M2 Physics and Instrumentation S3M Doctoral School Training course

Data acquisition and analysis

Module DataFit: Data analysis and modelling

Lectures - lan Sims (ian.sims@univ-rennes.fr) Tutorials - Elliot Ogden (elliot.ogden@univ-rennes.fr)

Website: https://perso.univ-rennes1.fr/ian.sims/DataFit/ Institut de Physique de Rennes

Administration

15 hours lectures - lan Sims (ian.sims@univ-rennes.fr)
15 hours tutorials - Elliot Ogden (elliot.ogden@univ-rennes.fr)

10 sessions Fridays 09h00-12h00 starting on 08/09/2023 until 24/11/2023 inclusive, but no course on Friday 15/09/2023 or 03/09/2023.
PNRB C@mpus numérique de Bretagne Salle TP Beaulieu
Connection from remote sites by video link

Website: https://perso.univ-rennes1.frian.sims/DataFit/
(for lecture notes, tutorial sheets)
Assessment will be by individual tutorial sheet

References

Philip R. Bevington and D. Keith Robinson
Data Reduction and Error Analysis for the Physical Sciences, $3^{\text {rd }}$ ed. McGraw-Hill, 2002, ISBN 0072472278

John R. Taylor
An Introduction to Error Analysis: The Study of Uncertainties in
Physical Measurements, $2^{\text {nd }}$ ed.
University Science Books, U.S., 1997, ISBN 093570275X
(French translation available in Library ISBN 2100043072)

Or more recent editions.
Part 1 - Error Estimation and Part 2 - Data Fitting Course Contents

General Introduction: Data fitting and error estimation in the physical sciences.
Part 1 - Error estimation
Error estimation and statistical description of data; Introduction: Uncertainties in measurement (accuracy and precision); Distributions and averages; Central limit theorem; Error analysis - internal and external errors; Simple error estimation - propagation of errors; Rejection of outliers Chauvenet's criterion; Weighted means and weighted errors.
Part 2 - Data fitting
Linear Least-squares data fitting: χ^{2} minimisation; Straight line fit; Confidence limits; Testing the fit; Student's t-distribution; General linear least squares.
Non-linear least squares data fitting: Introduction; Examples of non-linear functions common in nature; Exponential decay; Methods of minimising χ^{2}; The Marquardt algorithm.
Other methods of data fitting: Least absolute deviation; Maximum likelihood method; Robust estimation; Data smoothing

1.1 Introduction: The importance of error estimation

As physical scientists, much of what we do involves measurement. A result without an associated error estimation is of little use.
Take, for example, these three results for the rate coefficient between CN and O_{2} at room temperature:
$-\mathrm{k}=2.3018 \times 10^{-11} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$
$-\mathrm{k}=(2.3018 \pm 0.05) \times 10^{-11} \mathrm{~cm}^{3}$ molecule $^{-1} \mathrm{~s}^{-1}$
$-k=\left(2.3 \pm 0.1^{\mathrm{a}}\right) \times 10^{-11} \mathrm{~cm}^{3}$ molecule- $\mathrm{e}^{-1} \mathrm{~s}^{-1}$
${ }^{\text {a errors }}$ quoted correspond to $\pm 2 \sigma$ statistical error only.
It is essential that

- we have some understanding of errors, and
- we are able to estimate the error associated with any particular measurement.
Important also to minimise errors! Involves repeating measurements, and data analysis/reduction.

1.2.1 Error Estimation: Uncertainties in measurement

Let's have some definitions: what is error?
Error: "the difference between an observed or calculated value and the true value"
We assume there is a 'true value' to the quantity we are trying to
measure. Is the difference between our quoted value and this 'true value' the error?
If I knew the error, l'd know the 'true value' and quote this instead! So, the best I can do is quote my best estimate of both the measured value and the probable error.
This isn't a course on probability and statistics. Instead, l'll recap some of the main results as and when they are needed.

1.2.2 Accuracy and Precision

Accuracy
what's the difference?
Precision
Accuracy :

- a measure of how close the result of the experiment is to its true value

Precision:

- a measure of how well the result has been determined, without reference to its agreement with the true value

1.2.3 Types of error

What are the different types of error?

- mistakes or blunders in measurement or computation
- we will not consider these further: repeated measurement and careful checking needed to identify and avoid
- random error
- systematic error

Random error:

- fluctuations in observations yielding results that differ from experiment to experiment, need repeated measurements to give precise results.
Systematic error:
- a 'bias' which makes results differ from the 'true' values by a reproducible discrepancy.
- hard to detect and not easily studied by statistical analysis.

