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Example of a discrete signal: y = sin(np/15)
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Example of a continuous signal: y = sin(t)
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3. Data analysis 3.1. Elements of systems and signals
3.1.1 Continuous and discrete signals
Continuous signal just a regular function which can assume any value 
in some continuous interval (a, b) e.g. a sine wave

Discrete time signal defined only at discrete times we can label with an 
integer n

Created from continuous signal by sampling y(t) at regular intervals, Ts

y[n] = y(nTs)

n

3.1. Elements of systems and signals
3.1.2 Energy and power in signals

Ohm’s law: v(t) = Ri(t)
Instantaneous power: p(t) = (v(t))2/R = Ri((t)2 
On a per Ohm basis: p(t) = i(t)2 
Total energy in Joules:

Average power:  

Energy and power content in arbitrary signal x(t) (may be complex):
use |x(t)|2 = x(t)x*(t) where x*(t) is complex conjugate
Normalised energy content:         Normalised average power:

or if signal is discrete

R
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3.1. Elements of systems and signals
3.1.3 Classification of signals
Energy signal: 0 < E < ∞, P = 0
Power signal: E = ∞, 0 < P < ∞
DC signal: signal with constant value for all times
Periodic signals
Common. For periodic signal ∃ some positive number T0 (the period):
x(t) = x(t + T0)
Fundamental frequency f0 = 1 / T0 in Hz
For periodic signals, consider energy content over one period, EO

If 0 < E0 < ∞ , power signal: P = E0 / T0
Many types of periodic function possible e.g. sawtooth wave:

by inspection 

T0 = 2 s
f0 = 1 / 2 Hz

Periodic discrete time signal
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3.1. Elements of systems and signals
3.1.3 Classification of signals (contd)
Periodic discrete time signals also possible:
x[n] = x[n + N] : period is N e.g.

Sinusoidal signals
x(t) = Acos(𝜔t + 𝜃) with A the amplitude and 𝜃 the phase angle.
Fundamental period T0 = 2𝜋 / 𝜔, 𝜔 the angular frequency (𝜔 = 2𝜋f0)
Recall Euler’s formula:

  

e± jω t = cosω t ± j sinω t

∴cosω t = e jω t + e− jω t

2
,   sinω t = e jω t − e− jω t

2 j

(note use of j = −1 in this subject)

3.1. Elements of systems and signals
3.1.4 Introduction to systems
system: a mathematical model that represents the transformation of 
some input signal x(t) into an output signal y(t)

Represent system by a transformation or an operator   and then the 
action of a system on a signal:
Examples: A resistor transforms current signal into voltage: 
x(t) ≡ i(t), y(t) ≡ v(t), and the system relationship is y(t) = R x(t) 

Slightly more complex for a capacitor                 
A continuous time system: both x(t) and y(t) are continuous time 
signals. 
Also possible to have discrete time systems.

System
x(t) y(t)

  T!

  
y t( ) =T! x t( ){ }

  T! ≡ R

( ) = dvi t C
dt    

:    T! = C d
dt

3.1. Elements of systems and signals
3.1.5 Causal and non-causal systems
Causal system: output y(t) depends only on the input at present or 
earlier times 
§ output does not anticipate future values of the input
§ any real time-dependant system is causal (laws of Physics!)

Example of non-causal system: y(t) = Cx(t + a) where a ∈ 
3.1.6 Linear systems
Suppose operator acts on two input signals to produce output signals:

Transformation is linear if for two constants a, b

Linear system: system represented by a linear transformation.
To determine if a system is linear:
§ consider 2 i/o relationships y1(t), y2(t) and form sum ay1(t) + by2(t) 
§ construct T{ax1(t) + bx2(t)} – if equal to ay1(t) + by2(t) for scalars a, b 

then system is linear

   
T! ax1 t( ) + bx2 t( ){ } = ay1 t( ) + by2 t( )
   
T! x1 t( ){ } = y1 t( )  and T! x2 t( ){ } = y2 t( )
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3.1. Elements of systems and signals
3.1.6 Linear systems (contd)
Example: determine if the following system is linear: 

3.1.7 Time invariance
If time-shift of input signal: x(t) → x(t ± 𝜏) causes same time-shift in 
output signal, system is time-invariant.
§ if linear system, then called linear time-invariant system or LTI

Can write
If                        then system is time-invariant 

( ) =
2

2
d xy t
dt

   

ay1 t( ) + by2 t( ) = a
d 2x1

dt 2 + b
d 2x2

dt 2

T! ax1 t( ) + bx2 t( ){ } = d 2

dt 2 ax1 t( ) + bx2 t( )⎡⎣ ⎤⎦ =
d 2

dt 2 ax1 t( )⎡⎣ ⎤⎦ +
d 2

dt 2 bx2 t( )⎡⎣ ⎤⎦

= a
d 2x1

dt 2 + b
d 2x2

dt 2

T! ax1 t( ) + bx2 t( ){ } = ay1 t( ) + by2 t( )  and so the transformation is linear.

  
yτ t( ) =T! x t −τ( ){ }

 yτ t( ) = y t −τ( )

3.1. Elements of systems and signals
3.1.8 Unit impulse function
Dirac delta function, defined as

 Time shift: e.g. t → t + a

Area under curve = 1: 
Sampling property: use to pick out value at given time:

 
Further useful properties of unit impulse function:

Any continuous time signal can be written: 
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3.1. Elements of systems and signals
3.1.9 Unit step function
Defined as 

Time shifting in same way as unit impulse.
Change limits of integration: 

Square pulse: e.g. u(t) – u(t – 2) 

Simplification of integrals: e.g.

