrow. We shall explore in this second part what natural notions come out of this fact
and some of their fundamental properties. Roughly speaking, as time passes, the obser-
vation process defines a dynamical system; like in deterministic dynamical systems, the
knowledge of which quantities are preserved, increase or descrease, as time runs forward
provides information on the dynamics. This role of “constant of motion” is played in the
probabilistic setting by the notion of (sub/super-)martingale.

These notes are intended for use by students of the Mathematical Tripos at the University of Cambridge.
Copyright remains with the author. Please send corrections to i.bailleul@statslab.cam.ac.uk.
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The importance of Brownian motion in modern probability theory cannot be overstated.
Not only is it the universal limit of many rescaled random walks (section 2.4), it is also the
universal model for all continuous martingales, as will be seen in section 12.1. Chapter III
opens with a section where we investigate the most fundamental properties of Brownian
motion. To describe the most general martingales (in section 12.2) we shall introduce and
study in section 11 the basic structure of Lévy processes.

Complements are added to each part, which present interesting facts related to each
part; this is non-examinable material.
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4 ADVANCED PROBABILITY

PART [. STATIC THEORY OF STOCHASTIC PROCESSES

Modern probability theory starts with the formalism of an experiment through the
concept of abstract algebra. This is in a sense the collection O of questions we can ask
about an experiment we are interested in, and which might be repeated; they are of the
form: "Do you observe (that)?", shortly written "Observe (that)?" below. This collection
of questions is supposed to enjoy the following logical properties.

e If questions "Observe (A)?" and "Observe (B)?" are in Q then the question "Ob-
serve (A and B)7" and "Observe (A or B)?" are meaningful and are in Q. The
following questions always have the same answers:

— "Observe (A or (B and C))?" and "Observe ((A or B) and (A or C))?"
— "Observe (A and (B or C))?" and "Observe ((A and B) or (A and C))?"

e Q contains a question "Observe ()" whose answer is always "no" and a question
"Observe (all)?" whose answer is always "yes". The following questions always
have the same answers:

— "Observe (A or )?" and "Observe (A)?",

— "Observe (A and 0)?" and "Observe (0)?",

— "Observe (A or all)?" and "Observe (all)?",

— "Observe (A and all)?" and "Observe (A)?" etc.

Stone showed that any abstract logical structure as the above one can always be under-
stood as a collection of questions of the form "Does this element of €2 belongs to A?",
for some set €2 and A belonging to a collection A of parts of €2 stable by finite union,
finite intersection, complementation, and containing the emptyset. The set A together
with these operations is called a (concrete) algebra'. This theorem gives a ’set repre-
sentation’ of the logical structure with which we comprehend Nature. As natural as it
may appear, quantum mechanics has taught us that this representation has limits... and
that Nature is subtler than that. Nonetheless, the benefits provided by such a view on
Natural phenomena are tremendous and we shall adopt it without restriction.

We shall thus suppose given a set €2, together with an algebra A of parts of 2 describing
the elementary knowledge about some phenomenon we are questioning. Although no
human being will ever be able to ask more than a finite number of questions during his
life, it is a useful abstraction to think that since this number may be really large, we are
actually able to ask countably many questions. This directly leads to the definition of a
o-algebra F of parts of €, which is the good setting in which defining a probability.

This formalism on which probability theory rests is due to Kolmogorov in his 1933 book
“Foundations of the Theory of Probability”. Although the advantages provided by this framework
are numerous, you should keep in mind the following quotation from Kolmogorov’s book on the
interpretation of probability theory.

“FEven if the sets (events) of A can be interpreted as actual and (perhaps only approzimately)
observable events, it does not, of course, follow from this that the sets of the extended field F
reasonnably admait an interpretation.

Thus there is the possibility that while a field of probability (A,P) may be regarded as the
image (idealized, however) of actual random events, the extended field of probability (F,P) will
still remian merely a mathematical structure.

'Stone’s theorem is well presented in T. Tao’s post: http://terrytao.wordpress.com/2009/01/12/245b-
notes-1-the-stone-and-loomis-sikorski-representation-theorems-optional.
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Thus sets of F are generaly merely ideal events to which nothing corresponds in the outside
world. However, if reasonning which utilizes the probabilities of such ideal events leads us toa
determination of the probability of an actual event of A, then, from an empirical point of view
also, this determination will automatically fail to be contradictory.”

1. CONSTRUCTION OF MEASURES AND RANDOM PROCESSES

1.1. Processes and sample space. Interesting random natural phenomena are often
described in terms of events defined by means of an infinite number of coordinates, as is the
case for random sequences or random functions. They can be represented by a collection
(X:)ser of random variables?, defined on some (potentially different) measurable space(s),
and indexed by some set; the integers for random sequences, and |0, 1], say, for a random
function from [0, 1] to any (measurable) space. The trajectory of a Markov chain is an
important example of a process indexed by the integers.

DEFINITION 1. A collection (X;)ier of random variables, defined on some (potentially
different) measurable space(s) is called a process; T will be referred to as the set of
coordinates, or index set.

In Kolmogorov’s theory, a process is the mathematical abstraction of the experimental
observation process. How can we define a random process? In practice, we generally face
two kinds of situations, depending on which object is given as part of the model.

(1) A probability measure space (2, F,P) is given and we have to define a process
X on it satisfying some probabilistic requirements. This is sometimes easy but, more
often, it requires some work as you will see in the course on stochastic calculus: defining
stochastic integrals, solving stochastic differential equations are tasks of that type. We
shall not encounter such a situation here, except in section 1.3.

(2) In other cases, when the measurable space (§2,F) we are working with is nice
enough, the definition of the process X is immediate but not the definition of a probability
P on (2, F) which would give X the probabilistic properties we want it to have; this will
be the case when we take as ) the space of outcomes of the phenomenon under study.

This dichotomy is analogous to the situation an experimentor can meet: Given an
experimental context, construct some measurement devices which will enable him/her
to measure some given quantities, or, given some measurement devices, construct an
experiment which will enable him /her to observe what he/she wants with his/her tools.
We shall mainly explore situation (2) in the first part of this course, where we shall take
as 2 the sample space of the phenomenon under study. It will for example be the space
RY for a Markov chain on R, the space RI®Y for a random function from [0, 1] to R, or
{0, 1}¥ for the configuration space of a spin system over a set . We first describe the
o-algebra F of observable events of these uncountable product spaces.

b) Product o-algebra, or “What can we measure?”. Suppose we model the experi-
mental observation of a natural phenomenon by a collection (X;);er of random variables
and denote by S; the set of possible outcomes of X;. We model the set of possible out-
comes® of the phenomenon as a product [I;cr Si- This product space will be our €2, with
a generic element w = (w;)ier. If each set S; has a o-algebra of observable events, the

2That is, measurable functions from (Q, F) to some (', F').
3More precisely, the set of experimentally accessible possible outcomes.
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o-algebra of observable events in the product space is generated by* the elementary events
{(wt)teT; wy € Ap, ..oy, wy, € An}, with n > 1 finite and each A; € S;.; it is called the
product o-algebra®. It will be the collection of sets to which we shall be able to associate
a probability. Let us first describe this g-algebra in some more concrete way.

e The measurable space (RN,B(RN)). Let us consider as an example the space
RN of real-valued sequences; 7' = N and S, = R for all t € T. Introduce the metric

_ _lz—y] . : :
plx,y) = T lo—g] O R; the open sets for p are countable unions of open intervals, as for

the usual metric. Define on RY the metric

dw,w') = Z 27" p(wn, wy,),

n>1

where w = (wy,)p>1 and W' = (w),),>1; the Borel o-algebra of RY is the smallest o-algebra
of RY containing the open balls of the metric d.

LEMMA 2. The product o-algebra of RY and its Borel o-algebra coincide.

PROOF  As both g-algebras are defined by a collection fo elementary sets it suffices to prove
that any of these is an element of the other g-algebra. To start with, let us consider an
elementary product event B = {w = (wp)n>1 € RY; Wn(1) € AL, s, Wh(p) € Ap}, with p
finite and each A; a Borel set of R. By a monotone class argument, it suffices to consider
the case where the A;’s are open intervals (a; — €;,a; + €;). Prove that B can be written as
a countable union of open balls of (]RN,d), in that case. To prove that open balls can be
written as a union of elementary B’s, mimic the 2-dimensional case, filling a circle with a
union of squares®. >

e The product space R”. The following theorem shows that the product o-algebra
of any product space R” is not richer than the product o-algebra of RY.

LEMMA 3. Let T be an uncountable set. To any event A of the product o-algebra of RT
there corresponds a countable set of indices (t,)n>1 and a Borel set B in RY such that

(1.1) A={w= (w)er € RT; (th)n>0 € B}.

PROOF — Denote by £ the collection of subsets of RT of the form (1.1). Given a sequence
(Ap)n>1 of elements of £ with corresponding indices 7™ set T(®) = Un>1 T™): every A,
can be written

A, = {w e R”; (WryyWryy oo ) € Bn},
where 7; € T(®) and B,, is a Borel event of RY. It follows that the collection &£ is a o-algebra;
as it contains the elementary product events, it contains the product o-algebra. Conversely,
given an event of the form (1.1), lemma 2 proves that it belongs to the product o-algebra of
R”'; this establishes the conclusion of the theorem. >

4The o-algebra generated by some family of parts of a set is the smallest o-algebra containing the given
family. It always exists as the family of all parts is a o-algebra and the intersection of any collection of
o-algebras is a o-algebra.

®You can think of the elementary events as rectangles in R™; this collection of sets is sufficient to describe
all open sets, altough not all open sets are rectangles.

6Note that as p is bounded above by 1, an elementary event {(wn)n>1 e RV, Wn(1) € A1y, Wn(p) € Ap}
and the (infinite dimensional) cube {(wn)n>1 € RN w1y € A1, ... wi(p) € Ap,wWn(ps1) € Apti, ... | are
within distance € of one another provided p is big enough. So, fill the ball by cubes, and approximate
cubes by elementary events.
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e The product space [[,., S;. In the general case where the sample space of the
observed phenomenon is the product [], ., S; of possibly uncountably many measurable
spaces (5;,S;), the description of its product o-algebra Q),., S; is similar to the case of
R”. Given a countable subset S of T, denote by By the o-algebra on [], ¢ Ss generated
by its elementary product events. The proof of the following fact is identical to the proof
of lemma 3.

THEOREM 4 (Product o-algebra). To any event A of the product o-algebra of [ [, St

there corresponds a countable set S of indices and a measurable set B in [[. ¢ Ss such
that

(1.2) A= {w = (Wi)ter € HSt; (Ws)ses € B}.

teT

ses

As the maps
X w = (ws)ser € HSt —wy, teT,
teT

are measurable, by definition of the product o-algebra, we define a process on the measur-
able space (HteT St, @t St) setting X = (X})ier. Tt is called the coordinate process.

DEFINITION 5. Qur empirical knowledge of the investigated phenomenon provides us
with an a priori set of values for the probability of the elementary events: IP’(th €
A, 0 Xy, € An). These quantities are called the finite-dimensional laws (or distri-
butions) of the process.

Under proper conditions, Caratheodory’s theorem below gives us a mean to define the
probability of any event of the product g-algebra in an unambiguous way out of these
quantities only.

1.2. Caratheodory’s extension theorem. The main tool to construct abstractly prob-
ability measures is Caratheodory’s extension theorem, of which we give a proof following
J.L. Doob’s exposition, in his book |Do094|. Starting with the a priori datum of the
“probability” of elementary events’, it gives a sufficient condition under which this set
function can be extended to a bigger set of events. Recall that an additive set function
i on an algebra is a real-valued function such that (AU B) = u(A) + u(B) whenever A
and B are disjoint elements of the algebra.

THEOREM 6 (Caratheodory’s extension theorem). Let (2, F) be a measurable space,
A C F be an algebra and p: A — [0, 1] be an additive function such that

i) p(0) =0, u(Q) =1,
ii) (countable additivity on A) If Ay, Ag, ... are disjoint sets of A with union in A

then N(Un>1 An) = Zn>1 H(An)

Then p has a unique extension into a probability measure on o(A).

Note that condition i) is equivalent to condition

ii)" For any sequence (A,)n>o of sets of A decreasing to ) we have u(A,) — 0.

"Given by repeated measurements in a fixed experimental context.
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PROOF  Uniqueness. The collection of elements of o(A) on which two possible extensions

coincide being a o-algebra the two measures are equal on o(A) if they coincide on A by the

monotone class theorem?.

Ezistence. Denote by () the family of subsets of Q. The outer measure 1z associated with
w is a set function defined on PB() by the formula

= inf{Zu(An); BC U A, A, € .A}.
n=0 n=0
7i is easily seen to be increasing and countably sub-additive: E(Un>0 B,) < > n>0 A(Bn),

for any sequence (By,)p>0 of sets of Q. Also, as p is countably additive on A we see’ that
w(A) < (A) for A € A; as the converse inequality trivially holds, 7 and p coincide on A.
Check that we define a pseudo-metric!? on () setting!!

d(B,C) = A(BAC);
since p is sub-additive and B C (BAC) U C for any subsets B, C' of €2, we have
[A(B) — r(C)| < f(BAC) = d(B,C),

so u(B) = u(C) if d(B,C) = 0. Define A* as the collection of subsets B of Q which can be
approximated to any accuracy by elements of A, using d-(pseudo)-distance.

LEMMA 7. A" is a o-algebra on which Ti is additive.

PROOF — e We start by proving the (finite) additivity of  on A* as we are going to use
that fact in the proof that A¥ is a o-algebra. Take two disjoint sets B and C in A¥, an
€ >0, and let Ag and A¢ be elements of A such that d(B, AB), d(C, Ao) < €. As they
satisfy the inequality m(Ap N A¢) < 2¢, we have by sub-additivity of &

max(d(B, Ap\(Ap N Ag)), d(C, Ac\(Ap N Ac))) < 3e.
It follows that
[(B) + H(C) > (B U C) > T(A\(Ap N Ac) U A\(Ag N Ac)) - 3¢
(B) +7(C) — e,

from which we get the conclusion as ¢ > 0 is arbitrary.

>
>

e A" is clearly stable by complementation; we check that A is stable by countable
disjoint union, this implies that A# is stable by countable union or intersection, and so
is a o-algebra. Given € > 0 and a sequence (Bj,),>0 of disjoint elements of A*; associate
to each B, an A, € A such that d(A,, B,) <2 " le. As 7 is finitely additive on A" we

have Zn o B(Br) = N(Un 0 ) < 1, for all N >0, so the sum }_, - . fi(By) is less
than e for N large enough. For such a choice of NV

(UBH, U A) (UBn, U B) (U B, | An>

n>0 n=0..N n=0 n=0..N n=0..N n=0..N
<i( U s)+a({ U sja{ U a)
n>N-+1 n=0..N n=0..N
N

8 Algebras are m-systems.
9Replacing A,, by A\ Uj_o Ak if necessary, we can suppose that the A4,’s are disjoint.
10A metric for which two elements at null distance are not necessarily equal.

"BAC := (BUC)\(BNCQ).
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As € > 0 can be chosen arbitrarily small this proves that Un>0 B,, is an element of AF.
©)

& being increasing, additive and sub-countably-additive on Aﬁ(D U(A)), it is countably-
additive on A" (can you see why?); its restriction to o(A) provides the desired extension of
b >
Despite its elegance, Caratheodory’s theorem does not rule out all the difficulties as
their remains to check conditions i) and i) (or 4i)’) if one wants to use it. The introduction
of the following framework will help greatly in that task; it also provides a framework in

which the use of Caratheodory’s theorem is not necessary in some concrete situations.

1.3. A convenient framework. Although Caratheodory’s extension theorem is a fan-
tastic tool to construct probability measures as models of random phenomena, most of
the time, it is not necessary to resort to the full strength of this abstract machinery as
additional features can help us in our construction task. Indeed, problems can often be set
in a topological framework where €2 is a topological space and F the o-algebra generated
by its open sets.

DEFINITION 8. We say that two measurable spaces are isomorphic if,,, there exists a
measurable bijection from one to the other with a measurable inverse'?.

The interval [0, 1] will be equiped with its Borel o-agebra B([O, 1]), generated by the
open sets.

DEFINITION 9. A measurable space (2, F) is said to be a Borel space ifgep 1t 18 1S0morphic
to a measurable subset of [0, 1].

Construction problems in Borel spaces are nothing more than constructions problems
in the innocent framework ([O, 1], B([O, 1])) But powerful tools are available on the space
[0, 1] which are not available in an abstract measurable space (basically compactness!, i.e.
existence of limits of subsequences). We shall illustrate this fact in theorems 18 below
where it is used together with Caratheodory’s machinery to prove a general existence

result. It will also be the framework of the approximation theory developped in section
2.

Theorem 10 below should convince you that the class of Borel spaces should be sufficient
for your needs before long. It is proved in the Complement Separable Banach spaces.

THEOREM 10. Any measurable subset of a separable Banach space is a Borel space.

a) A first application: existence of sequences of independent random variables,
construction of Markov chains. As a first example of how this property of a space
can be used, let us see how one can construct on [0, 1], with Lebesgue measure LEB, a
sequence of independently distributed random variables with values in some Borel spaces.
As a first step let us construct a real-valued random variable with any given distribution.
Given a probability measure p in R denote by F' : R — [0, 1] its distribution function
F(t) = p((—o0,t]) and by G : [0, 1] — R its right inverse

G(u) = inf{t e R; F(t) > u}

2In the same way as the inverse of a one-to-one continuous function may be non-continuous (can you
find a counter-example?), the inverse of a one-to-one measurable function may be non-measurable.
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with the convention that inf() = +oo; this is a cadlag function characterized by the
property'?

u< F(t)iff G(u) < t.
So if U is a uniform random variable in [0, 1]

P(G(U) < 1) = B(F(t) > U) = F(t).

THEOREM 11 (Existence of independent sequences). Given probability measures i, on
some Borel spaces (S,,S,),n = 1, we can construct on ([O, 1],8([0, 1]), LEB) a sequence
(X0)n>o0 of independent random variables with respective distributions fiy,.

PROOF It is given under the form of an exercise.
(1) Given a uniform random variable U on [0, 1] prove that the sequence of its binary
expension is a Bernoulli sequence with parameter %
(2) Deduce that there exists measurable functions fi, fo,... from [0, 1] to itself such that
the f,(U) are iid uniform on [0, 1].
(3) Let ¢; be an isomorphism between (S;,S;) and a Borel subset of [0,1]; define the

probability v; on [0, 1] setting v;(A) = p; (goi_l(A)). Set, for ¢t € [0,1]

fz(t) = Sup{x € [07 1]; VZ([va]) < t}‘
Why is this function measurable? Prove that if V' is uniformly distributed in [0, 1] then
fi(V) has law v;. Finish the proof.
>
As a by-product of the above result we are able to construct effectively any Markov

chain in a proper way. Suppose we are given for each x € R a probability measure p(z,.)
on R.M

DEFINITION 12. A discrete time Markov chain with transition kernel {p(z,.)},cr
and initial distribution v is a process (X, )n>o defined on some probability space (2, F,P)
such that we have for any n > 0, and any (Borel) sets A, ..., A, of R

P(Xo € Ao, ... Xn € A,) = /---/u(da:o) 14, (z1)p(xo, dxy) -+ - 1, (x0)p(Tp_1, dx,).

PROPOSITION 13. Given any transition kernel {p(x, .)}xeR and any initial distribution v
their exist a Markov chain with the corresponding characteristics.

PROOF  Denote by g and f, the right inverses of the distribution functions of v and p,
respectively,

g(u) =inf{z e R; v((—o0,2]) > u}, fo(u) =inf{z€R;p(z,(—o0,2]) >u}, wel0,1],

and let (Up)n>0 be a sequence of iid uniform random variables on [0, 1], whose existence is
guaranteed by theorem 11. I leave you to check that the induction formula Xy = g(Up) and

Xn+1 = an (Un)

defines a Markov chain with transition kernel {p(z, ')}xeR and initial distribution v.1> >
13The left inverse of F is defined by the formula H(u) = sup{t € R; F(t) < u}. Let D be the image by
F of the countable collection of intervals where f is constant. The two inverses G and H coincide outside
D.
14The construction below works equally well with any Borel space as a state space of the Markov chain.
5To be really clean we should make the hypothesis that p(x,.) depends measurably on x, a detail which
we shall leave aside.
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Theorem 11 provides us with a reservoir of iid random variables; they can be used not
only to construct discrete time random processes, as Markov chains, but also continuous
time random processes.

b) A second application: Wiener measure and Brownian motion. The space
C([O, 1],R) can be seen from two point of views, either as a subset of the product R,
or as a metric space (C([0, 1], R), ||.||s). Each picture has its own o-algebra of observable
events: the trace on C([O, 1],R) of the product o-algebra, and the Borel o-algebra of
(C([O, 1],R) HHOO), generated by the open balls. We shall prove later, in proposition 32,
that the two o-algebras coincide, making it the natural object to consider; denote it by
W and write W for C([O, 1], R). Refering to §a) of the introduction, we construct in this
paragraph a continuous time random process using the point of view (2): the coordinate
process (Xy)iejo,1) is naturally defined on (W, W) setting X; : w € W — w, for each
t € [0,1]. So, turning X into a random process amounts to constructing a probability
measure (W, ). We construct here what it probably the most fundamental of all such
measures: Wiener measure.

DEFINITION 14. A Wiener measure on (W, W) is a probability measure P such that

o Xy =0, P-almost-surely ,
e the process X has independent increments,
o X; — X, ~N(0,t—s) forall s < t.

THEOREM 15. There exists a unique Wiener measure on (W, W).

The uniqueness statement comes from the fact that the above three conditions define
uniquely the probability of the elementary events {th cAy,--- X, € An}, for (Borel)
subsets A; of R (can you see why?). As these events generate the product o-algebra, which
coincides with W, the probability P, if it exists, is uniquely determined by its values on
these elementary events.

Denote by D the set of dyadic rationals in [0, 1] and write D,, for {k27"; k = 0..2"}.
The following existence proof of Wiener measure takes advantage of the following two
facts.

e If one can construct on some probability space (2, F,Q) an almost-surely contin-
uous process Y satisfying Q-almost-surely some requirements then, denoting by
P the image measure of Q by Y, the coordinate process X on (W, W) satisfies

P-almost-surely the same requirements.
e [t is easy to construct a “Wiener measure” on the space of functions from D, to

R, for any n > 1.

PROOF — Use theorem 11 to construct on the probability space ([0, 1],[)’([0, 1]),LEB) a count-
able collection {X;-"; 1<i<2vln > 1} of centered Gaussian random variables with
variance 1. Define inductively a sequence Bt(n) of random continuous functions specifying

their values on the points of D,, and interpolating linearly in between.
e BO(0) =0 and BO(1) = XO

e supposing B(=1) has been constructed and has independent D,,_1-increments
(n—1) _ ph-1) —(n-1) _
{B(k+1)27(n71) Bk27(n71) i 0 < k < 2 1})

16 is a probability on (W, W).
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set Bt(n) = Blgn_l) for all t € D,,_1, and for s = k27 ("1 4 277 get
1

(n) —
B, 5

(n—1) (n—1) _ntl
(BkQ*("*l) + B(k+1)27(n71)> +27 2 X]?, 1<k n

The increments Bé”) — Blin) and B(n) Bé”) being Gaussian, we check their

2—(n—1) (k+1)2—(n=1)
independence showing they have null covariance; they have variance 27". These two in-
(n-1) _ p(n-1)
k2—(n—1) (k+1)
increments over intervals disjoint from (k2*("’1), (k+ 1)2’(”’1)). An increment Bt(n) — Bé”’
will thus have a centered Gaussian law with variance t — s, for t,s € D,,.

Now, by Borel-Cantelli’s lemma, for any ¢ > /2log?2 there exists LEB-almost-surely an
integer ng such that for all n > ng and all 0 < k < 2" we have |X}'| < ¢y/n. For such
n’s we thus have |[BM™ — B o < ¢/n2 2, from which it follows that the sequence
of continuous functions (B("))

crements being constructed from B o—(n—1y) and X' they are independent of

ns0 COmverges almost-surely uniformly to some continuous
(random) function (By)ep,1]- It is defined on the probability space ([0,1], B([0,1]), LEB).
We check that the process B has independent (Gaussian increments; this proves the existence
of Wiener measure by the remarks preceding the beginning of the proof.

Given times 0 < tg < t; < --- < t,, approximate each ¢; by a sequence tf of dyadics.
Write Ej, for the expectation under Lebesgue measure. Use bounded convergence and the
LeB-almost-sure continuity of B to write for any real-valued bounded continuous function

f on R"
Er[f(By, — Bigs--- By, — By,_,)| = ]}E&EL [f(Btif = By By — Btfﬂ)]

:limEL[f< th—tE Ny, ..., tﬁ—tﬁ_an)}
k+oo
=Er[f(Vt1 — toN1, - /T — tho1NR) |

where Ny, ..., N, are iid N'(0, 1) defined on ([0, 1], B([O, 1]) , LEB). One reads on that formula
that B has independent Gaussian increments. >

DEFINITION 16. A (W, W)-valued random variable defined on some probability space is
said to be a Browntan motion if its law is Wiener measure.

c) Existence of random sequences and random processes. The preceding two
paragraphs make it clear that it is not always necessary to resort to Caratheodory’s
extension theorem to define interesting random processes. Yet, it remains the best tool to
deal with more general and abstract situations. As emphasized at the end of section 1.2,
on eis left with checking the non-trivial condition 7i) or 4i)” of Caratheodory’s theorem if
one wants to apply it. Borel spaces provide a good framework in which proving ii)’, or
rather its contraposition. This is typically done as follows.

Given a decreasing sequence (A,,),>o such that p(A,) is bounded below by some positive
constant €, approximate each A, from inside by a compact K,. A careful choice gives
a decreasing sequence of “compact” sets whose measure is bounded below by 5. The
intersection of finitely many of them having positive (“pre-")measure is thus non-empty
so, by compactness, their intersection is non-empty; hence ﬂn>0 A, D ﬂn>0 K, # 0,
which proves ii)". These “compact” sets are what the “Borel hypothesis” provides us with.

We are going to illustrate this approach in the following framework, which is well suited
to deal with (Markov chains and more) general random sequences.



ADVANCED PROBABILITY 13

DEFINITION 17. Given measurable spaces (S;,S;), we say that a sequence of probability
measures (i, on || S; (') is projective if,,

1=0..n =
:U/n—f—l(' X Sn-H) = Mn(')a n € N.

Projective families of probabilities are models of discrete time random processes with
memory. If for instance all the S;’s are identical, equal to S, and (f,),>0 is determined
by a family of transition kernels'® {ux() ;T € S} via the formula

iy x -+ x 4,) = ol / (). / e ),

A
then g, is the law of the first n positions of a Markov chain on (S,S). In the above
general model the law of the (n + 1)™"-position of the process may depend not only on
the n'™™ position of the process but also on all its history up to time n. Equip the infinite
product Hi>0 S; with its product o-algebra; denote by Sy ®- - - ®S,, the product o-algebra

of Hi:O..n Sz
THEOREM 18 (Existence of random sequences — Daniell). Let ((Si’si))i>0 be a sequence
Si, there

of Borel spaces. Given a projective sequence of probability measures p, on ||
exists a probability P on the product o-algebra of Hi>0 S; such that

]P’(E < 1 Si) = jin(E)

forany Ee€ S ®---®8,, andn € N.

1=0..n

PROOF  We use Caratheodory’s extension theorem; point i) is clear. The algebra A = {E x
Hi>n+1 Sii EFeS®- - ® Sn} generates the product o-algebra of Hi>0 Si. Let (An)n>0
be a decreasing sequence of elements of A; we can suppose without loss of generality that
A, = FE, x Hi>n+1 S; and E, € @,;_ ,, Si- We prove the contraposition of condition i)’
of Caratheodory’s theorem: if P(A,) = u,(A,) is bounded below by some positive d then
() A, cannot be empty. Let £ > 0 be given.
n=0
Denote by ¢, an isomorphism of [[,_, ,, Si to a Borel subset of [0,1] and denote by v, the
image measure of u, by ¢,. As v, is inner regular (exercice 5), there exists a compact subset
K, of ¢,(E,) such that

Un (QO(En)\Kn) < 2_n€7

P(An\{gpgl(f(n) < 11 s}) < 27 e

i>n+1
Writing V;, for ¢, }(K,,) x Hi>n+1 S; and setting W,, = Vi N --- NV, it follows that

IP’(An\Wn) < e,
so W, cannot be empty provided ¢ < ¢ (it has positive probability under that condi-

1.€.

tion). Choose for each n a point m,, in W,,. As the sets W,, are decreasing, all the points
Mpt1, Mpt2, ... belong to Wy, and the ¢,-projection of their first n coordinates lie in the
compact K,, so have a converging sub-sequence. A diagonal extraction then provides a

""Equiped with its product o-algebra Sp ® - -+ ® S,,.

8p(x,-) is for every z € S a probability on (S,S); the quantity p(z, A) represents the probability starting
from x to jump in A. For a discrete space S the matrix {p(z, y)}s yes is the usual transition matrix of a
Markov chain.
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subsequence of m,, converging to a point m belonging to all the W,,(C A4,,), proving that
(>0 An is not empty. >

Kolmogorov’s general existence theorem below gives a version of Daniell’s theorem 18
which works on any product space [[,.,S;. The conceptual improvement is almost-null
as a generic element of the product o-algebra of [], .S is defined by requirements on
countably many coordinates, as theorem 4 makes it clear. Kolmogorov’s theorem is thus
an almost-straightforward consequence of Daniell’s theorem; details of its proof can be
found in the proof of theorem 6.16, in Kallenberg’s book |Kal02].

Given finite sets of indices I C .J, denote by the same letter A an event of [, S,
considered also as an event of [],.;S;. Denote by T the set of finite subsets of 7. A
family of measures pi; on [[,., S¢, I € T, is said to be projective ifqer p17(A) = pr(A) for
any event A as above, and any finite sets of indices I C J.

THEOREM 19 (Existence of processes Kolmogorov). Let T be any indez set and (Sy)ier
be a family of Borel spaces. Given a projective family of probability measures puy on [ [,c; St

there erists a unique probability measure on [[,.p Sy with projection piy on each [],c; St
1T

d) Limits of the abstract machinery. However powerful such general results may be,
they remain unsufficient to provide models of real-valued continuous random paths. Try
for instance to define such a process X = (Xt)te[o,u as a random variable with values in

R equiped with its product o-algebra.
PROPOSITION 20. The subset C([O, 1],R) of ROY is not measurable'®.

PROOF — The main reason for this is that the concept of continuity involves a continuum of
conditions whereas any elements on the product g-algebra contains only information on what
happens at countably many times. Use theorem 4 to give a neat proof. >

To overcome this difficulty in defining random continuous functions as models of random
Natural phenomena we shall rely on the idea that continuous functions are determined by
their values on a countable set of times. Our construction of Wiener measure and Brown-
ian motion relied on this idea. The next section gives a clear example of this philosophy;
later, in section 6 on martingales, we shall construct continuous time martingales from
their rational skeleton...

1.4. Good modifications.

DEFINITION 21. e Two random processes (X;)ier and ()N(t)teT, indexed by the same
set T of indices, are said to be a modification of one another if they have the
same finite dimensional laws™: P()?t =X;)=1foranyteT.

o (Xy)ier and (X )ier are said to be indinstiguishable if P(Vt € T, X, = X;) = 1.

The previous definition assumes that the event {Vt € T, X; = X,} is measurable, which
does not hold for any index set or any pair of processes. This notion will only be used in a
context where this problem does not happen. To be indistinguishable is a much stronger
requirement than to be modifications of one another; however, these two notions coincide

9That is, it does not belong to the product ¢-algebra.
20This condition is sufficient to have P(Vi, X;, = X;,) = 1, for any finite collection of indices t;.
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if the index set is countable, or if the two processes are right-continuous with value in a
Hausdorff topological space; prove that fact.

Caratheodory’s theorem typically provides us with processes for which natural require-
ments, like continuity of the sample paths, have no meaning. Yet, if this process can
be controlled in some way, it admits a modification with good sample paths properties.
From an experimental point of view, working with a given process or a modification of it
does not make any difference as the only quantities we can measure are the elementary
probabilities IP’(XtO € Ay,..., Xy, € An), whose values do not depend on which modi-
fication of X we are working with. As you will see in exercise 77, two processes which
are modification of one another may have quite different pathwise properties; this leaves
some freedom to choose the best version of a process for our needs.

This section provides the basic example of a modification procedure due to Kolmogorov.
Recall we denote by D the set of dyadic rationals in [0, 1] and write D, for {k27"; k =
0..2"}.

THEOREM 22 (Kolmogorov’s criterion). Let p > 1 and 5 > 1/p. Suppose X = (X})ien
is a real-valued process defined on some probability space (2, F,P) and such that

E[|Xs — XiP] < C|s—t]P?, foralls,t€D

for some finite constant C'. Then, for all a € [0, 06— %), there exists a random variable
Cy € I? such that one has almost surely

| Xs — X¢| < Cols —t|%,  forall s,t € D.

As a consequence, and given any o« € [0,6 — %), the process X has an «a-Hdlderian

modification defined on [0, 1].

PROOF — For s,t € D with s < ¢, let m > 0 be the only integer such that 2-(m+l) <5< 2™m
The interval [s, ) contains at most one interval [Tm+1,Tm+1 + 2_(m+1)) with 71 € Dypyr.
If so, each of the intervals [s,7,,41) and [Tm+1 + 2_(m+1),t) contains at most one interval

[rm+2, Tm+2 + 2’(m+2)) with 7,49 € Dyp,492. Repeating this remark up to exhaustion of the

dyadic interval [s,t) by such dyadic sub-intervals, we see that
X - X[ <2 ) S,
n>m+1
where S, = sup;cp, |Xi1o0-n» — X¢|. So we have

(t n S)a n>m—+1
where C,, = 22n>0 2neS - But as

B[S <E[Y 1Xpamn — XiP] < 22077,
teDy,
it follows that
ICally < 232 250l < 20 207 8)7 < o,
n>0 n=0
which proves that C\, is almost-surely finite. Use then the Hélder-continuity of X on D to
extend it to [0, 1] in an unambiguous way, setting Y; = X, for ¢t € D, and

Y, = lim X,.
s—t,s€D
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for t € [0, 1]\ID. This defines a measurable function of w (as a limit of measurable functions),
so that (Y7).e[0,1) defines a random process; it has by construction a-Hdlder paths. >

2. CONSTRUCTIVE APPROACH IN SEPARABLE BANACH SPACES

We have seen in section 1 how one can construct in a more or less abstract way proba-
bility spaces and random processes. A different approach to the construction problem is
taken in this section. Starting with probabilities on some space defined in an elementary
way, we construct new probabilities as limits of such elementary probabilities; the above
construction of Wiener measure as a limit of elementary probability measures correspond-
ing to random piecewise linear continuous functions is an archetype of such a procedure.
Our first task will be to explain what we mean by the limit of a sequence of probability
measures. Before investigating further the general case we shall see in section 2.2 how
this convergence notion works in R. The general case is addressed in section 2.3. We
shall see in section 2.3 b) how to characterize the compact sets of the set of probability
measures. As is the case of the compact segment [0, 1], general compact sets have the
property that any sequence of its points have a converging subsequence. This setting is
thus ideal to construct some objects as limits of other objects?'. With a view to con-
structing random continuous time functions, we shall see in 2.3 ¢) how the theory works
in the space C([O, 1], R”). We shall finally illustrate the whole section in 2.3 d) by proving
Donsker’s amazing invariance principle: any nice random walk, properly rescaled, “is” a
Brownian motion.

Those of you who are not familiar with metric spaces can think about R? throughout
the whole section.

2.1. Weak convergence on the set of probability measures on a metric space.
Prior to the notion of limit is the notion of neighourhood; it is the datum of the “neigh-
bouring” relations amongst the elements of a given space. We define such a notion below
on the space of probability measures of a metric space.??

Notations. e Given a measurable space (A, A) denote by P(A) the set of probability
measures on (A,A).

e Given a metric space (S,d), recall that the Borel o-algebra of S is the o-algebra
generated by the open balls of S; denote it by S.

e Write C,(S) for the set of bounded real-valued continuous functions on S, and (f, u)
for [ f(x) p(dz), if pis any finite measure on (S,S).

The following definition formalizes the fact that we want to declare two probability
measures g and v on S close if the integrals of sufficiently many continuous bounded
functions against p and v are close.

DEFINITION 23. The Cy(S)*-topology® on P(S) is defined by the following basis of
neighbourhoods of a point pu € P(S):

{r e PS): |(fisn) = (fi,v)] < @i, L<i<n}s;n>1, fi €C(S),a; >0}

2IThe existence of a limit object is usually a difficult question, except, precisely, when we are working in
a compact set!

22Definitions 23 and 24 below apply on any topological space, not necessarily metric.

23 Analysts call it the “weak* topology”.
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So** a sequence (fin)n>o0 of probability measures Cy(S)*-converges to u iff (f, pn) — (f, 1)
for all f € Cy,(S). We shall adopt the notation gy 1

DEFINITION 24. An S-valued sequence of random wvariables (X,)n>0, defined on some
probability space (2, F,P), is said to converge weakly to X ify, E[f(Xn)} converges to

E[f(X)} as n goes to infinity, for any f € Cy(S). We write X,, = X.

As is clear from the definition, X, converges weakly to X iff its distribution C,(5)*-
converges to the distribution of X. For that reason the C,(S)*-topology®® is usually also
called the weak topology, and C,(S)*-convergence called weak convergence.

PROPOSITION 25 (Characterisation of Cy(S)*-convergence, Alexandrov). The following
propositions are equivalent:

(1)

(2) (f, pn) — (f w) for every bounded uniformly continuous function f,
(3) uw(O) < lim p,,(O) for all open set O of S,

(4) Tim p,, (F) g w(E) for all closed set F' of S,

(5) pn(B) — u(B) for all Borel set B with u(0 B) = 0.

PROOF  We make a circular proof starting with the implication (1) = (2) = (3). The first
implication is obvious. Given an open set O define the function fi(z) =1 A kd(xz,O°): it is
bounded, k-Lipschitz (hence uniformly continuous), smaller than 1¢, and increases pointwise
to 1p; so we have (fi, in) < pn(O). Letting n go to oo and then taking the limit £ — oo
gives (3). Propositions (3) and (4) are clearly equivalent. Assume (4) and let B be any
element of S.

o

,U(B) < lim 1, (B) < Tim g1, (B) < ,U(E)

As left and right members of theses inequalities coincide if u(0B) = 0, proposition (5)
follows. Last, supposing (5), notice that it is sufficient to prove

(2.1) im (f, pn) < (f, 1)

for any continuous function to get (1): apply it to f and —f to get (f, un) — (f, ). As the
set B := {t € R; u(f~'({t})) # 0)} is at most countable one can find a decreasing sequence
(fe)eso of simple functions®® f, = S"t;44 1fcit; tiy,) COnverging p-almost-surely to f and with
no t; in E. We then have for every £ the inequality @(f, fn) < liTIln(fg,,un) = (fo, ), from

which (2.1) follows by sending ¢ to infinity. >

2.2. Specific tools in finite dimension. Before investigating further the general case
we investigate in this section how the above definition specializes on R.

24Those of you who are not familiar with general topology can skip the preceding definition and only
keep in mind the following property.

25That is the datum of all the above neighbourhoods.

26This is actually a finite sum.
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a) Distribution functions. Recall the construction of a real-valued random variable
with any fixed distribution described in section 1.2. Given a probability measure p in R
denote by F': R — [0,1] its distribution function F(t) = pu((—00,]) and by G : [0,1] — R
its right inverse
G(u) =inf{t e R; F(t) > u}
with the convention that inf() = +oo; this is a cadlag function characterized by the
property
u< F(t)iff G(u) < t.

So if U is a uniform random variable in [0, 1]
P(G(U) < t) = P(F(t) > U) = F(1).

This canonical way of constructing a random variable with distribution p leads to the
following useful representation, or coupling, theorem. Given a sequence (u,),>0 of prob-
ability measures on R, define the random variables X,, = G, (U), where G,, is the right
inverse of the distribution function F,, of u,.

THEOREM 26 (Representation theorem, Coupling). Suppose the sequence (fi,)n>0 weakly
converges to i, then we can construct on [0, 1] some random variables X,, with distribution
Wn and X with distribution p, such that X,, converges almost-surely to X.

PROOF  Define the random variables U, X,, = G,,(U) and X = G(U) on the probability space
([0,1],B([0,1]),LEB). Denote by C the countable (why?) union of intervals where F is
constant and by D its image by F' (made up by at most countably many points). We prove
that for u € [0,1]\D the sequence G, (u) converges to G(u). Given such a wu let us take
a (small) positive e such that G(u) + € is a continuity point of F(*"). As F,(G(u) + ¢)
converges to F(G(u)+¢) > u (by point (4) in Alexandrov’s characterization, with the Borel
set (—oo, G(u) + ¢]) we have F,, (G(u) 4 €) > u for n large enough, i.e. Gp(u) < G(u) + €.
As ¢ can be taken arbitrarily small this shows that lim G,,(u) < G(u). In the same way,
choosing a small £ > 0 such that G(u) — ¢ is a continuity point of F', on gets a sequence
F,(G(u) —€) converging to F(G(u) —¢) < u; so F,(G(u) — &) < u for n large enough, i.e.
G(u) — e < lim Gy, (u). >

Note that we have only used one fact in the above proof: F,(x) — F(z) for all x € R

at which F is continuous®®. We see that under this sole hypothesis the conclusion of

the theorem implies that™ (f, u,) = Ep[f(X,)] converges to Er[f(X)] = (f, p), for any

bounded continuous function f.

COROLLARY 27. A sequence (in)n>o of probability measures on R converges to w iff
F,(x) converges weakly to F(x) for all z € R at which F is continuous.

THEOREM 28 (Prohorov’s compactness theorem in dimension 1). Let (f1,,)n>0 be a se-
quence of probability measures such that

VedM.>0Vn >0, F,(-M.)<eandl— F,(M.)<e.
Then the sequence (pn)n>o0 has a weakly convergent subsequence.
2TF have only countably many discontinuity points.

BThat is F(x~) = F(x), since F is always continuous on the right can you see why?
?Recall E;, denotes the expectation under Lebesgue measure on [0, 1].
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The condition of the statement means that the probability measures pu,, have their mass
essentially concentrated on the compact set [—M, M], uniformly in n. Such a sequence is
said to be tight.

PROOF  Use Cantor’s diagonalisation procedure to extract a subsequence such that F,, (¢)
converges for each rational ¢ to some F'(¢). This limit function F': Q — [0, 1] being increasing
has a unique extension to R which is continuous on the right, with left limits3?. Check that
the convergence F,,(;)(s) — F'(s) holds if s is a continuity point of F'. By the hypothesis we
can associate to any € > 0 a positive M, such that the inequalities

Fn(_Ms) <eand 1-— Fn(Ma) <e
hold for all n > 0. It follows that
F(s) — Oand F(s) — 1,
S§——0Q

§——+00
so F is the distribution function®" of a probability measure p and, as a consequence of

Alexandrov’s characterization, (Hn(k)) converges weakly to p. >

k>0

b) Weak convergence and characteristic functions. Corollary 28 can be used to
prove the following useful result due to Paul Lévy. Recall the characteristic function of a
measure i on R is its Fourier transform:

wlt) = [ " ulds).

THEOREM 29. Let (u,)n>0 be a sequence of probability measures on R, with characteristic
functions ¢,. If the ¢, converge pointwise to some function ¢, continuous at 0, the se-
quence (fin)n>0 converges weakly to some probability measure p and ¢ is the characterisitic
function of pu.

The proof is based on the following simple estimate of the tail of a random variable Y
in terms of its characteristic function 1.

(2.2) IP<|Y| > %) < % /h(l —(t))dt

—h
for some constant C' and every positive h. Indeed, apply Fubini’s theorem to see that®?

L[ B sin(hY)
o _h(1 — (b)) dt = E[1 - ]

Y

sin(hY")

because 1 — e

have

is non-negative, and no less than 1 —sin1 on the set {]Y] > %}, we

1 h
2h ),

PROOF  We prove that the sequence (f1,)n>0 is tight; then any weakly convergent subsequence
(whose existence is guaranteed by corollary 28) will have ¢ as a characteristic function. This
will show that (n,)n>0 can have only one limit, so it converges.

. 1
(1= (t))dt > (1 — 51n1)IP’<|Y| > E>'

30Get for s € R\Q, F(s) = inf{F(t); t € Q,t > s}. Like any other increasing [0, 1]-valued function, F
has at most countably many discontinuities.

31Use Caratheodory’s extension theorem.

32We use the convention Sigo =1.
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But applying inequality (2.2) to X,, we obtain by dominated convergence

_ 1 1—sinl)~t ("
llmP<\Xn| > ﬁ) < %/h(l — (1)) dt.

It now suffices to use the continuity of ¢ in 0 to see that the right hand side can be made
arbitrarily small for h small enough. >

The same result holds for R"-valued random variables; the proof of this statement is a

cosmetic change of the preceding one®?,

2.3. Weak convergence in separable Banach spaces. We now come back to the
general case and study in more details the notion of weak convergence. This notion
was introduced to provide a framework in which talking about limits of measures and
constructing probability measures (and thus random processes) as limits of other measures
(resp. processes). Statements about the existence of a limit are precious statements as
existence statements are rarely easy to prove. There is yet one exception to this empirical
rule: one can always decide whether or not a sequence of probability measures on a finite
set converges or not (at least computers can do that for us!). As compact sets of a metric
space are finite up to any arbitrarily small accuracy, they appear as a good framework in
which tackling our convergence problem.

a) Compact sets of a metric space. Let (S,d) be a metric space. A subset K of S
is said to be compact ifges it is closed and for any € > 0 it can be covered by finitely
many balls of radius €. Think of a closed interval of R. This image might be misleading
though, as although compact sets are closed and bounded, these two conditions alone are
generally not sufficient to ensure compactness of a set. Indeed, any infinite dimensional
normed vector space has a non-compact unit closed ball**. It can be proved that a metric
space S is compact iff any sequence of points of S has a converging subsequence.

Suppose now that (S, d) is a compact metric space and let us look at the space P(S)
of probability measures on (S,8).*> It is easily seen, using Stone-Weierstrass theorem,
that C(S) (: Co(5) here) has a dense sequence, say (f,),>0. Given any sequence (i, ),>0
of probability measures on S, we can construct by a diagonal argument a subsequence
such that each integral (f,, jnx)) converges as k goes to infinity. This implies that all the
integrals (f, pn)), f € C(S), converges as k goes to infinity (can you see why?). In other

33The R™-version of Prohorov’s compactness theorem needed for the above proof to work is proved in a
much more general framework below.

#Denote by B the unit ball and by B its closure. Suppose B is compact and cover it by finitely many
balls of radius % Denoting by F' the finite-dimensional vector space spanned by their centers, we have
BCF+ g, implying g C F+ %, and so B C F + %. An induction bootstraps this inclusion into
BCF+ %, for all n > 1, out of which it follows that B C F, as F is closed; this proves that the ambiant
vector space needs to be finite dimensional. This theorem is due to F. Riesz.

35Recall the notations introduced at the beginning of section 2.1.

36For the supremum norm. Consult theorem (81.3) of [RW00] for instance.
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terms?’, any sequence of probability measures on a compact metric space has a weakly

converging subsequence. Also, introducing the metric 0(u,v) = Z@o’(fpa ) — (fp, 1/)’ A
277 on P(S), one sees that its balls define the same notion of neighbourhoods as the
weak topology; so the space P(S), with its weak topology, is a compact metric space.
This conclusion holds in particular when we take for (S5, d) the compact space ([O, 1N, d),
where d(z,2") = 3 50 27"z, — 27,

b) What is special about separable Banach spaces? First of all, this is a general
enough framework to encompass most of everyday’ spaces we want to work with: the space
of (real-valued) sequences, continuous and cadlag paths are separable Banach spaces.

At the same time, a lot of things are known on separable Banach spaces! It is proved
in the Comment section Separable Banach spaces that any separable Banach space (.5, d)
is homeomorphic to a measurable subset of the compact metric space [0, 1]N. This im-
plies®® that the space (P(S),Cb(S)*) of probability measures on S is homeomorphic to a

subset of the nice compact metrizable space <73([O, 1]N),C1’;([O, 1]N)>. So, any sequence

of probability measures on S, seen as probability measures on [0, 1], has a converging
subsequence in P ([0, 1Y), whose limit may give some positive mass to the set [0, 1]¥\S,*
giving rise to a limit measure in S of mass less than 1. One introduces the following
notion to prevent this phenomenon and obtain limit probability measures supported on
the original space.

DEFINITION 30. A family A of measures on (S,S) is said to be tight if one can associate
to any € > 0 a compact set K. of S such that

Vped, p(KS) <e.

c¢) Compactness in (P(S5),Cy(S)*). The following theorem due to Prohorov character-

izes a large class of compact sets of (P(S5),Cy(S)*) in terms of tightness. It is the general
counterpart of theorem 28.

THEOREM 31 (Compactness. Prohorov). Let (S,d) be a separable metric space and
A C P(S).

o If the family A is tight then it is relatively compact in (P(S),Cy(S)*).

e Suppose in addition that (S, d) is complete. Then the two properties are equivalent.

PROOF — e Suppose the family 2 is tight and let (Kl) be an increasing sequence of compact
p

p=1
subsets of S for which M(Ki) < %, for all p € . Denote by ¢ the homeomorphism between
P

(S,d) and a subset'? of [0, 1]N constructed in theorem 39 of the Comments section. As each
compact set gp(K%) is measurable, gp(Up>1 K%) is also measurable, as a union of measurable

3TWe are skipping here a little argument. The subsequence can be chosen such that the integrals of any
linear combination of the f,’s converge. This implies that the map f, — limg (fp, ity k)) is a positive
linear map, with unit norm. It can be extended to C(S) by a straightforward approximation argument,
so the map L : f — limy, (f, ft5 (1)) is a positive linear form on C(S) with unit norm. Riesz representation
theorem ensures us that there exists a probability measure p on S such that L(f) = (f, p) for all f € C(S).
Riesz representation theorem is proved in Complement 4.

38See theorem (83.7) in [RWO00].

31 am writing S here for its homeomorphic image in [0, 1.

40T his subset of [0, 1]V has no a priori reason to be measurable.
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sets. Now, since all the measures p € 2 have support in Up>1 K1 it is harmless to replace
- P
S by Up>1 K 1; we still denote it by S. The map ¢ is then a homeomorphism between (5, d)
- P

and a measurable subset of [0, 1]N; we use this function to transfer any statement about
(S,d) to a statement about a subset of [0, 1]

We shall associate to any sequence (f,)n>0 of P(S) the sequence (vy,),>0 of its images by
¢ in P([0,1]Y). Given € > 0, each ¢(K.) is a compact subset of [0, 1]" with v,-measure no
less than 1 — ¢ for any n. But as (77([0, 1]N),Cb([0, 1]N)*) is compact there is a sub-sequence
{V"(k)}k;>0 that Cy ([0, 1]Y)"-converges to some Borel probability measure v on [0, 1]". From
Alexandrov’s characterization the limit probability v satisfies V(QD(KE)) > 1—¢g, foralle > 0,

hence v is concentrated on ¢(S). Defining p as the image measure of v by ¢ =1, the function
f o~ !is continuous and bounded for any f € Cy(.9), so we have

(fuu'n(k)) = (fo 90_17Vn(k)) - (fo S0_17V) = (f:u)a
that iS, H'n(k) CLS))* -
e Suppose now in addition that (S,d) is complete and let A = {u;; ¢ € A} be a compact
subset of (P(S),Cb(S)*). Let (xp)n>0 be a dense sequence of (S,d) and define O, (r) =
Ug—1 n B(xg, 7). Let us first prove that

() for any € > 0,r > 0 there exists an integer N(e,r) such that /L(ON(57T)) >1—g¢g, for
any p € 2.

Would assertion (%) be wrong, there would exist 9,79 and for each n and index ¢, € A

such that 110, (On(rg)) < 1 —eo. Any limit g of a converging subsequence (y we

n<k>)k>o (
are in a compact!) would then verify for any p > 0

'U’(O”(P)(TO)) < h—mun(k) (On(k)(TO)) <1l-—¢

since Opp) C Oy for k = p, and by Alexandrov’s proposition 25; this would forbid the

n(p
convergence 1i(Oyp) (o)) e 1, a contradiction.

Fix now 1 > 0 and set

emy)
K = ﬂ U E($k}7 _>
p=>1 k=1 p

K is a compact set which satisfies for any p € 2 the inequality

W)
— 1
wEy=1-Y uls\ U B(%—) >1-) 27Pp=1-n.
p>1 k=1 P p>1
This proves the tightness of the family 2 of measures. >

d) Continuous random processes. We specialize in this paragraph the above general

theory to the case of measures on the space of continuous function from some interval

I of R, to some R% We shall thus be working here on the separable Banach space
(S,d) = (C(I,RY), || - |lso)-

We have noticed in section 1.3 b) that the space C(I,R?) can be seen from two natural

point of views: as a subset of the product (R?)” or as the metric space (C(I,R?), || - |l«).
Each picture has its own notion of o-algebra. The following proposition states that the
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two o-algebras coincide, so there is no problem on which point of view is adopted. Recall
we denote by X; 1w € C(I,Rd) — wy,t € I, the coordinate process.

PROPOSITION 32. The o-algebra on C([, Rd) generated by the coordinate process coincides
with the Borel o-algebra of (C(I,R?),] - [|)-

PROOF — The trace on C(I,R?) of the product o-algebra is generated by the collection A of
the elementary events {X;, € Ay,..., X, € A,}, where n > 1 and the A;’s are open balls of
R?. The Borel o-algebra of (C(I,Rd), [ - ||<>o) is generated by the collection B of the open
balls {w € C(I,R?); |lw — wo|les < €}, for € > 0 and wy € C(I,R?). To prove that the two
o-algebras coincide it suffices to prove that any element of A is in o(B) and any element of
B isin o(A).

Let C:= {w € C(I,R?); Xy, (w) € Ay, ..., Xy, (w) € A, } be an elementary event, and denote
by (wp)p>1 a dense sequence of (C(I,R%), |||/« ); denote by (Wp(k))k>1 the subset of it made
up of those w,’s which belong to C. Then, for each w € C, you can find some k; for which
|w — Wy lloo < %; this proves the first point.

To prove the second point, denote by (t,),>1 a dense sequence of I, and notice that {w; |lw—

wWolloo < €} = ﬂn>1{w; wy, € B(wo(t1),€), ... wr, € Blwo(tn),€)}- >
Considering C(I,R%) as a subset of (R9)! leads to the following notion of convergence.

DEFINITION 33 (Convergence of finite-dimensional distributions). e Let p,,n > 0 and
u be Borel probability measures on C(I,R?). We say that the finite-dimensional dis-
tributions of n, converge to those of i if,, for every finite collection {t,...,t,} of

times, and any bounded continuous function f : (Rd)p — R, we have
[ 0@ Xy palde) = [ £ @) Xy () ()

We write p, 4 1.
o Let (Y(™), 59 and Y be C(I,RY)-valued random wvariable defined on some probability

space (0, F,P). We shall write Y™ Ity e
B (V" Yy)] = E[f (Va0 Y,)]

for any bounded continuous function f : (Rd)p — R, any p > 1 and any finite collection
{t1,...,t,} of times.

PROPOSITION 34. Some probability measures p, on C(I,R?) converge weakly to some
probability measure p iff the following conditions hold:

e the finite dimensional distributions of ., converge to those of pu,

o the family (fin)n>0 is tight.

PROOF — = Since the map w € C(I,R?) + F(wy,,...,wy, ) is continuous for any n > 1, tq,...,t,
and continuous function I, the weak convergence of i, to some p implies the finite dimen-
sional convergence of i, to pu. Also, any convergent sequence is tight (prove it).
< Suppose the sequence (i, ), >1 is tight; by the first part of Prohorov’s compactness theorem
31, it is relatively compact. Any limit v of a converging subsequence having the same finite
dimensional distribution as u, we must have v = p. This shows that p is the only cluster
point of the sequence (p,)n>1, 50 (tn)n>0 converges weakly to p. >
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Do exercise 14 to see that one can have finite dimensional convergence without weak
convergence. Given a compact interval [a, b] of the real line, Ascoli-Arzela’s compactness

criterion gives a characterization of compact sets of (C([a,b],R?),]| - [|) in terms of
modulus of continuity
M, (h) = sup{|w; — ws|; t,s € [a,b], [t — s| < h}, h>0.

THEOREM 35 (Ascoli-Arzela’s theorem). A subset A OfC([a, b],Rd) is relatively compact
iff the following two conditions hold:

sup{ |wo| ; w € A} < o0,

h{‘n sup M, (h) = 0.

Owea

Together with Prohorov’s theorem it provides an easy to use characterisation of compact
subsets of the set of probability measures on C([a, b|, Rd).

COROLLARY 36 (Characterization of weak convergence). Let X, X;, X, ... be R%-valued
. . d
continuous random processes. Then X,, — X iff X, 14 X and

(2.3) lim T E[My, (h) A1 =0,

PROOF — It suffices from corollary 34 to prove that condition (2.3) is equivalent to tightness.
That the former implies the latter comes from Ascoli-Arzela’s theorem and dominated con-
vergence. Conversely, assume (2.3) and fix h > 0. Since each X, is continuous, My, (h) — 0
almost-surely as h \, 0 for each n; as a consequence of condition (2.3) it is thus possible to
find a sequence (hy)r>o such that

sup P(Mx, (hi) > 27]“) <27k

for all £ > 0. Also, as X,, T X, there exists compact subsets Ki, Ko, ... of R% such that
sup P(X,(a) ¢ Kj) <27 k=1p,
n

for all kK > 0. So the set
B:={z € C([a,b],R?); 2(a) € Ky, My(hy) < 27", forall k >0}

satisfies sup,, P(X,, ¢ B) < 2h and has compact closure from Ascoli-Arzela’s theorem; this
proves the tightness of the laws of X,,. >

2.4. Application: Universality of Brownian motion. The central limit theorem
gives a universal status to the Gaussian law among the class of (Borel) probability mea-
sures on the line, with finite first two moments. Brownian motion enjoys a similar universal

property.

THEOREM 37 (Donsker’s invariance theorem). Let (X,,),>0 be a sequence of iid centered
real-valued random variables with unit variance; set forn > 1 and t € [0, 1]

( S Xt (0t — [nt]) X1

1<k<nt

This is a space and time rescaled version of a linearly interpolated random walk; note the
scaling n=? in space and n in time. Denote by P™ the law of this continuous random

path. Then the sequence (P(”))n>0 converges weakly to Wiener measure.
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PROOF  The strategy is simple and follows the pattern described in corollary 36: i) establish
the convergence of finite dimensional distributions and 1) prove the tightness of the sequence
(]P’("‘)) 30 using the equi-continuity criterion (2.3).

i) We need to prove that for any p > 1, any choice of times t; € Ry and constants a;, the

n
» ’iBt(i) converge in law to Zi:l..p a;By,, where B is a Brownian

motion. Setting ABJ(»H) = Bt(?) — Bt(;i)l, with ty = 0, write

S an” =3 (Y a)as’;

i=1..p j=l.p =1..p

random variables ) .,

as each term AB(-n) converges in law to By, — By, , by the central limit theorem, the result
follows from the independence of the random variables B ( ) B(n)1 and By, — By, _,

i1) We shall use the following simple estimate to verify tlghtness.

LEMMA 38 (Ottaviani). Forn > 1, set S, = Xi+---+X,, and S = max {|Sk|; 1 <k < n}.
Then for anyr >1 andn > 1

— 2 * r/n M r
(1-r2)B(s7 > 2 f)gp(ﬁ> )

PROOF — Define the random time 7' as inf{n >1 ‘\Sf 27"} We shall justify later that

one can apply the strong Markov property?' to the random walk (Sp)n>0 at time T it is
used in the third inequality below.

IP’(\S,,L\ 7“\/_) > ( > 2ry/n, |Sp| > r\/ﬁ) >P(T<n, |Sn — St Sr\/ﬁ)

>P(T <n) min P(|S| <rvin)

The inequality of the lemma follows from Chebychev’s inequality

min P(|Sx| > rv/n) > min (1 — i) >1—7r2

1<k<n 1<k<n nr2

The following rough estimate comes out as a consequence of Ottaviani’s lemma’?.

_ S
2.4 lim Tim r?P( 22
(2.4 lim T (2

As we have for any h > 0,¢ € [0,1 — h], and £ > 0 (*3)

] X+ (n(t+ 1) — [n(t + 7)) X
(n) B ‘Z [nt]+1 -k [n(t+7)]
P( sup |BE — BY| > ) =P | sup, 7

S,
<p( i/’;]_zl > %)

> 27”) < lim r? P(NV(0,1) > r) =0

=400

WV

41ndependence of what happen after and before time 7', conditionnally on what happens at time 7. The
proof given in section 10.3 for Brownian motion works equally well for a random walk.