1.2.4 Parent and Sample Distributions

Parent distribution

- a hypothetical distribution which determines the probability of getting any particular observation.

Sample distribution

- hypothesise that the measurements are samples from the parent distribution, and they form the sample distribution.
- In the limit of infinite measurements, the sample distribution becomes the parent distribution.

Precision of experimental result implied by the number of digits recorded - though uncertainty should be quoted
Quote one more sig. fig. than dictated by precision, to reduce rounding errors
e.g., measure a time of $t=1.203 \mathrm{~s}$, but we know that our real
precision is only $\pm 0.1 \mathrm{~s}$
so, quote $t=(1.20 \pm 0.1) \mathrm{s}$
1.2.4 Parent and Sample Distributions (contd)

1.2.5 Mean, Median and Mode

If we make N measurements $x_{1}, x_{2}, x_{3}, \ldots$ and so on, up to a final measurement x_{N}, we write the sum of these measurements as follows:

$$
\sum x_{i} \equiv \sum_{i=1}^{N} x_{i}
$$

The mean of our experimental sample distribution is taken as

$$
\bar{x}=\frac{1}{N} \sum x_{i}
$$

while the mean, μ, of the parent population is defined as

$$
\mu \equiv \lim _{N \rightarrow \infty}\left(\frac{1}{N} \sum x_{i}\right)
$$

1.2.5 Mean, Median and Mode (contd)

The median of the parent population, $\mu_{1 / 2}$, is defined as that value for which, in an infinite number of determinations x_{1}, half the determinations will be less than the median and half will be greater:
$P\left(x_{i}<\mu_{1 / 2}\right)=P\left(x_{i} \geq \mu_{1 / 2}\right)=\frac{1}{2}$
Not often used as a statistical parameter.
The mode, or most probable value, $\mu_{\text {max }}$, of the parent population is defined as that value for which the parent distribution has the greatest value. In the limit of a large number of observations, this value will probably occur most often:
$P\left(\mu_{\max }\right) \geq P\left(x \neq \mu_{\max }\right)$
For a symmetrical distribution these three quantities will be identical. For an asymmetrical distribution they will differ as shown.

1.2.5 Mean, Median and Mode (contd)

1.2.6 Deviations from the Mean

Average deviation, α

1.2.7 Probability Distributions

Three main types of probability distribution:

- binomial distribution
- Poisson distribution
- Gaussian distribution
- binomial distribution applied to experiments where result is one of a small number of possible final states, e.g. 'heads' or 'tails'. The other two distributions considered as limiting cases of binomial distribution.
- Poisson distribution appropriate for counting experiments e.g., radioactive decay
- Gaussian or normal error distribution is most important as seems to describe the distribution of random observations for most experiments.

1.2.7 Probability Distributions: the Binomial Distribution

 If- probability of observing 'heads up' any coin is p and
- tails is $q(=1-p)$,
then the probability for observing each combination of x heads and $n-x$ tails with n coins is $p^{x} q^{n-x}$
The probability $P_{B}(x ; n, p)$ of observing x of the n items to be in a state with probability p is given by the binomial distribution
$P_{B}(x ; n, p)=\binom{n}{x} p^{x} q^{n-x}=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}$
The mean of the binomial distribution is simply $\mu=n p$
and the variance is given by

$$
\sigma^{2}=n p(1-p)
$$

1.2.7 Probability Distributions: the Binomial Distribution

1.2.7 Probability Distributions: the Gaussian Distribution

Approximation to binomial distribution where $n p \gg 1$,
also limiting case for Poisson distribution when μ becomes large. It is defined as
$P_{G}(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]$
or as the standard Gaussian distribution with $z=(x-\mu) / \sigma$:
$P_{G}(x) d z=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z}{2}\right)^{2} d z$
Mean and standard deviation correspond to the parameters μ and σ Probabilities are about 68% and 96% that a given measurement will fall within one or two standard deviations of the mean.

1.2.8 The Central Limit Theorem

This is a very useful theorem, the proof of which justifies our use of the Gaussian distribution. It states:
If you take the sum X of N independent variables, x_{i}, where $i=$
$1,2,3, \ldots, N$, each taken from a distribution of mean μ_{l} and variance σ_{i}^{2}, the distribution for X
a) has an expectation value $<X>=\Sigma \mu_{I}$
b) has variance $V(X)=\Sigma \mu_{i}^{2}$
c) becomes Gaussian as $N \rightarrow \infty$

CLT applies only when the variables are independent
c) is the reason that the Gaussian is so important.

Proofs of the CLT may be found in many text books.