Unit impulse and unit step functions related:
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3.1. Elements of systems and signals
3.1.10 Impulse response of an LTI system
Impulse response 
Use to determine system response to arbitrary input (linear system)

Time invariant system⇒

3.1.11 System step response
System step response
Determine by convolution:

Convolution commutative (see on) so can write

If know step response of system can find impulse response :

  h t( ) =T! δ t( ){ }

  
y t( ) =T! x t( ){ } =T! x τ( )δ t −τ( )dτ
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3.1. Elements of systems and signals
3.1.12 Convolution (introduction)
Very important for data analysis
§ enables simulation of effect of instrument function on signal
§ this can be used to fit data to physical model by ‘forward 

convolution’

§ deconvolution can be used (see later) to recover original signal

measurement
system

input signal x(t)physical
phenomenon

convolution of 
signal and system 

response

modelled
input signal x’(t)

model
phenomenon

compare y(t) and y’(t) and 
change parameters ai to 

minimise difference
model parameters ai

modelled
output signal y’(t)

output signal y(t)

3.1. Elements of systems and signals
3.1.12 Convolution (introduction) (contd)
Convolution of two functions f(t) and g(t):
The convolution operation is 
§ commutative: f(t) ∗ g(t) = g(t) ∗ f(t) 
§ associative: [f(t) ∗ g(t)] ∗ w(t) = f(t) ∗ [g(t) ∗ w(t)]
§ distributive: f(t) ∗ [g(t) + w(t)] = f(t) ∗ g(t) + f(t) ∗ w(t)
§ commutative with respect to multiplication by a scalar: 
 [αf(t)] ∗ g(t) = f(t) ∗ [αg(t)] = α[f(t) ∗ g(t)] 

Finally, convolution of any signal with a unit impulse leaves the signal 
unchanged: f(t) ∗ 𝛿(t) = f(t) 
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3.1. Elements of systems and signals
3.1.12 Convolution (introduction) (contd)
Calculation of the convolution integral
First, obtain signal h(t – 𝜏) as function of 𝜏, then multiply by x(𝜏) to 
obtain another function g(𝜏) then integrate g(𝜏) to get y(t)
Step 1: sketch the time-reversed impulse response h(–𝜏)
Step 2: shift this new function to the right by t (time delay) for t > 0 to 
obtain h(–(𝜏 – t)) = h(t – 𝜏), or to the left by ⎪t ⎪ (time advance) for t < 0 
to obtain h(–(𝜏 +⎪t ⎪ )) = h(t – 𝜏)
Note: convolution is commutative so sometimes easier to work with h(𝜏) 
and x(t – 𝜏) instead of x(𝜏) and h(t – 𝜏) 
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3.1. Elements of systems and signals
3.1.12 Convolution (introduction) (contd)
Example: given x(t) = u(t) and h(t) = cos(𝜋t) u(t), find the response y(t)
Note first that h(t) = 0 for t < 0 so system is causal, so can apply

Rely on graphical approach to find limits of integration:
Step 1: reflect x(𝜏) = u(𝜏) about vertical axis to give u(–𝜏) 

Step 2: shift to left by ׀t׀ for t < 0, to right by ׀t׀ for t > 0  (e.g. here t = 3)

( ) ( ) ( ) ( ) ( )
0
cosy t h x t d u t dt t t pt t t

¥ ¥

-¥
= - = -ò ò

u(-(t + 3))

t-8 -6 -4 -2 0 2

x(
t)

0.0

0.5

1.0 u(-(t - 3))

t-2 0 2 4 6 8

x(
t)

0.0

0.5

1.0

h(t )

t-8 -6 -4 -2 0 2 4 6 8

x(
t)

-1.0

-0.5

0.0

0.5

1.0

h(t )

t-8 -6 -4 -2 0 2 4 6 8

x(
t)

-1.0

-0.5

0.0

0.5

1.0 h(t )

t-8 -6 -4 -2 0 2 4 6 8

x(
t)

-1.0

-0.5

0.0

0.5

1.0
u(-(t + 3))

3.1. Elements of systems and signals
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3.1.12 Convolution (introduction) (contd)
For negative times, no overlap as h(t) = cos(𝜋t) u(t) is zero for t < 0

For positive times the region of nonzero overlap is 0 ≤ 𝜏 ≤ t

Therefore system response is:

( ) ( ) ( ) ( )pt t pt p
p p
é ù= = =ê úë ûò0

0

1 1cos sin sin
t

t
y t d t

continuous signal: x = cos(t)

t / s0 2 4 6 8 10 12x(
t)

-1.0

-0.5

0.0

0.5

1.0

3.1. Elements of systems and signals

periodic discrete time signal: x[n] = cos(nTs)  Ts = p / 6
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3.1.13 Discrete time signals
In almost all physics experiments, analogue signal will be sampled and 
digitized, transforming continuous signal into discrete time signal.