42]\/(0, 1) stands here for a centered Gaussian random variable with unit variance.

43The S* in the inequality below is associated with the Xp,p44,7 > 1; it has the same law as the S*
associated with the X;, ¢ > 1.
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identity (2.4) implies that ]P’( sup ‘Bt(il — Bt(n)‘ > €> = o(h), for each ¢ > 0, uniformly in
0<r<h
t €[0,1] and n > 0. Cutting the interval [0, 1] into sub-intervals [kh, (k + 1)h] and noting

that Mpm)(h) < Qmax{ sup !B,(;Z)JFT — Bé?l)!}, it follows that we have uniformly in n > 0
o<r<h

o] 1
E[Mgm (h) A1] = /0 P(Mpgm (h) A1 = 0)dl < /O P(Mpgm (h) = ¢) d¢

1 1

< / P(Qmax{ sup ‘B](!;l)Jrr — B](!,m} > 5) dl < / h=Yo(h)dl = o, g+ (1);
0 k- Logrgh 0 ’

we have used dominated convergence in the last equality, where h~!o(h) is a function of

¢ which is o(1) as h decreases to 0. The above inequality proves that the equi-continuity

condition (2.3) holds. >

3. COMMENTS AND EXERCISES

3.1. References and comments. Introduction. Don’t hesitate to read Kolmogorov’s
(small) treatise Mathematical foundations of probability theory, as it is amazing of moder-
nity and clarity. Chapter 2 of Shiryaev’s book [Shi96| is nice reading, as well as the
introduction chapter of Gikhman and Skorokhod’s book [GS04].

Section 1. e Kallenberg’s book |[Kal02|, (Chap. 2, 6) contains all the material exposed
in this section, with much more details. Chapters 2 and 3 of Doob’s book [Do094| are well
worth being read. Chapter 3 of Rogers and Williams’ book [RW00]| is also an excellent
source.

e Read Chapter 1 of [RW00] for an exciting and fascinating description of Brownian
motion.

Section 2.1 e 1 can’t see any better reference than the first chapter of Tkeda & Watan-
abe’s book [TW89]. Doob’s book [Do094|, Chap. 8, is also a valuable source for this
section (and all measure theory). Dudley’s book [Dud02|, chap. 11, is also quite nice.

Section 2.2 e You will find the classical proof of Donsker’s theorem using Skorokhod
embedding in Chapter 1, section 8, of [RW00].

The following comments on measure theory might help you understand some subtle
and potentially unnoticed points*.

1. o-additivity of a probability is not obvious. Set Q@ = QN [0,1] and define on
) the algebra A as the collection of disjoint (traces on Q of) intervals with rational ends
(open or not at both ends). I leave you to check that we define an additive set function
setting P({a,b}) = b —a and P(U._,{a:;,b;}) = >0 (b — a;), for U {a;,b;} € A. As
any singleton {r} € A has null P-measure and (2 is countable P cannot be o-additive.

2. The coincidence of two probability measures on a given class does not
always imply their coincidence on the s-algebra generated by this class. Let ()
be any set and C be a collection of subsets of €). It is well-known that if C is stable by
intersection then any two probabilities defined on (Q, U(C)) coinciding on C are actually

4 \Most of these remarks are borrowed from [Sto87].
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equal (on o(C)!). This is no longer the case if C is non stable by intersection as the
following counter-example shows.
On a four point set Q = {a, b, ¢, d} define

Set C = {{a,b},{c,d},{a,c},{b,d}} and check that o(C) is the o-algebra of all parts of
Q. Clearly, P and Q coincide on C, yet they do not take the same values on the singletons
{a}, {0}, {c}, {d}.
3. Is Daniell’s theorem obvious? Let us restate it with a slightly different point
of view and in a special case sufficient for our needs. Identify each R™ as a subset of
RY sending z € R™ to (2,0,---) € RY; this identifies the Borel o-algebra of R" to a
o-algebra F,, of RN, increasing with n. Let us then consider a projective sequence (fi,)n>1
of probability measures on R™ as a set function P on Un>1 F, equal on each F,, to p,.
Daniell’s theorem states that P can be extended to O’(Un>1 fn).

Given a space §2, an increasing sequence of o-algebras F,, in 2 and a set function P on
Un>1 Fon such that P is a consistently defined probability measure on each (0, F,), the set
function P need not extend to a probability on O’(Un>1 Fn).

Consider the (non-complete) space 2 = (0, 1] and set h,(w) =1, 1,(w) for each n > 1
and w € Q. Write C,, = {(b, (0, 1), [%, 1}, (0, 1]} for the o-algebra generated by h, and

‘n

define F,, = o(hy, -+, h,) = {(Z); (0,2), [+, 75,k = n..2, and their unions; (0, 1]} Set

') Lk B—1
P((0,1]) = 1, and for A € F,, with A # (0,1] and 14 = a1 1) + 3, bels 1y, with
an, by € {0, 1}, set
P(A) = ay;
this probability has support in (0, %) Check that the (IP,),>; are a consistent family
of probabilities: P,.1(A) = P,(A) for A € F,. Would there exists a probability on

O'(Un>1 F. ) with restriction P, to each F,,, it should give unit mass to any interval (0, %)

and satisfy at the same time the continuity property*® lim,, IP’((O, %)) = 0, a contradiction.

4. Measurable events. Let (2, F) be a measurable space whose o-algebra is generated
by some algebra A. The definition of F as the smallest o-algebra containing A is non-
constructive, and it is quite tempting to believe that one can construct any element of
F by repeated finite and countable set-theoretic operations starting from A. Precisely,
set Ap = A and define inductively A, 1 as the class of sets of €2 that consists of the
sets of A,,, their complements, and the finite and countable union of those. Surprisingly,
this procedure does not exhaust all the elements of F, and Un>1 A, is generally strictly
included in F! Consult chapter 2 of Dudley’s book [Dud02| for a proof in [0, 1]. What is
true, yet, is that if we are working in a probability space (2, F,P) then any measurable
set is equal to a set of U7121 A, up to a set of null P-measure; this is a consequence of
Caratheodory’s extension theorem.

45Which is equivalent to o-additivity.
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To be written: comments on weak convergence in spaces of cadlag paths

3.2. Exercises. 1. Give a formal construction of a process whose dynamics corresponds to the
following heuristic description. This is a variant of the symmetric random walk on Z? which can
never come back to any position where it has already been. Except from that requirement, it
chooses each time its future location uniformly amongst the set of available nearest neighbours.
If it has visited all its neighbours at some point, it stops and stays forever where it is.

2. Give a formal construction of a process whose dynamics corresponds to the following heuristic
description. This time we are looking at a variant of the simple random walk in Z3 where the sites
already visited gain attractiveness. If the process is at time n in z, it chooses its next location
amongst the nearest neighbours {z;};—1. ¢ of x, it jumps on z; at time n + 1 with probability
proportional to N, (i) + 1, where N, (i) is the number of times that the process has visited site
x; by time n.

3. Let A > 0. Can you construct on some probability space a sequence (X;);>1 of R%-valued
random variables such that, if one writes N(A) for #{i; X; € A} for each measurable set A of
R?, then

e each random variable N(A) is a Poisson random variable with parameter A,
e for any n-uple of distinct sets A; the random variables N(A;) are independent?

4. Gaussian processes. Let T be any index set. A real-valued random process (X;)ier is
said to be Gaussian ifger for any n > 1,¢1,...,t, € T, ¢1,...,¢, € R, the random variables
c1 Xy, + -+ ¢ Xy, are Gaussian. It is said to be centered ifqer any X; has null mean.

a) Prove that, if it exists, the distribution of a Gaussian process (X;);er is determined by the
mean and covariance functions.

b) Let (H,(-,-)) be a Hilbert space. A centered Gaussian process (Xp)pen with covariance
E[X, X = (h,h') (for all h,h' € H) is called an isonormal Gaussian process. Suppose H is
separable, and let (e,),>0 be a basis of H. Let (Gy,)n>0 be a sequence of iid N'(0,1). Prove that
we define an isonormal Gaussian process associating to any h = Zn>0 h"e, € H the random
variable X, = Zn>0 hG,.

c) (i) Taking for Hilbert space the space L?(Ry) and constructing (X ),cr2 as above, prove
that the process B; = Xl[o,t],t > 0, has independent stationary Gaussian increments.
(ii) Prove that B has a modification which is continuous; this modification is thus a Brow-
nian motion.
(iii) As a consequence, characterize Brownian motion as the unique centered Gaussian
process with covariance E[X;X;] = min(s, t).
(iv) Scaling. Given a Brownian motion B, prove that the process X; = tB%, Xo =0, is

also a Brownian motion.

5. Let P be a probability measure on [0, 1], equipped with its Borel o-algebra Bor.
a) Use a monotone class argument to prove that the collection C of measurable subsets B such
that

P(B) = inf {P(O); O open set containing B} = sup {P(C); C closed subset of B}

is a o-algebra.

b) Deduce that for any € > 0 and any measurable set A €Bor there exists a compact subset
K of A such that P(A\K) < e. (P is said to be inner regular.)
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6. Let (S,d) be a metric space. An S-valued sequence (X,,),>0 of random variables converges
in probability to X ifger ]P’(d(Xn,X) > E) I~ 0 for any € > 0, or, equivalently (why?), if
n—+oo

E[d(X,,, X) A1] — 0.
n-—oo

a) Prove that if (X,,),>0 converges almost-surely or in probability to X then it converges
weakly to X.

b) Find a weakly converging sequence which does not converge in probability.

7. Denote by By(R) the set of real-valued bounded measurable functions on R and define the
By(R)*-topology as in definition 16, with By(R) in place of Cp(R). What difference is there
between the notions of Cy(R)* and By(R)* convergence?

8. Let (n)n>0 be a sequence of probability measures on R. Prove that it converges weakly to
some probability p iff (f, un) — (f, p) for any continuous function with compact support.

9. Suppose py, 4, w. Prove that the characteristic function of u, converges uniformly on bounded
sets of R to the characteristic function of p.

10. FEquicontinuity and tightness. Let (f,)n>0 be a sequence of probability measures on R and
{¢n}tn>0 be the sequence of their characteristic functions. Prove that the sequence (fin)n>0 is
tight iff the family {¢y, }n>0 is equicontinuous at 0.

11. Glivenki-Cantelli lemma. Use the representation X,, = G, (U) of a random variable given in
§2.3 to prove the following statement, due to Glivenko and Cantelli. Given a sequence (X )r>0
of iid random variables with distribution F', denote by F}, the empirical distribution of the n-uple

(Xl, e ,Xn)l
1 n
Fa(t) =~ kzl Lx,<t-

Prove that
sup | F, () — F(t)] — 0
teR

as n goes to oo.

12. Use the almost-surely representation of weakly converging random variables (theorem 26)
to answer part or all of the following questions.

a) Find a sequence (X,,)p>0 of real-valued random variables converging weakly but not in
probability. Prove yet that if the weak limit is a constant random variable then the convergence
holds in probability.

b) Use this result to prove the following fact, due to Slutski (and useful in statistics). Suppose
(Xn)n>0 has values in an interval I and that there exists some constant m such that /n(X, —
m) converges in law to a centered Gaussian random variable with variance 2. Let f be a

differentiable function defined on I. Prove that \/n(f(X,)— f(m)) converges in law to a centered

Gaussian arv with variance o2 (f’(m))2

13. Find a modification X of the constant process Y = 0 which is not indistinguishable of Y.
14. The purpose of this exercice is to give an example in which we have convergence of finite-
dimensional distributions without convergence in law.

a) Let (S5,d), (S',d") be metric spaces and f : S — S’ be a continuous map. Let (j,)n>0 be
a weakly convergent sequence of probability measures on (S,S), with limit p. Prove that the
image measure of u, by f converge weakly to the image measure of p by f.
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b) Set f(t) =1 —|t| for |[t| < 1 and 0 elsewhere. Let U be a random variable carried by some
probability space (€2, F,P) and uniformly distributed on [%, %] For w € Q and t € [0, 1], define
for n € N,

X, (t,w) = f(3"(t—U,)), and X(t,w):=0.

Make a picture of X,(-,w) for a fixed w. Consider X,, and X as C([O, 1],R)—valued random
variables. Prove that X,, does not converge in law to X despite the almost-surely convergence
Xy (t) — X(t) for every t. What is missing?

15. Brownian motion conditionned to be equal to 0 at time 1. Let P be Wiener measure on
C([O, 1]) and X the canonical coordinate process (a Brownian motion under P). Given & > 0,
define the law P, of X conditionned to have value in [0,¢] at its final time: P.(4) =P(A|X; €
[0,¢]), for any Borel set A of C([0,1]). Define also X7 = X; — tX;, for any ¢ € [0,1], and
denote by Py the distribution of X°. The aim of this problem is to prove that P, converges in
distribution to Pg. In this sense, X represents a Brownian motion conditionned to have value 0
at time 1; it is called a Brownian bridge. Recall why it is sufficient to prove that

(3.1) m P-(F) < R(F),

for any closed set F of C([0,1]).
a) Given any times ¢; € [0,1] and real (measurable) sets B, (B;)i=1.n, 7 = 1, prove that we
have
P(X{ € By,...,X{ € By, X1 € B) =P(X} € By,...,X;{ € B,)P(X; € B).

Why does this imply that IP’(XO eA|0LK X; < 5) = IP’(XO € A), for any Borel set A ofC([O, 1])?
b) Show how to get (3.1) from that point.

4. COMPLEMENTS TO PART |

4.1. Complement: Separable Banach spaces. Recall that a Banach space is a com-
plete metric space. The space [0, 1]V, equipped with the distance d(x,2’) = Y ons0 27T —
! | is for example a separable Banach space. Its universal role is emphasized by the fol-

lowing theorem®®.

THEOREM 39. Any separable Banach space is homeomorphic to a measurable subset of
[0, 1]".

PROOF — Given a separable metric space (F,d), denote by (z,)p>0 a dense sequence of points
of E and define for each p > 0

d(, p)
= , € F;
f(@) 1+d(z, 2p) *
this is a continuous (and hence measurable) [0,1]-valued function on E. Therefore, the

formula

f(z) = (fp(x))p;o
defines a continuous injective function from E into [0,1]N (check it). Supposing that f(z,,)
converges to f(z), we must have d(x,, z,) — d(z, 2p) for each p > 0, from which we easily
deduce that z,, converges to . This proves that f~! is continuous on f(F), that is, f is a
homeomorphism from E to f(FE).

46The next two theorems and their proofs are essentially taken from Appendix 1 from Dynkin and
Yushkevich’s book [DY79].
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Suppose in addition that the space is complete, so that it is a separable Banach space. To
see that f(F) is a measurable subset of [0,1]Y, recall that we have seen in the proof of
Prohorov’s theorem that E can be written as an increasing union of compact sets’ I,,.
As each f(K,) is a compact set of [0,1]Y, by continuity, it is measurable. This shows that
FE) = U,z f(KR) is meastirable?®. >

THEOREM 40. The space [0, 1N, equipped with its Borel o-algebra, is isomorphic to a

measurable subset of [0,1]. As a consequence, any measurable subset of a separable Banach

space™ is a Borel space.

PROOF — Equip {0, 1} with its product o-algebra. It is easily seen that if ¢ is an isomorphism
from a measurable space X into Y then the formula

(@n)nz0 — (W(xn))ngo

defines an isomorphism from XY into YN. Theorem 40 will thus be established if we can
a) construct an isomorphism ¢ from [0,1] into {0, 1}Y,
b) prove that the spaces {{0, 1}N}N and {0, 1} are isomorphic,
c) prove that the space {0, 1} is isomorphic to a measurable subset of [0, 1].

a) Denote by D the countable subset of {0,1} made up of sequences with only finitely
many zeros. The fomula ¥ : € — Zn>1 €n27"™ defines an injective measurable map from
{0, 13"\ D onto [0, 1]. To show that its inverse map ¢ : [0, 1] = {0, 1}'\D is also measurable
it suffices to show that the preimages ¢ ' (I'y) = ¥(T'}) of T}, = {e € {0,1}\D; ¢, = 0} are
measurable; this is clearly the case as ¢(I'x) = Uy—q or-1_4 [2p 2p+1].

ok ok
b) Given a sequence (e(p))p>0 of elements of {0, 1}, write ¢®) = (e,glp))

>0 and set

(0) (0) (1) (0) (1) _(2)

€ =€) € € € € € ...,

identifying N to N. This defines a bijective map F from {{0, 1}N}N onto {0,1}. Denote
by B,gn) the subsets of {{0, 1}N}N defined by the condition e,(cn) = 0; these sets generate the

product o-algebra of {{O, 1}N}N and the sets F(B,gn)) the product o-algebra of {0, 1}N. This
proves that the maps F and F~! are measurable, so F' is an isomorphism.

c) We show that {0,1} can be mapped continuously and injectively into a measurable
subset of [0,1]. To see that this map G is an isomorphism from {0, 1} onto its image® it
suffices to see that the elementary product events {e € {0, 1}N; €n = O} are mapped onto
measurable sets; this is the case as these events being compact sets, their image by the
continuous map G are compact, hence measurable, subsets of [0, 1].

The map G is simply defined by the formula

G(e) = Z 2,371

n>0

its continuity and injective character are easily checked. >

4TThe compact set K constructed in the proof of theorem 31 is a typical element of this union, obtained
by letting 1 decrease to 0. The completeness hypothesis on the space is needed to prove that the set K
constructed in that proof is compact.

BWith a little bit of extra work, it also shows that f(F) is a countable intersection of open sets of [0, 1]N.
Equipped with the trace o-algebra of the ambient space.

50To see in particular that G({0,1}") is a measurable subset of [0, 1].
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4.2. Complement: Lebesgue measure on [0, 1]. Let (S,S) be a Borel space. We have
seen in the proof of theorem 10 that any (S,S) is isomorphic (first to a measurable sub-
set of [0,1], by definition, and then) to a measurable subset of {0, 1}"; so, constructing
a probability measure on (S5,S) amounts to construct a (Borel) probability measure on
{0, 1}, The enormous advantage of this space is that is has an extremelly simple gen-
erating algebra: the countable collection A of cylindrical sets®. As these sets are at the
same time open and closed, and so compact, a finitely additive set function on A will
automatically satisfy condition i)’ of Caratheodory’s extension theorem.

THEOREM 41. Borel probability measures on {0, 1} correspond bijectively to additive
set functions on A, equal to 0 on () and 1 on Q.

Setting 1£({0}) = 1 and p({1}) = i, it follows that the product probability measure
p®N is well defined on the product o-algebra of {0,1}. The image measure of u*N by
the map (£,)n50 — Y €,27"" ! €0, 1] is Lebsegue measure.

4.3. Complement: Isomorphism of Borel probability spaces. A Borel space (S,S)
is by definition isomorphic to a measurable subset of [0, 1]. Theorem 43 below essentially
states that any probability measure on (S,S) can be constructed as the image measure
of Lebesgue measure on [0, 1] by some "isomorphism". This means that all the theory
developed in this course has actually a unique framework: [0, 1] with Lebesgue measure; in
particular no abstract measure theory is needed. The statement of theorem 43 requires
the following definition.

DEFINITION 42. Two probability sapce (2, F,P) and (', F',P") are said to be isomorphic
modulo zero if,, there exists Qo € F, Oy € F' with P(Qp) = P'(Q) = 1 and an

isomorphism f between Qg and Yy such that P is the image measure of P by f(°?).

We shall write A for Lebesgue measure on [0, 1] and D for the A\-completion of its Borel
o-algebra.

THEOREM 43. Any Borel probability space (S, S,P), without atoms, is isomorphic modulo
zero to ([O, 1),D, )\).

PROOF — The proof is simple and starts by identifying (S,S) to a measurable subset of [0, 1]
and then to a measurable subset of {0,1} (as in the proof of theorem 40). We shall now
consider P as a probability on the product o-algebra F of {0,1}. Adopt the notations
C, for {0,1}0P1 and X, : {0,1}N — {0,1} for the p'™ projection, p > 0. We are going
to construct by induction for any z = (20,...,2,) € Cp an interval I(z) = [a(z),8(z)) of
Lebesgue measure 3(z) — a(z) = P(Xo = 20,...,Xp = 2p).

Set 1(0) = [0,P(Xo =0)) and I(1) = [P(Xo = 0),1). Suppose I(z) was constructed for any
2 € Cpk <pandlet 2= (20,...,2p,2pt1) € Cpt1; 5€t 2 = (20,...,2p).
o If 2,11 =0, set a(z) (2) and B(2) = a(z) + P(Xo = 20,..., Xp = 2p, Xpr1 = 2pt1)-
o If 2,11 =1, set a(z) (2) + P(Xo = 20,..., Xp = 2p, Xp41 = 2p41) and B(z) = B(Z).

Set then for any n > 1
B, = U I((Ev 1));
zeCp—1

=«
=«

51Where only a finite number of coordinates are specified.
2P’ and P have to be understood as defined on the o-algebras {Q) N A’; A’ € F'} and {QyNA; A € F}
respectively.
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it is easily checked that I(2) = I((20,...,20)) = B3” N--- N Bj», where we write B for

n o
[0,1)\B and B! for B. One has sup )\(I(z)) — 0. Indeed, would the converse happen we

ZGCW. ’l’l+00
could construct by induction an element z € {0,1}" such that A(I(zo,...,2,)) = ¢ for all
n > 0 and a positive constant . We would then have on the one hand P({z}) = 0, since P
has no atoms, and on the other hand

]P’({z}) = nhﬁ?o N P(Xo = 20,...,Xn =2,) = T}HEO AN )\(I(zo,...zn)) > e,

leading to a contradiction. It follows that the family B = (B,,),>0 is a basis of the topology
of [0,1). Define

¢p:x€(0,1)— (1Bn(93))n>oe{o,1}N

and check that P is the image measure of A by ¢p: this map is an isomorphism modulo zero

between ([0,1),D,\) and ({0, 1}, 7, P). >

You will find in appendix 1 of Dynkin and Yushkevich’s book [DY79], or chapter 13 of
Dudley’s book [Dud02], a clear and definitive account on Borel spaces. Up to isomorphism
(and not only isomorphism modulo 0) there exists only three types of Borel spaces: the
finite spaces, N and the interval [0, 1].

4.4. Complement: Riesz representation theorem. We show in this complement how
the proof of Caratheodory’s extension theorem given in section 1.2 quickly leads to F.
Riesz representation theorem. Given a topological space (X, X), denote by C.(X) the
set of continuous real-valued functions on X with compact support, equipped with the
supremum norm.

THEOREM 44. Let (X,X) be a locally compact topological space and E : C.(X) — R be
a positive linear form of norm 1. Then there exists a probability measure P on the Borel

o-algebra of X such that E(f) = [ f(z) P(dx), for all f € C.(X).

PROOF — We first check that the suitable analogues of the conditions of Caratheodory’s
theorem hold here. Condition i) states that (@) = 0 and p(2) = 1. Its analogue here,
E(0) = 0 and E(1) = 1, is guaranteed by the linearity and the positivity and unit
norm of the operator E. Countable additivity of F on C.(X) is automatic! Indeed, any
decreasing sequence of elements of C.(X) converging to 0 pointwise actually converges
uniformly to 0. As E has unit norm, it follows that E(f,,) decreases to 0 if f,, € C.(X)
decreases pointwise to 0 € C.(X).

We can now copy word by word our proof of Caratheodory’s extension theorem, but
with C1(X) in the role of the algebra A, the set of non-negative real-valued functions
on X in the role of P(Q2), and the operation fAg := f+ g — 2f A g in the role of
AAB. The o-algebra generated by a family B, of functions is the smallest class of
functions B containing B, and closed by pointwise passage to the limit.

As a result, F has a unique extension into a linear functional of norm 1 on the set of
bounded® functions belonging to the o-algebra generated by C.(X). This o-algebra
is also generated by the indicators of sets of the form f~1 ((a, b)), a < breals. As the
space is locally compact, it coincides with the o-algebra of Borel-measurable bounded
functions.

53Use the monotone class theorem for functions for the uniqueness part of the statement; it deals with
bounded functions only.
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Denote by P the restriction of E to the indicators of Borel sets. It remains to prove
that E(f) = [ f(z) P(dz). As f is a uniform limit of elementary functions »_ a;14,,
with a; € R and Borel sets A;, the results follows from the definition of the integral
with respect to P and the fact that the extension of £ has unit norm. >
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PART II. DYNAMIC THEORY OF STOCHASTIC PROCESSES

Recall that Kolmogorov’s view on Natural random phenomena is a two levels theory:
the random phenomenon itself is modelled by a probability space (Q2, F,P), where Q is
the set of possible outcomes and F is the set of observable events, while our experimen-
tal observations are modelled by a process (X;);er, whose index set corresponds to the
different types of measures of the phenomenon one can make. A random surface will for
instance be described by a random process with index set a subset of R? (or S? as we live
on Earth).

The first part of the course was devoted to constructing model probability spaces and
processes. This task being done, we are now going to study random processes for them-
selves without paying attention to the background (€2, F) anymore. More specifically, we
are going to study random processes indexed by some sort of time: {1,...,n},N or an
interval of [0, +00]. In this framework, it is natural to enrich our description of Nature
by adding to (€2, F,P) the information on everything which has happened up to time t.
This information is encoded under the form of an increasing family (F;)er of o-algebras.
Being non-ubiquitous, our knowlegge of the history of the world up to time ¢ is only
partial (we cannot observe everything, but information also needs some time to travel,
may be damaged during that travel, we may only be able to understand part of it...), so
will be represented by an increasing family of o-algebras G; C F;. (Note the optimistic
character of this model: we do not forget our past.)

How can we then understand some events on which we have only a partial information?
The introduction of the concept of conditional expectation will provide a mathematical
answer; it will also provide a conceptual framework in which talking about “constants
of motion”, increasing/decreasing predictions, under the form of martingales, sub/super-
martingales. Our main task in this part will be to understand the asymptotic behaviour
of these “constants of motion”, first in a discrete time setting, and then in a continuous
time setting.

No topological hypotheses are made on the measurable spaces (2, F) used in this part.
Given a probability P on a measurable space (Q,F) and a sub-o-algebra G of F, we write
LY (G) for the class of integrable functions which are G-measurables. We simply write 1!

for LY(F).

5. DYNAMICS AND FILTRATIONS

5.1. Conditional expectation. Let us come back a moment to the considerations of
the introduction. We saw there that the mathematical abstraction of the logical process
of experimental research is the concept of algebra. Imagine we study a phenomenon X,
with associated algebra A. We associate to the known information about X a sub-o-
algebra B of A. It is everyday’s task of scientists to ask what can be infered on the
‘law’ of the phenomenon from the knowledge of B. What predictions can we make? Can
we quantify their quality? etc. These questions are easier to handle mathematically
in the idealised framework of measurable spaces, where algebras have been replaced by
o-algebras. Roughly speaking, we may ask: Given a probability space (Q2, F,]P) and a
sub-g-algebra G of F, how well can we approximate an F-measurable random variable by
a G-measurable random variable?
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L2 spaces, with their Hilbert structure, provide a good framework in which talking
about approximation; a discrete framework also provides a playground where intuition
is easy to formalise; we shall start with it. The construction of conditional expectation
given below will make it clear that both views coincide.

5.1.1. Duscrete case. The discrete case consists of the datum of a countable partition of a
probability space (£, F,P) into events A,, of non-null probability. Set G = o(A,,; n > 0).
Let X € Ll(]:). As G-measurable functions are constant on each atom A, of G, any
G-measurable approximation of X is of the form Y  a,14,. It is natural® to choose a,,
as the mean of X on A,: the conditional expectation of X given G is the random
variable

E[X1,, ]

Y = — TR,
2 P(A,)
n>0

It is characterized by the properties

e Y is G-measurable,
e Y is integrable and E[X14] = E[Y'14] for all A € G.

For G generated by an increasing sequence of discrete g-algebras G,, we could try to define
E[X|G] as the limit of the E[X|G,] if it exists. Although this constructive approach works
(see theorem 65 below), the above characterization suggests a simpler and more general
definition /construction procedure in accordance with the L? idea of best approximation
as a projection.

5.1.2. General case: Existence and uniqueness.

DEFINITION/PROPOSITION 45. Let (Q, F,P) be a probability space and G be a sub-o-
algebra of F. Let X € LY(F). Then there exists a random variable Y such that

(1) Y is G-measurable,
(2) Y is integrable and E[X14] = E[Y'14] for all A € G;

two such random variables are equal P-almost-surely.

PROOF  Uniqueness. If Y’ also satisfies conditions (1) and (2) the event A = {Y > Y'}
belongs to G, so

E[(Y —Y')14] =E[Y14] —E[Y'14] = E[X14] - E[X14] =0

by property (2). This equality prevents A from having a positive probability. We prove in
the same way the P(Y < Y”) = 0.
Ezistence. Assume to begin that X € L?(F). Since V := L?(G) is a closed subspace of
L2(F), we have X =Y + W for some Y € V and W € VL. Then, for any A € G, we have
14€V,s0

E[X14] —E[Y14] =E[W14] =0.
Hence Y satisfies (1) and (2).
Assume now that X is any non-negative random variable. Then X,, = X An € L?(F) and
0< X, T X as n — oo. We have shown, for each n, that there exists Y;, € L.2(G) such that,
for all Ae g,

E[X,14] = E[Y,,14]

SWe may be guided in this choice by the fact that for a random variable U with a second moment, E[U]
is the constant which minimizes the quantity E[|U — c|2], seen as a function of c.
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and moreover that 0 < Y, < Y,41 a.s.. Set Y = lim, . Y, then Y is G-measurable and,
by monotone convergence, for all A € G,

E[X14] =E[Y14].

In particular, if E[X] is finite then so is E[Y]. Finally, for a general integrable random
variable X, we can apply the preceding construction to X~ and X to obtain Y~ and Y.
Then Y =Y ' — Y~ satisfies (1) and (2). >

5.1.3. Properties of conditional expectation.

PROPOSITION 46 (Simple properties). 1. Let w be a m-system generating G. IfY €
LY(G) satisfies E[Y14] = E[X14] for any A € w, then Y = E[X|]].
2. e For any Z € L™(G) we have E|ZE[X|G]| = E[ZX].
e E[X|G]>0if X >0.
e If G and o(X) are independent then Y is constant equal to EX.
o We have E[aX + 5X'|G] = a E[X|G] + BE[X'|G], for any o, € R, X' € L!,
3. (Conditional Jensen’s inequality) For any convez function f such that f(X) €
LY(F) we have
F(E[XG]) < E[f(X)|G].
In particular, if X € IL? for some p € [1,+00) then HE[X\Q]HP < || X -
4. (We can take out what is known) If Z is bounded and G-measurable, then E[Z X |G|
ZE[X|G] almost-surely.