1.2.8 Central Limit Theorem: Repeated measurements

Suppose we measure the same quantity many times. We can use the CLT in a simple form since all the μ_{l} have the same value - call it μ and all σ_{i} have the same value σ.
From the CLT we have

$$
\langle X>=\Sigma \mu=N \mu
$$

and, in terms of the average

$$
\bar{x}=\frac{X}{N} \quad\langle\bar{x}\rangle=\mu
$$

and provided the measurements are independent the variance of the average is just the variance of X, divided by N^{2}
$V(x)=\frac{1}{N^{2}} \sum V_{i}=\frac{\sigma^{2}}{N}$
thus, the standard deviation of this average falls as $\boldsymbol{N}^{1 / 2}$

1.2.8 Repeated measurements (cont)

Reminder: for a measurement of a single parameter with normally distributed errors, we have the standard deviation s of the sample population (i.e., our measurements) given by
$s=\left\{\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)^{2}\right\}^{\frac{1}{2}}$
We are usually relaxed about writing σ instead of s.
However, what we really want to know are the confidence limits for our measurement.
For this, we first need the standard deviation of the distribution of our sample mean about the parent mean μ. This is called the standard error, $\sigma_{\text {std }}$, and is related to the standard deviation of our sample as follows:
$\sigma_{s t d}=\frac{\sigma(s \text { strictly })}{\sqrt{v}}=\frac{\sigma}{\sqrt{N-1}}$ for single parameter determination
If N is large (or we think of the 'parent population'), 68% of our data fall within $\pm \sigma$ of the mean, and 96% within $\pm 2 \sigma$.
1.2.8 Repeated measurements (cont)

1.2.8 Repeated measurements (cont)

1.2.8 Repeated measurements (cont)

For small N, we must use the so-called Student's t-factor to define our confidence limits.
This is usually defined at the 95% confidence limit, so our confidence range can be defined as $\pm\left(t_{0.95} \times \sigma_{\text {std }}\right)$
Values of t can be found in many statistics textbooks, and they depend on the degrees of freedom, $\vee(=N-$ no. of parameters $\equiv N-1$ in this case)
1.2.8 Repeated measurements (cont)

1.2.8 Repeated measurements (cont)		
$\begin{gathered} v(=N-1 \text { in this } \\ \text { case }) \end{gathered}$	to.95	
1	12.706	
2	4.303	
3	3.182	
4	2.776	
5	2.571	
6	2.447	
7	2.365	
8	2.306	
9	2.262	
10	2.228	
11	2.201	
12	2.179	
20	2.086	
30	2.042	
60	2.000	29
∞	1.960	29

1.2.9 Error analysis

Instrumental and Statistical Uncertainties
Instrumental uncertainties arise from imprecision in the measuring instrument
Two ways of estimating the uncertainty:
The external method of considering the equipment and the experiment itself, e.g. precision of the measuring scale
The internal method, calculate the standard deviation from the spread of measurements.
Statistical uncertainties arise from statistical fluctuations in the collections of finite numbers of counts over finite periods of time, e.g., photon counting experiments.
We can directly estimate the standard deviation in this case, according to the Poisson distribution:
$\sigma=\sqrt{ } \mu$

1.2.9 Error analysis: Propagation of errors

For $x=f(u, v, \ldots)$, the error propagation equation is:
$\sigma_{x}^{2} \approx \sigma_{u}^{2}\left(\frac{\partial x}{\partial u}\right)^{2}+\sigma_{v}^{2}\left(\frac{\partial x}{\partial v}\right)^{2}+\cdots+2 \sigma_{u v}^{2}\left(\frac{\partial x}{\partial u}\right)\left(\frac{\partial x}{\partial v}\right)+\cdots$
where the covariance, $\sigma_{\mathrm{uv}}{ }^{2}$, is defined as
$\sigma_{u v}^{2} \equiv \lim _{N \rightarrow \infty}\left[\frac{1}{N} \sum\left[\left(u_{i}-\overline{u_{i}}\right)\left(v_{i}-\bar{v}_{i}\right)\right]\right]$
Fortunately, fluctuations in measurements of u and v are often uncorrelated, and this term vanishes:
$\sigma_{x}^{2} \approx \sigma_{u}^{2}\left(\frac{\partial x}{\partial u}\right)^{2}+\sigma_{v}^{2}\left(\frac{\partial x}{\partial v}\right)^{2}+\cdots$

1.2.9 Error analysis: Propagation of errors (example)

Derive one error propagation formula as example. If $x=a e^{ \pm b u}$ then:

$$
\frac{\partial x}{\partial u}= \pm a b e^{ \pm b u}= \pm b x
$$

and the relative uncertainty becomes
$\frac{\sigma_{x}}{x}= \pm b \sigma_{u}$
or if $x=a^{ \pm b u}$ then
$\frac{\sigma_{x}}{x}= \pm(b \ln a) \sigma_{u}$