§ sampling interval:Ts 
§ discrete time signal x[n] = x(nTs)  (n is integer) – a sequence {xn}

For two discrete time signals {xn}, {yn}
§ {zn} = {xn} + {yn} ⇒ z[n] = x[n] + y[n] 
§ {zn} = {xn} {yn} ⇒ z[n] = x[n] y[n] 
§ {zn} = 𝛼{xn} ⇒ z[n] = 𝛼x[n] 

To plot, draw point and draw vertical line from time axis as above

3.1. Elements of systems and signals
3.1.14 Energy and power in discrete signals
Normalised energy content:         Normalised average power:

§ 0 < E < ∞, P = 0 ⇒ x[n] is an energy signal
§ 0 < P < ∞, E = ∞ ⇒ x[n] is a power signal

Example: Find the energy content and average power of the following 
signal and determine whether it is an energy signal or a power signal:

So, signal is an energy signal
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3.1. Elements of systems and signals
3.1.15 Unit impulse sequence

 
can shift the unit impulse sequence by integer k 

In the figure we show 𝛿[n – 3]

Satisfies the sampling property so
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3.1. Elements of systems and signals
3.1.16 Unit step sequence

 a sequence of unit pulses starting at zero

 shifted as illustrated for k = 3:

Can construct square pulse when j < k using                              e.g.
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3.1. Elements of systems and signals
3.1.17 Discrete linear time-invariant systems and convolution

§ impulse response  h[n] = T{𝛿[n]}
§ system is time invariant so can write h[n – k] = T{𝛿[n – k]}

§ remember 

§ so response to arbitrary input x[n] is given by:

§ this is discrete version of convolution y[n] = x[n] ∗ h[n]
§ commutative, associative and distributive properties apply
§ since convolution is commutative we can also write

Procedure for discrete time convolution:
§ compute signals x[k] and h[n – k] as functions of k 
§ multiply them at each k
§ sum all these values to yield output signal
§ alternatively, use h[k] and x[n – k]
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3.1. Elements of systems and signals
3.1.17 Discrete linear time-invariant systems (cont)
Example:

Compute 

for the following impulse response and input signal:

We can write:                                                                   as x[n] is zero 

everywhere else, draw resultant product for each value of k and sum.
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3.2. Fourier Analysis and Applications
3.2.1 Introduction
A signal can be viewed from two different standpoints:
§ the frequency domain
§ the time domain

Any signal can be fully described in either of these domains
§ go between the two by using a tool called the Fourier transform.

Why the frequency domain ?
§ may be simpler to analyse signal in frequency domain

Fourier techniques have many applications
§ optics: diffraction, interference
§ audio: synthesis
§ communications: filtering
§ spectroscopy and dynamics: use of ultrafast lasers
§ physics experiments: filtering noise, deconvolution

3.2. Fourier Analysis and Applications
3.2.2 Fourier series
Periodic signal x(t) can be represented by a Fourier series expansion:

where T0 is the fundamental period of the signal
The cos and sin functions are used as basis functions
§ obey orthogonality relations

Integrate basis functions over single period enables determination of 
mean value of the signal, a0

( ) 0
1 0 0

2 22 cos sinn n
n

nt ntx t a a b
T T
p p¥

=

é ùæ ö æ ö
= + +ê úç ÷ ç ÷

è ø è øë û
å

0

0

2

2
0 0

2 2cos sin 0
T

T

mt nt dt
T T
p p

-

æ ö æ ö
=ç ÷ ç ÷

è ø è ø
ò

0

0

2 0

2
0 0

2 for 2 2cos cos
0 for 

T

T

T m nmt nt dt
T T m n
p p

-

=æ ö æ ö ì ü
= í ýç ÷ ç ÷ ¹î þè ø è ø

ò

0

0

2 0

2
0 0

2 for 2 2sin sin
0 for 

T

T

T m nmt nt dt
T T m n
p p

-

=æ ö æ ö ì ü
= í ýç ÷ ç ÷ ¹î þè ø è ø

ò

3.2. Fourier Analysis and Applications
3.2.2 Fourier series (cont)
Mean value of a periodic signal, a0

Similar result for sin function.
So, to obtain a0, integrate Fourier series expansion over one period:

Bring integral inside sum: terms vanish

Thus we are left with
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3.2. Fourier Analysis and Applications
3.2.2 Fourier series (cont)
Other coefficients
Multiply both sides of Fourier series expansion by and then
integrate over one period:

Similarly, multiplying by sin(2𝜋nt / T0) we obtain the remaining coeffts:

Dirichlet conditions
Conditions to tell whether or not a periodic signal x(t) can be 
represented by a Fourier series:
§ x(t) is single valued over the fundamental period
§ x(t) has finite number of discontinuities, minima and maxima over 

the fundamental period

§

0

2cos nt
T
pæ ö

ç ÷
è ø

( )0

0

2

2
0 0

1 2cos
T

n T

nta x t dt
T T

p
-

æ ö
= ç ÷

è ø
ò

( ) ( )0

0

2

2
   that is,  is 

T

T
x t dt x t absolutely integrable

-
< ¥ò

( )0

0

2

2
0 0

1 2sin
T

n T

ntb x t dt
T T

p
-

æ ö
= ç ÷

è ø
ò

t-3 -2 -1 0 1 2 3

x(t)

0.0

0.5

1.0

t-1.0 -0.5 0.0 0.5 1.0

x(
t)

0.0

0.5

1.0

3.2. Fourier Analysis and Applications
3.2.2 Fourier series (cont)
Example
Find the Fourier series of x(t) = t2, –1 < t < 1:

Assume that function has been duplicated up and down the real line.

