DataFit Part 3 — Data analysis and modelling

3. Data analysis 3.1. Elements of systems and signals

3.1.1 Continuous and discrete signals
Continuous signal just a regular function which can assume any value
in some continuous interval (a, b) e.g. a sine wave

Example of a continuous signal: y = sin(f)
10
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Discrete time signal defined only at discrete times we can label with an

|nteger n Example of a discrete signal: y = sin(nn/15)

10 o s

3.1. Elements of systems and signals

3.1.2 Energy and power in signals

Ohm’s law: () = RIi(t)

Instantaneous power: p(t) = (v())*/R = Ri((t}?

On a per Ohm basis: p(f) = i(t)?

Total energy in Joules: £ = I’; p(tpt = r;i(t)zdt

Average power: p _ jim lJ‘”Z i(tydt

Energy and power corT{érzt— inTgrbitrary signal x(f) (may be complex):

05l —unt L use |x(t)[? = x(£)x*(t) where x*(t) is complex conjugate
~ ooyt S — Normalised energy content: Normalised average power:
08 o " B * -1 eT2 2
PR E=["|x(t)at P=lim— [ [x(t)t
Created from continuous signal by sampling y(t) at regular intervals, T, or if signal is discrete
n] = y(nT, < 2 L 1 X 2
ynl = y(nT,) Efnz |x[n] P*L‘[ﬂmn;"x[”]‘

3.1. Elements of systems and signals
3.1.3 Classification of signals
Energy signal: 0 < E<«, P=0
Power signal: E= =, 0 <P <
DC signal: signal with constant value for all times
Periodic signals
Common. For periodic signal 3 some positive number T, (the period):
x(t) = x(t+ To)
Fundamental frequency f, =1/ Ty in Hz
For periodic signals, consider energy content over one period, Eq
If0<E, <, powersignal: P=E,/ T,
Many types of periodic function possible e.g. sawtooth wave:
Sawtooth wave
by inspection
To=2s
fo=1/2Hz

3.1. Elements of systems and signals
3.1.3 Classification of signals (contd)
Periodic discrete time signals also possible:
x[n] = x{n + N] : period is N e.g.
Periodic discrete time signal
20

tls
Sinusoidal signals
X(t) = Acos(at + &) with A the amplitude and #the phase angle.
Fundamental period T, = 21 | «, wthe angular frequency («w = 2rf,)
Recall Euler’s formula: gt - cos ot + jsinwt

-, coswt = ere sinwt = e-e
- 2 2j

(note use of j = «/——1 in this subject)

3.1. Elements of systems and signals

3.1.4 Introduction to systems
system: a mathematical model that represents the transformation of
some input signal x(f) into an output signal y(t)

—_— System [
x(t) yt)

Represent system by a transformation or an operator 7 and then the
action of a system on a signal: y ()= T{x(t)}

Examples: A resistor transforms current signal into voltage:T = R

X(t) = i(t), y(t) = V(t), and the system relationship is y(t) = R x(t)

Slightly more complex for a capacitor j(t) = cv . 704

A continuous time system: both x(f) anddff(t) are cdfitinuous time
signals.

Also possible to have discrete time systems.

3.1. Elements of systems and signals
3.1.5 Causal and non-causal systems
Causal system: output y(f) depends only on the input at present or
earlier times
= output does not anticipate future values of the input
= any real time-dependant system is causal (laws of Physics!)
Example of non-causal system: y(t) = Cx(t + a) where a € R
3.1.6 Linear systems
Suppose operator acts on two input signals to produce output signals:
T{x‘(t)} =y,(t) and T{Xz(t)} =y,(t)
Transformation is linear if for two constants a, b
'IA'{ax‘ (t)+ bxz(t)} =ay,(t)+by,(t)
Linear system: system represented by a linear transformation.
To determine if a system is linear:
= consider 2 i/o relationships y;(t), y»(f) and form sum ay;(t) + byx(f)
= construct T{ax;(f) + bx,(f)} — if equal to ay;(t) + by.(t) for scalars a, b
then systemis linear




DataFit

Part 3 — Data analysis and modelling

3.1. Elements of systems and signals

3.1.6 Linear systems (contd)

2
Example: determine if the following system is linear: y (t) dx

Ta

3.1.7 lime Invariance
If time-shift of input signal: x(f) — x(t == ) causes same time-shift in
output signal, system is time-invariant.
= if linear system, then called linear time-invariant system or LTI
Can write y (t)= %{X(t_ T)}
If y.()=y(t-7) then system is time-invariant

3.1. Elements of systems and signals
3.1.8 Unit impulse function

i
s U 0 ‘t’(fa)

t=0 t t=a t
Time shift eg. t >t+a

Area under curve = 1:[” 5(t)dt = L s(tta)dt=1
Sampling property: use to pick out value at given time:
[Co(t)s(t)dt=9(0)  ["p(t)5(t-a)dt =g(a)
Further useful properties of unit impulse function:
s(at) =%5(r) S(-t)=5(t)