1.2.9 Error Analysis: Specific error propagation formulae

Derivations for the following can be found in most text books on errors:

$$
\begin{array}{ll}
x^{2}=a u \pm b v & \sigma_{x}^{2}=a^{2} \sigma_{u}^{2}+b^{2} \sigma_{v}^{2} \pm a b \sigma_{u v}^{2} \\
x=a u v & \frac{\sigma_{x}^{2}}{x^{2}}=\frac{\sigma_{u}^{2}}{u^{2}}+\frac{\sigma_{v}^{2}}{v^{2}}+2 \frac{\sigma_{u v}^{2}}{u v} \\
x=\frac{a u}{v} & \frac{\sigma_{x}^{2}}{x^{2}}=\frac{\sigma_{u}^{2}}{u^{2}}+\frac{\sigma_{v}^{2}}{v^{2}}-2 \frac{\sigma_{u v}^{2}}{u v} \\
x=a u^{ \pm b} & \frac{\sigma_{x}}{x}= \pm b \frac{\sigma_{u}}{u} \\
x=a e^{ \pm b u} & \frac{\sigma_{x}}{x}= \pm b \sigma_{u} \\
x=a^{ \pm b u} & \frac{\sigma_{x}}{x}= \pm(b \ln a) \sigma_{u} \\
x=a \ln (\pm b u) & \sigma_{x}=a \frac{\sigma_{u}}{u}
\end{array}
$$

1.2.10 Chauvenet's criterion: elimination of data points

Example: 100 measurements of the length of an object (parent mean 10 cm , standard deviation 0.5 cm

- one measurement is recorded as 98.2 cm : blunder

But what if we saw a measurement of, say, 12.1 cm ? 4 standard deviations away from mean -0.06% probability, so in 100
measurements only expect to collect 0.06 such events.
Chauvenet's criterion states

- discard a data point if we expect less than half an event to be further from the mean than the suspect point
This will have a bigger effect on the standard deviation than on the mean, so beware of removing further points!
'So unexpected was the hole that for several years computers analysing ozone data had systematically thrown out the readings that should have pointed to its growth.'

New Scientist, 31 March 1988

1.2.10 Elimination of data points: practical rules

1) Calculate mean value and average deviation d_{av} of points exc/uding the suspect point

$$
d_{\mathrm{av}}=\frac{1}{N} \sum_{i=1}^{N}\left|d_{i}\right| \quad d_{i}=x_{i}-\bar{x}
$$

2) Discard a point if it lies more than $4 d_{a v}$ from this mean value
3) Do not discard more than one point in 5
4) Do not discard two data values if they are the same.

1.3.1 Weighting data: weighted means

Problem: some data points might be measured with better or worse precision than others.
Assume parent distributions with the same mean μ but different standard deviations σ_{1}.
Assign to each data point x_{i}, its own standard deviation σ_{l}, obtain:
$P\left(\mu^{\prime}\right)=\prod_{i=1}^{n}\left(\frac{1}{\sigma_{i} \sqrt{2 \pi}}\right) \exp \left[-\frac{1}{2} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma_{i}}\right)^{2}\right]$
Method of maximum likelihood states that most probable value for μ ' is the one that gives maximum value to $P\left(\mu^{\prime}\right)$, so minimise the argument in the exponential:
$-\frac{1}{2} \frac{d}{d \mu^{\prime}} \sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma_{i}}\right)^{2}=\sum\left(\frac{x_{i}-\mu^{\prime}}{\sigma_{i}^{2}}\right)=0$

1.3.1 Weighting data: weighted means and errors

This gives the most probable value as the weighted average of the data points:
$\mu^{\prime}=\frac{\sum\left(x_{i} / \sigma_{i}^{2}\right)}{\sum\left(1 / \sigma_{i}^{2}\right)}$
and the general formula for the uncertainty in the weighted mean is:
$\sigma_{\mu}^{2}=\frac{1}{\sum\left(1 / \sigma_{i}^{2}\right)}$
2.1.1 Linear least-squares data fitting : X^{2} minimisation

To maximise the likelihood, minimise the quantity
$\sum_{i=1}^{N}\left(\frac{y_{i}-f\left(x_{i} ; a\right)}{\sigma_{i}}\right)^{2}$
i.e., make the weighted sum of the squared differences as small as possible - the method of least squares
This weighted sum is known as χ^{2}
Least squares seems a reasonable estimator, appears to work in practice
Other estimators, e.g., least absolute deviation, might, in some circumstances, be better.