3.2. Fourier Analysis and Applications
3.2.3 Complex Fourier series
Using Euler’s formulae:

If write x = 2𝜋t / T0 then can write Fourier series expansion as

Now define: c0 = a0; cn = an – jbn; c–n = an + jbn  ⇒

                                                    and recall x = 2𝜋t / T0 then obtain

                                                    complex exponential Fourier series
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3.2. Fourier Analysis and Applications
3.2.3 Complex Fourier series (cont)
The coefficients are given by

Can write these complex coefficients as
where 𝜙n = arg(cn) is the phase.
§ amplitude spectrum – plot of ׀cn׀ against frequency
§ phase spectrum – plot of 𝜙n against frequency

3.2.4 Power in periodic signals
Recall that average power of a periodic signal over one period is

It can be shown (Parseval’s theorem) that if represent x(t) by complex 
exponential Fourier series, then can write power as:

( ) p-

-
= ò

0
0

0

2 2

2
0

1 T j nt T
n T
c x t e dt

T
nj

n nc c e f=

( )0

0

2 2

2
0

1 T

T
P x t dt

T -
= ò

( )0

0

2 2 2

2
0

1 T

nT
n

P x t dt c
T

¥

-
=-¥

= = åò

Example
Find complex exponential Fourier representation of x(t) = 2sin(t)cos(t).

3.2. Fourier Analysis and Applications
3.2.5 Fourier transform
Conventionally we denote :
§ signal in time domain x(t) 
§ signal in frequency domain X(f)
§ can also write X(𝜔) where 𝜔 = 2𝜋f

The Fourier transform and inverse Fourier transform enable us to pass 
back and forth between the time and frequency domains:

The Fourier transform of a signal x(t) is given by

and the inverse Fourier transform of X(f) by

To be able to find FT of given signal x(t) Dirichlet conditions are 
sufficient, but not strictly necessary, for example in the case of the unit 
impulse function:

( ) ( )Fourier transform

inverse Fourier transform
x t X f¾¾¾¾¾¾¾¾®¬¾¾¾¾¾¾¾¾

( ) ( ) ( )exp 2X f x t j ft dtp
¥

-¥
= -ò

( ) ( ) ( )exp 2x t X f j ft dfp
¥

-¥
= ò

3.2. Fourier Analysis and Applications
3.2.5 Fourier transform (cont)
Example
Find the Fourier transforms of (a) 𝛿(t) and (b) 𝛿(t – a).

Fourier transform pairs
Shorthand notation to denote signal in time domain and its Fourier
transform – a Fourier transform pair:

So for the impulse functions in the last example we can write

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

d p d

p

d p p

¥

-¥

¥

-¥

= - =

- =

= - - = -

ò

ò

exp 2  1 using sampling property of 

(that is, simply by evaluating exp 2  at 0). For (b) we have

exp 2 exp 2

a

b

X f t j ft dt t

j ft t

X f t a j ft dt j fa

  x t( )! X f( )

   

δ t( )! 1

δ t − a( )! exp − j2πfa( )
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3.2. Fourier Analysis and Applications
3.2.5 Fourier transform (cont)
The sinc function
The sinc function is common in signal processing and is defined by

Exercise: show that sinc t → 1 at origin (hint: Taylor expansion)

sinsinc tt
t
p

p
=

t-6 -4 -2 0 2 4 6

x(
t)

0.0

0.5

1.0 x(t) = sinc t

3.2. Fourier Analysis and Applications
3.2.5 Fourier transform (cont)
Further example
Find the Fourier transform of a square pulse :
Constant value A for the finite symmetric range
–b/2 < t < b/2, zero elsewhere. Greatly simplifies the FT! We have

A

t

x(t)

b/2–b/2
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( )
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2

2
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exp 2

substitute 2 2  
limits: 2    and 2   . So

exp 2
2

2 2

2

b

b

b j fb u

b j fb

j fb j fbu u

j fbj fb

j fb j fb

X f A j ft dt

u j ft du j f dt
t b u j fb t b u j fb

AX f A j ft dt e du
j f

A Ae du e
j f j f

A Ae e
j f

( )
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p

p p
p p

-æ ö-
ç ÷
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= = =

2
sin sin  sinc
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f j

fb fbA Ab Ab fb
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3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform
Time shifting
§ if signal shifted in time domain by a, FT multiplied by e–j2𝜋af :
§ FT[x(t – a)] = e–j2𝜋af X(f)

Frequency shifting
§ multiplication of a signal in the time domain by ≡ shift by f0 in

the frequency domain
§

Time scaling
§ compression in time of a signal x(t) causes a broadening of 

frequency of X(f)
§ broadening in time of a signal x(t) causes a compression of 

frequency of X(f)
§ for 

§ leads to constant time-bandwidth product, see later

02j f te p

   
x t( )! X f( ),  then  x at( )! 1

a
X

f
a

⎛
⎝⎜

⎞
⎠⎟

   e
j 2πf0t x t( )! X f − f0( )

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform (cont)
Example
Investigate time scaling by finding the FT of
Time scaling factor here is two as

Using time scaling property we know that since

Compression in time has resulted in expansion in frequency

( ) 24tx t e p-=
( ) ( )22 24 ttx t e e pp --= =

t-1.0 -0.5 0.0 0.5 1.0

x(
t)