PROOF — 1. Use the monotone class theorem for functions.
2. Use the monotone convergence theorem to prove the first statement. For the second
note that we can have E[1g[y|g)<oE[X|G]] = E[lgy|g)<oX] = 0 only if P(E[X|G] < 0) =
0. The two other properties are checked verifying that the asserted quantities satisfy the
characterization of conditional expectation.
3. As f is convex it is the supremum of a countable family of affine functions:

f(z) =sup (a;z + b;), * € R.

Hence, almost-surely , for all i,
a; E[X|G] + b; < E[f(X)|g],

that is f(E[X|G]) < E[f(X)|g].
4. Check that ZE[X|G] satisfies the properties (1) and (2). >

PROPOSITION 47 (Conditional versions of convergence theorems). 5. (Monotone con-
vergence) If one has almost-surely 0 < X,, < X then one has almost-surely
E[X,|6] < E[X[G).

6. (Fatou lemma) If X,, > 0 for all n, then one has almost-surely E[lim inf X, |G] <
lim E[X, G

7. (Dominated convergence) If X,, converges almost-surely to X and |X,| is domi-
nated by an integrable random variable for all n, then E[X,|G] converges alomst-

surely to E[X|G].

PROOF — 5. If 0 < X, increases almost-surely to some random variable X, then E[X,,|G]
increases almost-surely to some G-measurable random variable U; so, by monotone
convergence, for all A € G,

E[X14] = imE[X,14] = imE[E[X,,|G]14] = E[U14]
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Fatou lemma (6) and dominated convergence (7) follow by essentially the same argu-
ments as in the original results. >

To state the fundamental property 10, recall that a family (X;);er of real-valued random
variables is uniformly integrable ify

sup E[‘Xt‘]-\thm] — 0 asm — +oo.
teT

PROPOSITION 48 (E(X|G) as a function of G). 8. (Tower property) If H C G, then
E[E[X|G]|H] = E[X|H].
9. If 5(X,G) is independent of H, then E[X|o(G, H)| = E[X|G].

10. (Uniform integrability) Let X € L. Then the set of random variables Y of the
formY = E[X|G|, where G C F is a o-algebra, is uniformly integrable.

PROOF — 8. Just check conditions (1) and (2).
9. Using property 1 it is sufficient to check that we have

E[E[X|0(G, H)]1ans] = E[E[X|G]1an5]

for any A € G and B € H, as the set of such AN B is a 7-system generating o(G,H). But
the left hand side equals

E[X14n5] "2 E[E[X|G]14]P(B) = E[E[X|G]14n5].

10. We can find § > 0 so that E[|X|14] < e whenever P(A) < §. Then choose A < 0o s0
that E[|X|] < Ad. Suppose Y = E[X|G], then [Y| < E[|X||G]. In particular, E[|Y]] < E[|X|]

S0
P([Y] >\ < ATE[[Y[] <6
Then
E[Y[1y2a] SE[X[1ya] <e
Since A was chosen independently of G, we are done. >

5.2. Filtrations. Dynamics becomes real through the accumulation of knowledge as time
passes”®; filtrations are the probabilistic counterpart of this accumulation process.

5.2.1. Generalities. Let I be a time index, it may be finite {1,---,n}, countable N, or
an interval of Ry U {oo}.

DEFINITION 49. Let (Q, F) be a measurable space. A filtration on (Q, F) is a monotonic
family (F;)ier of sub-o-algebras of F. We shall talk of the filtered space (Q, F, (Fi)ier)-

Filtrations are the mathematical counterpart of the accumulation/loss of knowledge
about a phenomenon as time passes; we shall give in theorem 65 and 67 a quantitative

version of this fact. Note that we do not require Fy to be trivial or F, to be equal to F
(if o0 € 1).

DEFINITION 50. Let X = (X})ies be a random process defined on a measurable space
(Q,F). The filtration generated by X is defined by the formula

FX=0(Xs;s5€1,5<t).

55There is no dynamics without memory, which enables one to compare what happens at different times.
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Given ¢t € I we denote by \/,_, F, the o-algebra generated by™ J,_, F,. Be careful,
filtrations have no reason to be a priori continuous on the left: we may have \/,_, F; C F;.

g

Think of a process which is constant on [0,¢) and has a random (non-null) jump at time
t. We may as well have (,_, Fs # F;. These fact motivate the following definition. Given
a filtration <‘7:t)tel on some probability space (€2, F,P), set for any ¢t > 0

Fi+ = mfs.

s>t
This defines a new (and bigger) filtration where we allow ourselves to look slightly ahead
in time; it is continuous on the right.
DEFINITION 51. o Let (Q,]:, (Ft)t>0) be a filtered space. A random process X =
(Xi)ter on (2, F) is said to be adapted to (F;)iso if gy Fi¥ C Fy for allt € 1.
o Let (O, F, (Fn)n>0) be a filtered space. A random process X = (X,)n>0 on (2, F)
15 said to be (Fn)n>0-previsible e FX CFuq foralln>1 and F C Fy.

We shall just say previsible when the context is clear.

5.2.2. Stopping times. Recall first that a random time is an [-valued random variable; it
indicates the moment at which some event of interest happens; the o-algebra F; corre-
sponds to our knowledge of the world at time ¢. Although an event may happen at time
t we may not be aware of it immediately; events of which we have immediate knowledge
are called stopping times.

DEFINITION 52. A stopping time is a random time T such that {T <t} € F; for any
t € 1. It is equivalent to say that the process <1T<t)tel 1s adapted.

Fundamental example of previsible process. Given a filtered space (Q,]:, (fn) and a

n20>
stopping time 7', the process (1"<T>n>o is previsible.

As above, denote by (S, d) a metric space.

DEFINITION 53 (First entrance and hitting times). Let (X;):>o be an S-valued process and
[ be a Borel subset of S. The first entrance of X in T is the random time Dy = inf{t >
0; X; € T'}; the hitting time of T by X is the random time Hr = inf{t > 0; X, € T'}.

These two classes of random times will be our main examples of stopping times.

PROPOSITION 54. Suppose (X)io is an S-valued continuous random process, and let
and O be some subsets of S, respectively closed and open. Then,

o Dy is an (Fi)io-stopping time;

o Do and Hp are (Fi+ )i>0-stopping times.

PROOF — Dp: Since the map x € S — d(z, F) is continuous (it is Lipschitz), the functions
w — d(X4(w), F') are measurable, for all ¢ € Q4. For ¢ > 0, we have by continuity,

{Dr <t} = {inf{d(Xy, F); ¢ €QN[0,1)} = 0},
from which the (F);>o-stopping time property follows.

56Recall that the union of two o-algebra may not be a o-algebra; find a counter-example.
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Do: {Do <t} = Useqnpo,g{Xq € O} € Fi. Note that we may fail to have {Do <t} € Fi:
if for some w, Xi(w) < 1, for t € [0,1), and Xy (w) = 1, we cannot tell wether D(; o) =1
or not without looking slightly ahead in time.

Hp: 1leave you this case as an exercise. The fact that we just have an (F+);>0-stopping
time comes from the fact that we cannot tell at time 0 if Hg is 0 or not... >

Given a stopping time 7T set
Fr={AeF;An{T <t} e F foralltel}.

Check that if T is constant equal to ¢t then Fr = F;. Given a process X we shall set
Xr(w) = Xrw)(w) whenever T'(w) < co. We also define the stopped process X' by
XTI = X;nr. The following facts are easily proved from the definitions.

PROPOSITION 55. Let T and T" be stopping times on a filtered space (Q,]:, (ft)tg), and
let X = (X})ier be an adapted process. Then

e T'NT' is a stopping time,

o if T'<T' then Fr C Frv,

o X1 is adapted, when I = N.

It is also easy to prove that X717 is Fr-measurable if T is countable; this is no
longer automatic if the time index is uncountable. We shall state and prove a sufficient
(and useful) condition to have the conclusion later in proposition 83; this condition will
essentially mean that the process is determined by its restriction to a countable set of
indices.

5.3. Martingales, supermartingales and submartingales. Constants of motion play
a dominant role in the theory of differential equations (and so in classical mechanics):
knowledge of a constant of motion reduces the dimension of a problem, so if sufficiently
many independent constants of motion are known then the system is integrable (at least
theoretically). Liapounov functions®” usually also provide precious informations on the
dynamics; they are for instance used to prove the stability of hyperbolic zeros of vector
fields under perturbation. The probabilistic counterpart of these notions are martingales
and sub/supermartingales. In our framework the dynamics is not provided by the da-
tum of a differential equation but by the datum of a filtration representing our evolving
knowledge of a system as time passes.

DEFINITION 56. o Let (Q,}", (Ft)tg) be a filtered probability space. A martingale
is an adapted integrable process (M) such that B[M;|Fs] = My for any s < t.
e A submartingale is an adapted process (M)ier such that B[M|Fs] = My for any
s < t.
e A supermartingale is an adapted process (My)ie; such that B[M;|F,| < My for
any s < t.

So, roughly speaking, submartingales play the role of increasing functions and super-
martingales the role of decreasing functions. Do martingales play well their role of con-
stant of motion? Yes: We shall see later for instance that if Q@ = C(R;,R), F is the
Borel o-algebra, X;(w) = w; is the coordinate process and F; = F;* then a probability

5TA Liapounov function for a differential equation g = f(y;) is a function g such that g(y;) is monotone
along any solution.
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) 2

”‘X”%)@O is a mar-
tingale. Similarly, a Markov chain is completely determined by the datum of a certain
family of martingales. These facts should warn you of the importance of this concept.
As a consequence of the conditional version of Jensen’s inequality the convex image of a

martingale (resp. concave) is a submartingale (resp. supermartingale).

on (€, F) is the Wiener measure iff the complex-valued process (e

6. DISCRETE TIME MARTINGALE THEORY

Let us fix a filtration ('7:"‘)77,>0 on a given probability space (2, F,P). Adaptedness,
previsibility, martingales... are defined with respect to this set up in this section.

6.1. Characterisation of supermartingales. Martingales (resp. sub/super-martingales)
are defined above by the “projection identities” at deterministic times. The possibility to
use similar identities with random times is the very reason why this class of processes will
happen to be so powerful.

THEOREM 57 (Optional stopping theorem (1)). An adapted process X is a supermartin-
gale iff one of the following conditions hold.
1. For all bounded stopping time T and any stopping time S
E[X7|Fs] < Xsar.
2. For all bounded stopping times S, T, with S <T
E[X7r] < E[Xg].

PROOF — We make a circular argument proving statement 1 first. Suppose the stopping times
S and T bounded above by a constant n; we can write

Xp=Xsar+ Y (Xip1 — Xi)Lscker-
k=0..n
To prove 1 amounts to prove that we have for any A € Fg

E[XTIA] < E[XSATIA].
But as AN{S <k < T} € Fj, we have
E[(Xk41 — Xk)ls<her]| <0
the result follows. Statement 2 is a consequence of 1. Last, to prove that X is a supermartin-

gale if it enjoys property 2, take integers p < ¢, an event A € F,,, and set T' = pl g + g1 c.
This formula defines a stopping time bounded by ¢, so

E[X,] <E[X7],
1.€. E[Xq] < E[XplA + quAc], or E[quA] < E[XplA]. >
We have a similar statement for martingales, with equalities instead of inequalities.

COROLLARY 58. Given a martingale (M, ),>o0 and a stopping time T', the stopped process
MT is a martingale.
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6.2. Almost-sure and L!'-convergence results.

6.2.1. Non-negative martingales. Given a non-negative martingale (M,,),>o and two pos-
itive real numbers a < b define the stopping time o1 = inf{p > 0; M, < a} and define
inductively the stopping times®®

T =inf{p = op; M, 2 b}, opp1 =inf{p>7; M, <a}.
The number of upcrossings from a to b by the martingale (M,,),,>o is equal to

Uap =sup{k; 7, < oo} € NU {oo}.

PROPOSITION 59 (Dubins). We have P(U,, > k) < (%)k, for any k > 0. In particular
Uap 15 almost-surely finite.

PROOF  As we have {0}, < oo} C {7x—1 < oo} it is sufficient to prove that P(7, < oo) <
7P(or < 00). We know from the optional stopping theorem 57 that we have for any n > 0

E[MmAn] = E[Mak/\n],

i.€.
E[M: 15, <] + E[My 1y, 5n] = E[Mo, 1o, <n] + E[My 15, 50]-
Since the first term on the left is > bP(7;, < n) and the first on the right is < aP(or < n),
we have
bP(1, <n) <bP(rp <n) + E[Mnlak<n<rk] < aP(op < n)
as M is non-negative; the inequality of the proposition follows sending n to 4oc. >

As a consequence of Dubins’ result, almost-surely U, is finite for all rationals a < b.

COROLLARY 60 (Almost-sure convergence). A non-negative martingale converges almost-
surely to an integrable random variable.

PROOF — If not there would exists positive rational numbers a < b such that U}, = oo on an
event of positive probability, contradicting Dubins’ proposition. Denote by M., the almost-
sure limit of M,,. We prove the integrability of M, applying Fatou lemma in the equality
E[M,] = E[My). >

Let S,, denote the simple symmetric random walk on Z, stopped at the random time T’
when it hits —1. The process M, =S, + 1 is a non-negative martingale which converges
almost surely to 0; yet M, does not converge to 0 in L', as E[M,,] = 1.

DEFINITION 61. A martingale (M,),>o is said to be closed ifgep 1t converges almost-
surely to an integrable random variable My, for which we can write the martingale identity

M, = E[My|F,], for alln > 0.

6.2.2. Almost-sure convergence of supermartingales. The proof of Dubins’ proposition 59
makes a crucial use of the non-negativeness of the martingale. The price to pay to get rid
of this hypothesis is to impose to the martingale to be bounded in I.'. This actually works
for supermartingales as is implied by the following result due to Doob™. Let (X,),0 be
a supermartingale. Given two real numbers a < b, denote by, U,;(n) the number of
upcrossings of X from a to b made by time n; almost surely U,;(n) increases to U, as
n — +4o00. The stopping times 7, o are defined as above.

%8Check that they are indeed stopping times. We adopt the convention inf () = +oo.
59A result prior to Dubins’ result.
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THEOREM 62 (Doob’s upcrossing inequality). For any supermartingale X we have for
any n =1
E|(X, —a)”
E[Ua,b(n)] < %-

PROOF Given n > 1, set
S = Z(er/\n - Xcrk/\n)-
E>1
As 75, and oy, are no less than k, only the first U, (n) + 1(< n + 1) terms may be non-null;
so S = ZZI% (ka/\n — ng/\n). Each of the first U, ;(n) terms are no smaller than b — a as
they correspond to upcrossings. The last (potentially non-null) term, X, — XC,U (1A is
greater than or equal to —(X,, —a)™. So we have
n+1
(6.1) > (Xroan = Xopan) = Uap(n) (b—a) — (X, —a) ™.
E>1
But as X is a supermartingale and 73 An, o, An bounded stopping times, we have E[ X, ] <
E[X,,an], by the optional stopping theorem 57; the result follows. >

The same reasonning as in corollary 60 proves the following extension of corollary 60.

THEOREM 63 (Almost-sure convergence theorem for supermartingales). A supermartin-
gale bounded in L' converges almost-surely to an integrable random variable.

6.2.3. Closed martingales. a) Main theorem. To state the following necessary and suf-
ficient condition of closedness of a martingale recall that a sequence (X,,),>¢ of integrable
random variables converges in L' to some X (€ L) iff it converges in probability to X
and is uniformly integrable. This fact is a well known application of Egorov’s theorem®’.
You are asked to prove that result in the example sheet.

THEOREM 64 (LL'-convergence theorem for martingales). A martingale is closed iff it is
uniformly integrable.

PROOF = has been proved in proposition 48. To establish the converse it suffices to note that
a uniformly integrable martingale (M,,),>0 is bounded in L!, so it converges almost-surely
(hence in probability) to some M., € L!, by theorem 63. As a consequence of the above
mentionned result it converges in L' to M.,. Passing to the limit in the martingale identity
yields M,, = E[Mq|Fy]. >

As a direct application of this criterion we obtain Lévy’s famous convergence theorem.

THEOREM 65 (Lévy’s 'upward’ theorem and 0—1 law). For every X € L' the martingale

E[X|F,] converges almost-surely and in L' to E[X|F]. In particular, P(A|F,) converges

almost-surely to 14, for every A € Fo.

b) Applications. We present here two important applications of the above two results.

e We first show that the optional stopping time theorem can be applied with any stopping

time when working with a closed martingale.

COROLLARY 66 (Optional stopping theorem (2)). For any uniformly integrable martin-

gale M and any stopping times S,T, we have

E[Mr|Fs] = Mgar.

60Egorov’s theorem states that almost-sure limits are uniform outside sets of arbitrarily small measure.
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PROOF  We have already proved the result when 7 is bounded (theorem 57). For an un-
bounded stopping time, approach it by 7" A n and use theorem 57 to write

(6.2) E[Mrpn|Fs] = Mspran.

By Lévy’s upward theorem 65, the right hand side Mgaran = E[MOO‘FS/\T/\TL] converges
(almost-surely and) in LL! to E[MOOLFSAT} = Mgar. As we bhave Mpp,, = E[M,|Fr], by
the optional stopping theorem proved so far, we deduce from the uniform integrability of the
martingale (hence its ! convergence) that®' My = E[M,|Fr]. Also, since

E[Mznn — MrlFs]l|, < E[E[|Mran — Mrl|Fs]]
< E[EUMTM - MTH]:SH < E{E [E[‘Mn — Muo|| Fr] ‘-7:5“
< E[|M, — M|
the result follows on passing to the limit in (6.2). >

e Martingales with respect to decreasing filtrations (backward martingales). Tet --- C
Fni1 C Fpn--- C Fo C F be a decreasing filtration and set F, = ﬂn>0 Fn- A backward
martingale is a sequence (M,),>o of L'-random variables such that

M, is F,-measurable and E[M,,_|F,]| = M,,.
The great difference with (usual) martingales is that backward martingales satisfy the
identity
M, = E[M,|F,]

for every n > 0. The sequence (M,,),>o is thus uniformly integrable and the L'-convergence
theorem implies the following result®?,

THEOREM 67 (Lévy’s 'downward’ theorem). For all X € L' the backward martingale

sequence of independent random variables and F,, = o(Y,; p > n), we have E[X | F,] —
E[X] for any integrable random variable X .

COROLLARY 68 (Strong law of large numbers). Let (X,,),>0 be a sequence of independent
and identically distributed random variables in LY. Then w converges almost-surely
and in L' to the constant random variable E[X].

PROOF  Set Sy =0and S, = X1 + -+ X, for n > 1; define also the decreasing filtration
»7:71:U(Sp§p>n):U(SnaXp§p>n+1)-

Since X7 is independent of (X, ; p > n+1), we have E[ X |F,] = E[X}|S,] for all n. Now, by
symmetry, E[X|S,] = E[X1]S,] for all 1 < k < n, so we have almost-surely E[X;|F,] = 5=,

n
%)n>0 if thus a backward martingale, so it converges almost-surely and in

L! to E[X1|Fs]. As this random variable is also, for each k > 0, the limit of M it
is measurable with respect to (),5,0(Xp; p > k). Since this o-algebra is trivial under P, by
Kolmogorov’s 0 — 1 law, E[X|Fs] is constant, equal to E[X;]. >

The sequence (

61The stopped martingale (M1 an)n>o is uniformly integrable if M is uniformly integrable.
62We have not used the fact that the filtration considered in section 6.2 is increasing to prove the results
of that section. They also hold for decreasing filtrations.
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6.3. LP-convergence results. Given a process (X, )0, set X* = sup,, 5o |X,[. The key
to the LP-convergence results is Doob’s IL? inequality (6.4) below. It provides a control
of the behaviour of the whole trajectory in terms of its behaviour at fixed times. Doob’s
upcrossing inequality plaid the same role above, in the almost-surely convergence results.

THEOREM 69 (Doob’s maximal inequality). Let X be a martingale or a non-negative
submartingale. Then, for all A > 0,
AP(X* > \) <supE[|X,]].
n=0
PROOF — As X* is the increasing limit of X := sup,,|X,| it suffices to prove that the
inequality AP(X; > A) < sup,,«, E[|X,|] holds for all £ > 1. Also, as |X]| is a non-negative
submartingale, it suffices to consider the case where X is a non-negative submartingale, for
which we prove that AP(X; > \) < E[X/].
Set T'=inf{n > 0: X,, > A} AL. Then T' < / is a bounded stopping time so, by the optional
stopping theorem,

E[X(] > E[X7] = E[Xrlx;22] + E[X7lx; 0] = AP(X] > A) + E[X,1x;<n].
As X is non-negative it follows that we have
(6.3) AP(X} > \) S E[X1x;>a] < E[X(].
>

THEOREM 70 (Doob’s LP-inequality). Let X be a martingale or non-negative submartin-
gale. Then, for allp >1 and g =p/(p — 1),

(6.4) 17 < g sup [ Xalp-

PROOF  As above it suffices to consider the case of a non-negative submartingale indexed by
the finite set {1,...,¢}. We adopt the same notations. Fix C' < oo. By Fubini’s theorem,
equation (6.3) and Holder’s inequality,

C C
B0 ACP)=E [ paiLgsadd = [ p¥ IO 2 0 )
0 0

C
< / PN PR [ X dx;sa] dh = qB[Xo(X7 A CP ] < q || Xollp [ X7 A ClE
0

Hence || X; A C|, < q||X¢||p, and the result follows by monotone convergence on letting
{ — oo. >

THEOREM 71 (LP-martingale convergence theorem for p > 1). (1) Let M be a mar-
tingale bounded in ILP. Then M; converges almost-surely and in ILP to some random
variable My, € L. Moreover, M, = E[M|F,] a.s. for all n.

(2) SupposeY € LP(Fy) and set M,, = E[Y|F,]. Then M = (M,),>o is a martingale
bounded in ILP which converges almost-surely and in P to Y.

PROOF (1) As an LP-bounded martingale is also bounded in L' the martingale M,, converges
almost-surely to some M, by the almost-sure martingale convergence theorem 63. By
Doob’s LLP-inequality,

[M*[|p < g sup || M|, < oo.
n=0

Since |M,, — M [P < (2M*)P for all n, we can use dominated convergence to deduce that
M,, converges to My in LP. It follows that M, = E[My|F,] almost-surely.
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(2) Suppose now that Y € LP(F) and set M, = E[Y|F,]. Then M is a martingale by the
tower property and

|Mallp = BV I, < 1Y,
for all n, so M is bounded in ILP. Hence M,, converges almost-surely and in LP, with limit

My € LP(Fy), say, and we can show that M., =Y a.s., as in the proof of Lévy’s upward
theorem 65. >

It is worth noting that one does not need Doob’s results to analyse LL>-martingales and
that basic tools are sufficient in that case. This fact entirely comes from the elementary
identity obtained by conditioning on F,

(6.5) E[(M, - M,)*] =E[M]] —E[M.], p<q.

As a consequence we see that the sequence (IE[]\/[T%])n>0 increases with n.
=

THEOREM 72. Let (M,),>0 be an L?-martingale. The following propositions are equiva-
lent.

(1) (My)n>0 is bounded in IL?,
(2) (M,)n>0 converges almost-surely and in IL? to some My, € L%,
(3) M, =E[M, |F,] for some M, € L?.

PROOF  (2) = (1) = L2-convergence: The first implication is obvious. For the second one,
note that if (IE[M%])H20 is bounded, it converges as it is increasing; it follows from identity
(6.5) that (My),>0 is a Cauchy sequence in (the complete space) L2, so it converges.
LL2-convergence = (3): LL2-convergence implies L'-convergence...

(3) = (2): The almost-sure convergence was established above in corollary 60 or theorem
63, the L2-convergence is a basic result of Hilbert space theory. >

6.4. Applications.

6.4.1. Martingale characterization of Markov chains. Let (S,S) be a Borel probability
space (i.e. nothing worst than a measurable subset of [0,1]) and let {p(x,-); 2 € S} be
a transition kernel in S: p(z,-) is a probability measure on (S5,S) for every x € S, and
for any A € S the function p(-, A) is measurable. The quantity p(z, A) represents the
probability starting from z to jump into A. We have seen an explicit construction of
Markov chains in proposition 13. Daniell’s theorem 18 provides another construction: it
constructs a probability measure P on (SN, S®N) with the prescribed finite dimensional
laws, under which the coordinate process is a Markov chain with the given transition
kernel. This probability P is the distribution of the Markov chain; it can be characterized
in terms of martingales. Denote by (X,,),>0 the coordinate process on SN and by (Fn)
the induced filtration.

n>0

PROPOSITION 73. (X,,)n>0 is a Markov chain with transition kernel {p(x,-); x € S} iff
for all bounded measurable function f:S — R the process

M = f(X) — f(X0) =3 0= reapeedy

-martingale.

s an (.7:”)”>O
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This statement should be understood in the light of the following heuristic: martingales
are the “constants of motion” of the dynamics; the above collection of martingales is big
enough to characterize completely the dynamics. This is in accordance with what happens
in deterministic dynamical systems.

PROOF — = Note that [o(f(y) — f(Xp))p(Xp,dy) = E[f(Xp41) — f(Xp)|Fi] is the mean
jump of f between times k and k + 1, knowing »7:k- Simply write

E[M]1|F] = E[f (Xns)|Fa] - ZE (Xpt1) — f(Xp)| Fi]

n—1
= E[f(Xnt1) = F(Xn)|Fu] + F(Xn) = f(Xo0) = D E[f(X1) — F(Xp)|[Fi] = M.
k=0

<: We only need to check that we have for any n > 0 and any A € S
P(Xy11 € A[Fp) = p(Xp, A).
This directly comes from the martingale property of M for the function f=140). >

6.4.2. Radon-Nikodym theorem. Let P and P be two probability measures on a measurable
space (€2, F). Recall that P is said to be absolutely continuous with respect to P ifges
P(A) = 0 implies P(A) = 0. It is a well known fact that this condition is equivalent to
the following: For any ¢ > 0 there exists n > 0 such that for all A € F, the condition
P(A) < n implies IF’(A) < g; prove it.

THEOREM 74 (Radon Nikodym theorem). Let (Q, F) be a measurable space such that
the o-algebra F s generated by an increasing sequence (‘7:’“)71>0 of finite o-algebras. Let P

and P be two probability measures on (2, F). Then P is absolutely continuous with respect

to P iff there exists a non-negative random variable X such that P(A) = E[X1,] for all
AcF.

The random variable X, which is unique IF’—a.S., is called (a version of) the Radon-
Nikodym derivative of P with respect to P. We write X = dP/dP. The theorem
extends immediately to finite measures by scaling, then to o-finite measures by breaking
() into pieces where the measures are finite. The assumption that F is countably generated
can also be removed but we do not give the details here.

Without loss of generality, we shall write F,, = o(A}, ..., A} ), for disjoint sets A} of

positive @—probability.

PROOF — Recall the discussion on the construction of conditional expectation in the discrete
case. In the same spirit, define the non-negative random variable

Pn
P(A7)
M, =Y ——k
"= 2 By
k=1
it satisfies the identity ]TD(A) = E[M,1,4] for all A € F,,. As F, is increasing®®, it follows
that the process (My)p>0 is an ((fn)n>0,IF’)—martingale. We are going to show that it is

uniforlmy integrable with respect to P. By the L'-martingale convergence theorem, there
will exist a random variable X > 0 such that E[X14] = E[M,14] for all A € F,,. Define

6390 that each A} can be written as a union of A?Jfl.
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Q(A) = E[X14] for A € F. Then Q is a probability measure and Q = P on U,, Fn. which
is a w-system generating F. Hence Q =P on F.

To prove the uniform integrability of (M,),>0 with respect to P we use the above charac-
uf % = % < n form lzgge enough, we
have for such m’s P(M,, > m) < ¢, independently of n. So E[M, 1y, >m] =P(M,, >m) < e
for all n. >

terization of absolute continuity: as P(M,, > m) <

6.4.3. Cameron-Martin theorem. You are asked to prove the following statement in exer-
cise.

PROPOSITION 75. Let (2, F, (Fn)n>O,IP’) be a filtered probability space on which a non-

negative martingale (M, )n>o is defined. Suppose a probability P is defined on (Q, F) such
that P(A) = E[M,14] for all A € F,, and alln > 0. Then P is absolutely continuous with
respect to P iff the martingale M is uniformly integrable.

As an application we are going to prove a result due to Cameron and Martin whose
importance for stochastic analysis is difficult to overstate. We shall denote by ~ the
Gaussian measure on R (with density (27)~2 exp(—x;) with respect to Lebesgue measure)
and by 7®N the product measure on RY. Given h € RY denote by 7, the translation on
RY: (24)rs0 — (Tx + A )is0, and by 779N the image measure of v®N by 7,; it is another
measure on RY. Last recall that two measures P and Q on a measurable space (£2, F)
are said to be equivalent ifyr they are absolutely continuous with respect to each other.

THEOREM 76 (Cameron-Martin). The measures v*N and 1y are equivalent iff h €
2(N): Y hi < .
n>0
Denote by X,, : (xx)r>0 — ¥, the n' coordinate map and write F,, for (X, ; p < n);
denote by X the identity map from RN to itself.
We shall denote by E the expectation operator with respect to v*Y and by E the expec-
tation operator with respect to 77y*N, meaning nothing else than E [f(X)} =K [f(X+h)} .

The proof will rely on the elementary identity below. Set

The random process (M,),>o is a martingale as all the X are Gaussian independent
random variables. Given a bounded function f : RY — R depending only on the first n
coordinates, an elementary change of variable leads to the equality

oPhtad

E[f(X)] =E[f(X +h)] = (27) 2 /f(xl—i—hl,...,xn—i—hn)e > dxy ... dz,

2 2
yi+tun

= (27)7% /f(yb s Yn) e2k=0 Mk =3 Lo n M o= 2 dyy ... dy,
= E[M, f(X)]

PROOF By proposition 75, the probabilities v* and 7;v®N are equivalent iff the martingale
(My,)n>0 is uniformly integrable.
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<: Let p > 0. Supposing h € £2(N) and replacing h by ph, we see immediately that
n

2

n
E[exp(p he X, — % th)] —1,
k=0 k=0

so E[M}] < exp(ﬁ%p Srohi) < exp(%“h”%) and the martingale is bounded in L? for any
p > 1; the result then follow from the LP-convergence theorem 71.

=: Suppose (M,),>o uniformly integrable, then it converges almost-surely and in L' to
some non-negative random variable My, € L', with E[M.] = 1. Would we have ||h]|2 = oo,

then we would have E[M}] < exp(@ S ioh?) T 0, for any p € (0,1); Fatou’s lemma
would imply E[MZE] = 0, a contradiction. >

Girsanov’s theorem which you will encounter in any stochastic calculus course is nothing
else than a variation of this theorem, despite its elaborated appearance. In this continuous
time setting, the counterpart of theorem 76 will read as follows. Denote by P Wiener
measure on C([O, 1]) and by (X;)ieo1) the coordinate process.

THEOREM 77. Let H : [0,1] — R be a continuous function. The law under P of the
“drifted” process (X; + Hy)ejo,1) 15 abolutely continuous with respect to P iff there exists a

function h € LQ([O, 1]) such that H, = Hy + f(f hsds, for all t € ]0,1].

The computation of the Radon-Nikodym derivative of the law of the drifted pro-
cess with respect to Wiener measure involves a stochastic integral and is analogous to

exp (ZZO:O hy X, — % ZZO:O hi) :

6.4.4. A glimpse at the concentration of measure phenomenon. Concentration of measure
is the following phenomenon. Given a (Borel) probability P on a metric space, any
Lipschitz function® X is close to its mean m on a set of (surprisingly) big probability:
P(|X —m| > r) < exp(—cr) or exp(—cr?) for some positive constant c¢. This kind
of inequality have a wide range of applications ranging from combinatorics, statistical
physics to functional analysis and probability in Banach spaces. Although big progresses
have been made recently, numerous open questions remain in this extremely lively area
of research®. A breadth of different views and tools can lead to concentration results; in
this section we give an example of how martingales can sometimes lead to them.

Let (22, F,P) be a probability space and {0,Q} C F; C --- C F, = F be a filtration.
Let Y be any real-valued integrable random variable and set for every i € [1,n]

(6.6) D, = E[Y|F] — E[Y| ]
Note that Y —E[Y] =>"" | D;.

THEOREM 78. Suppose there exists some constants c¢; such that one has almost-surely
|D;| < ¢ foralli=1.n; set C* = c?. Then forr >0

i=1l.m 1"

2

P(|Y —E[Y]| > r) < 2¢ 32,

64 hat is, any one dimensional picture of the metric space in which geometry is not too much expanded.
65The heart of the phenomenon itself remains somewhat unclear.
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PROOF  Tet r > 0. As —Y satisfies the same hypothesis as Y it suffices to prove that IF’(Y —
T2
E[Y] > r) < e 202, Use for that Chebychev’s exponential inequality
P(Y —E[Y] > 1) < e ME[e* =1 P,

introducing a non-negative parameter A\ which will be optimize at the end. If we can bound
above each E[eADi .7-"1-,1] by some constant, by a repeated use of the tower property we

shall be able give an upper bound for E[e)‘ 2 Di} =E |:€)‘ S D E[e)‘D" !.7-_,,1_1]} , etc. But

noting that A\D; = 1+D2i/ci Ac; + 17D2i/ci (=A¢;) and using the convexity of the exponential
map, we get for any A > 0

AP < 1+ 1292-/@- i 4 1- Z;i/ci e

and so, as E[D;|F;_1] =0,

222

.7'—2‘—1] < cosh(A¢) < e T

E [e’\Di

n A2
This leads to the estimate E[e)‘ 2i=1 Di] < e_)‘”?CQ; it remains to optimize over A > 0 to
get the result. >

In the following corollary the discrete space {0,1}" is endowed with the ¢! metric
d(z,y) => 0 |wi —vi| = #{i € [1,n]; x; # y;} and the uniform probability P.

COROLLARY 79. Let Y : {0,1}" — R be a contraction: |Y(x) — Y (y)| < d(x,y) for all
x,y € {0,1}". Then for any r >0

2r2

P(YZE[Y]+7r) <2 .

PROOF — Using the coordinate maps X : (2;)i=1.n — @k on {0,1}" we define the filtration
(Fi)k=1..n setting Fo = {@,{0,1}"} and Fj, = 0(Xp; 1 < p < k) for 1 <k < n. Set for
convenience Y; = E[Y|Fi] and define the martingale difference Dy, = Y}, — Y31 as above.
Let us estimate D; = Y] — E[Y]. Observe that Y; takes only two values: the average of
Y on the faces {m; = 0} and {m = 1}. These averages cannot differ too much as we go
from a point of one face to a point of the other changing only one coordinate, so that Y
cannot change by more than 1 since it is a contraction. So we see that |D;| < % The same
argument holds for estimating the other Dy; apply theorem 78 to conclude. >

The preceding proof also justifies the following statement. Let (€2;, F;, P;)i=1., be prob-
ability spaces and define (2, F,P) as the product probability space.

COROLLARY 80. LetY be an integrable function on (2, F) such that there exist constants
c; with |Y (z) — Y (y)| < ¢ if © and y differ only by their i'" coordinate. Then for any
r =0

2

P([y —E[Y]| >7) < 26Xp<—ﬁ).
i=1 "1
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7. CONTINUOUS TIME MARTINGALE THEORY

Although section 6 was written in the setting of a filtered probability space with a
filtration (Fn)n>0, all the definitions given above are meaningful for a filtration indexed
by any other countable subset I of R, , with oo to be understood as sup /. Write Q. for
Q@NR,. Our basic setting to construct continuous time martingales will be a probability
filtered space (Q,]—", (E)tem,P) on which a martingale (M,),cq, is defined; this is the
skeleton of the coming extension. It is a remarkable result due to Doob that nothing else
than the martingale property is needed to extend (M,);cq, to Ri. Demanding continuity
for (M;)¢>o will be too much, we shall get cadlag paths; cadlag — continue a droite, limite
a gauche = continuous on the right with left limit. We shall suppose that F, contains all
the P-null sets.

THEOREM 81 (Regularization of martingales. Doob). Let (2, F, (%)
probability filtered space and let (M;)eq, be an (.7-})

terP) be a

teQJr—martmgale. Fort € R, set

Fir 1= Nyst, seq, Fs- Then one can construct on (U, F,P) an (Fi+ )iz0-martingale (]\Z)@()
with cadlag paths such that one has P-almost-surely for all t € Q.

EU\ZLE] = M;.

PROOF — Given real numbers a < b denote by Ua,b([O,N]) the number of upcrossings of
(Mi)teq, from a to b in [0,N], and set MY = supycq, njo,n [Mt|. By Doob’s upcrossing
inequality the Ua,b([O, N]) are almost-surely finite®® for all rational a < b and N > 0; also,
all the My, are finite®”, for all N > 0, by Doob’s maximal inequality. Denote by Qg this
event of probability 1 where all these quantities are finite; the following limits exists on g

Mys = lm M, t>0

slt,s€Q4
M- = lim M, t>0.
STt756Q+
Define, for t > 0,
v Mt+7 on QO,
M; = { 0, otherwise.

Then M is cadlag and (.7-"t+)t>0—adapted. To prove that it is an (.7-"t+)t>0—martingale, given
s < t choose rationals s,, < t,, decreasing to s and ¢ respectively. By the convergence theorem
for backward martingales, M, (resp. My, ) converges almost-surely and in L! to M+ (resp.

M;+), so we have for any event A € F+
E[My+14] =lmE[M,,14] = imE[M;, 14] = E[M+14],

i.e. E[My+|Fe+] = Mg+, or E[]\Z|.7-_s+] = M,. The projection property E[]\ZLE] = M;, for
t € Q, is also a direct consequence of the convergence theorem for backward martingales.
>

DEFINITION 82. Filtrations which are continuous on the right (F+ = F;) and for which
Fo contains the P-null sets are said to satisfy the usual conditions.

66Work first with a finite index set D, for which Doob’s upcrossing lemma says us that (My)tep will
almost-surely have only a finite number of upcrossings between any two rational times; let then increase
D to Q4: a countable intersection of events of probability 1 being of probability 1 the result follows.
67Play the same game here as above.
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Doob’s regularization theorem shows that we do not lose much in restricting our atten-
tion to cadlag martingales and filtrations satisfying the usual conditions. A comment is
needed here, however: all martingales are not continuous on the right, and quite venerable
filtrations do not satisfy the usual conditions(!). Let for example Y be a binomial random
variable with parameter % Define

L forogt
Xt:{ff 1

Set also
10,9} for0<t <2,
Fi = 1 2
oY) forg<t<l1

Then X is an (ft)t€[071}—martingale who is not continuous on the right at time

filtration (F)scp0,1] also fails to be continuous on the right at time %

Doob’s regularization procedure transforms in a non-trivial way a process: working on
the canonical space of continuous functions from R, to R, with the coordinate process
(X¢)t>0 and its filtration (F);0, under Wiener measure, the process M; = 1y,—; is an
(Fi)iso-martingale which is almost-surely equal to 0 for each fixed ¢ > 0 and does not
converge to 0 as time goes to infinity. The cadlag regularization procedure “smoothes”
these irregularities and gives as a regularized process the constant 0.

The

1
5-

The cadlag property of regularized martingales implies that their pathwise properties
are entirely determined by their Q,-skeleton. It follows that all theorems of section
6 (Doob’s inequalities, convergence, optional stopping theorems...) hold for
cadlag martingales, for a filtration satisfying the usual conditions. As an ex-
ample we give the details of the proof of the optional stopping theorem.

THEOREM 83 (Optional stopping theorem). Let us work on a filtered probability space
with a filtration satisfying the usual conditions, and let M be a cadlag adapted process.
Then the following are equivalent:

1. M is a martingale,
2. for all bounded stopping times T and all stopping times S, My is integrable and

(7.1) E[Mr|Fs] = Mgar,

3. for all stopping times T, the stopped process M* is a martingale,
4. for all bounded stopping times T, the random variable My is integrable and

E[Mr] = E[M,].
Moreover, if M is uniformly integrable, then 2 and 4 hold for all stopping times T

PROOF  Suppose M is a martingale. Tet S and T be stopping times, with T bounded, T < ¢

say. For n > 0, set
S, =2""[2"S], T,=2""[2"T].

The random times S, and T;, are stopping times decreasing to S and T respectively. Since
(My)¢>0 is right continuous, My, converges almost-surely to Mp. By the discrete-time
optional stopping theorem, My, = E[M;1|Fr,] so (Mr, )n>o0 is uniformly integrable and so
M, converges to Mr in L' in particular, My is integrable. Similarly, Mg, aT,, converges
almost-surely and in L' to Mgxp. So, by the discrete-time optional stopping theorem again,
we have for any A € Fg C Fg,

E[MTn 1A] = E[MSnATn 1A]-
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On letting n — oo, we deduce that identity (7.1) holds. For the rest of the proof we argue
as in the discrete-time case. >

8. COMMENTS AND EXERCISES

References. Williams’ book [Wil91]| is certainly a good reference for this section part of
the course; so is Rogers and Williams” book [RW00|. The book [BMP02| on martingales
and Markov chains is an excellent source of worked out examples, under the form of solved
exercises; spending some time with it will undoubtedly bring you some acquaintance with
the subject.

Filtrations indexed by R, are subtle and sometime mysterious objects. The following
comments are here to guide your first steps in this suject.

1. Filtrations generated by a process. Let X be a process defined on some probability
space (€, F,P) and FX the filtration it generates. The following two exmples clarify the
relationship between the regularity of X and the regularity of FX.

a) A continuous process can generate a discontinuous filtration. Suppose ) has at least
two points, so we can define on it a non-constant real-valued random variable . Set
Xi(w) = t&(w). One easily checks that Fgf is trivial while FX = o(€) is non-trivial for
t > 0; so F¥X is not right continuous despite the continuity of X.

b) A discontinuous process can generate a continuous filtration. Given any discontin-
uous function h: Ry — R set X;(w) = h(t) for all w € Q and ¢ > 0. The o-algebra F/*
is then trivial for all ¢ > 0, so the filtration is continuous.

2. Usual assumptions.

8.1. Exercises. 1. a) Suppose (U, V) is an R2-valued random variable with a density function
fuv(u,v) with respect to Lebesgue measure on R%. Then (why?) U has a density function fs
with respect to Lebesgue measure on R, given by

fu(u) = / fuv(u,v)dv.
R
The conditional density function of V' given U is defined by the formula

o (ofu) = T 40)

fo(u)
where 0/0 = 0, by convention. Given a bounded measurable function h: R — R, set
o) = [ n) (el

Prove that g(U) = E[h(V)|c(U)].
b) Let (U, V) be an R%valued Gaussian random variable with null mean and covariance matrix
A. Find E[V|o(U].
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¢) More generally, let (2, F,P) be a probability space and U,V be two integrable real-valued
random variables defined on it. Prove that there exists a measurable function g : R — R such
that E[V|o(U)] = g(U).
2. Let (Q, F, (fn)n>0,

for some N € N and some € > 0 we have almost-surely for every n > 0

P(T'<n+ N|F,) > e

P) be a filtered probability space. Suppose T is a stopping time such that

Prove by induction that
P(T > kN) < (1—e€)F, k€N,
and deduce that E[T] is finite.

3. a) Find an example of a measurable space (£, F), with two filtrations (F;);>0 and (G¢)e>0
on it, on which there exists a random time 7" which is an (F;);>o-stopping time but not a
(Gt)t>0-stopping time. Note that we do not need a probability measure to talk about stopping
times.

b) Let us work on the canonical space C([O, 1], R), with its coordinate process and the induced
filtration (F});ej0,1)- Given any a € [0,1] and w € C([0,1],R), define the last zero of w before
time a as

Yao(w) = max{s € [0, a]; ws = 0}.
Show that the random variable 7, is F,-measurable, while the event {v, < t} is not in F; for
any t < a.

4. Let (Q,]—", (ft)t>0) be a filtered space, and T be a stopping time. a) Recall the definition
of the o-algebra Fr: it consists of those events whose occurence or no-occurence can be decided
from what we know up and including time T'. It seems tempting then to re-define it as ﬂng Fs.
What goes wrong with that “definition”?

b) Let S be another stopping time. Prove that Fgar = o(Fg, Fr).

5. Prove that a sequence of integrable random variables X,, converges in L' to some X € L' iff
X, converges in probability to X and the family (X,,),>0 is uniformly integrable.

6. Let P and Q be two probability measures on a measurable space (€2, F). Prove that P is
absolutely continuous with respect to Q iff for any € > 0 there exists an 17 > 0 such that for all
AeF,Q(A) < nimplies P(A) < e.

7.. Let (Q,F, (fn)n>O,IP’) be a filtered probability space on which a non-negative martingale
(M;,)n>0 is defined. Suppose a probability Q is defined on (€2, F) such that Q(A) = E[M,14]

for all A € F, and all n > 0. Prove that Q is absolutely continuous with respect to P iff the
martingale M is uniformly integrable.

8. Kolmogoro’v 0—1 law. The following result was used in the proof of the strong law of large
numbers given in the notes and does not use martingale theory. Let (F,)n>0 be the filtration
generated by some process (X, )n>0 defined on some probability space (2, F,P). Define the tail
o-algebra of the process as the sub-c-algebra 7 = ﬂn>0 O'(Xk; k> n) of F on Q. Suppose all
the X, are independent under P. Prove that any event of 7 has P-probability 0 or 1. Does the
result remains true if we do not suppose the X,, are independent?

9. We give here the details of the proof of Lévy’s upward convergence theorem, 65, seen as a
corollary of the L'-convergence theorem, 6.

a) Prove that any F,-measurable bounded random variable is an L!-limit of elements of
LY (Fn).

b) Using then an approximation argument, prove that Un>0 L! (fn) is dense in L' (foo).

c¢) Give a neat proof of Lévy’s upward convergence theorem and 0-1 law.
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d) Remark that this theorem provides a constructive approach of E[X|F.,] when the filtration
(fn)n>0 is made up of finite o-algebras (why?). We say in this case that the measurable space
(Q, Foo) is separable.

(i) Prove that a measurable space (£, F.) is separable iff L}(F,,) is separable (i.e. has a
dense sequence).
(ii) Prove that Borel spaces are always separable.

10. Simple random walks. Let (X,,),>0 be a sequence of iid random variables with law
pd1 + qé_1, and S, = X1 + --- + X,,. Denote by F, the filtration generated by Xi,...,X,. All
notions are relative to this filtration. Given a < 0,6 > 0 and = € R, define the stopping times
Ty =inf{n >1; S, =aor b} and T, = inf{n > 1; S, = z}.

a) Case p > q. Prove first that the random times T}, and Ty, are almost-surely finite.

(i) Prove that the process (%)n is a martingale, and deduce the law of S, .
(ii) Using the martingale S,, — n(p — q) (prove it), find E[T,], E[T}] and E[Ty].

b) Case p=q = % Symmetric random walk. Prove first that T, is almost-surely finite, and
using the martingale S,, find the law of St ,. Using then the martingale S2 — n (prove it), find
E[Tw], E[Ty) and E[T].

c) Case p > q For A € R set ¢(\) = pe* +qe™>. Prove that Y, := e*n¢(\)™™" is a martingale.
Deduce from that the generating function of 73 and find back E[T}].

11. Branching processes. a) In this question we consider a Galton-Watson branching process
in which the number of children of each individual is 0 or 2, equally probably. Denote by Z,
the size of the n't generation, starting zith Zy = 1. Prove that (Zn)n>0 is a martingale (with
respect to its own filtration), and that it converges almost-surely to 0.

b) Consider now a general case in chiwhc the distribution of the number of children takes values

in N and is integrable. Denote by p its mean. We chall write 7,41 = XYZH) 4+ 4 X(ZZ—H)

where the Xi(nﬂ) are iid, conditionally on Z,.

(i) Prove that M,, = % is a martingale.

(ii) Prove that (Z,)n>0 converges almost-surely to 0 if p < 1.

(iii) Suppose pu > 1. Prove that (My),>0 converges almost-surely to a finite limit M.
Setting p = P(My = 0), prove that p?» converges almost-surely to 17 —¢ and describe the
behaviour of (Z,)n>0 in terms of M.

¢) Suppose in this question that the offspring distribution is not only integrable but also has
a finite variance o2. Prove that (My,)n>0 is a martingale bounded in L? and that it cannot
converge to 0 almost-surely. What is the variance of My,7?

12. Find an example of a martingale which converges almost-surely but not in L.

13. Let M be a martingale bounded in L' and T" be a stopping time. Prove that My is in L.
Give an example where E[M7] # E[My)].

14. Let f :]0,1] — R be a Lipschitz function, and denote by f, the simplest piecewise linear
function agreeing with f on D, = {k2’”; k = 0..2"}. Set M,, = f, outside D,. Introduc-
ing a proper filtered probability space, prove that M, converges Lebesgue-almost-surely and in
L!(LEB) to some bounded f.  which satisfies f(t) = fg f1.(s)ds for any t € [0,1].

15. Recall the construction of the isonormal Gaussian process X indexed by a separable Hilbert
H given in exercise 4 in example sheet 1. Take h € H. Prove that the series defining X,
converges almost-surely and in L2(P).

16. Let a be a real constant. Let P denote Wiener measure on C([O, 1],R), X the coodinate
process and P! the law of the process {X; + at}iefo,)- Prove that P! is absolutely continuous
with respect to P and find %.
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17. Equip the symmetric group &,, with the Hamming distance: d(o,7) = #{i € [1,n]; 0; # 7}
and the uniform probability. Prove that for any function f : &,, — R, and any r > 0, we have

P(|f(0) — E[X]| > ) < 2¢ 5.

18. Let (F;)i>0 be the filtration generated by the coordinate process on C([O, 1], ]R). Prove that
this filtration is not continuous on the right.

19. a) Let (2, F,P) be a probability space, and let G1,Gs,... and G be some sub-o-algebras
independent under P. Prove that any event of ﬂn>1 0(GnyGnt1,---;G) coincides almost-surely
with an event of G.

b) Denote now by F; the filtration generated by a Brownian motion defined on some prob-
ability space (€2, F,P). As we have seen in the preceding exercise, the P-null sets may cause
unexpected and unpleasant things. Denote by A the g-algebra of P-null sets, and replace each
Fi by Gy := o(N,F). Set as usual G+ = (,5, Gs, for all £ > 0. Using a) and the independence
of the increments of Brownian motion, prove that the o-algebras G; and G;+ coincide up to P-null
sets.

9. COMPLEMENTS TO PART 11

We show in the first complement how ideas from martingale theory can be used to give
some meaning and solve stochastic differential equations, without using the machinery of
stochastic integrals.

The second complement is dedicated to elucidate the question: Is the conditional ex-
pectation operator an integral with respect to a random measure?

9.1. Complement: Solving stochastic differential equations. Let (B:)o<i<1 be a
Brownian motion defined on some probability space (£2, F,P). Given two functions b, o #
0, and a starting point zy € R, define for every integer n > 1 a process (Y”(t))

setting Y"(0) = zg, and for % <t< %, ke{l,....,n},

k-1
(9.1) Y= Y +b(YEL) (1= =) + (VL) (B~ Ben).

0<t<1

When o = 0 this dynamics is nothing else than the Euler approximation of the differen-
tial equation 2; = b(z;). A well-known corollary of Ascoli-Arzela’s compactness theorem
states that the Euler approximations has a converging subsequence whose limit is a solu-
tion of the differential equation. The following theorem says the same in our stochastic
context. Recall we denote by (W, W) the space C([O, 1],]R) with its Borel o-algebra and
write X for the coordinate process. We suppose ¢ non-identically null.

THEOREM 84. Suppose the functions b and o are bounded. Then the laws P™ of Y™ form
a tight sequence of probability measures on (W, ).

This statement and Prohorov’s compactness theorem ensure us that the sequence of
P"™’s has at least one weak limit QQ, say. It seems reasonnable to say that under Q the
coordinate process on (W, ) solves the stochastic differential equation

(9.2) dxy = b(zy) dt + o(xs) dBy,

where dB, is a Brownian increment over a time interval ds, with variance equal to ds.

Let E™ be the expectation operator associated with the probability P"*. The following
proposition is the heart of the proof of theorem 84.
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PROPOSITION 85. Suppose there exists a positive constant C' such that we have
(9.3) E"[|X: — X,|'] < C|t — s|?

for all s,t in [0,1] and n > 1. Then the sequence (P™) _ s tight.

n>1

PROOF  Kolmogorov's regularity criterion states that if E"[|X; — X,|*| < C|t — s|* for some
constant C and all s,¢ € [0, 1] then there exists a random variable C(w) in L*(P™) such that
we have P"-almost-surely |X; — X,| < C(w)|t — 5|, for all 5,t € [0,1] and any «a € [0, 7).
This implies in particular that the modulus of continuity Mx (0) of X is P"-almost-surely

bounded above by C(w)d®, so we have E" [Mx (§)*] < E"[C/(w)] 6% for all n > 0. As the proof
of Kolmogorov's criterion provides an upper bound for E" [ ‘C (w) ‘ ] depending only on the
constant C' of (9.3) we actually have E" [ My (0)*] < C’é* for some constant C’. This inequal-
ity implies the equi-continuity condition (2.3) of corollary 36: 151151 lim E" [MX (0) A 1] =0.
n
As Xy is P™almost-surely equal to 0, it follows from the Ascoli-Arzela theorem that the
probabilities P have support in a compact set of W. >
We are now going to see that condition (9.3) can be obtained as a simple application
of martingale ideas.

LEMMA 86. There exists a positive constant C' such that we have
(9.4 E[Y) - Y[ < C'Jt = sf
for all s,t € [0,1] and alln > 1

PROOF — Denote by (F)e[o,1) the filtration on (£, F) generated by B. The process M; con-
—1 k:|

taining all the explicit Brownian terms in the definition of Y and defined for ¢ € ( i

by

Z (Y2) (B = B) + (VL)) (B = Bav)

0
is an (ﬂ)te[()’l]—martlnzgale. This is easily checked by induction. Also, conditioning succes-
sively on f%,fk%, ... we see that
E[|M[?] < A%,
where A denotes an upper bound for o. Clearly, the same proof gives E[\Mt — MS|2] <
A%|t — s|. Tt is not harder to prove that E[ |V;" — Ys"‘|4] < 9A* |t — s|?; it suffices to do it
for s = 0. Write o; for a(Yf). Expanding the sum defining M; and keeping only the terms

n
with non-vanishing expectation we get

k—1
E“Mt|4] =E ZU;'L(BMm _Bt/\l)4 +6E Z JJQ'U%(BMm _Bt/\l)Q(Bt/\”—1 _Bt/\i)
=0 " " 0<j<t<k—1 " " " "
+ 12E Z UjUWTZn(Bt/\M - Bt/\l) (Bt/\“'—l - Bt/\ﬁ) (Bt/\mTJr1 - BM%)2

0<j<l<m<k—1

The first term is bounded above by 3A4%t? and the sum of the two other terms is equal to
k—1

6 > E|ML,07 (B, — Bype)’|.
£=0
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By conditioning with respect to F¢ in each expectation we get the upper bound

6A? S:l(tAHTl —tA g)E“Mg_TIH <6A2tIE“Mg_TI|2] < 64112,

Fix s < tin [0,1] and let k& and &’ be the integer parts of nt and n s respectively. Using the
elementary inequality (a + b)* < 8 (a* 4 b*) and Jensen’s inequality we get

v 8EH—Zb ) +b(Y 1)(t—%)‘4}+8E[\Mt_MS|4].

E[|v;" -
The second upper bound is bounded above by 94% |t — 5|2, while the term inside | - [+ is
bounded above by A |t — s|, where A is chosen big enough to be an upper bound for b; the
upper bound (9.4) follows.

>

9.2. Complement: Regular conditional probability. Let (2, F,P) be a probability
space and G be a sub-c-algebra of F. As one has almost-surely

e E[1y|G] = 0 and E[1¢|G] =1,

e B> -014,/G] =3 ,50E[14,|G], for any sequence of disjoint A, € F,
the map A € F — P(A|G) := E[14]|G] has the properties of a probability, except that
P(A|G) is a random variable (i.e. an equivalence class of functions, and so the above
identities hold only almost-surely). Tt is thus natural to ask whether the random variables
P(-|G) can be written as P, (-) for some random probability measure w — P, (but we
must be careful with measurability issues). Although such a P, can be defined for a
given sequence of sets A, € F, the problem is that, except in trivial cases, there are
uncountably many sequences of disjoint sets (hence meaurability problems); it is therefore
not at all clear how to choose P,,. And indeed, there is no such family of probabilities if no
hypothesis on (£2, F) is made: you can find the classical counter-example of J. Dieudonné
in §43 of the book [RW00|. Yet one can construct such probabilities P, when we are
working on a Borel probability space. To stick to the previous notations I will denote a
Borel space by (S5,S). Let (2, F,P) be any probability space and G be a sub-c-algebra of
F(GS).

DEFINITION 87. A regular conditional probability of P given G is a family (P,)ucq
of probability measures on (2, F) such that the function w — P,(A) is measurable and
belongs to the equivalent class of P(A|G), for every A € F.

THEOREM 88 (Existence and uniqueness of regular conditional probability in Borel
spaces). Let (S,S,P) be a Borel probability space and G be a sub-o-algebra of S. Then
there exists a reqular conditional probability of P given G, unique up to equivalence.

PROOF — Euzistence. We have seen in part a) of the proof of theorem 40 that [0, 1] is isomorphic
to a measurable subset of {0, 1}N; we can thus suppose without loss of generality that S is a
measurable subset of {0, 1}V, that S is the restriction to S of the product (or Borel) o-algebra
of {0,1}, and that P is a probability on {0, 1}, with support on S. Our main ingredient
to prove the existence of regular conditional probabilities will be theorem 41, stated in the

68The end of this section follows closely B. Tsirelson’s lecture notes Probability for mathematicians,
available at the webpage http://tau.ac.il/ tsirel/Courses/ProbMath /main.html. This proof is essentially
the same as that of Tkeda-Watanabe, in [TW89].
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Complement Lebesque measure on [0, 1], in part I of the course: Borel probability measures
on {0, 1}N correspond bijectively to additive set functions on A, equal to 0 on () and 1 on Q.
The generating algebra 4 being countable we can define P, (A4) = P(A|G)(w) for all A € A
choosing a function in each equivalent class. As P(-|G) is almost-surely finitely additive (on
S), P,(:) can be turned into a finitely additive set function on the countable collection A
for all w, by changing it adequately on a set of null probability. By theorem 41 each Py (-)
has an extension to a probability measure on (5,S); we still denote it by P,(-). Given any
B € S, write P4(B) for the measurable®® function w +— P (B).

B € § and € > 0 being given, we shall see below that there exists C, D € § such that

e CCBCD,P(D\C) <e,

e (' is a decreasing limit of elements of A and D an increasing limit of elements of A.
As Py (A;,,) = P(A4,|G) almost-surely, we have almost-surely Po(C') = P(C|G) and Pe(D) =
P(D|G) by monotone convergence (for Pe(-) and P(:|G)). As a consequence,

{ P(C|G) = P.(C) < Pu(B) < Pa(D) = B(DIG),
P(CIG) < P(DIG) < P(DIG),

and so |Pe(B) — P(D|G)| < P(D|G) — P(C|G). Also, E[P(D|G) — P(C|G)] = P(D\C) < e.

Taking a sequence (g,,)n>0 decreasing fastly enough to 0 we get

|Pe(B) — P(B|G)| < infP(Dy|G) — P(Cp|G) =0 almost-surely.

Uniqueness. As two possible regular conditional probabilities coincide almost-surely on A
(which is countable) they must be equal on S by the monotone class theorem. >
It remains to justify the approximation result used in the existence proof; we do it for
C, the argument for D being similar. Let B € S be given. It comes out from the proof
of Caratheodory’s theorem given in section 1.2 that for any € > 0 there exists an element
A of A with the property that P(BAA) < e. Apply this result inductively first to B and
e =1 (we get Ay), then to BN Ay and € = 27! (we get Ay), then to BN (A; N Ay) and
e =27 (we get Az)...The set C' = 1,5, Ay is the decreasing limit ot the ), , Ay and
P(BAC) < 27. I let you conclude.

69Prove that it is indeed measurable.



60 ADVANCED PROBABILITY

PART III. BROWNIAN MOTION, LEVY PROCESSES AND
MARTINGALES

Let us consider a physical system subject to an impredictable evolution. We model its
random evolution by a filtered probability space (Q,}", (Ft)t>0,P), where we can think
of €2 as the set of all physically possible histories of the system through time, of F as
the set of all observations one can make and of F; as our information at time t of the
history of the system up to that time. In that setting, (sub/super)-martingales represent
quantitative informations about the system which (“increase”/“decrease”) remain “con-
stant””®. Sub/super-martingales have thus a universal status in the description Natural
phenomena evolving randomly. In that landscape, Brownian motion plays a prominent
role as we shall see that any continuous time continuous martingale can be understood as
a Brownian motion run at a random speed. Being also a Markov process and a Gaussian
process™, we can say without hesitation that it is a cornerstone of modern probability
theory. Section 10 is devoted to the study of some of its elementary features. Section 11
presents Lévy processes, with the help of which we shall describe the most general cadlag
continuous time martingale.

Recall that the martingale property is not an absolute property: it is related to a filtra-
tion. When unspecified, it will be implicit that we are working with the filtration generated
by the process under study. Also, all filtrations will be supposed to be complete.

10. BROWNIAN MOTION

10.1. Different point of views on Brownian motion.

a) Lévy’s constuction of Brownian motion as a series.

b) Markov process. By its very definition, Brownian motion is a Markov process
with Gaussian transition kernels.

c) Gaussian process. In exercice 4 of example sheet 1, Brownian motion is char-
acterized as the unique centered Gaussian process with covariance s A t.

d) Scaling limit. Donsker’s invariance principle provides a construction based on a
scaling limit of random walks,

a) Since Brownian motion has Gaussian increments, we know from Kolmogorov’s reg-
ularity criterion that, for all a < %, it has almost-surely a-Holder-continuous paths; so
its paths does not seem to be too bad. Yet, we shall prove in proposition 93 that it is
almost-surely not differentiable anywhere and that it is almost-surely nowhere a-Hdélder-
continuous for a > % From this picture, it comes as a good news that Lévy’s construction
provides almost for free the following precise description of the local behaviour of Brow-

nian motion.

PROPOSITION 89 (Modulus of continuity for Brownian motion). There exists a constant
C and a positive random variable 0 such that one has P-almost surely

1
X, — X,| < Cy/|t — s/ ln——
|t — ]

for all t,s € [0, 1], with [t — s| < 6.

"OIn the sense that the prediction E[M;|Fs] of their future value equals their present value Mj.
""Two fundamental classes of random processes for modelization purposes.
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PROOF  Recall Lévy’s construction of Brownian motion as a series ), -, (B(") - B(”_l)) of

continuous piecewise linear functions. Given ¢ > /2log 2, there exists a random integer ng
such that HB(") — B(”_l)HOO < ey/n272 for n > ng. As we have by construction

B _ B(n-1) "
2 H 5 Hoo <2cy/nez,

the mean-value theorem gives us, for ¢,¢ + h in [0, 1], and any p > ng

I(B™ = BED)

| Brsn — Z| Bt(ih tﬁhl)) - (Bt(n) - Bt(n 1))‘

n>1
p

< H(B ~ By w2 3 B B

n=p+1

no P oo

< BB =BUY || +2eh Y Vn2e 420 > Yn2e
n=1 n=nop+1 n=p+1

As the second sum is dominated by a constant multiple of its biggest element, bound above
the sum of the last two terms by ¢/ (h\/]_92% + \/1_)2*%), for some positive constant ¢’. One
can take p = |log, %J for h small enough. A simple calculus gives us a constant C satis-
fying the inequality 2c(hp\/§e% + \/]32_5) < Cy/hln % As C hln% is also bigger than
S0 h H (B(") — B("’l))/HOO, for h small enough, this proves the statement. >

b) The Markovian approach to Brownian motion is extremely fruitful. Let X be a
Brownian motion defined on some probability space (Q, F,P); we write (‘Ft)t>0 for its
natural (completed) filtration. Denote by P, the law of the Brownian motion z + X

starting from x € R? and set for any non-negative function f

_1 \y— \2
Tof(x) = B, [f(X,)] = (2mt)2 / £y
Last, recall that Fy+ := ()

st Fs, for any ¢ > 0.

THEOREM 90 (Simple Markov property). Let t > 0 be given.

(1) Given any x € RY, the Brownian motion (X;ys — Xi)ss0 s independent of Fy+
under P,.
(2) Given any x € R? and A € 0(Xi1s; 5 = 0), we have P,-almost-surely™

(10.1) P.(A|F+) = Px,(A).
(3) For any C? bounded function f

1 [t 1/t
ni-=3 [ nena=3 [ awnas

PROOF (1) First, it comes directly from the independence of the increments of Brownian
motion that the Brownian motion (X;4s — X;)s>0 is independent of F; under P. It follows in
particular that the process (Xyic4s — Xite)s>0 is independent of Fiy ., so of Fy+, for any € >
0. The vectors (Xips, — Xy, -, Xigs, — X¢) = limeo(Xegers, — Xige, -+ Xigetsn — Xite),
are thus independent of F;+ for any sy,...,s, > 0; we are done as this is a Gaussian vector
with the awaited covariance matrix. This means that, conditionally on F;+, the process

™Note that the measurability of the map z — P, (A) is trivial for elementary events A; it follows that
the map is measurable for any event A € F.
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(Xt+s)s>0 is a Brownian motion starting from Xj; call it (X])s>0. This implies in particular
that we have for any bounded function f and any s,t > 0

Toief () = B [f(Xope)] = Ea [Ex [f(Xs-i-t)‘ft“']]

= E, [Ex,[£(X])]] = Ti(Tof) (=)
(2) By the monotone class theorem, it suffices to prove that we have
E.[1415] = E;[Px,(A4)15]

for any A € 0(Xy45; s = 0) of the elementary form {XHS1 € Ay, ..., Xiys, € An}, with
s; > 0, and B € F; of a similar form. But for such A and B we have by the first point

E.[141p]) = By [Eo[1alp | Fi+]] = Eq [15E4[14 | Fi+]] = Eo[Px, (A)15].

(3) This point expresses the fact that for any C? bounded function, and any z, the map t

T, f(z) is differentiable, with derivative 1T,(Af)(z)(= $A(T,f)(z)). This can be checked

by a trivial integration by parts using the fact that the heat kernel ¢ : (t,y) — exp(—%)

solves the heat equation dyp = %Ag@. >

COROLLARY 91 (Blumenthal’'s 0 — 1 law). Events of Fo+ are trivial under any P,: we
have P,(A) € {0,1}, for any A € Fo+,x € R

PROOF  Indeed, for A € Fy+ we have Pg-almost-surely 14 = E;[14 | Fo+] = Px,(4) = P(A4).
>
This 0 — 1 law has deep and far-reaching consequences, of which the exercises provide
a few examples.

PROPOSITION 92. Given a one-dimensional Brownian motion X define 7 = inf{t >
0; Xy >0} and 7" =1inf{t > 0; X; < 0}. Then almost-surely 7 = 7" = 0.

PROOF — One easily check that the events {7 = 0} and {7’ = 0} belong to Fy+. As —X has

the same law as X we have P(7 = 0) = P(7' = 0). To prove that 7 is almost-surely equal to

0 it suffices, by Blumenthal’s law, to see that P(7 = 0) > 0. But as we have for any ¢ > 0,

P(r <t) > P(X; > 0) = 3, this is straightforward. >

Here is another pathwise property of Brownian motion easily obtained from the Mar-
kovian point of view.

PROPOSITION 93. Let o > % Brownian motion is almost-surely nowhere a-Hélder con-
tinuous. In particular, it is almost-surely nowhere differentiable.

PROOF  TLet p > 2 be an integer to be chosen later. Fixing some K > 0, define an increasing
sequence of events

A, = {for some s € [0,1], | Xy — X;| < K|t — s|%, whenever |t — s| < B}, n > 2,
n

k =1..n. Then

)

and name the increments Ay, = !XE — Xp1
n a
A, C U{Ajn<2Kp— for each j € {k—l,...,k+p—1}},
b na
k=2
and so

P(4,) < (n = 2)P(Ay, < 2Ki—i)p <nP(IN(O,1)] < 2K

(87

p

1
n%" 2
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for some positive constant ¢. The upper bound converges to 0 as n goes to infinity if we
choose p such that a > %. As the events A,, increase, P(A4,,) = 0 for all n. >

¢) The Gaussian characterization provides deep insight, starting with a straightforward
justification of the following facts.

PROPOSITION 94. Let X be an Ri-valued Brownian motion starting from 0(™). The
following processes are also Brownian motions.

(1) Invariance by isometries: AX, for any linear isometry A.
(2) (Xtys — Xt)s>0, for any t >0,

(3) (CXC’%)QO’ for any ¢ > 0,
(4)

4) Time inversion: (tXl/t)t>0, with value 0 in t =0,
=

The time inversion property implies in particular that % converges almost-surely to 0
as t — +o00.
PROOF  The only non-trivial point is the continuity at 0 of the process B; := tX, . Since
B is almost-surely continuous on (0,00) one can describe the event {B — 0} in terms of
t10

conditions on the values of B at countably many points of (0,00). But B and X being

Gaussian, with the same covariance and the same value at time 1, they have the same law
on (0,00); so P(B; — 0) =P(X; — 0) = 1. >
( ) ) ( t 110 ) ( t £10 )

PROPOSITION 95 (Quadratic variation of Brownian motion ). e Let t > 0 be given. For
n>=>0andk >0, set t} =tANk2™". The quadratic variation of X over the dyadic partition

(X)) = > kso (th — Xt;;_l)Z converges almost-surely and in L? to t.

PROOF — As X,4p — X5 ~ N(0,h) we have E[(X,1p, — X)?] = h and VAR((Xspp, — Xi)?) =
VAR(N)h?, where N is the square of a normal random variable. Hence, for fixed ¢, the
random variable (X); has mean ¢ and variance VAR(NN) 27", The result follows. >

d) The scaling limit approach provides an immediate proof of the following fact.

PROPOSITION 96. We have almost-surely lim X; = — lim X; = 400,
t—+o00 t——+00
Much deeper insights can be gained from that picture, like the fact that some Galton-
Watson branching processes and some continuous random trees are hidden in Brownian
trajectories... But this is another story.

10.2. Constructing martingales. The use of martingales constructed from Brownian
motion can provide much information about it. The following theorem provides a canoni-
cal way of constructing martingales associated with an R"™-valued Brownian motion. You
should compare it with proposition 73 characterizing the law of a Markov chain in terms
of martingales.

THEOREM 97. Let B be a Brownian motion defined on some filtered probability space
(Q,F, (F)i=0,P), and let f € C*?(Ry x RY) be such that

[Ft)] o]t a) + D |0 fl(t ) + Y |07, fl(t ) < KD

i=1..d i=1..d

"3The precise probability space on which it is defined is irrelevant.
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for some positive constant K. Then the process

M= £16.8) = 50,80 - [ (o + 3010 B dr

or

18 a martingale with respect to the Brownian filtration.

PROOF — The hypotheses are designed so as to ensure the integrability of any M;. We have
to show that we have almost-surely E[Mert — Ms|.7:s] = 0, for all 0 < s,t. Write F; for
Fst and By = Byys — Bg; it is an Fi-Brownian motion independent of Fs conditionally on
Bs = By. Noting that

s+t o 1
Mert — Ms = f(S + t, Bert) - f(S, Bs) - L (5 + §A>f(’l", Br) dr
-~ o~ o~ ~  ~ t, 9 1 ~  ~ ~
= F(t. B, + By) — F(0, By) —/0 (5 +32)7(r. B + Bo) ar,
where f(t,z) = f(s+t,x), we see that it suffices to prove that
~ o~ o~ ~ o~ t, 9 1 ~ o~ ~ ~
E[F (¢ B+ Bo) - (0. Bo) - /0 (E +50) (. B, + Bo) ar|Fo| =0,

or, equivalently, that E,[M;] = 0 for any starting point = € R%. Write p,(z,y) = (27 r)fg exp(—%)
for the Gaussian kernel. Noting that we have for 0 < s <t

B0~ 3 = [ 1.9 (o)~ o) — [ ([ peen) (2 + 58)1000) )

and that p,(z,y) satisfies the heat equation (% — %Ay)pT(x, y) = 0, for r > 0, an integration

by parts (twice with respect to y and once with respect to r) gives

t pr(z,9) LN f(roy)dy) dr = tg(pr(x,y)f(hy))dydr
/5 i ar 92 .9,
:/f@MM%w@—/f@wmmw@,
]Rd ]Rd

from which the identity E,[M; — M| = 0 follows. It remains to notice that E,[Mj] goes to
0 as s goes to 0 to conclude. >

COROLLARY 98 (Recurrence and transience of Brownian motion). (1) Given any start-
ing point different from 0, the 2-dimensional Brownian motion has probability 0
of ever hitting {0}, but it hits almost-surely any neighbourhood of 0 at arbitrarily
large times.
(2) In dimension bigger than 3, we have almost-surely |B;| — +o00 as t — +o0.

PROOF — (1) i) Let 0 < a < |z| < b. The function log|z| satisfies the identity Af = 0 on
R2\{0}. Let f : R? — R be a smooth function defined on R? and coinciding with z + log |z|
outside the ball of radius a. As f has a sub-exponential growth, we can use it to construct
the martingale M; used in theorem 97. Let T' be the hitting time inf{¢ > 0; | X;| € {a,b}};
as f and log |z| coincide outside the ball of radius a we have My = log | Xiar|, for all times;
also this stopped martingale is bounded, from the definition of T. Applying the optional
stopping theorem, we then have

E, [log |Br|] = E, [log | Bo|] = log |z;

z|

log
log

]

so P, (|Br| =a) = . Sending a to 0 gives the first result.

Sils
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i1) To deal with the case By = 0, use the Markov property to write
]P’O(Bt = 0 at some time t > e) =Eg []P’Be (Bt = (0 at some time t > 0)] =0;

as this holds for any € > 0 we conclude that Py (Bt = 0 at some time t > 0) =0.

i11) Fixing now a and sending b to infinity we see that B hits P?-almost-surely the ball of
radius a if || = 1. Proceeding as in i) this fact is seen to be true for all every starting
point. The result now follows from Markov property as the P,-probability that B hits the
ball of radius a after time n equals E, [IP’Bn (Bt = a at some time t > O)} =1.

2—d__p2—d
(2) Use the function |2|>~% to prove as above that we have P, (H, < H;) = % when

a < |z| < b. Conclude as above. >

10.3. Strong Markov property. In this section we take as a framework a probability

space (£, F,P) on which a Brownian motion X is defined, and denote by (.E)t>0 the

(completed) filtration generated by X.

THEOREM 99 (Strong Markov property). Let T' be a stopping time such that P(T <
o) > 0. Define the XT by X' = X7 — XT on the event {T < oo}, and by X =0
on the event {T = oo}. Then, conditionally on {T < oo}, the process X* is a Brownian
motion independent of Fr. This means that for any A € Fr, any times 0 < tq < -+ < t,,
and any bounded measurable function F : R" — R, we have

(10.2) E[Langr<ooy F(XL, ... X)) =P(AN{T < 00}) E[F(X4, ..., X4,)].

PROOF By a monotone class argument, it suffices to prove (10.2) for bounded continuous
functions F. Take such a function and note that due to the continuity (from the right!) of
X and F the quantity E[lAm{T<OO}F(Xt7;, e ,X;‘CL)] is, by dominated convergence, equal to

pggloo ZE[1Aﬂ{(k71)2—P<T<k2—P}F(XkZ—Pthl — Xpo-vs -y Xpo-vis, — Xpa—»)]-
k>0

Note that we have approximated X7, by Xjo-p . As the event A belongs to Fr the event

AN{(k—1)27P < T < k27P} belongs to Fj9-»; so the simple Markov property enables us
to write the generic term of the above sum as

P(AN{(k—1)27? <T < k27 P} E[F(Xy,,..., X1,)].
Summing over k > 0 and taking the limit p — +o0 gives (10.2). >
This fundamental property of Brownian motion has tremendously many applications,

of which the following ones are remarkable.

COROLLARY 100 (Reflection principle). Let X be a Brownian motion starting from 0
and T be a finite stopping time. Set Y; = X; fort < T, and Y; = 2X7 — X, fort > T.
Then Y is also a Brownian motion.

PROOF — We need to prove that we have for any times 0 < ¢; < --- < t,, and any continuous
bounded function F': R"” — R

(10.3) E[F(Yy,....Y4,)] =E[F(Xy,,.... X))
Setting t9 = 0 and t,41 = 00, we have
E[F(Yy,....Y,)] = > E[FYy,..., V)l <re]
i=1.n+1

= Z E[F(Xtu cee 7Xti717XT + (XT - Xti)v e, X+ (XT - th))ltifl<T<ti] :
1=1..n+1
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But the generic term of the above sum equals

E[E[F(ti .. 7Xt7;_1)XT + (XT - Xti)a e )XT + (XT - th))1t¢_1<T<ti

ﬁﬂ

by the strong Markov property and because the opposite of a Brownian motion is a Brownian

Fr]| =

E|:E [F(th’ e ’Xti—l?Xti? e 7th)1ti_1<T<ti

motion; summing these terms gives identity (10.3). >

COROLLARY 101 (Maximum process — Bachelier). Given a real-valued Brownian motion
X, and t >0, define M = mgtst, fort > 0. Then
<

M2 MY - X, £ X)),

PROOF  Denote again by Y the process defined in corollary 100. Let a > 0 and b be two real
numbers such that a > max{b,0}. Let 7" = inf{s > 0; Xs; = a}, this is an almost-surely
finite stopping time (why?). The reflection principle justifies the first identity below; draw
a picture to understand the third identity.

P(M* >a,X; <b) =P(M} >a,Y; <b) =P(M* >a,Y; <)

This identity gives the law of the pair (MtX, Xt), from which the result follows. >

10.4. Brownian motion and the Dirichlet problem. Let B be a bounded open set
of some R?, with non-empty boundary 0B, and f be a measurable real-valued function
defined on dB. To solve the Dirichlet problem in B with boundary condition [ is
to find a function g defined on the closure B of B which is

e of class C% in B, with Ag=0in B,

10.4 _
( ) e continuous on B, with restriction to 0B equal to f.

Functions g of class C? satisfying the condition Ag = 0 in B are said to be harmonic in
B. You are asked to prove in exercise the following characterization of harmonic functions
in terms of spheric means. For an open ball B(z,r) C B we write o, ,(dy) for the uniform
probability on the sphere {y €EB;|ly—x| = 7“}.

PROPOSITION 102 (Gauss). A non-negative function g such that g(x) = [ g(y)os,.(dy)
for any ball B(z,r) C B is either = oo or harmonic in B.

PROOF  You can also find the proof in Kallenberg’s book [Kal02|, lemma 24.3, p. 473. >

Denote by (X;)i>o the coordinate process on C(R,, R?) and by P Wiener measure. Given
any starting point x € B and any set U C B, denote by Sf = inf{t > 0; z+ X; ¢ U}
the exit time from U by the Brownian motion starting from x. These random times are
almost-surely finite for bounded sets U (why?); note that the distribution of ng(z » is
uniform distribution over the sphere. ’

Suppose the boundary condition f is non-negative and se

Hpf(z) =E[f(z + Xsz)].

£74

74.]ustify that this function is measurable with respect to z.
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Then by the strong Markov property, we have for any ball B(z,r) C B

:/E[f(erng)} 0o (dy) Z/HBf(y) 0ur(dy),

so Hgf is harmonic on B if, for instance, f is bounded. This simple remark gives us a good
candidate for a solution to Dirichlet problem; yet something remains to be clarified as the
following shows. The only harmonic functions on B(0,1)\{0} are of the form alog |z|+
for some constant «, 3 (prove this): they either explode to co near 0 or are constant. This
fact is a hint that not only the boundary condition is important in Dirichlet problem, but
also the shape of OB influences the issue. We give here a condition around each point
2 € OB which prevents explosion and ensures that Hpf is continuous at 2.7

(10.5)

DEFINITION 103. A boundary point z € OB is said to be regular if,,; the Brownian
motion starting from z almost-surely exits B immediately:

E[SE] = 0.
It is said to be irregular otherwise.

In the above example the point 0 is irregular. By Blumenthal’s 0 — 1 law, z is irregular
iff P(S; > 0) = 1. Also, from exercise 31, the point z is regular if it belongs to the
boundary of a cone contained in the complementary of B.

THEOREM 104. Let B C R? be a bounded open set and f : OB — R be a bounded
Borel function. Suppose z € OB is reqular and f is continuous at point z, then Hgf is
continuous at point z:

COROLLARY 105. Hpf solves the Dirichlet problem if B is bounded, any point of OB is
reqular and the boundary condition f continuous.

You will prove in exercise that Hgf is the unique solution to Dirichlet problem under
these conditions. The proof of theorem 104 essentially rests on the following fact.

LEMMA 106. The map x € R? — E[S%] is upper semi-continuous.

PROOF  TLet us recall that these functions are decreasing pointwise limits of continuous func-
tions and that they are characterized by the inequalities

vz eR?, Ef(y) < f(a).

Check first the integrability of S%. Choosing R > 0 being enough for B to be included in
B(0, R), the exit time S is no greater than the hitting time of the levels £R by the first
co-ordinate of X (a real-valued Brownian motion), so is integrable. For the same reason,
Sg° = inf{t;e < t,x+ X; ¢ B} is integrable. These decreasing approximations of S%
converge almost-surely to S% as € decreases to 0, so we have by monotone convergence

E[S] = lim | B[S},

"The remainder of this section is essentially taken from K.L. Chung’s excellent little book [Chu02] on
Brownian motion.
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T,

But as the strong Markov property enables us to write E[S5;°] = E[g(z+X.)]. where g(y) :=
E[S%] is bounded (can you see why?), E[SZ] appears as a (smooth and so) continuous
function of x. So

T Y <'— Y,€ — 3 Y,€ — x,e

;}EECE[SB] S ?}IH},;E[SB ] ?}IH}CE[SB | =E[SE"].

It remains to send ¢ to 0 to conclude. >
The proof of theorem 104 is now easy.
PROOF — Let z € 9B be a regular point. From lemma 106 we have
E[SE] — 0,

r—z,z€B
i.e. S% converges in L}(P) to 0. So one can extract from any sequence {z,},>0 converging
to z a subsequence {x,)}p>0 such that the exit times Sf—),"(p) converge almost-surely to 0.
The continuity of Brownian motion ensures us that the exit points z,,(,) + X §n) converge
almost-surely to z + Xg = z. As a consequence, if f is bounded on 0B and continuous at z,
dominated convergence justifies the convergence
E[f (2np) + XS;n@))] e f(2),
that is

HBf(xn(p)) p—>_+>oo f(z)

As the limit value does not depend upon the subsequence, Hp f(x) converges to f(z) as x
tends to z. >

11. LEVY PROCESSES

We study in this section models of random phenomena whose properties are insensitive
to time shifts. As will become clear in section 12, they are the basic objects out of which
all reasonnable martingales can be described.

The definition of Lévy processes is given section 11.1, whose main result is a kind
of static description of such processes through the analytic description of their Fourier
transform at a fixed time. We address the construction problem of such processes in
section 11.2, where we construct a general Lévy process as a limit of the sum of a Brownian
motion with a drift and of (compensated) Poisson jump processes.

11.1. Basics.

DEFINITION 107. By a (real-valued) Lévy process we shall understand a real-valued
cadlag process starting from 0 and with stationary independent increments.

Given time 0 < t; < --- < t, the increments X, , Xy, — Xy,..., Xy, — Xy, _, are
independent and the law of X;, — X;, | depends on the time increment ¢; — ¢,_;.

A Brownian motion with constant drift is a Lévy process, so are Poisson processes; we
recall their definition. These are continuous time Markov processes whose dynamics is
characterized by two parameters: a finite positive constant A and a probability measure
J(-) on R. Denote by (S,),>0 an iid sequence of exponential random variables with pa-
rameter A\, and by (J,),>1 an iid sequence of random variables with common distribution
J. The process X starts almost-surely from 0 and is constant on the interval [0, .S}); it has
a jump J; at time S} : Xg, = J;. Then it remains constant on the interval [S7, S; + S5)
and has a jump J, at time S; + .55 1 Xg,15, = J1 + Jo; and so on. It is not difficult, using
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the memoryless property of the exponentials, to prove that this process is a LLévy process

you are asked to prove that fact in exercise. Surprisingly, Brownian motion and Poisson
processes are all we need to describe the most general Lévy process, as theorem 113 will
make it clear. Note that Poisson processes have that name as the number of jumps they
make in a time interval of lenght ¢ is a Poisson random variable with parameter A¢. Can
you prove this fact?

We start our study of Lévy processes looking at their fixed time distributions.

LEMMA 108. Denote by p,(\) the characteristic function of Xy : @i(N) = E[ ’)‘Xt} A E
)

R,t > 0. There erists a continuous complez-valued function g(\) such that pi(\) = 9.
This function is called the characteristic exponent of the Lévy process.

The function g characterizes completely the finite dimensional laws of X. Given 0 =
to <ty <---<t,, lemma 108 and the independence of increments of X imply

E[exp(i0Xs, + -+ idX,, )| = E[ef (Fim )Xo (S ) 0oy oot ida (0,

— ﬁ E [6i (Z?:k )‘l) Xy =Xty )]

:Zx; (kzn; th—tr_1) (ZW)

PROOF — Note first that since X is cadlag and has stationary independent increments we have

P(|X; — X| =€) =P(X4_5 =€) — 0

s—t

for all e > 0. As
lor(A) = s (X)) < E[‘ei/\(Xt—Xs) _ 1‘] +E[‘€i(>\—>\’)XS B 1@
< Sup‘ei)\x _ 1| + 2]P’(\Xt - X5 > e) +E[‘€i()\f)\/)X5 _ 1”
|| <e

it follows (by dominated convergence) that ¢ is a continuous function of (¢,\). As a con-
sequence, ¢i(A) # 0 for ¢ small enough, since ¢p(A) = 0. Using the independence and
stationarity of the increments, it follows that we have for all £ > 0, A € R

N . X
SDt()\) :E[ei)\Xt] _ HE[ez)\(XJJVt X]Nt)] _ {@%(A)}N £ 0,

J=1

provided N is big enough. We can thus write p;(A) = e+ where a and b are
continuous functions of (¢,\) and ag(A) = bo(A) = b:(0) = 0. Using again the stationarity
and independence of the increments, we see that @s1¢1(\) = @s(A\)@i(A); as a and b are
continuous, this implies that they are both linear functions of ¢. >

The general form of g was found by Lévy and Khinchin.

THEOREM 109 (Lévy-Khinchin). Given A € R and x € R, set

+ 22

fO\z) = (" —1—iXsinz) !

xr2
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for x #0 and f(\0) = —’\72; this formula defines a continuous function. There exists a
finite non-negative Borel measure p on R and a constant b € R such that

(11.1) () = /f()\,x)u(dx) +ibA.

PROOF  We start’® with the identity —g(\) = li\I}l) kwft()‘), g(0) = 0, where the limit is
t

uniform for X\ in a compact set. Denoting by 14 the law of X; and taking ¢t = % above, we
get

(11.2) —g(\) = lim (1 — %) nva (dz),
and for h > 0 (")
1 h . sin hx
(11.3) ~5n _hg()\) d\ = nEIJrrloo (1 ~ ) nV%(daj).

As the function (1—6”“3) is continuous and bounded it is fair to try and use some compactness
argument in the set of measures to write equation (11.2) under the form [(1 — e™*) p(dx),
where g is a weak limit of the sequence nvi. But as this measure has mass increasing n

we need to be careful. Would its mass be bounded away from 0 and oo, we could write it
as appn, with a, > 0 and p, a probability measure. The tightness of the sequence of finite
measures (anpp)n>0 would then equivalent to the tightness of the sequence of probability
measures (pn)n>0. Choosing a subsequence along which both (ay)n>0 and (py)n>0 converge
would provides a cluster point for the sequence of measures (a,py)n>0 for the weak topology.

Noting that there exists a positive constant C' such that % < C(1 — Smy) for all y,

equation (11.3), with h = 1, tells us that the sequence of measures (% nvi (da:)) has
n n>1
mass uniformly bounded above. If the corresponding a,, converge to 0 the measures converge

weakly to 0. Elsewhere, we see the tightness of this family of measures noting that since
1_51221 > 0is no less than 3 for |hz| > 2, all the integrals f‘x‘>% nvi (dz) are uniformly small

provided h is small enough; this is a fortiori the case for the integrals f| 2 l—t—: nul(daj).

Choose a subsequence for which the measures (p)v_1_(dx) converge weakly, say to pu.
n(p)

1,2
Trz2
Our intuition about how to turn the limit (11.2) into a proper integral thus takes the following
form.

—g(A\) = lim [(1-— ei)‘x)

n-+0o0o

(dz)

Vi
n

(11.4) ~ lim < / (1— ™ 1 ixsing) n(p)v_y_ (dz) + iA / (sinz) n(p)uL(daj))

p+o0 n(p)

:phf?o< /f 1+ — (p)l/%(dx) +2/\/(sin$) n(p)l/n(lm(dx)>
As f(\, ), is a bounded continuous function of z, the first term converges to — [ f(\, z)pu(dz);
it follows that the integrals [(sinz)n(p)v -+ (dzr) have a limit as p goes to infinity, which
defines the constant —b. >

"6This proof of Lévy-Khinchin’s representation theorem is essentially taken from N.V. Krylov’s book
[Kry02].
You can interchange the integral with respect to A and the limit as the terms f(l - e“‘w)

(dz) are

Vi
n

uniformly bounded with respect to n > 1 and X in a bounded set.
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[solating a possible Dirac mass at 0 in y, we can write

(11.5) g(\) = /(ei’\x —1— Asinz)A(dz) —

with p/(dz) = “;—QIQ p(dx),o* = /(0) and A = p/ — 1/(0) & has no mass on {0}. The case
A = 0 corresponds to a Brownian motion with drift b and variance o2("®).

\2o?

+ b,

THEOREM 110 (Uniqueness). Lévy-Khinchin’s decomposition for g is unique.
q ) p g q

PROOF Tt suffices to note that since we have for any A € R and h > 0
gA+h)+gA—h ixe L — cos(hx
g3y~ SR HIAR) _ [ o1 = coxir)

the measures pp = 1_%52(}”3)(1 + 2?)pu(dz) are uniquely determined by g, as their Fourier

transforms are given by the above formula. But we have for any bounded Borel set A C
11
[=n ),

(1+ 2*)p(dz),

2
T
A)= [ 1a————(1+2%)  pp(da);
pA) = [ a1 ) )
the result follows. >

A triple (b,0%; A), where A is a non-negative measure on R* such that

/(1 A *)A(dx) < oo

is called a Lévy triple. Lévy-Khinchin formula gives a static description of a Lévy process
in terms of a Lévy triple; it is not clear at all whether or not there corresponds a Lévy
process to each such triple. This is indeed the case, and the proof given below will reveal
the dynamical content of the Lévy-Khinchin formula. Theorem 113 below proves that
any Lévy process has a modification which is the limit of a sum of independent processes

bt + B+ PY +> P,
k=1
where bt+0 B, is a Brownian motion with drift b and variance o2, the process P is a Pois-
son process with intensity A({|z| > 1}) and jump measure J© = A({|z| > 1})711|x|>1A,
and the processes P®) Poisson processes with intensity A{z7 < lz| < £}), jump mea-
sure J*) = A({k%rl < z| < %})_llﬁSMK%}A, and a drift _fxlﬁlﬁwké}/\(dm)‘ We

denote by P the Poisson process without drift.

It will clarify the construction below to rewrite the characteristic exponent g of a Lévy
process under the form

g(A) = —

replacing the former b by™ o' = b + f(x1|x|<1 — sin :Jc) A(dx). We shall write b instead of
b’ below. Note that we have

a2 \?

+iib )+ /(em —1— Azl <) Addz),

"8Note that the sin function appearing in the above formula for the exponent g(\) has nothing canonical;
it could equally well be replaced by any bounded continuous function which is equivalent to x near 0.
This would change b accordingly.

This integral converges as [ (2% A 1) A(dz) < oo.
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/( A1 — Azl <) Aldz) = /(ei’\x—1)1|$|>1 A(dx)—l—/( A1 —iAz) Ly <1 A(dz).

11.2. Construction of Lévy processes. Denote by (.E)t>0 the filtration generated by
B, P® and all the P®).
LEMMA 111. (1) The Lévy process P has characteristic exponent [ (e?*—1) 1,51A(dz).

(2) Each Lévy process P® s q cadlag (.7-}) -martingale with characteristic exponent

£20
/(ei)‘g” —1—i)\z) lﬁg‘a:K%A(dx).
(3) The process (é(k))Q - tfx21%<|x|<%[\(dx) is a cadlag (ft)t>0—martmgale.

It follows from this lemma that the characteristic exponent of our approximating Lévy
process 0B, + bt + PO + - P® s
2)\2

5 +ibA+ /(em — 1) L1 A(de) + > /(em —1-i\a) 12 1A (da),
k=1

that is
2/\2

2

PROOF (1) The computations of the characteristic functions of Pt(o) and ﬁt(k) are done in the
same way and use the following elementary fact. The distribution of the number N; of jumps
by time ¢ of a Poisson process of intensity p is a Poisson random variable with parameter pt.
Writing p for A({|z| > 1}) we thus have

(11.6)

+z'bA+/(em L—idal o _loj<1) A(d).

T

z)\P(O) ZE z)\P(O) N P(N; = n) = Z(l /ei)\x1|x|>1A(dx))neP%

n=>0 n=>0 P
= exp(/ (ei)‘x — 1)1‘x‘>1A(d$)>.

(2) As the non-drifted process P*) is a Poisson process (hence a Lévy process) it has inde-
pendent increments. It follows that

k k
E[Pt( ) —Ps(k)‘}—s] :E[pt( ) _Ps(k)] = (t—s)/aclk%lgx<iA(dx),

which proves that P®) ig an (.7-}) -martingale.

>0
(3) T leave you to justify the fact that ]Bt(k) € L2. As the process P® has independent
centered increments it suffices to see that E[(]Bt(k))ﬂ = tfx21 L 1A(dz) for each

.k k . .
t > 0. Writing Pt( ) Pt( ) _ bt, with b = fx1ﬁ<|x|<%A(d$)v it amounts to proving

SERS-

that E[(Pt(k))ﬂ = b%? + tfxﬁﬁg‘xkiA(da:). This is done by a direct computation,
conditionning on the number of jumps of P*) by time ¢, which is a Poisson random variable
with parameter tA({k%rl <zl < 1)) >
The next proposition provides a good functional framework where to take the limit of
our approximations.
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PROPOSITION 112. Denote by ‘H the space of (.7-}) -martingales bounded in L? and

=0
1

define on H the metric d(X,Y) = <E[sup0<s<1 }XS — YS‘QDQ. Then the metric space

(H,d) is complete.

PROOF  Let (Y"),,>0 be a Cauchy sequence of elements of H. Each (Y;"),> is then a Cauchy
sequence in L2, so converges to some random variable Y; € L2. We get the martingale
property of Y by passing to the limit in the corresponding identity for Y. It suffices then
to apply Doob’s L?-inequality to get

E[ sup |Y)" = Yy*] <2 sup E[|Y]" - Ys[!] <2E[|Y]" = V1] — 0,
0<s<1 0<s<1
which proves that Y converges to Y in (H,d). >

THEOREM 113 (Construction of Lévy processes). To any Lévy triple there corresponds
a Lévy process with characteristic exponent given by formula (11.5).

PROOF  Set V™ =37 P¥ for ¢ € [0,1]. Using the fact that E[P{' P{] = 0 for k # ¢,
and Doob’s L%inequality we have, for m > n,

T2
E[ sup !YSm—YS"‘Z] :E[ sup Z ng)‘ }
0<s<1 0<s<1 [—

<4E“ i ﬁf’ﬁﬂ —1 i E[|PO)]

k=n+1 k=n+1
<4 [ 2%1 . 1 A(dz).
[ e M)

The last inequality comes from point (3) of lemma 111. Since the integral [ %1, <;A(dx)
converges, the above quantity is arbitrarily small provided m and n are big enough. This
proves that Y (™ is a Cauchy sequence in the complete space (H,d); denote by Y its limit.
I leave you to check that Y has independent stationary increments, simply by passing to
the limit in the corresponding identities. Also, as supp<,<1 !YS — Ys(n)‘ converges in L2 to 0,
a subsequence converges almost-surely to 0; this makes the process Y appear as a uniform
limit of cadlag paths, so Y is itself cadlag, and hence is a Lévy process.

Recall the expression of the characteristic exponent of Xt(n) =bt+oB; + Pt(o) + Y;(n) given
in equation (11.6); set X; = bt + 0By + Pt(o) + Y;. Using the almost-sure convergence of a

subsequence of Yt(n), the estimate ‘(e“‘x -1- )\aj)l|x|<1| < Caj21|x|<1 (for some constant

80

C > 0) and dominated convergence®’, we obtain

21\2
E[eM] = exp(—%t +iNDE + t/(eZM —1- Ay1|$|<1)A(d33)),

this proves that the Lévy process X has Lévy triple (b, 0 ; A). >

12. (...) AND MARTINGALES

12.1. Representation of continuous martingales. We prove in this section that any
continuous martingale can be seen as a time change of a Brownian motion. This will
happen to be a beautiful application of the strong Markov property. To set notations,
write (€, Fo) for C(R.,R), equipped with its Borel o-algebra, X for the coordinate

80We have [2%1,<;A(dz) < oo.
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process and Py for Wiener measure on (€, Fp). Write also R for the Borel o-algebra of
R,.

THEOREM 114 (Brownian motion as the father of all continuous martingales). Let (M;):>o

be a continuous martingale defined on some probability space (Q,]:, IP’) and starting from
0. Then one can define on (QO xQ Fo&F, IP’0®IP’) a Brownian motion B and a measurable
time change ¢ : (t,wo,w) — ¢¢(wo,w) € Ry on (Ry x Qo x QR @ F @ F) such that for
each t > 0 we have Py @ P-almost-surely

Mt(w) - B¢>t(wo,w) (W07W)-
In this sense, M appears as a random time-change of a Brownian motion.

It will be useful to introduce the following notations where € is any positive constant,
and where we use the convention inf () = +00. Given a continuous function z = (It)te[07T]
defined on some interval [0, 7] and starting from 0, define by induction

Si(e) =inf{t € [0,7]; z =€}, S%.,(e) = inf{t € [S(e),T]; |2 — w5209 | = €}

n

Denote by N*(e) the biggest n > 1 for which SZ(e) < oo and set T7(e) = {S%(e); n =
1..N*(e)}. Note the inclusions

(12.1) T’C(%) c T"(e).

PROOF 1) The proof rests on the following simple observation. Let 2 = (2¢)¢>0 be a con-
tinuous real-valued path for which all the Sy (e) are finite, whatever n > 1 and € > 0. Let
Y = (Yt)1eo,7] be a non-constant continuous function defined on some interval [0, T]; provided
€0 > 0 is small enough, the collection of times 7Y (e) is non-empty for 0 < € < €.

LEMMA 115. One can construct a function x¥ and a continuous non-decreasing time change
¢ from [0,T] to [0,6(T)] such that

al(s) =y, if s= (1),
and QS(S,,Z{(E)) = S%(e), for € small enough and n € {1, ..,Ny(e)}.

ProoF Taking € of the form 27P there exists a unique continuous piecewise linear map
¢p for [0,T] to Ry such that
e $,(0) =0, ¢,(SH(277)) = SZ(277), and
e ¢,(t) = c+t, for some constant ¢ and t > S}’\,y@_p)@_p).

We define a continuous function z? on [0, ¢,(T)] setting

2P(s) =y, if s = p(t).

Note that due to the inclusion (12.1), for each pg and n € {1,.., NY(27P0)}, the sequence
of times {gf)p(Sf“{(Q—pO)) }p>0 is constant for p > pg. Using the continuity of z and vy,
it is then a simple thing to prove that the sequence of time changes (¢p),>0 converges
uniformly to some non-decreasing time change ¢ : [0,7] — [0, gb(T)} Check that the
function x¥ defined on [O, QS(T)} by the formula

() =y, if s = o(t)

has the desired properties. ®



ADVANCED PROBABILITY 75

2) Recall we denote by X the coordinate process on €y and that it is a Brownian motion
under Wiener measure Py. So almost-all paths X (wg) have all their S, (¢) finite. Applying
lemma 115 to © = X(wp) and y = (Mt(w)) we get a time change ¢ : [0,7] —
[0,¢(T)] and a path (Xy)se[o’d)(T)]
(QO X Q,fo@f,]?o@]?).

tel0,T]’
; this random path is defined on the probability space

LEMMA  116. The process (Xé‘/f)

interval).

sclo,a(ry S @ Brownian motion (defined on a random

PrOOF  Notice first that, for 277 small enough and n € {0, o NM(2’p)}, we have by the
martingale property of M

1
P(MS%H(Q*P) = MS,JL”(pr) + 6‘.7:5711»1(2—p)) = 5

Denote the above {£1}-valued random variable by €, and define a new continuous path
XP requiring that

e P — »

A= Xxen = (X = Xgxon)

on the interval [S,,)L((Q’p), 5'7)1(4_1(2’1’)}. The process XP is by the strong Markov property
a Brownian motion. Note that X? = XM at all times s of the form S;X(27P). It follows
from this fact that Py @ P-almost-surely the functions X? converge uniformly to X on

the interval [O, QS(T)} As each of them is a Brownian motion, the process XM is also a
Brownian motion. ®

Lemmas 115 and 116 together prove the representation theorem, up to the measurability
statements. These can be proved examining the above construction, and are not really
important for us. >

You will see an improved (and more sophisticated) version of that result in the course
on stochastic calculus: there exists an (FM)i>o-adapted random time change (M); and a
Brownian motion B (with respect to some other filtration) such that M, = By, for all
t>0.

12.2. Representation of general martingales. Although getting a proper description
of the structure of the most general martingales would require the introduction of new
concepts, we have all the tools needed to understand this structure perfectly. In the same
way as a C! function from R to R is infinitesimally well-approximated by its tangent
line (so well that we can recover the function from the family of its tangents: f(t) =
f(())jtf(;t f'(s)ds), any cadlag martingale M is infinitesimally well-approximated by a Lévy
process. Roughly speaking, at each time ¢ there exists a random Lévy triple (0,07 ; A;),
measurable with respect to F;, such that the martingale M is dt-close to the corresponding
Lévy process over the time interval [¢,t+0t]. To get the martingale property at time ¢+ dt
we ask the measure A; to be symmetric.

As we have seen, Lévy processes with Lévy triples (b, 0?; A) are characterized by the
identity E[eY] = e where

A%t

gi(A\) = iAbt — + / (e — 1 — izl <) tA(de);

by the independence of the increments, this holds iff exp(iAX;)/ exp (gt(/\)) is a martingale.
The above “infinitesimal” euristics gets a proper rephrasing in the following statement.
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THEOREM 117 (cf. [JS03], Chap. II, §2). Given any cadlag martingale (M;)i>o there
exists an adapted process (07);>0 and an adapted random measure-valued process (Ay)i=o
such that (0,07 ; Ay) is a Lévy triple for all t > 0, the measures A; are symmetric, and
the process

exp(tAM;)/ exp (wt()\))

is a martingale, where ¥;(\) = —% + [ (™" — 1 — izl <1) Ay(dx). There is only one
such process (0,02 ; Ay),t > 0, which is previsible.

In short, a continuous time process (t,w) € Ry x Q — Y;(w) is said to be previsible
ifqer it is measurable with respect to the g-algebra on R, x € generated by the adapted
continuous processes. Allowing general (previsible) Lévy triples (by, 02 ; A;) in the above
description leads to the class of semi-martingales, which is the good class of processes
to consider when constructing the theory of stochastic integration. You will certainly
encounter it under a different costume: (Y;);>o is a semi-martingale ifges one can find an
adapted process A with finite variation, an increasing sequence of finite stopping times
T", and a sequence (M"™)o<i<rn of closed martingales such that

Vn>0,Vi<T", Y, =M+ A,.
But this is the beginning of another story...
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13. COMMENTS AND EXERCISES

References. The book [Chu02]| of Kai Lai Chung will give you a nice view on Brownian
motion. Rogers and Williams’ book, [RWO00|, as always, is recommended.

You will find interesting material on Lévy processes in Krylov’s book |[Kry02]. You will
also find in the first chapter of Sato’s book [Sat99| useful and basic informations on Lévy
processes.

To be written: Comments on the “Poisson random measure” approach to Lévy pro-
cesses.

13.1. Exercises. B denotes a real-valued or R%-valued Brownian motion constructed on some
probability space (Q, F,P); the distribution of x + X is denoted by P,.

1. Kolmogorov's 0—1 law. This exercise is the companion to exercise 8 of example sheet 2. Let us
work in R%. Define the tail o-algebra : T = ﬂt>0 0(Bsyt; s = 0). Using the inversion property
of Brownian motion and Blumenthal’s 0 — 1 law, prove that all the events of 7 are trivial under
P.

2. Let A be an open subset of the (d — 1)-dimensional sphere and U the cone {ta;a € A,0 <
t < e} of vertex 0 (for some € > 0). Prove that the hitting time 7y = inf{t > 0; B, € U} of U
for a Brownian motion starting from 0 is almost-surely equal to 0. This result is useful to solve
Dirichlet problem by the probabilistic method in concrete cases as it ensures that all points of the
boundary of an open set O are reqular if any point of OO is the vertex of a cone contained in O€.

3. Using the martingale property of Brownian motion, prove that we have for any positive a, b

b
P(H_a < Hb) = b—|——a and E[H_a AN Hb] = ab.

4. Let B be a real-valued Brownian motion and o € R.

o2
a) Show that the process (e”Bt*Tt) is a martingale with respect to the filtation of B.

>0
b) Deduce, by differentiating with respect to o, that the following processes are also martin-
gales: (B? — t)t>0, (B} — 3tBt)t>0, (Bf — 6tB? + 3t2)t>0.
5. Given c € R, the process Bf = B; + ct, is called the Brownian motion with drift c. For fixed
x>0and —a <0 <b, set H =inf{t > 0; Bf = a}.
a) Fix A > 0. Under which conditions on € € R is the process exp(HBtc — )\t) a martingale?
b) Supposing 6 chosen appropriately, deduce from a) that

Ele ] = exp(—zv/e® +2) — ¢),

2
and so, that the distribution of H¢ has density \/2“3? exp(—(gC 2?) ) Is it surprising?
s

c¢) Conclude that

P(HS < 00) = 1if ¢ >0, and e 27 if ¢ < 0.
6. a) Given a > 0, set H, = inf{s > 0; B; = a}. Prove that the distribution of H, has a
density with respect to Lebesgue measure on R, equal to W exp(—%).

b) Prove that the process of hitting times (75),>0 has stationnary independent increments.
Is it a Lévy process?

7. Given any a > 0, set S, = inf{t > 0; B, > a} and T, = inf{t > 0; By > a}.
a) Prove that S, and Tp are almost-surely equal.
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b) Let L be a non-negative random time independent of the filtration generated by B. Prove
that the event {Tf, # Sp} is measurable and P(77, # Sr) = 0.

c¢) Find a random time L for which P(T;, = Sz) = 0.
8. Occupation time. Let D be an open ball of R? and z be any starting point for Brownian
motion.

a) Prove that P, ([;° 1p(By)dt =oc0) =1,if d =1 or 2.

b) Prove that E, [ [;° 1p(By) dt] < oo, for d > 3.
9. Let B = (B!, B?) be a 2-dimensional Brownian motion starting from the point with coordi-
nates (1,0). Setting 7" = inf{t > 0; Bf = 0}, what is the law of BJ.?
10. Let B be here an R%valued Brownian motion, r > 0 and z € R? with ||z| < r. Set
H =inf{s > 0; ||B|| = r}. Prove that E,[T] = ==l

11. Uniqueness in Dirichlet problem. Let O be a bounded open set and g be a solution to Dirichlet
problem; with continuous boundary condition f. Prove that

max g(z) = max 9(y) (= max f (v))-

Conclude that the Dirichlet problem has at most one solution.

12. Let N be a Poisson process of intensity A. Prove that the number of jumps of N by time
t > 0 is a Poisson random variable with parameter At.

13. Prove that a Poisson process is a Lévy process.

14. A Poisson process of rate A is observed by someone who believes that the first holding time
if longer than all the other holding times. How long on average will it take before the observer
is proved wrong?

15. Let N be a Poisson process of intensity A. Given any time ¢ > 0, denote by T; = inf{s >
t; Ng # N;} the next jump time after time ¢.

a) Prove that we have almost-surely T; > t.

b) Prove that T; — t is exponentially distributed, with parameter . This is surprising as the

interval [t, T, —t] is contained in one of the intervals between jumps, all of which are exponentially
distributed, with parameter A(!). Can you explain that paradox?

16. Is the sum of two Lévy processes always a Lévy process?
17. Can a process with stationnary and independent increments not be a Lévy process?

18. Given a Lévy process X, set AXy := X; — X;-. Prove that we have almost-surely AX; =0
for any fixed t > 0, so Lévy processes do not have jumps at fixed times. This result generalizes
the corresonding result for Poisson processes proved in question a) in the exercise 15.

19. Let X be a Lévy process with jump measure Ax of finite mass.
a) Prove that X has almost-surely finitely many jumps in any bounded interval of time.

b) Denote by (AX),, the n'® jump of X, and let (,),>1 a collection of independent Bernoulli
random variables , with parameter p € (0,1), independent of X. Let Y be the process obtained
from X by removing from X all the jumps of X for which ¢, = 0, at the time when they occur:
If X has made n; jumps by time ¢ we have V; = X; — >, (1 — ¢;)(AX);. The process Y is
cadlag . Prove that Y is a Lévy process and find its jump measure Ay-.

20. Using the same method as was used for Brownian motion in the course, state and prove the
strong Markov property for a Lévy process.
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21. Using the same method as in exercise 19 in example sheet 2, prove that the filtration
generated by a Lévy process, completed with null sets, is continuous on the right.

22. a) Prove that a Lévy process can always be written as the sum of two independent Lévy
processes.

b) Deduce from a) and exercise 17 that a Lévy process is almost-surely continuous iff it is a
Brownian motion with drift.

14. COMPLEMENT TO PART II1

14.1. Complement: Infinite sums of infinitesimal independent random wvari-
ables. As is clear from the definition of a Lévy process X, the random variable X; can
be decomposed for all n > 1 as a sum of n iid random variables: X, = ZZ:1 (XE —Xﬂ).
Random variables which have this property are called infinitely divisible. The prO(;Lf of
Lévy-Khinchin’s formula can be copied word by word to prove that any infinitely divis-
ible random variable has a characteristic function of the form e9® for a Lévy-Khinchin
function g. Rather than using the measure A with support in R* we shall use the measure
p and the “drift” b obtained initially in formula (11.1), out of which A was derived by
isolating the mass at 0. With this formalism, Lévy triples become Lévy pairs (b; ). The
following stability property is worth being noted.

LEMMA 118. If a sequence of infinitely divisible random variables converges weakly then
its weak limit is infinitely divisible.

PROOF — Let ¢ be the characteristic function of the weak limit of a sequence of infinitely
divisible random variables, with characteristic functions o). As each o*) = {¢£lk)}n, for
some charcateristic function gpglk), the functions ‘gp(k)ﬁ are characteristic functions®'. Since
they converge to the continuous function \g0|% as k — oo, the latter is a characteristic
function, by Lévy’s continuity theorem; so |p|? is infinitely divisible, as n is arbitrary. As
such, it cannot vanish, and ¢ cannot either. All the functions goi = kh_}rgo {go,(lk)}% are thus

well-defined characteristic functions (as they are continuous at 0), which proves the claim.
>

DEFINITION 119. By a triangular array we mean a sequence of finite collections
{Xnk; 1<k< k:(n)} of independent random variables.

Set S, = X1 + -+ + Xypm). We are going to prove that S, converges to an infinite
divisible random variable under quite general conditions.

Assumptions. e All the random variables X, are in L2,

e sup VAR(X,;) — 0,
1<k<k(n) 00

° ZIZ(:"I) VAR(X k) is bounded above by a constant independent of n, say C.
It will be convenient to denote by f,x the law of X,,;, and by 1, the law of the recentered
random variable X, — E[X,].

81Denote by X,(Lk) a random variable whose distribution has characteristic function @5{6), and let )A(,(Lk) be
2 ~
an independent copy of ~Xx. Then |ga(k) | " is the characteristic function of X\ + Xr(Lk).
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PROPOSITION 120. The random variables S, converge weakly iff the sequence of infinite
divisible laws with exponent

k(n)
() = > (IBLX] + [ (= 1) eldo))
k=1
converges, in which case the two limits are equal.

PROOF — Write @,,;,(A\) for the characteristic function of X, — E[X,x], and set a,r()\) =
FakN) — 1 = (€% — 1), (dr). We have

k(n) k(n)
05, (\) = PRI ) E[X ] H B\ = — AT ) E[X k] H 1 4 apm(
k=
Note that since [T, (dz) = 0, one can write @, (A ( AT 1 — iAD) T (de). As

the absolute value of the integrand is bounded above by 2"3 , the estimate ‘ank()\ﬂ <

’\;VAR(XM) follows and shows that a,;(\) converges to 0, uniformly for A in a compact.
The statement is then obtained directly from the following inequalities and our assumptions.

log s, (A) = Y (IAE[Xpk] + @k ‘ ‘Z log @, (A ank()\))‘
k=1 =1
<3y Ll \ank I lf ol
k=1 k>2 2 = 11_‘%’6 V]
k(n) )\2
< e lom )] 2 fane (W] < 5O, ma lan(V:

>

This statement brings back the study of the behaviour of S, to the study of a sequence of

infinite divisible random laws. Denote by (b, ; v,,) the Lévy pair associated to the exponent

1, constructed in proposition 120. We shall write ID(b; v) for a generic infinitely divisible
random variable with Lévy pair (b;v).

THEOREM 121. The random wvariables S, converge weakly to some infinite divisible
random variable with Lévy pair (b;v) iff

(1) the measures v, converge weakly to v,
(2) by, converges to b.

Before proving this statement let us single out the following two important practical cases.

COROLLARY 122 (Convergence to normal and Poisson laws). e The random variables

Sp converge weakly to a normal random variable iff b = 0 and for all ¢ > 0 we have
k — k _
o) e o (dr) — 0 and S350 [ 0 i (dr) — 1,

e Suppose ZZ(:nl) E[Xnk] — A and Zk(n VAR(X,x) — A. Then S, converge weakly

‘ k _
to a Poisson random ?)amable zﬁ’for all € > 0 we have Zk(:nl) f|$71|>6 227, (dr) — 0.
n—od

PROOF  According to proposition 120, everything amounts to prove that ID(b,, ; v,,) converges
weakly to ID(b;v) iff v, converges weakly to v and b, converges to b. Denote by 1(\) the
characteristic exponent of ID(b;v). The implication < is obvious since the characteristic
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function of TD(b,, ; v,,) converges to the characteristic function of TD(b;v) in that case®?, so

Lévy theorem on characteristic functions applies.

To prove the converse implication, note that since the weak convergence of ID(b,, ;v,) to
ID(b;v) implies the convergence of their characteristic functions, uniformly on bounded
intervals, 1, converges to ¢ in that sense. We now play the same game as in the proof of
the uniqueness of Lévy-Khinchin’s representation. Namely, define

PN = / (00 — B+ 5)) ds =2 / e (e R (),

1 T x2

and p, by a similar formula. As p,, converges uniformly on compacts to p the measures (1 —
%)11—2’”2 vn(dz) converge weakly to the measure (1 — %)1‘;—2‘”2 v(dz), by Lévy’s theorem.
Since the integrand is continuous and bounded away from 0 the measures v, themselves

converge weakly to v. The convergence of b,, to b follows. >

15. SOLUTIONS TO THE EXERCISES

15.1. Exercises on part I. 4. a) Suppose there exists a probability space (Q, F,P) and
a collection of real-valued random variables X = (X;);er defined on (£, F) which form a
Gaussian process. Their distribution Q is a probability measure on the product space R”,
equipped with its product o-algebra. As the class of elementary events {x € R ; z;, €
Aq, .oy, € Ayt for some 1 < n < oo, ty,...,t, € T and Ay, ..., A, Borel sets of R,
is a m-system generating the product o-algebra, QQ is entirely determined by its values on

these elementary sets. Fixing n and t,...,t,,
QzeR";z, € Ay,...,m, €A,) =PweQ; X, (w) €AL..., X, (w) €A).
Now, the distribution of the R"-valued random variable (X;,,..., X, ) is characterized

by its Fourier transform, so if we know E[eizkﬂ-n Ckth} for all ¢; € R, we (formally)
know P(X;, € Ay,...,X;, € A,) for all Ay,...;A,. This is precisely the case as

o2 [C cn)

E[ef 2=t rXtn] = gim(ermen) === is determined by the mean and covariance func-
tions m(-) and o?(-) respectively. Asn > 1 and ty,...,t, are arbitrary we are done.

b) Let denote by (92, F,P) the product space RY with the product probability N'(0, 1)®N.
Note first that as the random variables GG, are independent we have for any 1 < p <

q < oo
q q
[, =2
n=p n=p

the sequence ( 7 h”Gn> converges in L*(P), so the random variable X}, = Y h"G,
q=0 -
is well-defined in L?(IP) and almost-surely, and has null mean. From the independence of

the Gnl E[XhXh/] == ZnZO hn(h/)n = (h, h/)

c) (i) Pick 0 < 51 < s9 < -+ < 8. As the random vector (Bs,, Bs, — Bg,, -+, Bs, —
Bs, ) = (Xl[o,slel(sl,sQ]’ e ,Xl(sn_lm]) is a Gaussian vector, its components are inde-
pendent iff it has diagonal covariance matrix, i.e. iff

E[X:, X

=0
8i—1:5]

(Sj—l!sj]]

for ¢ # j, which holds since the expectation equals [ 1, , (2)1 1(x) dx = 0.

8j—1,8]

82Recall the function f (A, z) appearing in Lévy-Khinchin’s formula is continuous and bounded.
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(ii) As E[|B, — B,|*] = |t — s|?, Kolmogorov’s regularity criterion applies.
(iii) This modification retains the finite dimensional properties of the original process,

so it has covariance E[B,B;] = min(s,t). Question a) shows that this property character-
izes Brownian motion amongst the Gaussian processes.

(iv) Check that X is centered, Gaussian, with the above covariance function. The only
non-trivial point is the continuity at 0 of the process B; := tXl/t Since B is almost-surely

continuous on (0, c0) one can describe the event {B oy 0} in terms of conditions on the
t10

values of B at countably many points of (0,00). But B and X being Gaussian, with
the same covariance and the same value at time 1, they have the same law on (0, 00); so
P(B; — 0) =P(X, — 0) = 1.

t10 tl0

5. a) As the complementary set of an open set if a closed set, the collection C is stable
by complementation; it contains [0,1]. Let € > 0 be given, (B,),>0 be a sequence of
disjoint elements of C and, for each n > 0, let O,, (resp. C),) be an open (resp. closed) set
containing (resp. contained in) B,, with P(O,\B,,) < €27 and P(B,\C,,) < €27". Pick
N large enough to have P(lJ, 5o B\ Uy, Bn) = P(U,sn41 Bn) <€ The set UY, C, is
closed and

UBn\UC P( |J B.)+E( UBn\UO <e+P(|J(B\Cw))

n=0 n>N+1

N
<e+ Z €27 < 3¢

n=0

Also, the set J,,5( O is open and

P(lJ o\ B.) <P(|J(0.\B,)) <D _P(0,\B,)

n=0 n=0 n>0 n=0
As ¢ > 0 is arbitrary, this proves that Un>0 B, € C, from which it follows that C is a
o-algebra.

b) Trivially, intervals are in C, so the o-algebra they genearate is included in C. This
o-algebra is Bor, which proves the inner and outer regularity of P.

6. a) Recall that (X,),>o converges weakly to X iff E[f(X,)] — E[f(X)] for any
bounded uniformly continuous function f (2nd statement of Alexandrov’s characteriza-
tion). For such an f we have for each € > 0

[E[f(Xn) = F(XO)]] SE[20fllocYixu—x1ze] +E[|f(Xn) = f(X)|11x,-x1<]
<2 flloo P(1Xn = X| = €) + oc(1),
by the uniform continuity of f. The upper bound converges to o.(1) as n goes to infinity,
which can be made arbitrarily small by choosing small e.

b) Let X be equal to 0 or 1 with equal probability, and X,, = X for all n > 1. Then
X, has the same distribution as 1 — X but does not converge to 1 — X in probablhty.
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*

7. A sequence (p,)n>o converging to p in B,(R)* also converges to p in Cp(R)*. The
converse does not hold: §1 converges to &y in Cy(R)* but not in By(R)* since we have

0= (1[,170},5[%]> 75 (1[,170]:}50) = 1, for all n > 0.

8. Again, we use here as in exercise 6 the fact that (u,),>o converges weakly to p iff the
integrals (f, u,) converge to (f, u) for all bounded uniformly continuous functions f.

Suppose this convergence holds a priori only for all continuous functions with compact
support, and let f be a bounded uniformly continuous functions. Pick ¢ > 0 and let
0 < ¢ < 1 be a function with compact support, equal to 1 in an interval [—M, M], big
enough so that we have (¢, 1) > 1 —¢, and so ((1 — ¢), 1) < e. Then

\(fs 1) = (Fs )| < | (o) = (fb, )|+ | (1= @) f, 1) — (1= @) f, 1) ]

The first term on the rhs converges to 0 since f¢ has compact support. The second term
is bounded above by

As (¢, pin) — (¢, 1) = 1 — €, the upper bound is smaller than 2¢ || f||o for n big enough.

9. Using the almost-sure representation of weak convergence, one can write ¢,(\) =
E[e**"] and ¢(\) = E[¢*], for some random variables X,, with law i, and X with law
i, defined on some probability space ([0, 1], actually!), with X, converging almost-surely
to X. Given M > 0 and € > 0,7 > 0, we have |X,, — X| < 57 on a set of probability
bigger than 1 — n, for n = N(e,n). So

s |9n(A) — o(X)

sup ‘E[ei)‘X" _ ei)\X] }
Ae[-M,M

| B Ae[—M,M]

< sup E[}ei’\X” — €i)\X}1\)\an)\X|<e] +2n
AE[—M,M]

gQSing—l—Qn,

for n > N(e,n). The result follows as ¢ > 0 and n > 0 are arbitrary.

10. Suppose the family (u,),>0 tight and associate to any € > 0 an M, > 0 such that
,un([—Me, MGD >1—¢, forall n > 0. Then

|on(A) — 1| < ’E[(eim — 1)1[ ’—l—?e.

—MG,ME]]
For A < <L, we have (ei)‘X" — 1)1 < 2sin Z, from which the result follows.
M. |:_Me7 6} 2

Reciprocally, if the ¢,’s are equicontinuous at 0, use formula just before the proof of
theorem 29 to conclude that the family (,),>0 of probabilities is tight.

11. We proceed in steps, proving first the statement for an iid sequence (U,),>o of
uniformly distributed random variables. Given ¢ € [0, 1], the random variables 1x, « are

iid. The SLLN gives in that case the almost-sure convergence ﬁn(t) — E[ongt} =1t. As
a finite intersection of events of probability 1 has probability 1, we have almost-surely

sup }ﬁ(t) —t|—0
teF
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for any finite family F' of elements of [0, 1]. Now, by monotonocity of ﬁ’\n, and given some
times 0 =ty <t <--- <1, =1,

sup Fo(t) —t| < max ﬁtk — 1tk + max tha1—t, |-

t€[0,1] ‘ ) } S ) } n(te) ‘ ke{0, ,p—1} ‘ i tk‘
Sending n to infinity and refining the partition, we get the result in that case.

To deal with the general case, we use the representation of a random variable as the
image of a uniformly distributed random variable. Let G denote the distribution function
of the common law of the X,’s. Set g(t) = sup{y; G(y) < t}, so that g(U,) < z iff
U, < G(x), that is, the sequence (g(Un))n>O has the same law as (X,,),>0. We are thus

brought back to prove that we have almost-surely

> Lwoe = Gla)| =0

=0..n

su
As the lhs equals

sup ‘E(t) — t}
t€[0,1]

by a change of variable, this is clear.

12. b) Using the almost-sure representation theorem for weakly convergent sequences,
one can write almost-surely by Taylor’s theorem for C! functions

VA(F(X)=f(m)) = f/(m)v/a(X,—m)+vio(|X,—ml]) = f/(m)y/n(X,~m)+o(v/a| X, ~m|).

As /n(X, —m) is almost-surely converging to some random variable Y the rhs above
converges almost-surely to f’(m)Y, hence the statement.

14. b) The application ¢ : x € C([O, 1],R) — m[ax] x¢ is continuous. Denote by pu,, the
te[0,1

law of X, under P. All the pu,’s have support in the set {a: € C([O, 1],R) ; m[ax] T 1},
telo,1

so the image measure of y, by ¢ is the Dirac mass at 1. The image measure of the law of
X by ¢ is the Dirac mass at 0, so (X,,),>0 cannot converge wakly to X by a).

15. a) The vector (X7, ..., X} X;) is Gaussian under P, with X; ~ A(0,1). We check
(0)
1
symmetric n x n matrix A. It follows that X; is independent under P of the R"-valued

Gaussian random vector (X7, ..., X ); in particular

P(X) € Ay,...,X) € 4,[0< X1 <e) =P(X] € A4y,...,X) € A),
so X has under P, the same finite dimensional laws as X° under P, that is P;. As the
finite dimensional distributions characterize uniquely the distribution it follows that the
distribution of X° under P, is independent of € and equal to Py.

b) Let now F be a closed set of <C([O, 1],R), HHOO), and F° = {z € C([0,1],R); d(z, F) <

e} be the e-beighbourhood of F'; this is a closed set, and ﬂ6>0 F< = F. As we have almost-
surely | X? — X| < € under P, the random path X°(w) is P.-almost-surely in F© if X (w)
is in F'. So, fixing n and taking 0 < € < n, we have

P(XeF)<P(X°c F)<P(X" € F")=P(X" € F").

by a direct computation that its covariance matrix has the form ((O) , for some
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Send first € to 0 to get o
1{1%196()( €eF)<P(X%e F"),
then send 7 to 0 (using monotone convergence)
T < 0 ny _ 0 ‘
limP(X € F) <P(X°¢ QOF ) =P(X° € F)
1

15.2. Exercises on part II. This section was contributed by Bati Sengul; thanks to him
for his work.

1. a) We need to prove that we have E[h(V)14] = E[g(U)14], for each A € o(U); any
such event is by definition of the form 15(U), for some measurable subset B of R. Using
Fubini’s theorem, we have

E[h(V)15(U)] = / / Fov (w0 h(0) 1 () dudv — / 1 (u / Fov (1, 0)h(v) dvdu
= [ 1ot fulw) du = Els()15(0)

b) Consider

o Cov(U,V)
X =V - W
then X is a centred Gaussian random variable, moreover
E[XU] =E[UV] — ME[UQ} =E[UV] - Cov(U, V) =0
Var(U) ’
hence X is independent of U, so E[X|o(U)] = 0. Now
Cov(U,V)
E[V]o(U)] = E[VT(U) U+ X)U(U)}
~ Cov(U,V)
 Var(U)

c) Let us prove more generally that any o(U)-measurable almost-surely finite random
variable X is of the form f(U) for some measurable function f: R — R.

Suppose first that X takes only finitely many values xi,...,x,. As each set A; =
1 ({zi}) belongs to o(U), it is of the form U~*(B;) for some measurable B; C R; the
B;’s are disjoint. Set f(x) = x; if x € B; for some i, and f(z) = 0 elsewhere. We check
directly that f(U) = X.
For X > 0, we define a o(U)-measurable random variable setting
n2™ .
Xo=) 2‘771Xe(j2*“,(j+1)2*"]'
=0
As it takes only finitely many values, it is of the form f,(U). Note that X, T X almost-
surely. Set f = lim f, and f = f15__ and check that f(U) = X as X is almost-surely
finite.

f<o

2. The trivial case k = 1 is obvious. So suppose that the statement holds for k, i.e.

P(T > kN) < (1 — )~
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Then by using P(T' > n + N|F,) < 1 — ¢ and the fact {T' > (k+ 1)N} C {T > kN} we
have that®

Elrsg+yn] = EE[L7rsgrnn|Fen]

= E[E[1rs@synlrsin| Fin]
[

[

=

]
= E 1T>kNE[1T>(k+1 N’ka]]
< Ellrsinv(l—6)] < (1—e)f(1—e).

3. a) Work with 2 = C(R+, ]R), the coordinate process and its filtration (F;);>0, and set
G ={0,9} for t <1, and G, = F;_; for t > 1. Look at the hitting time of some level.

b) For any b < a we have by the continuity of w
{Ta <0} ={weQ;w >0forallte(bal} = m {weQ;w >0} eF,.
te(b,alNQ

Next we show that {7y, < t} ¢ F; for t < a. Intuitively this fails ultimately because
at time ¢ < a we cannot deduce if v, has happened or not, given the path up to time t.
More rigorously

(Yo <t} ={ws #0Vs € [t,a]} ={w, #0Vs € [,a]NQ} = [ {w.#0}
s€[t,alNQ

where we have used the continuity in the second equality. Now the last part is not in F;
and hence {7y, <t} ¢ F;.

4. b) Obviously we have that Fgar C o(Fg, Fr). For the converse notice first that
o(Fs, Fr) is generated by events in Fg and Fr, hence by the monotone class theorem, it
suffices to check that Fg and Fr are included in Fgar. Let A € Fg, then it suffices to
show that AN{S AT >t} € F; for each ¢t > 0. Notice that

AN{SAT >t} =An{S>t}n{T > t}.

Now B := AN{S >t} € F,, by definition of Fg, and as T is a stopping time B N {T >
t} € F; and hence A € Fgnr. Similarly for A € Fr.

5. Suppose that X,, — X in L'. Then by Markov’s inequality X,, — X in probability:
P(|X, — X|>¢) < 'E[|X, — X|] =0 asn — oo.

Fix € > 0, then there exists an N € N such that E[|X,, — X|| < e for n > N. The
sequence X, X1, ..., Xy is finite and hence uniformly integrable, so there exists a K > 0
such that E[|X,,|1x,>x] <€ forall n < N and E[|X|1x|>x]| <€ Forn > N we have

E[|Xa|1x,>x] S E[X0 = X[Lx o] +E[[X[Lx,5x] < e+ E[[X|1x,5x]-

Then the second term is small if ]P’(\Xn] > K) is small, uniformly in n. But then by
Markov’s inequality and the fact that E[|.X,,|] < E[|X]] 4+ € we have

P(X| > K) < KE[|X,[] < K B[X]] +¢)

which can be made small by choosing K large.

83Here T will use the fact that 1rs ()N IT>eN = Los (1) N -
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For the converse suppose that X,, is Ul and X,, — X in probability. Consider the
following approximation

E[1X,—X|] < E[|X0—X[1x, xj<x] TE[| X0 =X |1 1x, xp5k] < K+E[|X,—X[1x, x|>x]-

Now by the uniform integrability the term on the RHS can be made small given that
P(|X, — X| > K) is small. Pick K = € small and let n > N be sufficiently large such

that EUXn — X|1|anX|>K] < €.

6. Suppose that P << Q then by the Radon-Nikodym theorem we have that P(A) =
Eg[X14] where X € L'(Q) and 0 < X < 1, so in particular P(A) < Q(A).
Conversely let Q(A) = 0, then for each epsilon P(A) < e, i.e. P(A) = 0.

7. Suppose first that Q << P, then by the Radon-Nikodym theorem Q(A) = Ep[X14]
for all A € F with X € L'(P) and 0 < X < 1. In particular we have that M, = E[X|F,]
and hence M, is uniformly integrable.

Suppose on the other hand that M, is uniformly integrable (with respect to ), then
M, converges in L'(P) and a.s. to some M, so that M, = E[My|F,].

8. The idea is to prove that 7 is independent of itself. To that end define F, :=
o(Xg : k < n), then F, is independent of o(X}, : & > n) (as the random variables are
independent), and in particular independent from 7. This holds for all n € N and hence
T is independent of F = \/n>1 F,. However 7 C F,, and hence 7 is independent of
itself. Now for any A € 7, we have that P(A) = P(AN A) = P(A)P(A) so P(A) is either
0 or 1.

The trivial counterexample to when X; are not independent is by considering X; = X
for some non-trivial random variable, then 7 = ¢(X) which is non-trivial.

9. a) Let X € F be bounded, then X,, := E[X|F,] makes sense and is bounded by the
same bound. Then by the martingale convergence X,, — X in L' and hence the result.

b) By part a), the bounded elements of L'(F) are limit points of E[:|F,] € Uy Fi-
Now if X € L'(F..) is not bounded, then it can be approximated by bounded functions.

c) Kolmogorov’s 0-1 Law: We have that for any A € T
E[lA‘Fn] — 1A
so as before A is independent of F,,, hence E[14|F,] = P(A).
d) In the case F, is finite, then
E[X14,]
EX|F.| = —1

which is computable. So then the limits also may be computed explicitly.

(i) Suppose that the measure space is separable. First note that L'(F,) has countably
many simple functions with rational coefficients and they are dense. Now | J L'(F,,) has a
countable dense subset. By using double approximation, this set is also dense in L'(FL).

10. a) Notice that S, is a submartingale and 5’7+ is bounded and hence by the optional
stopping theorem

E[So] = 0 < E[S,,] = aP(T, < Tp) + bP(T, < T,).
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The equation above gives a lower bound

—a
P(T, <T,) > .
(T ) b—a

Now as a — —oo, T, — oo and the right hand side converges to 1, which gives that
P(T, < o0) > 1. From this it follows that both T, and T, are finite.

(i) Direct computation shows that

(&)= () | == (97 (@) )| - ()7 (=) )

It suffices to check that E[(q/p)*"] = 1:

q D
E[(q/p)*"] = p ot =pta=1

The martingale X,, := (¢/p)°" is bounded by 1, hence we may apply the optional stopping
theorem to obtain

E[Xo] = 1 =E[Xz,] = (¢/p)"P(T, <Tp) + (q/p)"P(T}, < T,).

Rearranging the above gives that

E =E

1—(q/p)’
(¢/p)* — (q/p)*

(ii) Let X, : S, — n(p — q), then X,, is a martingale. Notice that X7« is bounded by
—a V b, so by the optional stopping theorem

E[Xo] = 0 = E[Xz, | = E[S7,] — (p — Q)E[Tw].

P(Sr, =a) =P(T, <T}) =

11. a) Let X7 be i.i.d Bernoulli {0,2} with equal probability and F, := o(X}F : i >
1,k < n) then Z, == 7' X' Then E[Z,|Fn 1] = ZuE[X}] = Z, 1 50 Z, is a
martingale. The martingale Z,, is positive so by the martingale convergence theorem it
converges to some Z,, a.s. Now we show that the limit must be 0. For any k£ > 0 we have
that P(Z,.1 = k|Z, = k) = 1/2 and so

P(Z, =k;...; Zpn = k) <27V,
But now P(lim Z,, = k) < 27 for each N € N.

(ii) The convergence again follows from non-negative martingale convergence. First
consider the case y < 1. Then we have that E[Z,] = u" and so

P(Zy>0) =Y P(Zy,=k) <Y kP(Z, = k)= p".
k>1 k>1

By taking n — oo we see that Z,, =0 a.s.

Now for the case p = 1 we ignore the case P(Z; = 1) = 1 otherwise the result does
not hold, nor do we have any interesting activities. So then p := P(Z; = 0) > 0 as the
expectation is 1. Following the idea as above, let £ > 0, then we have instead

P(Zn =k;..; Zn+N = k) < (1 _p)N

and hence P(lim Z,, = k) which is the union of events of the form {Vn > N, Z, = k} is
7€ro.
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(iii) Let p = P(M,, = 0). There are a possible number of cases to consider. If p = 0
or 1, then the result follows easily. If 0 < p < 1 then on the set {M, = 0}, Z, — 0
and hence p?» — 1. On the set {M,, > 0} we have that as p > 1, Z, — 00, now as
p < 1 this implies that p?» — 0. Thus p?» — 1,,__¢. Z, roughly behaves like M. u"
asymptotically.

c) First by the tower law
Var(Z,| =E[Var|Z2| Z,_1]| = E[Z,-10"] = "~ 1o
so then Var(M,) = p~""'o? which shows the bound in L?. An application of Cauchy-
Schwartz gives that E[Z,12,+0]? < P(Z, > 0)E[Z?] so that
E[Z,)? _ 2" N 1
E[Z2]  purlo?+pu2 T 1402
Thus the probability of survival is strictly positive.
12. Take {X,;};>1 to be iid. Bernoulli {0,2}, ie. P(X; = 0) = P(X; = 2) = 1/2.
Consider M, := [[\_, X;, then we have that
E[M, — My_1|Foa] = E[(X, — 1)M,, 1| F] = (E[X,] — 1) M,,_1 =0

so M, is a martingale. Next notice that E[M,] = 1 by the independence of the X;, so
that M, cannot converge in L! to 0. On the other hand observe that

P(Z,>0)> > 0.

B(M, £ 0) = [[P(% £0) = o

and hence by Borel-Cantelli M,, — 0 a.s.

13. First as M is bounded in L', it converges in L' to M. On the event {T = oo},
My = My € L', and on the event {T" < oo}, by dominated convergence E[|My|| =
lim; oo E[|Mrn|] and as [M]| is a submartingale E[|Myy|] < E[[M]] < E[|M].

For the counterexample take M; = B; a standard Brownian motion and 7" := inf{t >
0: B, =1}, then E[By| =1 # 0= E[B].

14. Tet F, = o([a,b) : a,b € D,), then F), increases to F, which is the Borel
sigma-algebra. With this set up M, is nothing but the projection of f’ on to F,, i.e.

M, = E[f'|F,]. Indeed for any [a,b) being a basic set in F,,, we have that fab fi(x)de =

fab f'(z)dz. So now by Lévy’s upward theorem M, — E[f'|F.] = f' a.s and in L' as f’
is continuous and hence Borel measurable.

15. Let ¢, be an orthonormal basis of H, we wish to show that Zzzl hi,Gr — X, in L?
and a.s., where G, are i.i.d. normal and h = >_ h,e,. We have seen before that X} € L%
Let F, := 0(G1,...,Gy), then consider the martingale M, := E[X,|F,] = >.7_, hxGy.
Now by theorem 72, the convergence is a.s. as well.

16. The Borel o-algebra of C([O, 1],R) is generated by the coordinate process, with
elementary events {X;, € By,...,X;, € By}, for 0 < t; < --- <t, <1 and B; mea-
surable subsets of R. It is also generated by the events of the form A = {X;, — X, €
C1 Xy, — Xy, € Cyy.. 0, Xy, — Xy, € Cy}, for C; measurable subsets of R. Can you
prove it? To prove that P! is absolutely continuous with respect to P and find its Radon-
Nikodym derivative, it suffices then to compare P!(A) and P(A). Using the indepen-
dence of the increments and their Gaussian nature, you can easily see that P'(A) =
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a2t2 a2
E[efath* o } - E[e*aXF? 1A}, since the process (e* is a martingale.

a2
It follows that ‘% = e oX1—%,

)o<t<1

17. This is pretty much the same argument as Corollary 79. Let P be the uniform
measure on &,, X be the coordinate map and Fy := o(Xy,..., Xi). Then we are done
if we can estimate |E[f|F.s1] — E[f|F]|. Notice that E[f|F%] is the average of f on
{o : 0; = 4,1 < k} so that moving between the two averages, the function f could then
at most differ by one change of coordinate, and hence |E[f|Fji1] — E[f|F]| < 1 as fis
a contraction. Hence by the Theorem 78, the result follows.

18. The idea is to construct a set which can be determined by f(¢) for any ¢ > 0. So take
{f:inf{t > 0: f(t) # f(0)} = 0}. Notice that

{fomf{t=0: 7O £ fO)} =0} =/ FO# 0} eF
>0
for any ¢t > 0. However this set cannot be in F{ as this cannot be determined by sets of
the form {f: f(0) € A}.

19. a) Take A € N,>10(G,G,,...) and consider X := 14 — E[14|G]. Now as E[X|G] = 0,
X is independent of G. By definition X € 0(G,Gn,...) for each n > 1 and hence X €
(G, ...), therefore X € N,510(G,,...).%"
Then Kolmogorov’s 0-1 law gives that X is constant, but E[X] =0, so X =0 as. In
other words 14 = E[14]G], i.e. there exists a set B € G such that 14, = 15 a.s.

b) By the independence of the increments 7, := U(Btﬂ/n — Bt+$) are independent

from each other and from G;. Then as G, = ﬂn%a(gt,’]}” ) from the previous part
we have that G; and G, coincide up to null events. The result now follows as they both
contain all the null events.

15.3. Exercises on part III. 1. Set ét =tBy for t > 0 and éo = 0. We know from

proposition 94 that B is a Brownian motion. Also, as FBo = 7, Blumenthal’s 0-1 law
applied to B shows that 7 is made up of trivial events for P. (They might be non-trivial
for a different probability!)

2. We proceed as in the proof of proposition 92, denoting by C the cone. As the event
{7y = 0} € Fo+, it suffices to prove that P(r; = 0) > ¢ for some positive constant ¢
to prove that it has probability 1, by Blumenthal’s 0-1 law. Let € > 0 be given. As
P(ry < 6) > P(B, € C) and the law of B is invariant by rotations, we have P(B, € C) =

—r € —u?
|A\< 7/21T<a Tdfldr) — |A\<f 1u<a6_1/2ﬁ udfldu) > ¢, where |A| is the surface

27e)d/2

of A C S™!. Sending € to 0 gives the conclusion.

3. We make the same reasonning as in exercise 10 in example sheet 2. Set T =
min{H_,, Hy,} and write p for P(H_, < H,). As the stopped processes (Bi)i>r is a
bounded martingale, the optionnal stopping theorem gives us: 0 = p(—a) + (1 — p)b,
hence the value of p. Use the martingale B? — ¢ to compute E[T].

4. b) Given 0 < s < t and A € F,, we have E[e"Bt*TtlA} = E[e"Bs*TslA] for
all 0. Expanding the exponential on both sides in power series of o, use the fact that

84This is true as the L? is the sum of orthogonal components.
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E[B%*] = H];;é@k —2p—1) (induction) to justify the interchange of E and )_,. The term
E[(B} —t)14] appears as the coefficient of o on the lhs and the term E[(B? — s)14] as
the coefficient of o on the rhs. Their identification gives the martingale property of the
first process as we can take any 0 < s < t and A € F,. Look at the coefficients of o2 and
o to obtain the martingale property of the two other processes.®®

5. a) We need 6 to satisfy A — fc = %, that is # = v/c? + 2\ — ¢, since it is positive.
b) As the stopped martingale (e(’Bf_’\t> is bounded, the optionnal stopping the-
0<t<T

orem implies: 1 = E[e?*~*%] hence the formula. We check that this function of A > 0
coincides with the Laplace transform of the given density. As the Laplace transform
characterizes the distribution H¢ has the mentionned density/

c) It suffices to let A decrease to 0.

6. b) Recall the strong Markov property: Given any finite stopping time T, the process
(Bryt — Br)i>0 is a Brownian motion independent of Fr. Apply it to T, for some a > 0.
The fact that it is a Brownian motion says that if b > a then T, — T, is distributed as
Ty—q, giving the stationnarity of the process (7,),>0. The independence of the increments
comes from the second piece of information provided by the strong Markov property:

the independence of (Bri: — Br)i>o with respect to Fr. Given a3 < ag < -+ < ay, a
straightforward induction enables to prove that the increments T, — 71, ...., T, —T,, _,

are independent. It is not a Lévy process though, as it is not cadlag but continuous on
the left with right limits. Prove it!

7. a) We have T, < S, and S, = T, + inf{t > 0; B, 7, — By, > 0}. The strong Markov
property gives S, = T, almost-surely.

c) Take for L the time in [0, 1] where B; is maximum. Prove that it is almost-surely
< 1. Tt follows that we have almost-surely S;, > 1 and Sy, # T},.
8. a) Set Ty = 0 and define inductively S, = inf{t > T,,_1; B, € D} and T,, = inf{t >
Sn; By ¢ B(0,2r)}. By the strong Markov property and the invariance of the law of Brow-
nian motion by rotations, the random variables fi’“ 1p(Bs)ds are iid. As they have pos-
itive mean, the strong law of large numbers gives [~ 1p(B)ds = > 7 S 1p(Bs)ds =
0o, almost-surely.

b) Denote by p;(x,y) the transition kernel of Brownian motion. By Fubini’s theorem,
we have E, [ [ f(By) dt] = f(fo pe(T,y ) f(y) dy, for any non-negative function f. The

time integral equals |y — z|*~ 4 up to a multiplicative constant C. (Do the computation!

We see why we need d > 3.) This function of y is locally integrable with respect to 1.5

9. We know from exercise 7 the distribution of 7. As it is independent of B!, we have

E[f(B%)F/OOOQ__ e = [ 1o 005_N2_ Jar= [ 10

02
85Note that T have not tried to work directly with the conditionnal expectation identity E [e"Bt*Tt |.7-'5] =
60357

0'2 . . . . . . . .

2% as this identity involves random variables defined only almost-surely, so it is not obvious how
to differentiate with respect to ¢ in a mathematically neat way.

86Tf 2 is not in the domain of integration, no problem; otherwise, use polar coordinates near x.



92 ADVANCED PROBABILITY

for any bounded measurable function f: R — R. We read the distribution of Bl above:
it is a Cauchy random variable.

10. The process M, = |By|* —td (= S°% | B> — t,sum of independent martingales)
is a martingale. We would like to use the optionnal stopping theorem to the stopped
martingale (M;);<r; yet this process is not bounded, so it is convenient ot replace first 7" by
T An (rather than proving for instance that (M;);<r is uniformly integrable, which can be
done). The new stopped martingale is bounded. So we have |z|> = E[|Bran|? — d(T' An)],

. E||Branl?| —|=|? .
that is E[T A n] = M Use monotone convergence on the lhs, and dominated

convergence on the rhs, to conclude by sending n to infinity.

11. Suppose ¢ has a maximum M at a point zy inside O. As it has the mean value
property, g needs to be equal to M near xg; this shows that the closed set where ¢ attains
its maximum is also open. As O is connected, g is constant, equal to its maximum, on
the whole of O.

Would a given Dirichlet problem have two solutions, their difference would be a solution
to the Dirichlet problem with null boundary condition, so would have a null maximum.
As the opposite of this difference is also a solution, it would also have a null maximum,
leading to the equality of the two functions.

13. Let denote by (N;):>o a Poisson process of intensity A and jump measure .J. Can you
see why it suffices to consider the case where J(-) = d;(-)7 In that case, we need to prove
that given any n > 1, any times t; < --- <t —n and any integers iy, ...,%,, we have

n—1 . ik
IP’(Nt2 — Ny, =t1,..., Ny, = Ny, |, = in—1) = H <)\(tk - t'k_l)) e Mt —th-1)

T

We proceed by induction on n > 1. The case n = 1 is treated in exercise 12. To make
the induction step, it suffices to prove that
(15.1)

Mty —tn1))"
P(Ni,yy — Niy = in| Ny — Ny, = i1, for k=1.n) = ol - ) e~ Mtnt1=tn)

Set i =iy + -+ -+ i,—1 and denote by H; the hitting time of {i} by the process N. Then,
conditionally on the event {H; < t,,_1 < H; + S;}, time H; + S; — t,,_1 to wait after ¢, ;
before the next jump is exponentially distributed, with parameter A\, by the memoryless
property of S;. Identity (15.1) follows as IP’(Nth - Ny, = in‘Ntk — Ny, | =g, for k=
1..n) = IP’(Ntn+1 - N, = in}Hi <t,1 < H; + Si), by the strong Markov property of the
Markov chain (N;)s>o.

14. Denote by S; the first holding time. The obvserver is proved wrong if at some time
t he observes that {N; = N;_g, }. Given s > 0, let define the stopping time T, = inf{t >
s; Ny = Ny_s} — with respect to which filtration? Then, conditionning on the first jump,
the strong Markov property gives

E[T,] = se ™ + / (a + E[T,]) e " da,
0
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SO E[TS} = eASTl_l The mean time until one sees a holding time bigger than S, is thus

/OO (s + E[Ti]) Ae ™ ds = <.

15. a) It suffices to prove, for all n > 1, that Sy +--- 4.5, is almost-surely different from
t. (Can you see why?) This follows from the fact that the random variable Sy +---+ S,
has a density with respect to Lebesgue measure on R.

b) Note that

P(T,>t+s)=> PN, =k Ny, =k)=» P(N,=k Ny — N, =0)

k=1 k=1

(15.2) N .
=Y PNy =k)P(,Nipy = Ny =0) = P(N, =k)e ™ =e.
k=1 k=1

So T; — t is exponentially distributed, with parameter \.

16. It’s even worse! The sum of two Brownian motions can be non-Brownian! To see that,
let us work on the subset  of C(R,,R?) made up of paths starting from 0, equipped with
its Borel g-algebra. Let X be the coordinate process X;(w) = w(t) = (w1 (t),ws(t)) € R?,
for w € €2, and let P be Wiener measure. Let P’ be the measure on (2, F) under which X
is a Wiener measure with correlation —1. Let Q = P’LTP,. I let you prove that the processes
wy and wy are Wiener processes under Q. Can you prove by a simple calculation that the
process w + wo is not Gaussian? As Brownian motion with dift (a Gaussian process!) is
the only continuous Lévy process (see exercise 21), this proves the claim.

17. Let® Q be an arbitrary space and F be the trivial o-algebra over it. (We work
with deterministic processes!). Let also (z,), be a Hamel basis of Haar over the rational
numbers. For every ¢t > 0, let X; be the sum of the coordinates of ¢ in the Hamel basis. As
Xirs = Xy + X, the process X has stationnary independent increments. As X is highly
discontinuous (it takes values in Q!), it does not have a modification which is cadlag .

18. For s < t, we have E[e?X=X)] = ¢(=99(N  Senging s 1 ¢ we conclude that
E[ei)‘mxt)} = 1, so AX, has the same fistribution as the constant 0, that is AX, is
almost-surely null.

19. a) We know, from the general construction of Lévy processes given in the course,
that X has the same law as the sum of a difted Brownian motion, an independent Poisson
process with finite intensity, and a infinite sum of independent compensated Poisson
processes. (This sum takes care of the fact that the jump measure can have an infinite
mass.) In the case of a finite jump measure, only the first two termsare needed; as Poisson
processes have almost-surely finitely many jumps in any finite time interval, we are done.

b) We can forget the continuous part (drifted Brownian motion) and work only with the
Poisson process. Let S;, J; be the successive holding and jump times of the process; they
are all independent. By construction, the process Y is constructed out of the sequence
of jump times ((51 4+ 4 Si)]‘ei:1>i>1 and the corresponding jumps. The time between
two jumps will have the same law as S+ -+ Sy, where N is a geometrical random
variable with parameter p. A straightforward computation shows that this random sum

87This solution is taken from the excellent book [Med07] by P. Medvegyev.
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with exponentially distributed, with parameter pA. So Y is a Lévy process with jump
measure pAx.

20 - 21. Copy word by word what has been done previously elsewhere.
22. See for instance theorem (28.12), p. 76, in [RW00)|
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