2.1.3 Least squares fit to a straight line: confidence limits

For a parameter z we can write the variance $\sigma_{z}{ }^{2}$, using the error propagation method
$\sigma_{z}^{2}=\sum\left[\sigma_{i}^{2}\left(\frac{\partial z}{\partial y_{i}}\right)^{2}\right]$
For the straight line case, we obtain
$\sigma_{a}^{2}=\frac{1}{\Delta} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}}$
$\sigma_{b}^{2}=\frac{1}{\Delta} \sum \frac{1}{\sigma_{i}^{2}}$
$\Delta=\sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}}-\left(\sum \frac{x_{i}}{\sigma_{i}^{2}}\right)^{2}$

2.1.1 Linear least-squares data fitting

Data sample $\left\{\left(x_{i}, y_{i}\right)\right\}, x_{i}$ known exactly, y_{i} have been measured, each with some known resolution σ_{i}.
y is function f of x, depends on a parameter a
Invoking the CLT, the probability of a particular y_{i}, for a given x_{i}, is

$$
P\left(y_{i} ; a\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{y_{i}-f\left(x_{i} ; a\right)}{\sigma_{i}}\right)^{2}\right]
$$

and the probability for the complete data set is then given by
$P(y ; a)=\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{y_{i}-f\left(x_{i} ; a\right)}{\sigma_{i}}\right)^{2}\right]$
$P(y ; a)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \exp \left[-\frac{1}{2} \Sigma\left(\frac{y_{i}-f\left(x_{i} ; a\right)}{\sigma_{i}}\right)^{2}\right]$

2.1.2 Least squares fit to a straight line

If $y_{0}=a_{0}+b_{0} x$ then χ^{2}, the sum to be minimised is
$\sum_{i=1}^{N}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2}$
To find the values of a and b which yield minimum of χ^{2}, set to zero the partial derivatives of χ^{2} with respect to each of the parameters.
These equations can then be rearranged as a pair of linear
simultaneous equations in the unknown parameters a and b, solution (preferably by the method of determinants) yields the following:

$$
\begin{aligned}
& a=\frac{1}{\Delta}\left(\sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \sum \frac{y_{i}}{\sigma_{i}^{2}}-\sum \frac{x_{i}}{\sigma_{i}^{2}} \sum \frac{x_{i} y_{i}}{\sigma_{i}^{2}}\right) \\
& b=\frac{1}{\Delta}\left(\sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i} y_{i}}{\sigma_{i}^{2}}-\sum \frac{x_{i}}{\sigma_{i}^{2}} \sum \frac{y_{i}}{\sigma_{i}^{2}}\right) \\
& \Delta=\sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}}-\left(\sum \frac{x_{i}}{\sigma_{i}^{2}}\right)^{2}
\end{aligned}
$$

2.1.3 Straight line confidence limits: problems

What if we don't know the individual σ 's of the data points?

- set all of individual σ,'s to 1

OK for parameter estimates, but error estimates will be incorrect, as they have been derived in part from the individual σ 's (set to 1). For normally distributed errors, expect the value of the reduced χ^{2} to approach 1 . So, without any justification we simply assume that this is the case for our fit.
Multiply initial estimates of σ_{a} and σ_{b} by $\left(\chi^{2} /(N-2)\right)^{1 / 2}$, using the value of χ^{2} computed using the fitted parameters a and b
This gives the best estimate for the probable uncertainties.
If we define σ^{2} as

$$
\sigma^{2}=\sum_{i=1}^{N}\left(y_{i}-a-b x_{i}\right)^{2} \quad \text { then }
$$

2.1.3 Straight line confidence limits: unweighted fit

$\sigma^{2}=\sum_{i=1}^{N}\left(y_{i}-a-b x_{i}\right)^{2}$
$\Delta=N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}$
$a=\frac{1}{\Delta}\left(\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum x_{i} y_{i}\right)$
$b=\frac{1}{\Delta}\left(N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}\right)$
$\sigma_{a}{ }^{2}=\frac{\sigma^{2}}{\Delta} \sum x_{i}^{2}$
$\sigma_{b}{ }^{2}=N \frac{\sigma^{2}}{\Delta}$

2.1.4 Least squares fit to a straight line: testing the fit

Linear correlation coefficient: measures how well correlated y is with x t has a value of 0 for no correlation, and ± 1 for complete correlation. Better are the following tests:
a) look at the fit! Or perhaps more usefully, examine the residuals $\left(\left(y_{i}-f\left(x_{i}\right)\right)\right.$ versus $\left.x_{i}\right)$: are they evenly distributed about 0 ?
b) if you have estimates of the individual σ 's then use a program which can calculate a 'goodness-of-fit probability', Q .
Q is the probability that a value of χ^{2} as poor (great) as the best fit value should occur by chance. If
$Q>0.1$ - goodness of fit is believable.
$Q>0.001$ - may be acceptable if errors are nonnormal or moderately underestimated.
$Q<0.001$ - model and/or estimation procedure suspect. Best then to use unweighted fit.

2.1.5 Student's \boldsymbol{t}-distribution (again)

Say you want to measure the rate coefficient k of the reaction $\mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}$
You operate under pseudo-first-order conditions (an excess of HCl) and obtain 6 values of $k_{1 \text { st }} \mathrm{vs}[\mathrm{HCl}]$ A linear plot of k 1st $\mathrm{vs}[\mathrm{HCl}]$ gives
$k=4.102 \times 10^{-10} \mathrm{~cm}^{3}$ molecule $^{-1} \mathrm{~s}^{-1}$ and $\sigma=0.080 \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$
Your friend who does atmospheric modelling wants the value with 95% error limits. So, do you just quote $k \pm 2 \sigma$? Why not?
The value of σ obtained does take into account the number of data points: for small samples, errors are not distributed according to a Gaussian distribution, but rather
Student's \boldsymbol{t}-distribution, which
varies according to the number of degrees of freedom, v , and especially for small v , has larger tails at the side.
Presented as table of t for differing confidence limits and v 6 points, less 2 parameters gives $v=4$, and $0.95=2.776$, so quote: $k=\left(4.10 \pm 0.22^{\mathrm{a}}\right) \times 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$
${ }^{\text {a }}$ errors quoted are \pm to random error where t is the appropriate value of Student's t-distribution for the 95% point.

2.2.1 Non-linear least-squares fitting: Introduction

Standard linear least squares methods restricted to fitting functions that are linear in parameters a_{k} :
$y(x)=\sum_{k=1}^{M}\left[a_{k} f_{k}(x)\right]$
Minimising χ^{2} only yields coupled equations linear in M unknown parameters if fitting functions $y(x)$ linear in the parameters Cannot obtain an analytic solution for minimising χ^{2} in non-linear case Non-linear functions are very common in nature, for example, any process whose rate depends upon the magnitude of a population, as is the case for first-order chemical reactions, will behave in this way: $\mathrm{A} \rightarrow$ products
rate of reaction $=\frac{-d[\mathrm{~A}]}{d t}=k[\mathrm{~A}]$
$[\mathrm{A}]_{t}=[\mathrm{A}]_{0} \exp (-k t)$

2.1.6 General linear least-squares

Linear least-squares applicable to any function linear in its parameters. An example would be the polynomial
$y(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{M} x^{M-1}$
could include sines and cosines etc., so long as the overall function is linear in its parameters a_{k} :
$y(x)=\sum_{k=1}^{M}\left[a_{k} f_{k}(x)\right]$
Routines available for generalised linear least squares optimisation, relying on matrix methods.
With the advent of fast computers, largely superseded by generalised non-linear routines.

2.2.2 Non-linear least-squares fitting: Exponential decay

For some cases, for example the single exponential decay with no background, can linearise function, and then use linear least squares: $[\mathrm{A}]_{t}=[\mathrm{A}]_{0} \exp (-k t)$
$\ln \left(\frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}\right)=-k t$
Warning: this will place undue weight on data at low signal levels Example: often, we measure rates of reactions under pseudo-first-order conditions, and measure a laser-induced fluorescence (LIF) signal which is proportional to the concentration of the decaying species: i.e. LIF signal $\propto[A]$

2.2.2 Non-linear least-squares fitting: Exponential decay

2.2.2 Non-linear least-squares fitting: Exponential decay

2.2.3 NLLSQ: methods of minimising χ^{2}

Consider χ^{2} surface, or hypersurface, as a $f\left(a_{k}\right)$. Various numerical techniques are available for finding the minimum:
grid search: calculate grid of χ^{2} values by varying each a_{k} in turn to find minimum value

- robust, but extremely inefficient
gradient search: vary all parameters simultaneously, and go down direction of 'steepest descent'
- more efficient at first than grid search, but very inefficient near the minimum where gradient $\rightarrow 0$
expansion methods: expand the χ^{2} surface as an analytic function, e.g., a parabola, then calculate minimum directly
- works well close to the minimum, but if started far away then results will be in error, and may even tend towards maximum
Marquardt method: see on

2.2.4 NLLSQ: The Marquardt method

- combines both gradient search and expansion methods, using an adjustable parameter λ to switch between an initial gradient search far from the minimum to a parabolic expansion near the minimum
- though implementation is most complex of methods discussed, it is clearly best, used in most packages (e.g., Igor Pro, Origin)
- Marquardt's algorithm uses matrix algebra, with λ initially set (at 0.001) to take advantage of both gradient and expansion methods:
- an initial value for χ^{2} is calculated, and then a step is taken according to the combined gradient/expansion algorithm.
- If χ^{2} increases, λ is increased by a factor 10, putting more emphasis on the line of steepest descent.
- If χ^{2} decreases, λ is decreased by a factor 10 , tending towards the expansion method
- repeated until χ^{2} ceases to vary (by more than a set tolerance).
- minimum will have been calculated using a parabolic expansion, curvature yields the covariance matrix and hence the errors.

2.2.4 NLLSQ: The Marquardt method

 time, t / ns

2.2.4 NLLSQ: The Marquardt method (cont)

As with any method of fitting, we make a basic assumption about the functional form of our data. In the same way as for straight line data we must assess how well the data fit this form:
a) look at the fit! Or perhaps more usefully, the residuals $\left(\left(y_{i}-f\left(x_{i}\right)\right)\right.$ versus x_{i}): are they evenly distributed about 0 ?
b) examine a goodness-of-fit criteria such as the value of χ^{2}

The Marquardt algorithm, while very powerful, is not fool-proof. It is still possible to find yourself stuck in a local minimum on the χ^{2} surface, for example.
Essential to examine the fit and, if necessary, choose alternative starting values or step sizes.

2.3 Other methods of data fitting

Sometimes standard linear or non-linear least-squares data fitting may fail (as mentioned above). This may be due to (for example)

- local minima when fitting complex functions with many parameters
- undue influence of outliers - data points lying far from the mean whose influence is over-emphasised in LSQ methods
This motivates the use of other so-called robust methods for data fitting, including so-called M -estimates (following from maximum-likelihood arguments) such as
- least absolute deviation
or other robust minimisation methods such as the
- downhill simplex algorithm
as well as techniques involving a priori knowledge of the behaviour (often time-dependent behaviour) of model parameters and their covariances such as
- Kalman filtering

2.3 Other methods of data fitting

Figure from Numerical Recipes in Fortran. The Art of Scientific Computing, 2nd Edition, 1992, ISBN 0-521-43064-X

Figure 10.0.1. Extrema of a function in an interval. Points A, C, and E are local, but not global maxima. Points B and F are local, but not global minima. The global maximum occurs at G, which is on the boundary of the interval so that the derivative of the function need not vanish there. The
global minimum is at D. At point E. derivatives higher than the first vanish, a situation which can cause difficulty for some algorithms. The points X, Y, and Z are said to "bracket" the minimum F_{5} since Y is less than both X and

2.3.1 Maximum likelihood estimation (cont)

For normally distributed errors (Gaussian error distribution) the probability of the data set is the product of the probabilities of each point, as in Section 2.1.1

$$
\begin{aligned}
& P\left(y ; a_{1}, \ldots a_{N}\right)=\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{y_{i}-f\left(x_{i} ; a_{1}, \ldots a_{N}\right)}{\sigma_{i}}\right)^{2}\right] \\
& P\left(y ; a_{1}, \ldots a_{N}\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \exp \left[-\frac{1}{2} \sum\left(\frac{y_{i}-f\left(x_{i} ; a_{1}, \ldots a_{N}\right)}{\sigma_{i}}\right)^{2}\right]
\end{aligned}
$$

and maximising this probability is the equivalent to minimising the negative of its logarithm, namely

$$
\chi^{2}=\sum\left(\frac{y_{i}-f\left(x_{i} ; a_{1}, \ldots a_{N}\right)}{\sigma_{i}}\right)^{2}
$$

which leads to the least squares methods we have been studyng.
HOWEVER, this is only strictly correct with Gaussian (Normal) errors. In reality, "outliers" exist which can skew the fit, and need robust methogs.

2.3.2 Robust estimation - local M-estimates

If we know our measurement errors are not normally distributed then we would write for the probability of the data given the parameters

$$
P\left(y ; a_{1}, \ldots a_{N}\right)=\prod_{i=1}^{N}\left\{\exp \left[-\rho\left(y_{i}, y\left(x_{i} ; a_{1}, \ldots a_{N}\right)\right)\right] \Delta y\right\}
$$

where ρ is negative logarithm of the probability density, and we would want to minimise

$$
\sum_{i=1}^{N} \rho\left(y_{i}, y\left(x_{i} ; a_{1}, \ldots a_{N}\right)\right)
$$

Very often, ρ depends not independently on its two arguments but only on their difference, usually scaled by some weighting factors σ_{i} and the M-estimate is said to be local and we can

$$
\text { minimise over } a_{1} \ldots a_{M}: \sum_{i=1}^{N} \rho\left(\frac{y_{i}-y\left(x_{i} ; a_{1}, \ldots a_{N}\right)}{\sigma}\right)
$$

where the function $\rho(z)$ is a function of a single variable $z \equiv\left[y_{i}-y\left(x_{i}\right)\right] / \sigma_{i}$
If define derivative of $\rho(z)$ as a function $\psi(z) \equiv \frac{d \rho(z)}{d z}$
then normally distributed errors will give $\rho(z)=\frac{1}{2} z^{2} \quad \psi(z) \equiv z \quad$ (nermal)

2.3.2 Robust estimation - local M-estimates (cont)

If the errors are distributed as a double or two sided exponential
then
$\operatorname{Prob}\left\{y_{i}-y\left(x_{i}\right)\right\} \sim \exp \left(-\left|\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right|\right)$
and $\quad \rho(z)=|z| \quad \psi(z) \equiv \operatorname{sgn}(z)$
(double exponential)

Maximum likelihood estimator is obtained by minimising mean absolute deviation - least absolute deviation method (available in Igor) Another distribution with more extensive tails is the Lorentzian distribution
$\operatorname{Prob}\left\{y_{i}-y\left(x_{i}\right)\right\} \sim \frac{1}{1+\frac{1}{2}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}}$
$\rho(z)=\log \left(1+\frac{1}{2} z^{2}\right) \psi(z)=\frac{z}{1+\frac{1}{2} z^{2}} \quad$ (Lorentzian)
ψ increases with deviation then decreases - true outliers are not counted

2.3.3 Robust estimation - Simplex (Nelder-Mead)

 algorithmEven when errors normally distributed (and we can use χ^{2} minimisation) the Marquardt algorithm can fails due to local minima and/or discontinuities on the χ^{2} surface.
One (expensive) solution is the simplex algorithm for χ^{2} minimisation

- a simplex is a special polytope of $n+1$ vertices in n dimensions e.g. a line segment on a line or a triangle on a plane
- a simplex of $n+1$ points is set up in the n-dimensional space of the variables (for example, in 2 dimensions the simplex is a triangle)
- vertex of the simplex with the largest χ^{2} value is reflected in the centre of gravity of the remaining vertices and the χ^{2} value at this new point is compared with the remaining χ^{2} values
- depending on the outcome of this test the new point is accepted or rejected, a further expansion may be made, or a contraction.
- when no further progress can be made the sides of the simplex are reduced in length and the method is repeated until no further improvement (according to predefined tolerance)
- the method is very robust but can still be susceptible to local minima

Simplex algorithm

By Nicoguaro (Own work) [CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

2.3.4 Robust estimation - other techniques

Sometimes we may have a priori knowledge about probable values and probable uncertainties of some parameters we are trying to estimate from a data set:

- neither completely freezing a parameter at a predetermined value
" nor completely leaving it to "float" (be determined by the data set)
- the formalism for this is called "use of a priori covariances"

Alternatively, in signal processing and control theory we may wish to "track" (maintain an estimate of) a time varying signal in presence of noise

- if parameters vary only slowly, Kalman filtering may be used to produce best parameter estimates as a function of time
- employs Bayesian inference and estimates a joint probability distribution over the variables for each timeframe.
- used in e.g. phase-locked loop (PLL) in radio receivers

We may wish to apply other techniques (e.g. filtering, deconvolution) before fitting the data. The simplest of these is smoothing.

2.3.5 Data Smoothing

- Concept of data smoothing lies in a murky area, just beyond the fringe of these better posed and more highly recommended techniques:
- least squares fitting to a parametric model
- optimal filtering of a noisy signal
- brutal honesty: show your data as it really is!
- However, it is more useful to have some techniques available which are more objective than
"the smooth curve was drawn by eye through the original data"
- through each individual data point?
- through the forest of scattered points?
- by a draftsman?
- or by someone who knows the hypothesis the data are supposed to substantiate?
- Data smoothing: "art not science"
- not supposed to be tied to any particular functional form $y(x)$. However, it clearly involves some notion of averaging. Smoothing a set of values will not be the same as smoothing their logarithms. 65

2.3.5 Data Smoothing (cont)

- Some common smoothing algorithms are
- n-point smoothing
- each point on the 'smoothed' curve is an average of n neighbours
- quick, easy to program, but crude
- Lowess smoothing
- locally weighted regression
- each point on the curve is produced by a regression of data points close by, with the closest points more heavily weighted
- Low-pass filtering
- removes high frequency components from signal
- best algorithms based on Fourier transforms
- see later for more on filtering