0.0

0.5

1.0

24te p-

2te p-

  
x t( ) = e−πt2 FT⎯ →⎯ X f( ) = e−πf 2

⇒  x 2t( ) = e−π 2t( )2 FT⎯ →⎯ 1
2

X
f
2

⎛
⎝⎜

⎞
⎠⎟
= 1

2
e

−πf 2

4

f-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

X
(f)

0.0
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1.0

2

41
2

f

e
p

-

2fe p-

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform (cont)
Superposition principle
§ FT is linear

Duality
§ useful when computing FTs
§

Differentiation and integration
Inverse FT:

§ differentiation in t domain ≡ multiplication by j2𝜋f in freq. domain
§ integration in t domain ≡ division by j2𝜋f in freq. domain

   ax1 t( ) + bx2 t( )! aX1 f( ) + bX 2 f( )

   x t( )! X f( )      ⇒      X t( )! x −f( )

( ) ( ) ( )exp 2x t X f j ft dfp
¥

-¥
= ò

( ) ( )exp 2dx d X f j ft df
dt dt

p
¥

-¥
= ò

( ) ( ) ( ) ( )exp 2 2 exp 2dx d X f j ft df j f X f j ft df
dt dt

p p p
¥ ¥

-¥ -¥
= =ò ò

   
Thus if x t( )! X f( )   ⇒   dx

dt
! j2πfX f( )  

   
If X 0( ) = 0  ⇒  x τ( )dτ

-∞

t

∫  ! 1
j2πf

X f( )  

3.2. Fourier Analysis and Applications
3.2.6 Properties of the Fourier transform (cont)
Convolution
§ multiplying two functions together in the time domain results in 

convolution in the frequency domain

§  
§ convolution in the time domain translates into multiplication in the 

frequency domain!
§                                                           The Convolution Theorem

Even and odd parts of a function
Suppose
§ x(t) real signal decomposed into even / odd parts: x(t) = xe(t) + xo(t)
§ and X(f) = A(f) + jB(f)

§ real part of the FT and even part of signal constitute a FT pair
§ imaginary part of FT and odd part of signal also constitute a FT pair

   
x1 t( )x2 t( )! X1 σ( )X 2 f −σ( )dσ

−∞

∞

∫

   
x1 t( )x2 t −τ( )dτ

−∞

∞

∫ ! X1 f( )X 2 f( )

  ⇒ xe t( )! A f( )   xo t( )! jB f( )  X −f( ) = X ∗ f( )
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3.2. Fourier Analysis and Applications
3.2.7 Spectrum plots
In general, FT of a signal x(t) is a complex function, so can write X(f) in
polar representation, that is:

§ plot of ׀X(f)׀ is known as the amplitude spectrum of the signal
§ plot of 𝜙 = arg(X(f)) is known as the phase spectrum of the signal

Exercise
Suppose the FT of some signal is

Plot the amplitude and phase spectra.

( ) ( )
( ) ( ) ( )( )

 
where  is the amplitude of and arg  is the phase

jX f X f e
X f X f X f

f

f
=

=

( ) 1
2

X f
jf

=
+

3.2. Fourier Analysis and Applications
3.2.8 Parseval’s theorem
§ the energy content of a signal is equivalent to the energy spectral 

density of the signal, found by integrating ׀X(f)2׀

§  

§ alternative statement: the total average power of a periodic signal is 
equal to the sum of the average powers in all of its harmonic 
components (cf Fourier series representation)

§  

§ Pk = P–k so the total power of the kth harmonic components of the 
signal (i.e. the total power at frequency k𝜔0) is 2Pk

§ total average signal power is given in the frequency domain by the 
Parseval theorem therefore as

§  

( ) ( ) ( )w w
p

¥ ¥ ¥

-¥ -¥ -¥
= =ò ò ò

2 2 21
2

x t dt X f df X d

0
2 2 2

0 0

1 1T Tjk t
k k k kP a e dt a dt a

T T
w= = =ò ò

  
P = 1

T
x t( ) 2

dt
0

T

∫ = ak

2

k=−∞

∞

∑

3.2. Fourier Analysis and Applications
3.2.9 Frequency response

Recall: for continuous LTI system with impulse response h(t), the 
response y(t) to any input signal x(t) given by convolution: 
§ y(t) = x(t)∗h(t).

Using the convolution theorem we can write
§ Y(f) = X(f)H(f)
§ H(f) is the frequency response or transfer function of the system

 In general H(f) is complex: 
§⎪H(f)⎪– amplitude response
§ 𝜃H(f) = arg[H(f)] – phase response

   
x1 t( )x2 t −τ( )dτ

−∞

∞

∫ ! X1 f( )X 2 f( ) The Convolution Theorem

( ) ( ) HjH f H f e q=

LTI systemX(f) Y(f) = X(f)H(f)

FT[h(t)] = H(f)

3.2. Fourier Analysis and Applications
3.2.9 Frequency response (cont)
FT of output signal:

Amplitude of output signal related to product of amplitudes of input 
signal and frequency response:
§   

Phase of output signal related to sum of phases of input signal and 
frequency response:

§  

( ) ( ) ( ) ( )2 2j ftj fty t Y f e df X f H f e dfp p¥

-¥-¥

¥
== ò ò

( ) ( ) ( ) ( ) ( ) ( )Y X Hj j jY f Y f e X f X f e H f H f eq q q= = =

( ) ( ) ( )
( ) ( )( ) ( )( )

( ) ( )
( ) ( ) ( )

q q q

q q

q q+

=

=

=

=

Y X H

X H

X H

j j j

j j

j

Y f e X f e H f e

X f H f e e

X f H f e

Y f X f H f

( ) ( ) ( )Y f X f H f=

( ) ( ) ( )Y X Hf f fq q q= +

3.3. Energy spectral density and correlation
3.3.1 Cross correlation
A way to measure the similarity between two energy signals

§ measures the properties of an unknown signal by comparing it to a 
known signal. 