Any coniirluous time signal can be written: x(t) _ J““ x(‘r)é(z‘— r)d‘r

3.1. Elements of systems and signals u(t)]
3.1.9 Unit step function 1

Defined as u(t):{; :Zg
<

Time shifting in same way as unit impulse.
Change limits of integration:

[u(tyx(tyt=["x(yt  or [ u(t-3)x(t)t =[] x(t)at
u(t)—u(t-2)

1
Square pulse: e.g. u(t) — u(t— 2)

Simplification of integrals: e.g. 2 t

_[:[u(t—‘l)—u(t—Z)]cost dt:chost dt = sin2—sin1

Unit impulse and unit step functions related:
S5(t)= d‘;gt) and  u(t)=]" o(t)dt

3.1. Elements of systems and signals

3.1.10 Impulse response of an LTI system

Impulse response h(t) = T{é(t)}

Use to determine s{ystem response to arbitrary input (linear system)

)= ({0} =7 (] x(2)o(t-r)oe] = [ x(e] T [o(c- )0

. . w convolution of input
Time invariant system = (t) = [ x(z)h(t —)dz | signal with impulsg

response h(t)

3.1.11 System step response_

System step response s(t)=T{u(t)}

Determine by convolution: s(t)=u(t)*h(t)= J' “u(z)h(t-7)dr
Convolution commutative (see on) so can write

s(t)=h(t)xu(t)=[" h(c)u(t-)dz =] h(z)dr
If know step response of system can find impulse response : h(t)= %f

3.1. Elements of systems and signals
3.1.12 Convolution (introduction)
Very important for data analysis
= enables simulation of effect of instrument function on signal

=this can be used to fit data to physical model by ‘forward
convolution’

physical input signal x(t). | measurement | output signal y(t
phenomenon g system _u_zul

compare y(t) and y’(t) and

model parameters ai change parameters ai to

l minimise difference
model modelled R conlvoll(;tiovwf modelled
- - - i t - -
phenomenon [input signal x'(t) 5'9"‘;;0,1?;9"“ output signal y'(t)

= deconvolution can be used (see later) to recover original signal

3.1. Elements of systems and signals
3.1.12 Convolution (introduction) (contd)
Convolution of two functions f(t) and g(t): f(t)*g(t) = J:f(r)g (t-7)dr
The convolution operation is

= commutative: f{t) = g(f) = g(t) = ft)

= associative: [f(t) * g(f)] * w(t) = (£) * [g(f) * w(t)]

= distributive: f{t) = [g(f) + w(t)] = f(t) * g(t) + (t) * w(f)

= commutative with respect to multiplication by a scalar:

[of(t)] * g(t) = fit) * [ag(t)] = a[f(t) * g(1)]

Finally, convolution of any signal with a unit impulse leaves the signal
unchanged: f{t) * &t) = f(t)
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3.1. Elements of systems and signals

3.1.12 Convolution (introduction) (contd)

Calculation of the convolution integral

First, obtain signal h(t — z) as function of z then multiply by x(z) to
obtain another function g(z) then integrate g(7) to get y(t)

Step 1: sketch the time-reversed impulse response h(-z)

Step 2: shift this new function to the right By ¢ (time delay) for ¢ > 0 to

obtain h(—(z—t)) = h(t — 7), or to the left by It | (time advance) for t <0
to obtain hi(z+1 ¢ | )) = ht=2)

Note: convolution is commutative so sometimes easier to work with h(z)
and x(t — ) instead of x(z) and h(t — 7)

3.1. Elements of systems and signals
3.1.12 Convolution (introduction) (contd)
Example: given x(f) = u(t) and h(f) = cos(nt) u(f), find the response y(f)
Note first that h(f) = O for t < 0 so system is causal, so can apply
y(t)= J-:h(r)x(t -7)dr= J.:cos(m')u(t -7)dr
Rely on graphical approach to find limits of integration:
Step 1: reflect x(7) = u(z) about vertical axis to give u(-7)

1.0 ——— —_—e]
u(z) u-2)

X056 X058
—_—

67

6 -4 —2. 0 2 4 67 . -6 -4 -2 0 2 4
Step 2: shift to left by Ifl for t <0, to right by Ifi for t >0 (e.g. here t = 3)

u((z+3)) u((z-3))

xél)
xét)

3.1. Elements of systems and signals
3.1.12 Convolution (introduction) (contd)
For negative times, no overlap as h(t) = cos(rnt) u(t) is zero for t <0

—_— 10 N on 'h(r)\
u(e+3) g o
Sl A A

. . . LI . [
bttt
8 -6 -4 -2_057|,'2“"4l||6|l8|1'
Y Vo

\ e

REF R U U
For positive times the region of nonzero overlapis 0 < 7< t

: s
— i I
u(-(z-3)) Sos 1Y ’l| [RUR
A (R RY FR AR
[N P B |
T
8 6 4 -2 Vit igligy y8y T
REE R W RN SR
oy VoA

104 v vV

Therefore system response is:

y(t)= L‘cos(m)dr = {%sin(m)}; = %sin(m)

3.1. Elements of systems and signals
3.1.13 Discrete time signals

In almost all physics experiments, analogue signal will be sampled and
digitized, transforming continuous signal into discrete time signal.

periodic discrete time signal: x[n] = cos(nT,) T,=n/6

o5 l l L ets

= sampling interval: T

= discrete time signal x{n] = x(nT;) (nis integer) —a sequence {x}
For two discrete time signals {x.}, {y,}

= {z.} = {xa} + {yn} = 2[n] = xn] + yin]

= {z.} = (X} {ya} = 2n] = X{n] yin]

*{z.} = a{x.} = z[n] = axn]
To plot, draw point and draw vertical line from time axis as above

3.1. Elements of systems and signals
3.1.14 Energy and power in discrete signals

Normalised energy content: Normalised average power:
= 2 ) 1 N 2
E:n;u‘x[n]‘ P:’UT”2N+1HZN‘X[’,]‘

=0 <E <, P=0= x[n] is an energy signal

=0 <P <, E=%= x[n] is a power signal
Example: Find the energy content and average power of the following
signal and determine whether it is an energy signal or a power signal:

{x.} [%}n n=0

3.1. Elements of systems and signals
3.1.15 Unit impulse sequence
1 n=0
oln)=iy 7
0 n#0

can shift the unit impulse sequence by integer k
1 n=k

'5["7'(]:{0 nek

In the figure we show d[n — 3] 1 T

Satisfies the sampling property so x[n]= i x[k]6[n—k]

k=—0
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3.1. Elements of systems and signals
3.1.16 Unit step sequence

1 n>0
ulo]-|
0 n<0
1 nx>k
—kl=
u[n ] {0 n<k  shifted as illustrated for k= 3:

uln=3]
° 0 1 2 3 : é
Can construct square pulse when j < k using uln-jl-uln-k] &9

uln=2] ~uln-5]
| {
0 }

0 1 2 3 4 5 6 o 7

Can define §[n]=u[n]-u[n-1] and, conversely, u[n]= iﬁ[n —k]
k=0

a sequence of unit pulses starting at zero

xin]

x[n]

3.1. Elements of systems and signals

3.1.17 Discrete linear time-invariant systems and convolution
= impulse response h[n] = T{dn]}
= system is time invariant so can write h[n — k] = T{d[n — K]}

= remember x[n]= Z x[k]o[n—k]

= so response to arbitrary input x{n] is given by: y [n] = i x[k]h[n-k]

= this is discrete version of convolution y{n] = x[n] * h[nj’ﬂ
= commutative, associative and distributive properties apply
= since convolution is commutative we can also write

y[n]=h[n]*x[n]= Z hik]x[n-K]
Procedure for discrete tlme “convolution:
= compute signals x[k] and h[n — K] as functions of k
= multiply them at each k
= sum all these values to yield output signal
= alternatively, use h[k] and x{n — K]

3.1. Elements of systems and signals

3.1.17 Discrete linear time-invariant systems (cont)
Example:

Compute y[n]=h[n]*x[n]= Zh[ 1x[n-k]= kix[k]h[n—k]

for the following impulse response and input signal:

LE]

hin]

5

x[n]

[N SN

N x 2 .
We can write: y[n]= 3 x[k]h[n-k] =Y x[k]a[n—k] as x[n] is zero
everywhere else, draf fesultant productfor each value of k and sum.

3.2. Fourier Analysis and Applications
3.2.1 Introduction
A signal can be viewed from two different standpoints:
= the frequency domain
= the time domain
Any signal can be fully described in either of these domains
= go between the two by using a tool called the Fourier transform.
Why the frequency domain ?
= may be simpler to analyse signal in frequency domain

Fourier techniques have many applications
= optics: diffraction, interference
= audio: synthesis
= communications: filtering
= spectroscopy and dynamics: use of ultrafast lasers
= physics experiments: filtering noise, deconvolution

3.2. Fourier Analysis and Applications
3.2.2 Fourier series
Periodic signal x(f) can be represented by a Fourier series expansion:

x(t)=a,+ ZE{an cos[znnt] +b, sin(znntﬂ
pxi T T,

0
where T, is the fundamental period of the signal
The cos and sin functions are used as basis functions
= obey orthogonality relations
J'Tn/2 Cos(znmtjsin[zm,t}ﬂ -0
Tof2 T, T,

0 0
o T,/2 f =
J-T/z cos| ZZMt ) cos| 270 ) 4t — 0/2 form=n
To/2 T, TO 0 form=n
ITD/Z sin 2zmt sin 2znt o T,/2 form=n
To/2 T, T, 0 form=n

Integrate basis functions over single period enables determination of
mean value of the signal, a,

3.2. Fourier Analysis and Applications

3.2.2 Fourier series (cont)
Mean value of a periodic signal, a,

TD/Z
J'W cos| 2 |t = | To_gjn| 270t -l [2sin(zn)]=0
/2 T, 2zn T, 2 2zn
Similar result for sin function.
So, to obtain ay, integrate Fourier series expansion over one period:

(700 =02 S o 252 252

0 0
Bring mtegral inside sum: terms vanish

2jT°/2 an cos 2znt +b,sin 2zt dt
/2 T, T,
< To/2 2znt To/2 2znt

=2 a, cos dt+b dt 0
@[m{[n} L5 o222 ]| -

Thus we are Ieftwth‘T“/z t)dt = aoro/ dt=a[t]"?, =a,T,

To/2
(t)at

TD/Z
and so obtain a,: a, = —I T/2
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3.2. Fourier Analysis and Applications
3.2.2 Fourier series (cont)
Other coefficients

Multiply both sides of Fourier series expansion by co:;[2
integrate over one period:

J-Tu/ C [ 2znt j dt
Ty /2 O
S|m|IarIy, multiplying by sin(2rnt / T,) we obtain the remaining coeffts:

7]‘ [Zﬂ'nt]dt
T/Z T,

D|r|ch|et conditions

Conditions to tell whether or not a periodic signal x(f) can be
represented by a Fourier series:

= x(f) is single valued over the fundamental period

= x(f) has finite number of discontinuities, minima and maxima over
the fundamental period

0

j and then

u (T2 . . .
j ‘x(t)‘dt<oo that is, x(t) is absolutely integrable

~To/2

3.2. Fourier Analysis and Applications

3.2.2 Fourier series (cont)
Example
Find the Fourier series of x(f) = £, -1 <t<1:

ox(t)

1

10 05 00 05 tio

Assume that function has been duplicated up and down the real line.

=
o

3.2. Fourier Analysis and Applications

3.2.3 Complex Fourier series
. , ix Jx X _ i
Using Euler's formulae:  cosx =8 *€ " and sinx=5—¢

If write x = 2rt / T, then can write Fourier series expansion as

x(t)=a,+ 22[3,, cos[zzrmt}r b, sin[@ﬂ

0 0

Now define: ¢, = ay; ¢, = a, — jb,; ¢, = a, +jb, =
x(t)=c, + i[c o™ 4 C,,,e””x] and recall x = 2rtt / T, then obtain

n=1
x(t)= z [c exp[ /@H complex exponential Fourier series
0

n—mn

3.2. Fourier Analysis and Applications

3.2.3 Complex Fourier series (cont)

The coefficients are givenby ¢, = — I T“//Z e /2 g
To/2

Can write these complex coeffi C|ents as c, =lc,|e"
where g, = arg(c,) is the phase.

= amplitude spectrum — plot of Ic,| against frequency

= phase spectrum — plot of ¢, against frequency
3.2.4 Power in periodic signals
Recall that average power of a periodic signal over one period is

To/z 2

P = 7-[ T /2 1)‘ dt
It can be shown (Parseval’'s theorem) that if represent x(t) by complex
exponential Fourier series, then can write power as:

j Tj/; x(t) dt = n;\c" i

Example
Find complex exponential Fourier representation of x(f) = 2sin(f)cos(t).

3.2. Fourier Analysis and Applications
3.2.5 Fourier transform
Conventionally we denote :
= signal in time domain x(t)
= signal in frequency domain X(f)
= can also write X(w) where w = 24f
The Fourier transform and inverse Fourier transform enable us to pass
back and forth between the time and frequency domains:

Fourier transform

N————)

inverse Fourier transform

The Fourier transform of a signal x(t) is given by

X(f) =Lx( )exp(—j2xft)dt
and the inverse Fourier transform of X(f) by

x(8)=[" X(f)exp(j2rft)df
To be @ble to find FT of given signal x(f) Dirichlet conditions are

sufficient, but not strictly necessary, for example in the case of the unit
impulse function:

3.2. Fourier Analysis and Applications

3.2.5 Fourier transform (cont)

Example

Find the Fourier transforms of (a) £t) and (b) &t — a).

Fourier transform pairs

Shorthand notation to denote signal in time domain and its Fourier
transform — a Fourier transform pair:

x(t)= x(f)
So for the impulse functions in the last example we can write
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3.2. Fourier Analysis and Applications

3.2.5 Fourier transform (cont)

The sinc function

The sinc function is common in signal processing and is defined by
sinzt

sinct=

x(t) =sinct

JAN /N
TONTU T

Exercise: show that sinc t — 1 at origin (hint: Taylor expansion)

3.2. Fourier Analysis and Applications xt) 1
3.2.5 Fourier transform (cont) A
Further example

Find the Fourier transform of a square pulse :

—b/2 b/2 t

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform
Time shifting
= if signal shifted in time domain by a, FT multiplied by e-272f :
* FTIX(t-a)] = &2 X(f)
Frequency shifting
= multiplication of a signal in the time domain by gi2+ = shift by f, in
the frequency domain
= o*x(t)= X(F- 1)
Time scaling

= compression in time of a signal x(f) causes a broadening of
frequency of X(f)

= broadening in time of a signal x(f) causes a compression of
frequency of X(f)
= for x(t)= X(f), then x(at)#l‘x{g]
a
= |eads to constant time-bandwidth product, see later

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform (cont)
Example

Investigate time scaling by finding the FT of x(t) = e
_ o)

Time scaling factor here is two as x(t) = e =e

S~

10 05 0|0 05 1.0t
Using time scaling property we know that since

x(t) LN X(f) e = X(Zt) g 1X(ij = 19 g
2 2) 2

Compression in time has resulted in expansion in frequency

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform (cont)
Superposition principle

= FTislinear ax,(t)+bx,(t)= aX,(f)+bX, ()
Duality

= useful when computing FTs

s x(t)=2X(f) = X(t)=x(-f)
Differentiation and integration
Inverse FT: x(1) = [* X (f)exp(j2ft) df

dx _d = .
o a _ X(f)exp(j2nft)df
%: ;%x(f)exp(jzﬁﬂ)df=jzzfj:x(f)exp(/2nft)df

Thus if x(t) = X (f) = o = j2nX (f)
t 1
£X(0)=0 = [ x(r)dr = %X(f)
= differentiation in t domain = multiplication by j27f in freq. domain
= integration in t domain = division by j27f in freq. domain

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform (cont)
Convolution

= multiplying two functions together in the time domain results in
convolution in the frequency domain

. x1(t)x2(t) = I:X1(G)Xz(f—0)d6
= convolution in the time domain translates into multiplication in the
frequency domain!
|7 x,(t)%,(t-7)dr = X,(f)x,(f) The Convolution Theorem H
Even and odd parts of a function
Suppose

= X(t) real signal decomposed into even / odd parts: x(f) = X(f) + X, (1)

= and X(f) = A(f) + jB(f)

=x,(t)=A(f) x,(t)= jB(f) X (=f)=X"(F)
= real part of the FT and even part of signal constitute a FT pair
= imaginary part of FT and odd part of signal also constitute a FT pair
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3.2. Fourier Analysis and Applications
3.2.7 Spectrum plots
In general, FT of a signal x(t) is a complex function, so can write X(f) in
polar representation, that is:
‘ X ‘ e/w
where |X ()] is the amplitude of X (f)and ¢ =arg(X (f)) is the phase
= plot of IX(f)l is known as the amplitude spectrum of the signal
= plot of @ = arg(X(f)) is known as the phase spectrum of the signal
Exercise
Suppose the FT of some signal is

X(f)=—1

Plot the amplitude and phase spectra.

3.2. Fourier Analysis and Applications
3.2.8 Parseval’s theorem
= the energy content of a signal is equivalent to the energy spectral
density of the signal, found by integrating 1X(f)I2
o 2 a 2 1 = 2
[ (o) dt= " |x(r) of :ZUX("’)‘ do

= alternative statement: the total average power of a periodic signal is
equal to the sum of the average powers in all of its harmonic
components (cf Fourier series representation)

1 ( !
“P-glilner =g al' o -faf

* P, = P, so the total power of the kth harmonic components of the
signal (i.e. the total power at frequency ka) is 2P«

= total average signal power is given in the frequency domain by the
Parseval theorem therefore as

. 1 S
P= ?j[:|x(t)|2 dt = é'akr

3.2. Fourier Analysis and Applications
3.2.9 Frequency response

‘ _EX1(!)X2 (t_ T)df = X1(f)X2 (f) The Convolution Theorem H

Recall: for continuous LTI system with impulse response h(t), the
response y(t) to any input signal x(f) given by convolution:

= Y(t) = x(t)<h(t).
Using the convolution theorem we can write
= Y(f) = X(NH(

= H(f) is the frequency response or transfer function of the system

FTTA@) = HO
_— —
X0 LTI system Iy =m0

In general H(f) is complex: f)= ‘H(f)\e“%
H(f) | — amplitude response’
= 44(f) = arg[H(f)] — phase response

3.2. Fourier Analysis and Applications
3.2.9 Frequency response (cont)

FT of output signal:
y(t)=["y(r)e”"dr
=|v(f)|e™
Y(f) =X(F)H(f)

X(f)=|x(P)e™  H()=|H (D)™

Amplitude of output signal related to product of amplitudes of input
signal and frequency response:

Pl =X (OlH(F)

Phase of output signal related to sum of phases of input signal and
frequency response:

"0, (f)= 0, (F)+6,(F)

3.3. Energy spectral density and correlation
3.3.1 Cross correlation
A way to measure the similarity between two energy signals

measures the properties of an unknown signal by comparing it to a
known signal.

compare x;(f) to a time-delayed version of x,(f)

cross correlation function given by R,, (r) = I” x( t)'xz(H )t
(* denoted complex conjugate) -

reminder: functions orthogonal if j "X (tp, (t)dt =0

Example

Show that x,(f) = sin t, x,(f) = cos t are orthogonal and calculate their

cross correlation function for 7 =

Consider over one period:

sin? ()" _sin?(z) sin*(-x
2

This will always be zero as sinzx = sin%(-x). The functions are
orthogonal.

[ sin(t)cos(t)at = ):O

N

3.3. Energy spectral density and correlation

3.3.1 Cross correlation (cont) R, f sin(t)cos(t +7)dt

However, let us now calculate the cross corrélation over one period

R, (r=7/2)= I sin(t cos(t+zr/2)dtfj —sin (t)dt:%j.ﬂ—(1+cos(2t))dt

[t sin@)]"  x & sin(2z) sin(-27)
2a | T2 s VA
Further properties of cross correlation
* sometimes written R, ()= [~ X, (8) %, (t+7)dt = x,() % x, (1)
* related to convolution: X, (£) % x,(t) = x, (- t)‘ J(t)
= if either is an even function, then (t) ( ) ( )* X (t)
= (%1 (1) 5 Xo(8)) * (%1 ()  Xo(1)) = (xa(8) % Xa(8)) % (xo(t) * a(8))
= definition of discrete cross correlation: a series given by
r [1= X x[n] y[n+1] 1=0,£1,22,...

= cross cofrélation theorem (often used with FFT to compute c-cs):

x1(t)*x2(t)#x1(f)'X2(f)
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3.3. Energy spectral density and correlation
3.3.1 Cross correlation (cont)
Application: distinguishing signal from apparent noise
= two microphones at different distances from source gave signals:

10

Mic1 (Pa)

Mic2 (Pa)

1 1 1
0.00 0.05 0.10 0.15

Time (sec) T T T T

= cross-correlating the L
two signals gives a
peak at —11 ms, which
corresponds to the
time delay between the A

mic2mict ()

two microphones: i oo o oo o

3.3. Energy spectral density and correlation
3.3.2 Autocorrelation
For a complex function x,(f) autocorrelation defined by
Ryy(7)=x % x,= x,(=7) #x,(c)= [ x,(t) x,(t+7)et
Normalised energy content obtained by setting 7= 0:
E=R,,(0)= ] x,(t) x,(t)at = [ |x,(¢f et
To find autooorrelation of a power signal compute time average:
Ru(r)=lim = j” Jx(t+7)dt  Ru(z)== =[x () %, () s

Example A plot showmg 100 random numlfers with a "hidden" sine
function, and an autocorrelation of the series on the right.

IL'I i
¥ '.h b W *gf» ?“{A

3.3. Energy spectral density and correlation
3.3.2 Autocorrelation (cont)
Applications
One application of autocorrelation is the measurement of optical
spectra and the measurement of very-short-duration light pulses
produced by lasers, both using optical autocorrelators.
In optics, normalized autocorrelations and cross-correlations give the
degree of coherence of an electromagnetic field.
In signal processing, autocorrelation can give information about
repeating events like musical beats or pulsar frequencies, though it
cannot tell the position in time of the beat.
Further properties
Rﬂ(r) = X, * X, is @ maximum at the origin
Autocorrelation is a Hermitian function as R, (-7)=R,,'(r)
Discrete version (real numbers)
r.lll= Z

x n+l 7r [ l] 1=0,£1,42,...

3.3. Energy spectral density and correlation

3.3.3 Energy spectral density

= measures distribution of signal energy E over frequency

= found by taking the FT of the autocorrelation function

» denoted by Si:(a) S, ( j R, (c)e " dr

= if signal x(f) is real then S, (@) =|X (o ‘
= can compute energy in 5|gnal
w 2 1 (= 2 1

E=R,(0)=["|x /(1) ot =Zux‘(a})\ do=——

= explains why call S;,(«) energy spectral density

3.3.4 Power spectral density
= defined in a similar way to energy spectral density
= computed as the FT of the time-average autocorrelation:

Su(o)= FT[R11 )]=] " Ru(z)e""az
= can find power in signal using this: p_R,,

J.iSM(w)da)

—J Sﬂ

= unit of PSD is (unit of measured quantlty)lez

3.3. Energy spectral density and correlation

3.3.5 Applications of energy/power spectral density
Vibration analysis w IR R

displ. output

Mass m 10 [kg]
Damping coefficient [ 100 [Ns/m]
Spring coefficient k 1000000[N/m]
g % 00 200 £ 300
Resnnance frequency 50.3 Hz
w0
f,=1/0.02 = 50 Hz 0 pemds |

4
3
2
1

7‘, x=1.6 um

il ‘/\M ’\\‘M‘

%8s s7 sis 92 ©% 83 8% 84 9
Timo sl

3.3. Energy spectral density and correlation

3.3.5 Applications of energy/power spectral density
Simple Filtering : obtain PSD spectrum and use to design filter to block

unwanted frequencies
10

s ] —— Signal plus noise

T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900

cut off 88% of higher frequencies

Power Spectral Density

T T
0.0 0.1 0.2 0.3 0.4 0.5
Frequency (cps)
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3.3. Energy spectral density and correlation

3.3.5 Applications of energy/power spectral density
Simple filtering (cont)
10

Signal
—— 88% lowpass filtered

2 T T T T T T T T T
0 100 200 300 400 500 600 700 800 900

Signal
—— 95% lowpass filtered

0 100 200 300 400 500 600 700 800 900

3.3. Energy spectral density and correlation

3.3.5 Applications of energy/power spectral density
Gain filter smoothing

Gain filtering filters data by removing frequency components with power
spectral density magnitude less than a specified value

4| Signal Plus Noise

T T T
0 50 100 150 200
Time

10000 4 |Power Spectral Density  cut off at PSD = 4000 Hz"!

1000

100 §
10 §
14

T T T T
0 10 20 30 40 50
Freguenc

3.3. Energy spectral density and correlation

3.3.5 Applications of energy/power spectral density
Gain filter smoothing (cont)

_| Gain Filtered Signal
P = 4000

T T T
0 50 100 150 200
Time

3.4. Discrete Fourier transforms and sampling

3.4.1 Discrete time Fourier series
= discrete time signal x{n] with fundamental period N, : x[n] = x{n + N].
= fundamental frequency /2 =2r / Ny Nt
= Fourier series representation of x|n] is given by x[n]= Y c,e"*"

. . . 1%
= ¢, — Fourier or spectral coefficients, given by ¢, = N > x[n]e
0 n=0
= if sum runs over any N, consecutive values of k: x[n] = Z c e
. . k=(No)
= known as the synthesis equation. 0
= using same notation can express coefficients: ¢, — 1 3 x[n]e Hw
N,

= sometimes called the analysis equation. 0 <t}

= spectral coefficients and sequence x[n] constitute Fourier series pair
x[n] = ¢«
= average value of x[n] over a period is given by: ¢, = 1 > x[n]
0 n=(No)

3.4. Discrete Fourier transforms and sampling

3.4.1 Discrete time Fourier series (cont)
Example: find the spectral coefficients for the discrete time square wave
shown below:

=

x

1

1 0 1 2 3 4 5 6 7 8 9 n 10

3.4.2 Properties of Discrete time Fourier series

For periodic discrete time signal x[n] = x{n + N,] spectral coefficients are
also periodici¢, ¢,

View members of discrete time sequence as Fourier coefficients of the ¢,
1 — jkQn X[n] — jkQgn
ck:c[k]:F Zh;yx[n]e’ = zTe/ Now let m=-n

cli- 3 “ “ A

e’ Now k >nand m—k:c[n]= >, ——e"*"
memey No Wy No

x[=m]

3.4. Discrete Fourier transforms and sampling

3.4.2 Properties of Discrete time Fourier series (cont)
This is just the discrete Fourier series representation for the c[n]. A
demonstration of the duality property, which states

= if x[n] and c[k] form a Fourier series pair x[n] = c[k]

= then also have a Fourier series pair c[n] = x{—k] / Ny

Parseval’s theorem for discrete Fourier series

Enables us to find the average power of a discrete time signal by
summing the squared amplitudes of its harmonic components:

1
LS i = ¥ el
0 n=(Np) k=(No)

Example: demonstrate Parseval’s theorem for the signal in 3.4.1
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3.4. Discrete Fourier transforms and sampling

3.4.3 Fourier transform of a discrete time signal ;

FT of arbitrary non-periodic discrete time signal X[n] : X (Q) = 3" x[n]e”
= FT is periodic in 2mr, X[(2] = X[2 + 2n] "
= product X[2]e”*" also periodic in 2
= Inverse FT — integrate over interval 2m: x[n]= éL” X(Q)e"dQ

= FT of DT signal is linear: ax:[n] + bx,[n] = aXi[2] + bX;[2]

= time shift by n,: x[n— ”o] = e’fﬂ”ox(g)

= frequency shift by 2,: e’“ﬂ”x[n] = X(Q - QU)

* using time shifting obtain: x[n]- x[n-1]= (1 - e’f“)X(Q)

= accumulation property (where 12| <2r):

DRGES nx(0)5(9)+mx(g)

3.4. Discrete Fourier transforms and sampling
3.4.4 Discrete Fourier transform and sampling

Here we consider sampling of a continuous time signal x(f) that is of
finite duration.
= sample the signal at intervals of T, called the sampling period
=total of N samples of the original signal, then we will have the
sampled values x(f), x(Ts), X(2T;), ..., x(N—1)T;)
= defines values of discrete time signal x{n].
The DFT of x{n] is denoted by X[k] and is given by

XK= S e

n=0
The inverse discrete FT is given by

18 jZzkn
x[n]= Nkz:l;x[k]e

3.4. Discrete Fourier transforms and sampling

3.4.4 Discrete Fourier transform and sampling (cont)
Example

Giv;(e[n]that XK ={0, -3 -3, -2, -3 + 3j }, use the inverse DFT to find
n|

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling

Consider a sine wave with a frequency of f = 250 Hz.
mperiod T=1/f=1/250=4ms
= continuous time signal x(t) = sin(27ft) = sin{27(250)¢}
= shown for 0 <t <24 ms

<10
3

I\ 7\

fet \ [ ¥\ A\

=and fc;r a single period of 4 ms

250 Hz sine wave

~
L]

H/hs

one period of a 250 Hz sine wave
10

Fos

800

£ .o o5 1m0 115 20 25 30 s hips
@05

. sam;x)l‘iﬂng rate 5000 Hz, sampling interval T, = 1/(5000 Hz) = 0.2 ms
= out to 1 ms have the discrete time signal
x[n] = {0.0000, 0.3090, 0.5878, 0.8090, 0.9511, 1.0000}

3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)

one period of 250 Hz sine wave sampled at 5000 Hz
"
s P

| T N NP N e
N

=00

05

= at 5000 Hz, good approximation to signal shape
= now, reduce sampling rate to 2500 Hz, T, = 1/ (2500 Hz) = 0.4 ms

one period of 250 Hz sine wave sampled at 2500 Hz
10

P I =t B A e
I I

N )
e o

=00

oo
05

= start to s€e some aistortion of signal
= now reduce sampling rate to 1700 Hz, T, =1/ (1700 Hz) = 0.59 ms

one period of 250 Hz sine wave sampled at 1700 Hz
. ——

%,k o5 lo s 200 25 Fio B o
J 8

= further distortion evident
= sample signal now at 900 Hz, T, =1/ (900 Hz) =1.11 ms

3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)

one period of 250 Hz sine wave sampled at 900 Hz
10

0s

o l

sl ors 100 115 20 20 30 ] 35 tao

= at 900 Hz a lot of information lost
= now, reduce sampling rate to 400 Hz, T, = 1/ (400 Hz) = 2.5 ms

one period of 250 Hz sine wave sampled at 400 Hz

—

T
oo ois 100 115 20— £ ais s
= much information Now Tost
Summarising:
= if signal changes rapidly in time, sampling interval T, must be small
enough to capture variations
= high frequency variation implies high frequency components in signal,
requires high sampling rate
= when sampling rate not high enough / sampling interval too long to
capture signal variation, we say that aliasing has occurred

10
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1.0

05

3.4. Discrete Fourier transforms and sampling
Extreme example of aliasing

It D
[l |
H/
|

52Hz signal sampled at 50 Hz

3.4. Discrete Fourier transforms and sampling
Aliasing

Diagram from
dspguide.com

Time Domain

Frequency Domain

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Nyquist/'Shannon sampling theorem
To sample a signal correctly, sampling rate («s rad/sec) should be at
least twice the highest frequency component («;) present in the
signal: @, 22w,
For signals band width limited to [-w/ 2, @/ 2]
= the critical sampling interval T; =27/ «,
" w, = w is the Nyquist critical frequency
= Nyquist critical frequency is highest frequency that can pick up
= for a sine wave, this corresponds to a minimum of two samples per
period

= an arbitrary band-width limited signal x(f) is completely determined by
its samples x[n] taken at the Nyquist critical frequency:

x)=7, 3 xS )]

On the other hand, if sarfiple a continlgtt)ﬁs"{ﬁ"}ction that is not bandwidth
limited to less than the Nyquist critical frequency

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Nyquist/'Shannon sampling theorem (cont)
= all of power spectral density lying outside range (—a; / 2) < w <(w, / 2)
is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency «; = 27/ T, gives discrete

time signal x{n] = x(nT;) from which we would like to recover the
original continuous time signal.

= |deally, we would do this by constructing a train of impulses from the
x[n] and then filter this signal with an ideal lowpass filter
In real life, two possibilities:
Zero-order hold, interpolates signal samples with a constant line
segment over a sampling period for each sample
= frequency response is a poor approximation to ideal lowpass filter's
Eirst-order hold
= triangular impulse response,
= gives a linear interpolation between each sample

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Nyquist/'Shannon sampling theorem (cont)
= all of power spectral density lying outside range (—a / 2) < w <(w. / 2)
is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency «, = 27/ T, gives discrete

time signal x[n] = x(nT;) from which we would like to recover the
original continuous time signal.

= |deally, we would do this by constructing a train of impulses from the
X[n] and then filter this signal with an ideal lowpass filter
In real life, two possibilities:

Zero-order hold, interpolates signal samples with a constant line
segment over a sampling period for each sample

= frequency response is a poor approximation to ideal lowpass filter's
Eirst-order hold

= triangular impulse response,

= gives a linear interpolation between each sample

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Reconstruction of sampled signals (cont)

antialias filter reconstruction filrer

|| Digital
ADC == processing [—>{ DAC

kA A b

Analog Filtered Digitized Digitized SH Analog
Tnput Analog Tnput Output Analog Output
Input Output
FIGURE 3-7

Analog electronic filters used to comply with the sampling theorem. The electronic filter placed before an ADC is
called an anrialias filter. Tt is used to remove frequency components above one-half of the sampling rate that would
alias during the sampling. The electronic filter placed after a DAC is called a reconstruction filter. It also eliminates
frequencies above the Nyquist rate. and may include a correction for the zeroth-order hold.

(Diagram from www.dspguide.com)

11



