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4. Digital filtering

4.1. Introduction to digital filters

Two main uses for filters:
= signal separation

— signal is contaminated with interference, noise or other signals

= signal restoration

— used when a signal has been distorted in some way

Analogue or digital filters may be used:
= analogue filters are cheap, fast, have large dynamic range
— but performance is limited by electronics, e.g. accuracy and
stability of resistors and capacitors
= digital filters can achieve much higher levels of performance
— e.g. a low pass filter with a gain of 1 £ 0.0002 from DC to 1000
Hz, then less than 0.0002 for frequencies > 1001 Hz -
impossible for electronic filter

4. Digital filtering
4.2 Filter parameters

Every linear filter has

an impulse response,

a step response and

a frequency response.

= each contains complete
information about the
filter

= when one is specified,
others are fixed and can
be calculated

Digital filters can be
implemented by convolution
of signal with impulse
response of filter or filter
kernel.
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Filter parameters. Every linear filter has an impulse response, a step response, and a frequency response. The

step response, (b), can be found by discrete integration of the.

ulse response, (a). The frequency response
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(figure : DSPGUIDE.COM)
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4.1. Digital filtering
4.3. Decibels — a reminder (?)
The bel is named in honour of Alexander Graham Bell

= power is changed by factor of 10
= decibel (dB) is one tenth of a bel
So dB values of

-20dB -10dB 0dB 10dB 20 dB mean
power ratios of dB=10log,, Fz
001 0.1 1 10 100 :

BUT we are usually dealing with signal amplitude and not power,
proportional to square root of power, so

dB values of
—40dB -20dB 0dB 20dB 40 dB mean A
2
amplitude ratios of dB=20log,, K
0.01 0.1 1 10 100

dB used to compare ratio of two signals, but also for absolute values:
= dBV - signal is referenced to 1 V RMS signal (A)
= dBm - reference signal producing 1 mW power into 600 Q load (P+)

4. Digital filtering
4.4. Frequency domain responses

Four basic frequency responses:

a. Low-pass c. Band-pass

» low pass, high pass, band § =gl E

pass, band reject / band stop £ g /_\
Passband: frequencies that are o p—
passed
Stopband: frequencies that are b. High-pass d. Band-reject
blocked E 3
Transition band is between £ / L \/
passband and stopband S s

(figure : DSPGUIDE.COM)
A fast roll-off means that the transition band is very narrow.
The division between the passband and transition band is called
the cutoff frequency.
= for analogue filters often defined as where amplitiude reduced to 0.707
or-3dB

= for digital filters many definitions eg 99%, 90%, 70.7%, 50% amplitude
levels
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Parameters for evaluating frequency domain performance. The frequency responses shown are for low-pass
filters. Three parameters are important: (1) roll-off sharpness, shown in (a) and (b), (2) passband ripple. shown
in (c) and (d), and (3) stopband attenuation, shown in (e) and (f). (figure : DSPGUIDE.COM)
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Parameters for evaluating fime domain performance. The step response s used to measure how well a filter
in the time domain. Three parameters are important: (1) trausition speed (risetime), shown in (a) and

(b), (2) overshoot, shown in (¢) and (d), and (3) phase linearity (symmetry between the top and bottom halves

of the step), shown in (€) and (£). (figure : DSPGUIDE.COM)
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4. Digital filtering
4.7 FIR and IR filters

Two main types of filter:

= Finite Impulse Response (FIR) filters and
= Infinite Impulse Response (lIR) filters

4.7.1 Finite Impulse Response (FIR) filters
— implemented by convolution of signal with filter kernel
— filter kernel is of finite length
— example is windowed sinc filter, see TD3