§ compare x1(t) to a time-delayed version of x2(t) 

§ cross correlation function given by  
(* denoted complex conjugate)

§ reminder: functions orthogonal if 

Example
Show that x1(t) = sin t, x2(t) = cos t are orthogonal and calculate their 
cross correlation function for 𝜏 = 𝜋
Consider over one period: 

This will always be zero as sin2x = sin2(–x). The functions are 
orthogonal. 

( ) ( ) ( )*
12 1 2R x t x t dtt t

¥

-¥
= +ò

( ) ( )1 2 0x t x t dt
¥

-¥
=ò

( ) ( ) ( ) ( ) ( )2 2 2sin sin sin
sin cos 0

2 2 2
t

t t dt
p

p

p
p

p p
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-

é ù -
= = - =ê ú
ë û
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3.3. Energy spectral density and correlation
3.3.1 Cross correlation (cont)
However, let us now calculate the cross-correlation over one period

Further properties of cross correlation
§ sometimes written 

§ related to convolution: 

§ if either is an even function, then 
§ (x1(t)  x2(t))  (x1(t)  x2(t)) = (x1(t)  x1(t))  (x2(t)  x2(t)) 
§ definition of discrete cross correlation: a series given by 

§ cross correlation theorem (often used with FFT to compute c-cs): 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

p p p

p p p

p

p

t p p

p pp p p

- - -

-

= = + = - = - +

é ù -
= - + = - - + - = -ê ú
ë û
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12

12 sin cos 2 sin 1 cos 2
2

sin 2 sin 2 sin 2
2 4 2 2 4 4

R t t dt t dt t dt

tt

   
R12 τ( ) = x1 t( )*

−∞

∞

∫ x2 t + τ( )dt = x1 t( ) ! x2 t( )
   x1 t( ) ! x2 t( ) = x1 −t( )*

∗ x2 t( )
   x1 t( ) ! x2 t( ) = x1 t( )∗ x2 t( )

   
rxy l⎡⎣ ⎤⎦ = x n⎡⎣ ⎤⎦

*
y n+ l⎡⎣ ⎤⎦

n=−∞

∞

∑ l = 0,±1,±2,…

    x1 t( ) ! x2 t( )! X1 f( )*
X 2 f( )

( ) ( ) ( )12 sin cosR t t dt
p

p
t t

-
= +ò
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3.3. Energy spectral density and correlation
3.3.1 Cross correlation (cont)
Application: distinguishing signal from apparent noise
§ two microphones at different distances from source gave signals:

§ cross-correlating the 
two signals gives a 
peak at –11 ms, which 
corresponds to the 
time delay between the 
two microphones:

3.3. Energy spectral density and correlation
3.3.2 Autocorrelation 
For a complex function x1(t) autocorrelation defined by

Normalised energy content obtained by setting 𝜏 = 0:

To find autocorrelation of a power signal compute time average:

Example: A plot showing 100 random numbers with a "hidden" sine
function, and an autocorrelation of the series on the right.

   
R11 τ( ) = x1 ! x1 = x1 −τ( )∗ ∗ x1 τ( ) = x1 t( )*

−∞

∞

∫ x1 t + τ( )dt

  
E = R11 0( ) = x1 t( )*

−∞

∞

∫ x1 t( )dt = x1 t( ) 2
dt

−∞

∞

∫

  
R11 τ( ) = lim

T→∞

1
T

x1 t( )*

−T 2

T 2

∫ x1 t + τ( )dt
  
R11 τ( ) = 1

T0

x1 t( )*

−T0 2

T0 2

∫ x1 t + τ( )dt  (periodic sig)

3.3. Energy spectral density and correlation
3.3.2 Autocorrelation (cont)
Applications
One application of autocorrelation is the measurement of optical
spectra and the measurement of very-short-duration light pulses
produced by lasers, both using optical autocorrelators.
In optics, normalized autocorrelations and cross-correlations give the
degree of coherence of an electromagnetic field.
In signal processing, autocorrelation can give information about
repeating events like musical beats or pulsar frequencies, though it
cannot tell the position in time of the beat.
Further properties

Discrete version (real numbers)

   R11 τ( ) = x1 ! x1 is a maximum at the origin

  Autocorrelation is a Hermitian function as R11 −τ( ) = R11
∗ τ( )

[ ] [ ] [ ] [ ] 0, 1, 2,
¥

=-¥

= + = - = ± ±å xx xx
n

r l x n x n l r l l

3.3. Energy spectral density and correlation
3.3.3 Energy spectral density
§measures distribution of signal energy E over frequency
§ found by taking the FT of the autocorrelation function
§ denoted by S11(𝜔)

§ if signal x(t) is real then
§ can compute energy in signal

§ explains why call S11(𝜔) energy spectral density
3.3.4 Power spectral density
§ defined in a similar way to energy spectral density
§ computed as the FT of the time-average autocorrelation:

§ can find power in signal using this:

§ unit of PSD is (unit of measured quantity)2/Hz.

( ) ( )11 11
jS R e dwtw t t

¥ -

-¥
= ò
( ) ( ) 211S Xw w=

( ) ( ) ( ) ( )2 2
11 1 1 11

1 10
2 2

E R x t dt X d S dw w w w
p p

¥ ¥ ¥

-¥ -¥ -¥
= = = =ò ò ò

  
P = R11 0( ) = 1

2π
S11 ω( )dω

−∞

∞

∫
  
S11 ω( ) = FT R11 τ( )⎡

⎣
⎤
⎦ = R11 τ( )

−∞

∞

∫ e− jωτdτ

3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Vibration analysis
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3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Simple Filtering : obtain PSD spectrum and use to design filter to block 

unwanted frequencies

cut off 88% of higher frequencies
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Signal plus noise
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3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Simple filtering (cont)
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88% lowpass filtered
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95% lowpass filtered

3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Gain filter smoothing
Gain filtering filters data by removing frequency components with power
spectral density magnitude less than a specified value

Signal Plus Noise

Time
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0
1
2
3
4
5

Power Spectral Density

Frequency
0 10 20 30 40 50
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10

100

1000

10000 cut off at PSD = 4000 Hz-1

3.3. Energy spectral density and correlation
3.3.5 Applications of energy/power spectral density
Gain filter smoothing (cont)

Gain Filtered Signal
P = 4000

Time
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0
1
2
3
4
5

3.4. Discrete Fourier transforms and sampling
3.4.1 Discrete time Fourier series
§ discrete time signal x[n] with fundamental period N0 : x[n] = x[n + N0].
§ fundamental frequency 𝛺0 = 2𝜋 / N0

§ Fourier series representation of x[n] is given by

§ ck – Fourier or spectral coefficients, given by

§ if sum runs over any N0 consecutive values of k:

§ known as the synthesis equation.

§ using same notation can express coefficients:

§ sometimes called the analysis equation.
§ spectral coefficients and sequence x[n] constitute Fourier series pair

x[n] ck

§ average value of x[n] over a period is given by:
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3.4. Discrete Fourier transforms and sampling
3.4.1 Discrete time Fourier series (cont)
Example: find the spectral coefficients for the discrete time square wave 
shown below:

3.4.2 Properties of Discrete time Fourier series 
For periodic discrete time signal x[n] = x[n + N0] spectral coefficients are
also periodic:
View members of discrete time sequence as Fourier coefficients of the ck

n-1 0 1 2 3 4 5 6 7 8 9 10

x[
n]

0

1

2

0k k Nc c +=

  
ck = c k⎡⎣ ⎤⎦ =

1
N0

x n⎡⎣ ⎤⎦e− jkΩ0n

n= N0

∑ =
x n⎡⎣ ⎤⎦
N0

e− jkΩ0n

n= N0

∑  Now let m = −n

[ ] [ ] [ ] [ ]
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0 00 0

 Now  and :jk m jk n

m N k N

x m x k
c k e k n m k c n e

N N
W W

= =
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3.4. Discrete Fourier transforms and sampling
3.4.2 Properties of Discrete time Fourier series (cont)
This is just the discrete Fourier series representation for the c[n]. A 
demonstration of the duality property, which states
§ if x[n] and c[k] form a Fourier series pair x[n]  c[k] 
§ then also have a Fourier series pair c[n]  x[–k] / N0

Parseval’s theorem for discrete Fourier series
Enables us to find the average power of a discrete time signal by 
summing the squared amplitudes of its harmonic components:

Example: demonstrate Parseval’s theorem for the signal in 3.4.1

[ ] [ ]
0 0

2 2

0

1  
n N k N

x n c k
N = =

=å å
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3.4. Discrete Fourier transforms and sampling
3.4.3 Fourier transform of a discrete time signal
FT of arbitrary non-periodic discrete time signal x[n] :

§ FT is periodic in 2𝜋, X[𝛺] = X[𝛺 + 2𝜋] 
§ product X[𝛺]ej𝛺n also periodic in 2𝜋
§ Inverse FT – integrate over interval 2𝜋: 

§ FT of DT signal is linear: ax1[n] + bx2[n] = aX1[𝛺] + bX2[𝛺] 

§ time shift by n0: 

§ frequency shift by 𝛺0: 

§ using time shifting obtain: 

§ accumulation property (where I𝛺I ≤2𝜋): 

( ) [ ] j n

n
X x n e

¥
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W = å
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1
2

j nx n X e d
pp

W= W Wò

   x n − n0⎡⎣ ⎤⎦! e− jΩn0 X Ω( )

   e
jΩ0nx n⎡⎣ ⎤⎦! X Ω −Ω0( )

   x n⎡⎣ ⎤⎦ − x n −1⎡⎣ ⎤⎦! 1− e− jΩ( )X Ω( )

   
x k⎡⎣ ⎤⎦

k=−∞

∞

∑ ! πX 0( )δ Ω( ) + 1
1− e− jΩ( ) X Ω( )

3.4. Discrete Fourier transforms and sampling
3.4.4 Discrete Fourier transform and sampling
Here we consider sampling of a continuous time signal x(t) that is of

finite duration.
§ sample the signal at intervals of Ts called the sampling period
§ total of N samples of the original signal, then we will have the

sampled values x(t), x(Ts), x(2Ts), ..., x((N – 1)Ts)
§ defines values of discrete time signal x[n].

The DFT of x[n] is denoted by X[k] and is given by

The inverse discrete FT is given by
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1

3.4. Discrete Fourier transforms and sampling
3.4.4 Discrete Fourier transform and sampling (cont)
Example
Given that X[k] = {0, –3 – 3j , –2, –3 + 3j }, use the inverse DFT to find 

x[n]

250 Hz sine wave
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3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling
Consider a sine wave with a frequency of f = 250 Hz.
§ period T = 1 / f = 1 / 250 ≡ 4 ms
§ continuous time signal x(t) = sin(2𝜋ft) = sin{2𝜋(250)t}
§ shown for 0 ≤ t ≤ 24 ms

§ and for a single period of 4 ms

§ sampling rate 5000 Hz, sampling interval Ts = 1 / (5000 Hz) ≡ 0.2 ms
§ out to 1 ms have the discrete time signal

x[n] = {0.0000, 0.3090, 0.5878, 0.8090, 0.9511, 1.0000}

one period of a 250 Hz sine wave
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one period of 250 Hz sine wave sampled at 5000 Hz
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3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)

§ at 5000 Hz, good approximation to signal shape
§ now, reduce sampling rate to 2500 Hz, Ts = 1 / (2500 Hz) ≡ 0.4 ms

§ start to see some distortion of signal
§ now reduce sampling rate to 1700 Hz, Ts = 1 / (1700 Hz) ≡ 0.59 ms

§ further distortion evident 
§ sample signal now at 900 Hz, Ts = 1 / (900 Hz) ≡1.11 ms

one period of 250 Hz sine wave sampled at 2500 Hz
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one period of 250 Hz sine wave sampled at 1700 Hz
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one period of 250 Hz sine wave sampled at 900 Hz
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3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)

§ at 900 Hz, a lot of information lost
§ now, reduce sampling rate to 400 Hz, Ts = 1 / (400 Hz) ≡ 2.5 ms

§much information now lost
Summarising:
§ if signal changes rapidly in time, sampling interval Ts must be small

enough to capture variations
§ high frequency variation implies high frequency components in signal,

requires high sampling rate
§when sampling rate not high enough / sampling interval too long to

capture signal variation, we say that aliasing has occurred

one period of 250 Hz sine wave sampled at 400 Hz
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3.4. Discrete Fourier transforms and sampling
Extreme example of aliasing

52Hz signal sampled at 50 Hz

t / s0.0 0.2 0.4 0.6 0.8 1.0x[
n]

-1.0

-0.5

0.0

0.5

1.0

t / s0.0 0.2 0.4 0.6 0.8 1.0x[
n]

-1.0

-0.5

0.0

0.5

1.0

3.4. Discrete Fourier transforms and sampling
Aliasing
Diagram from 
dspguide.com

3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)
Nyquist/Shannon sampling theorem
To sample a signal correctly, sampling rate (𝜔s rad/sec) should be at

least twice the highest frequency component (𝜔h) present in the
signal: 𝜔s ≥ 2𝜔h

For signals band width limited to [–𝜔 / 2, 𝜔 / 2]
§ the critical sampling interval Ts = 2𝜋 / 𝜔,
§𝜔c =𝜔 is the Nyquist critical frequency
§Nyquist critical frequency is highest frequency that can pick up
§ for a sine wave, this corresponds to a minimum of two samples per

period
§ an arbitrary band-width limited signal x(t) is completely determined by

its samples x[n] taken at the Nyquist critical frequency:

On the other hand, if sample a continuous function that is not bandwidth
limited to less than the Nyquist critical frequency
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3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)
Nyquist/Shannon sampling theorem (cont)
§all of power spectral density lying outside range (–𝜔c / 2) <𝜔 <(𝜔c / 2)

is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency 𝜔s = 2𝜋 / Ts gives discrete

time signal x[n] = x(nTs) from which we would like to recover the
original continuous time signal.

§ Ideally, we would do this by constructing a train of impulses from the
x[n] and then filter this signal with an ideal lowpass filter

In real life, two possibilities:
Zero-order hold, interpolates signal samples with a constant line

segment over a sampling period for each sample
§ frequency response is a poor approximation to ideal lowpass filter’s

First-order hold
§ triangular impulse response,
§gives a linear interpolation between each sample

3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)
Nyquist/Shannon sampling theorem (cont)
§all of power spectral density lying outside range (–𝜔c / 2) <𝜔 <(𝜔c / 2)

is incorrectly moved into that range: aliasing
Reconstruction of sampled signals
For example, reconstruction of sound from digital recording.
A band-limited signal sampled at frequency 𝜔s = 2𝜋 / Ts gives discrete

time signal x[n] = x(nTs) from which we would like to recover the
original continuous time signal.

§ Ideally, we would do this by constructing a train of impulses from the
x[n] and then filter this signal with an ideal lowpass filter

In real life, two possibilities:
Zero-order hold, interpolates signal samples with a constant line

segment over a sampling period for each sample
§ frequency response is a poor approximation to ideal lowpass filter’s

First-order hold
§ triangular impulse response,
§gives a linear interpolation between each sample

3.4. Discrete Fourier transforms and sampling
3.4.5 Sampling (cont)
Reconstruction of sampled signals (cont)

(Diagram from www.dspguide.com)


