
DataFit Data analysis and modelling 1-2 notes

1

M2 Physics and Instrumentation
S3M Doctoral School Training course

Data acquisition and analysis

Module DataFit: Data analysis and modelling

Lectures – