DataFit Part 3 — Data analysis and modelling

3. Data analysis 3.1. Elements of systems and signals

3.1.1 Continuous and discrete signals
Continuous signal just a regular function which can assume any value
in some continuous interval (a, b) e.g. a sine wave

Example of a continuous signal: y = sin(f)
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Discrete time signal defined only at discrete times we can label with an

integer n Example of a discrete signal: y = sin(nn/15)
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Created from continuous signal by sampling y(t) at regular intervals, T
yin] = y(nTy)

3.1. Elements of systems and signals

3.1.2 Energy and power in signals

v(t)
Ohm’s law: v(f) = Ri(t)
Instantaneous power: p(t) = (v(1))%R = Ri((t)?
On a per Ohm basis: p(f) = i(t)?
Total energy in Joules: E = f p(t)t = .ro i(t)zdt
L I LIC
Average power: P = l'i”m? J/zl(t) at
Energy and power content in arbitrary signal x(f) (may be complex):
use |x(t)|2 = x(t)x*(f) where x*(t) is complex conjugate
Normalised energy content: Normalised average power:
“Ix(t)? P =lim— (" |x(t)ft
E-= Lc|x(t)| dt = TILnao?J-—T/2|X( )|
or if signal is discrete

i 2 . 1 N 2
E=n;|x[n]| P:/UEEOZNH,,;JX[HH
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3.1. Elements of systems and signals

3.1.3 Classification of signals

Energy signal: 0 < E<~, P=0

Power signal: E=», 0 <P <

DC signal: signal with constant value for all times

Periodic signals

Common. For periodic signal 3 some positive number Tj (the period):
x(t) = x(t + To)

Fundamental frequency fu =1/ Tgin Hz

For periodic signals, consider energy content over one period, Eg
If 0 < Eg <, powersignal: P=Ey/ Ty

Many types of periodic function possible e.g. sawtooth wave:

Sawtooth wave

by inspection

TO =2s
fo=1/2Hz
6 4 2 E) 2 4 6
t/s
3.1. Elements of systems and signals
3.1.3 Classification of signals (contd)
Periodic discrete time signals also possible:
x[n] = x[n + N] : period is N e.g.
Periodic discrete time signal
20
.5
< .0
Ll B e T T
6 4 -2 0 2 4 6

Sinusoidal signals

X(t) = Acos(at + &) with A the amplitude and #the phase angle.
Fundamental period Ty = 2n | w, wthe angular frequency (w = 2rfy)
Recall Euler’s formula: e**' = coswt * jsinwt

e/wt + e—jlut jot _ e—/(‘”
s.cosot=———, sinot= -
2 2j

(note use of j = \/—_1 in this subject)
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3.1. Elements of systems and signals

3.1.4 Introduction to systems

system: a mathematical model that represents the transformation of
some input signal x(f) into an output signal y(f)

v
A 4

System
() ()

Represent system by a transformation or an operator T and then the
action of a system on a signal: y(t)=T{x(t)}

Examples: A resistor transforms current signal into voItage:7A' =R

x(t) = i(t), y(f) = v(t), and the system relationship is y(t) = R x(f)

Slightly more complex for a capacitor i(t) = c . 7-cd

A continuous time system: both x(f) and y(f) are continuous time
signals.

Also possible to have discrete time systems.

3.1. Elements of systems and signals

3.1.5 Causal and non-causal systems

Causal system: output y(f) depends only on the input at present or
earlier times

= output does not anticipate future values of the input
= any real time-dependant system is causal (laws of Physics!)
Example of non-causal system: y(t) = Cx(t + a) where a € R
3.1.6 Linear systems
§uppose operator zicts on two input signals to produce output signals:
Tl (O} =) and T (0]} v, (1
TAransformation is linear if for two constants a, b
T{ax,(t)+bx, ()} = ay, (t) + by, (t)
Linear system: system represented by a linear transformation.
To determine if a system is linear:
= consider 2 i/o relationships y4(f), yo(t) and form sum ay;(f) + by,(t)

= construct T{ax,(t) + bxy(f)} — if equal to ay(f) + by,(f) for scalars a, b
then system is linear
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3.1. Elements of systems and signals

3.1.6 Linear systems (contd) )

Example: determine if the following system is linear: y(t)= %

3.1.7 Time invariance

If time-shift of input signal: x(f) — x(tf = t) causes same time-shift in
output signal, system is time-invariant.

= if linear system, then called linear time-invariant system or LTI
Can write Y, (t)= T{X(f—f)}
If y,(t)=y(t-7) then system is time-invariant

3.1. Elements of systems and signals

3.1.8 Unit impulse function 1
, . . . — O<t<A
Dirac delta function, defined as &(t)=1lims, (t): 5, (t)=1A
© A4t = Agt—a |0 otherwise

t=0 f t=a
Time shift: eg. t > t+a
Area under curve = 1:[15(t)dt = fi5(t +a)df =1
Sampling property: use to pick out value at given time:
[“o(t)s(t)at=4(0) [ g(t)s(t-a)at =¢(a)
Further useful properties of unit impulse function:

5(at) :r;|5(t) 5(~t)=5(t)

Any continuous time signal can be written: x(t) = j:X(T)5(t—T)dT
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3.1. Elements of systems and signals uef
3.1.9 Unit step function 1

Defined as u(t):{; ;28
<

Time shifting in same way as unit impulse.
Change limits of integration:

[Cult)x(tyt=["x(tyt  or [ u(t-3)x(t)t=[ x(t)dt
u(t) - u(t— 2)}
)

Square pulse: e.g. u(t) — u(t— 2)

2 t:
Simplification of integrals: e.g.

Eo[u(t—1)—u(t—2)]cost ot =J1zcost dt =sin2 —sin1
Unit impulse and unit step functions related:

5(t)= d";—gt) and ()= 5(t)at

3.1. Elements of systems and signals

3.1.10 Impulse response of an LTI system
Impulse response h(t)= T{S(t)}
Use to determine Tstem response to arbitrary input (linear system)

7 I x(2)8(t-e)de|= [ x(z)T{5(t-o)}ar

y(0)=T{x(0)}=T
convolution of input

Time invariant system = y(t) = J‘w x(z)h(t-7)dz |signal with impulse
- response h(t)

3.1.11 System step response_

System step response S(t) =T U(t)} .

Determine by convolution: S(t)=u(t)*h(t)= LDU(r)h(t -7)dr
Convolution commutative (see on) so can write

s(t)=h(t)*u(t)=]" h(r)u(t-7)dr =] h(r)dr
If know step response of system can find impulse response : h(t)= s

dt
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3.1. Elements of systems and signals
3.1.12 Convolution (introduction)
Very important for data analysis
= enables simulation of effect of instrument function on signal
=this can be used to fit data to physical model by ‘forward

convolution’
physical input signal x(t)_ | measurement| output signal y(t)
phenomenon " system i
) compare y(t) and y’(t) and
model parameters a; change parameters a; to
l minimise difference
model modelled convolution of | modelled 1
signal and system

phenomenon | input signal x’(f) Re— output signal y’(t)

= deconvolution can be used (see later) to recover original signal

3.1. Elements of systems and signals

3.1.12 Convolution (introduction) (contd)
Convolution of two functions f(t) and g(t): f(t)*g(t) = J:f(r)g(t -7)dr
The convolution operation is

= commutative: f(t) = g(f) = g(f) = f(t)

= associative: [f(f) * g(t)] * w(t) = f(t) * [g(f) » w(t)]

= distributive: f(t) * [g(t) + w(t)] = f(t) * g(t) + f(t) * w(t)

= commutative with respect to multiplication by a scalar:

[af(t)]  g(t) = f(t) * [ag(D)] = a[f(t) * g(£)]

Finally, convolution of any signal with a unit impulse leaves the signal
unchanged: f(t) * J&t) = f(f)
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3.1. Elements of systems and signals

3.1.12 Convolution (introduction) (contd)

Calculation of the convolution integral

First, obtain signal h(t — 7) as function of 7z, then multiply by x(z) to
obtain another function g(z) then integrate g(z) to get y(f)

Step 1: sketch the time-reversed impulse response h(-7)

Step 2: shift this new function to the right try [ (time delay) for t > 0 to
obtain h(—(z—t)) = h(t — 2), or to the left by (time advance) for t < 0
to obtain h(—(7+ |t = h(t-2)
Note: convolution is commutative so sometimes easier to work with h(z7)
and x(t — 7) instead of x(z) and h(t— 72)

3.1. Elements of systems and signals

3.1.12 Convolution (introduction) (contd)

Example: given x(t) = u(t) and h(f) = cos(nrt) u(t), find the response y(f)
Note first that h(t) = O for t < 0 so system is causal, so can apply

y(t)= f h(z)x(t-7)dz = J:COS(ET)lJ(t -7)dr
Rely on graphical approach to find limits of integration:
Step 1: reflect x(7) = u(z) about vertical axis to give u(-7)

1.0 fr— B
u(z) u(-z)
= =
05 1 <05 1
—
6 -4 -2 0 2 4 6 T -6 -4 -2 0 2 4 67T

Step 2: shift to left by 1l for ¢ < 0, to right by Itl for t> 0 (e.g. here t = 3)

U7+ 3)) " - u(-(z-3))

xét)
xg)
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3.1. Elements of systems and signals
3.1.12 Convolution (introduction) (contd)

For negative times, no overlap as h(t) = cos(rt) u(t) is zero for t < 0
—_— 1.0 A h(z
u(-(r + 3)) a0k

T 05

x

PaWra)

8 0 4 g

104 ¢ v \ \
For positive times the re

Therefore system response is:

y(t)= J: cos(zr)dr = [% sin(m)] = lsin(m‘)

0 T

3.1. Elements of systems and signals
3.1.13 Discrete time signals

In almost all physics experiments, analogue signal will be sampled and
digitized, transforming continuous signal into discrete time signal.

periodic discrete time signal: x[n] = cos(nT,) T,=n/6
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= sampling interval: T

= discrete time signal x[n] = x(nT;) (n is integer) — a sequence {x,}
For two discrete time signals {x,;}, {v..}

= {zp} = {xa} + {yn} = z[n] = x[n] + y[n]

® {zp} = {Xa} {yn} = 2[n] = x[n] yIn]

= {z,} = a{x,} = Z[n] = ax{n]

To plot, draw point and draw vertical line from time axis as above
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3.1. Elements of systems and signals
3.1.14 Energy and power in discrete signals

Normalised energy content: Normalised average power:
> 2 . 1 N 2
E-= ,Z;O|x[n]| P=lm SN n}N|x[n]|

=0 <E<», P=0= x[n] is an energy signal

" 0 <P<», E=»= x[n]is a power signal
Example: Find the energy content and average power of the following
signal and determine whether it is an energy signal or a power signal:

{x,} :(%jn n>0

3.1. Elements of systems and signals
3.1.15 Unit impulse sequence

1 n=0
o[n]=

0 n=0
can shift the unit impulse sequence by integer k

1 n=k
5[n-K] :{0 " )
n+# An—3]
In the figure we show dJ[n — 3] !
n=3 n

Satisfies the sampling property so  x[n]= i x[k]S[n—k]

k=—0
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3.1. Elements of systems and signals
3.1.16 Unit step sequence

u[ ] _J1 n=0
10 n<o0 a sequence of unit pulses starting at zero
1 nzk
uln-k| :{ ;
0 n<k  shifted as illustrated for k = 3:
uln =3]

x[n]

0 1 2 3 4 n 7

unk

-

Can construct square pulse when j < k using u[n J
uln= 2] =uln=15]
1

x[n]

0=
0 1 2 3 4 5 6 n 7

Can define §[n] =u[n]-u[n—-1] and, conversely, u[n]=> 5[n—-k]

k=0

3.1. Elements of systems and signals

3.1.17 Discrete linear time-invariant systems and convolution
» impulse response h[n] = T{Jn]}
= system is time invariant so can write h[n — k] = T{J[n — K]}
= remember x[n]= Y x[k]s[n-k]

= 50 response to arbitrary input x[n] is given by: y[n]= >" x[k]h[n - k]
k=—0
= this is discrete version of convolution y[n] = x[n] * h[n]

= commutative, associative and distributive properties apply
= since convolution is commutative we can also write

y[n]=h[n]*x[n]= 3 h[k]x[n-K]
k=—x
Procedure for discrete time convolution:
= compute signals x[k] and h[n — K] as functions of k
= multiply them at each k

= sum all these values to yield output signal
= alternatively, use h[k] and x[n — k]

10
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3.1. Elements of systems and signals
3.1.17 Discrete linear time-invariant systems (cont)
Example:

Compute y[n]=h[n]*x[n]= 3 h[k]x[n—k]= 3 x[k]A[n-K]
k=—0 k=—0
for the following impulse response and input signal:

]

4 -3 2 - L 1 2 3

hln]

Al

LhbhiAbanvws
ey
3

iz 3 4

o 2
We can write: y[n]= Y x[k]h[n—k] =) x[k]h[n-k] as x[n] is zero
everywhere else, draf/\:/?esultant producﬁ%r each value of k and sum.

3.2. Fourier Analysis and Applications
3.2.1 Introduction
A signal can be viewed from two different standpoints:
= the frequency domain
= the time domain
Any signal can be fully described in either of these domains
= go between the two by using a tool called the Fourier transform.
Why the frequency domain ?
= may be simpler to analyse signal in frequency domain

Fourier techniques have many applications
= optics: diffraction, interference
= audio: synthesis
= communications: filtering
= spectroscopy and dynamics: use of ultrafast lasers
= physics experiments: filtering noise, deconvolution

11
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3.2. Fourier Analysis and Applications

3.2.2 Fourier series
Periodic signal x(f) can be represented by a Fourier series expansion:

x(t) = a0+22{a cos[zTo j+b (Z;Ttﬂ

where T is the fundamental period of the signal
The cos and sin functions are used as basis functions
= obey orthogonality relations

J-To/2 cos 2zmt sin 2znt gt =0

To/2 To To

o T./2 form=n
IT/Z cos 2rmt cos 2znt o — 0/

To/2 T, T, 0 form=n
0 . T./2 f =
Ir/z sin 27rmt sin 2znt df = »/2 form=n
-To/2 T, T, 0 form#n

Integrate basis functions over single period enables determination of
mean value of the signal, a,

3.2. Fourier Analysis and Applications

3.2.2 Fourier series (cont)
Mean value of a periodic signal, a,

[ cos{ 220t gt | To_gn[ 227 T (en)]=0
To/2 T, 27zn T, ~ 27n

-To/2

Similar result for sin function.
So, to obtain ag, integrate Fourier series expansion over one period:

_[T°/2 x(t)dt:ao.f dt + ZI { {ancos(27mtj+bnsin(znntﬂ}dt
-To/2 To/2 T T

0
Bring integral inS|de sum: terms vanish

2IT°/2 >l a,cos 2znt +b, sin 2zt ||| g
-To/2 | 4= TO TO
=2 i a jw cos 2rnt dt+b _[TO/Z sin 2znt dt|+=0
par nJ-1,/2 To "J-1,/2 To

Thus we are left with I x(t)dt = Iﬁ;//zzdt =a, [t]T°/2 =a,T,

-To/2

and so obtain a,: a, = Tiji//zx(t)dt
0 0
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3.2. Fourier Analysis and Applications
3.2.2 Fourier series (cont)
Other coefficients

2znt
Multiply both sides of Fourier series expansion by cos( 7;” jand then
integrate over one period: 0

_ _J'To/2 27Z'nt dt
To/2 TO
Similarly, multiplying by sin(2rnt / T,) we obtain the remaining coeffts:

:_J'To/z [27Z'nt]dt
0

Dirichlet conditions

Conditions to tell whether or not a periodic signal x(f) can be
represented by a Fourier series:

= Xx(t) is single valued over the fundamental period

= x(t) has finite number of discontinuities, minima and maxima over
the fundamental period

j /2 |x )ldt <o thatis, x(t) is absolutely integrable

3.2. Fourier Analysis and Applications

3.2.2 Fourier series (cont)
Example

Find the Fourier series of x(f) = 2, -1 <t < 1:

o

0 05 0.0 05 t1o

Assume that function has been duplicated up and down the real line.

>
1.0

13
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3.2. Fourier Analysis and Applications

3.2.3 Complex Fourier series P x
Using Euler’'s formulae: cosx==>—-"— and sinx= —

If write x = 2rt / Ty then can write Fourier series expansion as

x(t)=a, + Zi{an cos(zimj +b, sin(zgr_ntﬂ

n=1 0 0

Now define: ¢g = ag; ¢, = a,—jby;, c_, = ap + jb, =

x(t)=c,+ 2[Cnemx +¢_,6”™ | and recall x = 2t / T, then obtain

n=—w

0

X . 2znt
x(t)= Z {cn exp(j ;T_ H complex exponential Fourier series

3.2. Fourier Analysis and Applications

3.2.3 Complex Fourier series (cont)

The coefficients are givenby ¢, = ij’
T, -2

To/2 X(t)e—jZJTn[/Todt
Can write these complex coefficients as ¢, =|c,|e’"
where g, = arg(c,) is the phase.
= amplitude spectrum — plot of Ic,| against frequency
= phase spectrum — plot of #, against frequency
3.2.4 Power in periodic signals
Recall that average power of a periodic signal over one period is
x(t)[ dt

Ty/2

1
i :?OJ:TO/Z

It can be shown (Parseval's theorem) that if represent x(tf) by complex
exponential Fourier series, then can write power as:

To/2

1 o0
P [0 at= Tof

Nn=-o0

Example
Find complex exponential Fourier representation of x(t) = 2sin(f)cos(t).

14



DataFit Part 3 — Data analysis and modelling

3.2. Fourier Analysis and Applications
3.2.5 Fourier transform
Conventionally we denote :

= signal in time domain x(f)

= signal in frequency domain X(f)

= can also write X(w) where w = 27f

The Fourier transform and inverse Fourier transform enable us to pass
back and forth between the time and frequency domains:

X(t) Fourier transform X (f)

inverse Fourier transform

The Fourier transform of a signal x(t) is given by
X(f) =] x(t)exp(-j2xft)dt
and the inverse Fourier transform of X(f) by
x(t)= Eo X (f)exp(j2zft)df
To be able to find FT of given signal x(f) Dirichlet conditions are

sufficient, but not strictly necessary, for example in the case of the unit
impulse function:

3.2. Fourier Analysis and Applications

3.2.5 Fourier transform (cont)

Example

Find the Fourier transforms of (a) J(f) and (b) d(t — a).

Fourier transform pairs

Shorthand notation to denote signal in time domain and its Fourier
transform — a Fourier transform pair:

x(t)=X(f)
So for the impulse functions in the last example we can write

15
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3.2. Fourier Analysis and Applications
3.2.5 Fourier transform (cont)
The sinc function
The sinc function is common in signal processing and is defined by
sinxt
t

sinct =

~—
S~
~—

x(t) = sinc t

Exercise: show that sinc { — 1 at origin (hint: Taylor expansion)

3.2. Fourier Analysis and Applications x(t)

3.2.5 Fourier transform (cont)
Further example
Find the Fourier transform of a square pulse :

—b/2 b2

v

16
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3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform
Time shifting
= if signal shifted in time domain by a, FT multiplied by e~27f :
» FT[x(t— a)] = e727f X(f)
Frequency shifting
= multiplication of a signal in the time domain by /2™ = shift by f; in
the frequency domain
- x(t) = X(f- 1)
Time scaling

= compression in time of a signal x(f) causes a broadening of
frequency of X(f)
= broadening in time of a signal x(f) causes a compression of
frequency of X(f)
= for x(t)\:\X(f), then x(at)\ﬁix(ij
o \a
= |eads to constant time-bandwidth product, see later

3.2. Fourier Analysis and Applications

3.2.6 Properties of the Fourier transform (cont)
Example

Investigate time scaling by finding the FT of x(t) = e ™
_ a2ty

Time scaling factor here is two as x(t) —e™ —¢e

=
3

-1.0 -0.5 0fo 0.5 1.0t 0 15 10 -05 oo 05 10 15 f20

Using time scaling property we know that since

x(t) =g L>X(f) e = x(2t) e le(ij = 167%
2

Compression in time has resulted in expansion in frequency

17
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3.2. Fourier Analysis and Applications

3.2.6 Properties of the Fourier transform (cont)
Superposition principle

« FTis linear ax,(t)+bx,(t)= aX,(f)+bX,(f)
Duality

= useful when computing FTs

Cx()=x(f) = X(t)=x(-f)
Differentiation and integration
Inverse FT: x(t) = r X (f)exp(j2xft)df

Z’t‘ gt X (F)exp(j2xft)of

‘;’t‘: °°—x( )exp(127rft)df j2xf[” X (F)exp(j2xft)df
Thus |fx( J=X(f) = szm‘x(f)

1X(0)=0 = [ x(r)dz ﬁLx(f)

j2rf
= differentiation in t domain = multiplication by j27f in freq. domain
= integration in t domain = division by j27f in freq. domain

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform (cont)
Convolution

» multiplying two functions together in the time domain results in
convolution in the frequency domain

=["X,(0)X,(f-0)do

= convolution in the time domain translates into multiplication in the
frequency domain!
I:x1(t)x2(t—r)dr = X, (f)XZ(f) The Convolution Theorem
Even and odd parts of a function
Suppose

= x(f) real signal decomposed into even / odd parts: x(f) = X(f) + Xo(t)

= and X(f) = A(f) + jB(f)

Sx()=Al) =B X(-)=x()
= real part of the FT and even part of signal constitute a FT pair
= imaginary part of FT and odd part of signal also constitute a FT pair

18
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3.2. Fourier Analysis and Applications

3.2.7 Spectrum plots

In general, FT of a signal x(t) is a complex function, so can write X(f) in
polar representation, that is:

X(f)=|x(r)]e”
where |X(f)| is the amplitude of X (f)and ¢ = arg(X(f)) is the phase

= plot of IX(f)I is known as the amplitude spectrum of the signal

= plot of @ = arg(X(f)) is known as the phase spectrum of the signal
Exercise
Suppose the FT of some signal is

(-5

2+ ff

Plot the amplitude and phase spectra.

3.2. Fourier Analysis and Applications

3.2.8 Parseval’s theorem

= the energy content of a signal is equivalent to the energy spectral
density of the signal, found by integrating 1X(f)I2

=[x dt=["|x(f) of :%J:JX(‘O)F do

= alternative statement: the total average power of a periodic signal is
equal to the sum of the average powers in all of its harmonic
components (cf Fourier series representation)

17 kot |2 17, 2 2
=P, :?L |akef “ | dt:?L la,| ot =|a,|
» P, = P_, so the total power of the kth harmonic components of the
signal (i.e. the total power at frequency kay) is 2Py

= total average signal power is given in the frequency domain by the
Parseval theorem therefore as

1 -
s P [ x(f o= 3 [af

19



DataFit Part 3 — Data analysis and modelling

3.2. Fourier Analysis and Applications
3.2.9 Frequency response

_[:X1(t)X2(t—T)dT — X1(f)X2(f) The Convolution Theorem

Recall: for continuous LTI system with impulse response h(f), the
response y(f) to any input signal x(t) given by convolution:

= y(t) = x(t)xh(?).
Using the convolution theorem we can write
= Y(f) = X(HH(N

= H(f) is the frequency response or transfer function of the system

FTLh(®] = H(H

\ 4
A\ 4

LTI system

X(®) Y(f) = X(HH(H)

In gieneral H(f) is complex: H(f) = |H(f)|eif’ﬁ
= | H(f) | — amplitude response
» 4i(f) = arg[H(f)] — phase response

3.2. Fourier Analysis and Applications

3.2.9 Frequency response (cont)
FT of output signal:

y(t)= IiY(f)e’z”ﬁdf B
Y(f)=[v (f)|e™ X(f)=[x(f)]e"™ H(f)=|H(f)|e"
Y(f)  =X(F)H(F)

Amplitude of output signal related to product of amplitudes of input
signal and frequency response:

V(1) = X (D7)

Phase of output signal related to sum of phases of input signal and
frequency response:

-0, (F) = 0, (F)+ 6, (f)
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3.3. Energy spectral density and correlation

3.3.1 Cross correlation
A way to measure the similarity between two energy signals
= measures the properties of an unknown signal by comparing it to a
known signal.
= compare x4(f) to a time-delayed version of x,(f)

= cross correlation function given by R,,(7)= r X, (t) X, (t +7)at
(* denoted complex conjugate) -

= reminder: functions orthogonal if _[_: X, (t)x, (t)dt =0

Example
Show that x,(f) = sin ¢, x5(f) = cos t are orthogonal and calculate their
cross correlation function fort =n
Consider over one period:
x sin? ()" sin? sin® (-

J' sin(t)cos(t)dt = () = (7) ( ”):0

-z 2 2 2
This will always be zero as sin?2x = sin%(—x). The functions are
orthogonal.

-

3.3. Energy spectral density and correlation

3.3.1 Cross correlation (cont) R,(r) = f sin(t)cos(t +7)dt
However, let us now calculate the cross-correlation over one period

R, (r=7/2)= J'f”sin(t)cos(t+7r/2)dt=.|‘:—sin (t dt——_[ (1+cos(2t))dt

_ {_i N sin(2t)}” __x_x, sin(27) sin(-2x)

=-z

2 4 2 2 4 4

Further properties of cross correlation
L(t+7)dt = x,(t)x x,(¢)
= related to convolution: x,(t)x x, (t) = x, (- t) %,(t)
)xx

 if either is an even function, then  x,(t)x x, (t) = x,(t)* x,(t)
" (X1(t) * Xo(f)) % (X4(8) * Xo(£)) = (X4(£) * X3(t)) * (Xo(f) * Xo(t))
= definition of discrete cross correlation: a series given by

r (1= 3 «[n] y[n+1] 1=0,41,42, ..

n=—oo

= cross correlation thegrem (often used with FFT to compute c-cs):
x, (1) % x,(t) = X, (f) X,(f)

= sometimes written R12( ) I ()
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3.3. Energy spectral density and correlation

3.3.1 Cross correlation (cont)
Application: distinguishing signal from apparent noise
= two microphones at different distances from source gave signals:

e —

Mic1(Pa)

Mic2 (Pa)

0.00 0.05 0.10 0.15
Time (sec) T T T T

= cross-correlating the
two signals gives a
peak at —11 ms, which
corresponds to the
time delay between the A ]
two microphones:

Time (sec)

N

mic2*mict (Pa®)
o

3.3. Energy spectral density and correlation

3.3.2 Autocorrelation
For a complex function x4(f) autocorrelation defined by

R, (r) =X, x X, = X, (—‘L’)* * X, (1) = _[_: X, (t)'x1 (t+ r)dt

Normalised energy content obtained by setting 7= 0:

) * =) 2
E=R,(0)=[" x(t) x(t)dt=["|x(t) ot
To find autocorrelation of a power signal compute time average'
— o1 eT/2 . T,/2
R11(T)=lm? 7T/2x1(t) x1(t+r)dt R11 = JT/Z /
Example: A plot showing 100 random numbers Wlth a "hidden" sine
function, and an autocorrelation of the series on the right.

t + T) at (periodic sig)

1.0

04 06 08

x
V4 ] 2
—_=

O
G q
L
—F
oy
e
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3.3. Energy spectral density and correlation

3.3.2 Autocorrelation (cont)
Applications

One application of autocorrelation is the measurement of optical
spectra and the measurement of very-short-duration light pulses
produced by lasers, both using optical autocorrelators.

In optics, normalized autocorrelations and cross-correlations give the
degree of coherence of an electromagnetic field.

In signal processing, autocorrelation can give information about
repeating events like musical beats or pulsar frequencies, though it
cannot tell the position in time of the beat.

Further properties
R11(1)= X, * X, is @ maximum at the origin
Autocorrelation is a Hermitian function as R, (—1) =R,/ (1)

Discrete version (real numbers)

r )= Y x[n]xn+1]=r.[-] 1=0,41,42,...

xx
n=—0

3.3. Energy spectral density and correlation
3.3.3 Energy spectral density
= measures distribution of signal energy E over frequency
= found by taking the FT of the autocorrelation function
= denoted by S1(«) S, (w)= f Ry (r)e " dr
= if signal x(f) is real then S, ()= |X(a))|2
= can compute energy in signal
E=R,(0)=["x(tf dt == [ [X,(@)f do =" S,,(w)de
27 2
= explains why call Sy4(w) energy spectral density
3.3.4 Power spectral density
= defined in a similar way to energy spectral density
= computed as the FT of the time-average autocorrelation:

St ((D) = FT[EH (T)] = J: Rin (T)e_jmdf
= can find power in signal using this: P = EH(O) = %J:gn(w)dw

= unit of PSD is (unit of measured quantity)?/Hz.
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Vibration analysis

Force input

m

displ. output ] <>,
Lk T 3

Mass m
Damping coefficient c
Spring coefficient k

« £.=1/0.02 = 50 Hz
|‘n'||

Time (8]

Resonance frequency 50.3 Hz

3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density

Power Spactral Density for Input Force.

m"
10 [kg] | !
100 [Ns/m] i !
1000000[N/m] !

0 50 100 150 200 250 300
Frequency [Hz)

Power Spectral Density for Output Displacement

1Dpenods

g? { \‘ I ‘ l | ' n,/
T (TEaN
12%16 um H M

3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Simple Filtering : obtain PSD spectrum and use to design filter to block
unwanted frequencies
10
8 —— Signal plus noise
6
4
2
0
-2 1 T T T T T T T T T
0 100 200 300 400 500 600 700 800 900
1e+6
Z 1e+5 cut off 88% of higher frequencies
c
8 1e+4
S
‘&:)- 1e+3
D qe+2
S
L Tetl o
1e+0 L A B A L A
0.0 0.1 0.2 0.3 0.4 0.5
Frequency (cps)
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3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Simple filtering (cont)

10

g4 * Signal

—— 88% lowpass filtered

6 S

4 -

2 -

[

-2 \ \ \ \ \ \ \ \ \

0 100 200 300 400 500 600 700 800 900
10
8 Signal
—— 95% lowpass filtered

6 _

4 —

2 _

0 —

-2 \ \ \ \ \ \ \ \ \

0 100 200 300 400 500 600 700 800 900

3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Gain filter smoothing

Gain filtering filters data by removing frequency components with power
spectral density magnitude less than a specified value
5

44 Signal Plus Noise

-3 T T T T T

0 50 100 150 200
Time
10000 )| Power Spectral Density  cut off at PSD = 4000 Hz™
1000 3
100
10 4
1 -
T T T T
0 10 20 30 40 50

Frequency
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3.3. Energy spectral density and correlation

3.3.5 Applications of energy/power spectral density
Gain filter smoothing (cont)

Gain Filtered Signal
P = 4000

0 50 100 150 200
Time

3.4. Discrete Fourier transforms and sampling
3.4.1 Discrete time Fourier series
= discrete time signal x[n] with fundamental period Ny : x[n] = x[n + Ng].
= fundamental frequency /2, = 21 / Ny Ny
= Fourier series representation of x[n] is given by X[n]=Y_ c,e"*"
k=0

No—1

" ¢ — Fourier or spectral coefficients, given by ¢, = - D x[n]e
0 n=0

= if sum runs over any N, consecutive values of k: x[n] = c, e’ "

. . k=(No)
= known as the synthesis equation.
, , . 1 _

= using same notation can express coefficients: ¢, = N x[n]e "

0 n=(No)

= sometimes called the analysis equation.
= spectral coefficients and sequence x[n] constitute Fourier series pair
x[n] = ¢k

1
= average value of x[n] over a period is given by: ¢, =— > x[n]
0 n=(No)
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3.4. Discrete Fourier transforms and sampling

3.4.1 Discrete time Fourier series (cont)

Example: find the spectral coefficients for the discrete time square wave
shown below:

=
=<

1

o
© L L L

1 0 1 2 3 4 5 6 7 8 9 p 10

3.4.2 Properties of Discrete time Fourier series

For periodic discrete time signal x[n] = x[n + Ngy] spectral coefficients are
also periodic:c, = ¢,

View members of discrete time sequence as Fourier coefficients of the ¢,

c, = c[k]: il D x[n]e”m"” =y Me”m“7 Now let m=—-n
No o) o) No X[K]
o) No k) No

e JkQon

clk]= > Me’"Qom Now k >nand m—k:c[n]= >’

3.4. Discrete Fourier transforms and sampling

3.4.2 Properties of Discrete time Fourier series (cont)

This is just the discrete Fourier series representation for the c[n]. A
demonstration of the duality property, which states

= if x[n] and c[k] form a Fourier series pair x[n] = c[K]
= then also have a Fourier series pair c[n] = x[-k] / Ny

Parseval’s theorem for discrete Fourier series

Enables us to find the average power of a discrete time signal by
summing the squared amplitudes of its harmonic components:

1 2 c 2
7 2 T = 3 ol

n=(Ny

Example: demonstrate Parseval’s theorem for the signal in 3.4.1
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3.4. Discrete Fourier transforms and sampling

3.4.3 Fourier transform of a discrete time signal

FT of arbitrary non-periodic discrete time signal x[n] : X(Q) =
= FT is periodic in 2w, X[2] = X[2 + 27]
» product X[2]e/?" also periodic in 27
» Inverse FT — integrate over interval 2r: x[n]= iLHX(Q)e’“”dQ

x[n]e~

0
n=—x©

= FT of DT signal is linear: ax4[n] + bxo[n] = aX;[2] + bX,[2]

= time shift by ng: x[n-n,|= e’ X(Q)

= frequency shift by 0o: e/™'x[n]= X(Q-9Q,)

= using time shifting obtain: x| n]-x[n-1]= (1—e’f“)X(Q)
= accumulation property (where 1021 <2m):

3 x[k]= 2x(0)5(Q)+ —

k; @X (@)

3.4. Discrete Fourier transforms and sampling

3.4.4 Discrete Fourier transform and sampling
Here we consider sampling of a continuous time signal x(f) that is of
finite duration.
= sample the signal at intervals of T called the sampling period
= total of N samples of the original signal, then we will have the
sampled values x(f), x(Ts), x(2Ty), ..., X(N = 1)Ty)
= defines values of discrete time signal x[n].
The DFT of x[n] is denoted by X[k] and is given by

N1

X[ = Sxfnle

n=0
The inverse discrete FT is given by

N-1 2
x[n] :N;X[k]e’“

28



DataFit Part 3 — Data analysis and modelling

3.4. Discrete Fourier transforms and sampling

3.4.4 Discrete Fourier transform and sampling (cont)
Example

Given that X[k] = {0, -3 — 3j, -2, -3 + 3j }, use the inverse DFT to find
X[n]

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling

Consider a sine wave with a frequency of f= 250 Hz.
wperiod T=1/f=1/250=4 ms
= continuous time signal x(t) = sin(27ft) = sin{2r(250)%}
» shown for0 £t<24 ms

250 Hz sine wave

JATAY AN ERVA NN VANRYA
0 N L N A0 S A0 W A0 W A
O L W A N AN W A A W T W
0 I VAN B VARV U\

= and for a single period of 4 ms

one period of a 250 Hz sine wave

Z oo ol 110 115 20 215 300 315 fgs
@05

. sampiing rate 5000 Hz, sampling interval T3 =1 /(5000 Hz) = 0.2 ms
= out to 1 ms have the discrete time signal
x[n] = {0.0000, 0.3090, 0.5878, 0.8090, 0.9511, 1.0000}
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3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)

one period of 250 Hz sine wave sampled at 5000 Hz
1.0

05 . =i K
=il [
<

ojo 0I5
-0.5

110

115 210 |25| 30 |35| &
] > o

= at 5000 Hz good approximation to signal shape

1.0

= sample signal now at 900 Hz, T4=1/(900 Hz) =1.11 ms

= now, reduce sampling rate to 2500 Hz, T.=1/ (2500 Hz) = 0.4 ms

one period of 250 Hz sine wave sampled at 2500 Hz
05 7 o,
=00 I I
<
< ojo 0I5 110 115 20 |25 3I0 35| £o
05 ] >
= start to see some distortion of signal
= now reduce sampling rate to 1700 Hz, T,=1/ (1700 Hz) = 0.59 ms
one period of 250 Hz sine wave sampled at 1700 Hz
1.0
05 /{/
gZ.:OD 0I5 110 115 20 25 BIO 3& /(450
0. 22 L
0 L
= further distortion evident

3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)

one period of 250 Hz sine wave sampled at 900 Hz
1.0

ojo 0I5
-0.5

110 115 200

25 310 | 3

= at 900 Hz a lot of information lost

= now, reduce sampling rate to 400 Hz, T.= 1/ (400 Hz) = 2.5 ms
one period of 250 Hz sine wave sampled at 400 Hz

0.0

—|

0.5 \

ojo 015

x[n]

110 115

20\;5

= much information now lost
Summarising:

= if signal changes rapidly in time, sampling interval Tg must be small
enough to capture variations

= high frequency variation implies high frequency components in signal,
requires high sampling rate

= when sampling rate not high enough / sampling interval too long to
capture signal variation, we say that aliasing has occurred
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3.4. Discrete Fourier transforms and sampling
Extreme example of aliasing

1077171 %.‘fwf ”””” 111V 1y 10 i.. TTI111 11

|
|
|
|
0.5 4 111 H T H BISIRIY
{
I
[
{

— [

xn]

1<}
o °
= —
&
=
===
—
o

——————

=)

52Hz signal sampled at 50 Hz

3.4. Discrete Fourier transforms and sampling

AI 1asin g - Time Domain Frequency Domain
Diagram from g

dspguide.com \/v/\\/\\/\\/\/\ At

" Time 7 Frequency

1
£ 3
Amplitude,

& Duplicated spectrum from sampling
ows

. Sampling at 3 times highest frequency

sl sl 5
/{N minma g° R
- /'T\ A e ool @ 2
/ \U/ Y UYW v/ £
L
H 1 3 H & 3 3t
Time Frequency
S — — —
.| [e Sampling at 15 times highest frequency | £ Overlapping spectra causing aliasing

" Time Frequeacy

FIGURE 3-5
The sampl

2 in the time mains. Figures (a) and (b) show an analog signal composed
of frequency components between zero and 0.33 of the sampling frequency. £, In (c). the analog signal is
sampled by converting it to an impulse train. [ the frequency domain, (d), this fesults n the spectrum being
duplicated into an infinite number of upper and lower sidebands. Since the original frequencies in (b) exist
undistorted in (d), proper sampling has taken place. In comparison, the analog signal in (¢) is sampled at 0.66
of the sampling frequency, a value exceeding the Nyquist rate. This results in aliasing, indicated by the
sidebands in (f) overlapping.
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3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Nyquist/Shannon sampling theorem
To sample a signal correctly, sampling rate (ws rad/sec) should be at
least twice the highest frequency component (@) present in the
signal: wg = 2wy
For signals band width limited to [-w/ 2, @/ 2]
= the critical sampling interval Tg =27/ w,
» w, = w is the Nyquist critical frequency
= Nyquist critical frequency is highest frequency that can pick up
= for a sine wave, this corresponds to a minimum of two samples per
period
= an arbitrary band-width limited signal x(f) is completely determined by
its samples x[n] taken at the Nyquist critical frequency:

= sinf @, (t-nT,)]
x(t)=T, x|n
( ) Sn;o [ ] ﬂ_(t_nTs
On the other hand, if sample a continuous function that is not bandwidth
limited to less than the Nyquist critical frequency

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Nyquist/Shannon sampling theorem (cont)
= all of power spectral density lying outside range (-« / 2) < w <(«w,/ 2)
is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency ws = 27/ T, gives discrete

time signal x[n] = x(nT,) from which we would like to recover the
original continuous time signal.

= [deally, we would do this by constructing a train of impulses from the
x[n] and then filter this signal with an ideal lowpass filter

In real life, two possibilities:

Zero-order hold, interpolates signal samples with a constant line
segment over a sampling period for each sample

= frequency response is a poor approximation to ideal lowpass filter’s
First-order hold

= triangular impulse response,

= gives a linear interpolation between each sample
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3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Nyquist/Shannon sampling theorem (cont)
= all of power spectral density lying outside range (-« / 2) < w <(«w,/ 2)
is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency ws = 27/ T, gives discrete

time signal x[n] = x(nT,) from which we would like to recover the
original continuous time signal.

= [deally, we would do this by constructing a train of impulses from the
x[n] and then filter this signal with an ideal lowpass filter

In real life, two possibilities:

Zero-order hold, interpolates signal samples with a constant line
segment over a sampling period for each sample

= frequency response is a poor approximation to ideal lowpass filter’s
First-order hold

= triangular impulse response,

= gives a linear interpolation between each sample

3.4. Discrete Fourier transforms and sampling

3.4.5 Sampling (cont)
Reconstruction of sampled signals (cont)

antialias filter reconstruction filter

5 | Digital .
ADC > Processing > DAC

e e e A

Analog Filterad Digitized Digitized
Input Analog Input Output
Input
FIGURE 3-7

Analog electronic filters used to comply with the sampling theorem. The electronic filter placed before an ADC is
called an antialias filter. It is used to remove frequency components above one-half of the sampling rate that would
alias during the sampling. The electronic filter placed after a DAC 1s called a reconstruction filter. It also eliminates
frequencies above the Nyquist rate, and may include a correction for the zeroth-order hold.

(Diagram from www.dspguide.com)
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