Energy Spectral Density and Correlation

Correlation

1. Compute the autocorrelation function for $x(t)=e^{-a t} u(t)$. Assume that $\tau>0$.
2. Find the energy content of the above signal by considering the energy spectral density.
(Note that $F T\left[e^{-a \tau} u(\tau)\right]=\frac{1}{a+j \omega}$ and $\int \frac{1}{1+x^{2}} d x=\arctan x$)

Discrete Fourier transforms and series

3. Find the discrete Fourier transform of the signal $x[n]=\{2,0,-1,3\}$
4. Find the discrete Fourier transform of the signal $x[n]=a^{n}$ where a is a constant and $0 \leq n \leq N-1$
5. Consider a sequence $x[n]=\sum_{k=-\infty}^{\infty} \delta[n-4 k]$.
a) Sketch several periods of $x[n]$.
b) Find the Fourier coefficients c_{k} of $x[n]$.

Modulation and signal recovery

Amplitude modulation

1. Suppose that a message signal is given by $m(t)=\frac{t}{1+t^{8}}$.
a) Plot the signal.
b) Compute $x_{\mathrm{AM}}(t)$ for 70% modulation, assuming that the carrier frequency is $f_{c}=1 \mathrm{~Hz}$
c) Show the envelope corresponding to this signal.
2. Consider a system with a percent modulation equal to 50% and a system B with percent modulation equal to 90%. Find the efficiency in each case.
3. Suppose that a message signal is given by $m(t)=4 \cos (\pi t)$ and the carrier wave is $x_{c}(t)=2 \cos (40 \pi t)$. Can envelope detection be used to demodulate the signal?
4. Find the fraction of total power contained in the sidebands if there is 100% modulation.
5. Consider the demodulation of a DSB signal $x(t)=m(t) \cos \left(\omega_{c} t\right) \cos \left(\omega_{c} t+\pi / 2\right)$. What is the effect of the phase error on the output?

Signal recovery: lock-in amplifier

6. Independent work: read and summarise the paper entitled "A Frequency-Domain Description of a Lockin Amplifier" by John H. Scofield, American Journal of Physics 62 (2) 129-133 (Feb. 1994). (available for download at the address http://www.oberlin.edu/physics/Scofield/pdf_files/ajp-94.pdf)