4.7.1 Finite Impulse Response (FIR) filters (cont)

g R z 4 FIGURE 16-1 (facing page)
Time Domain Frequency Domain Derivation of the windowed-sinc filter keruel. The frequency respouse of the ideal low-pass filte i shown
L . in (a), with the corresponding filter kemel in (b), a sinc function. Since the sinc is infinitely long, it must be
'b. Ideal filfer kernal a. Tdeal frequency response truncated to be used in a com‘ruter as shown iu (c). However, this truncation results in undesirable changes
R K n the frequency response, (d). The solution is to multiply the truncated-sine with a smooth window, (@),
resulting in the windowed-sinc filter kemel, (f). The frequency response of the windowed-sinc, (g), is smooth
2 ¥ and well behaved. These figures are not to scale.
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4. Digital filtering
4.7 FIR and IIR filters

4.7.2 Infinite Impulse Response (lIR) filters
= implemented by recursion (faster than convolution)

y[n] = ayx[n] + ayx[n-1] + ayx[n-2] + azx[n-3] + -~

+ byy[n-1] + byy[n-2] + byy[n-3] + -
EQUATION 19-1
The recursion equation. In this equation, x{ ] is
the input signal, y[ ]is the output signal, and the
a's and b's are coefficients

T T
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FIGURE 19-1

Recursive filter notation. The output sample being calculated, y{r], is determined by the values from
the input signal, x(r], x[n-1], x[-2, -, as well as the previously calculated values in the output
signal, y{n-1], yin-2], y[n-3], - These figures are shown for - 28.

= defined by a set of recursion coefficients
= impulse response is infinitely long
= example is Chebyshev filter (see dspguide.com)

4.7.2.1 Chebyshev filters

= used to separate one band of frequencies from another
= slightly lower performance than windowed-sinc
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Windowed-sinc and Chebyshev frequency respouses. Frequency respouses are shows for a 51 poiat FIGURE 213
windowed-sine filer and 86 pole, 0.5% ipple Chebyshev Tecursiue filter. The windowedsitc hes better Windowed--sinc and Chebyshev step responses. The step shown fora 51 point
stopband atenuation, but eiter will work in moderate nppl.\ca\wus The Slter and 6 pole, 0.5% ripple Chchyshe ecursive iler. Each of thse filter s cutofFrequency of0.2
filters is 0.2, measured at 0.5 for the windows and 0.707 for The windowed-sinc has a slightly better step response because it has less overshoot and a zero phase.
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4.7.2.1 Chebyshev filters (cont)

but much faster (typically an order of magnitude) as implemented by
recursion rather than convolution

ro]
FIGURE 21-5 standard.
Comparing FIR and ITR execution speeds. These 40
curves shows the relative execution times for a
windowed-sinc filter compared with an equivalent g
six pole Chebyshev recursive filter. Curves are =
shown for implementing the FIR filter by both the g
standard and the FFT convolution algorithms. The 3
windowed-sinc execution time rises at low and high H
frequencies because the filter kemel must be made e =T ]
longer to keep up with the greater performance of g 2 | coavolution |
ther ive filter at these frequencies. In general, = Z’_.J'
TR filters are an order of magnitude faster than FIR / b
filters of comparable performance. 0 P
N =
Recursive
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design is based on the z-transform (“digital Laplace transform”)

4.7.2.1 Chebyshev filters (cont)

Uses “poles” : what is a pole? Here are two answers. If you don't like
one, maybe the other will help (DSPGUIDE.COM):

Answer 1- The Laplace transform and z-transform are mathematical
ways of breaking an impulse response into sinusoids and decaying
exponentials. This is done by expressing the system's characteristics
as one complex polynomial divided by another complex polynomial.
The roots of the numerator are called zeros, while the roots of the
denominator are called poles. Since poles and zeros can be complex
numbers, it is common to say they have a "location" in the complex
plane. Elaborate systems have more poles and zeros than simple
ones. Recursive filters are designed by first selecting the location of
the poles and zeros, and then finding the appropriate recursion
coefficients (or analog components). For example, Butterworth filters
have poles that lie on a circle in the complex plane, while in a
Chebyshev filter they lie on an ellipse.

Answer 2- Poles are containers filled with magic powder. The more
poles in a filter, the better the filter works.




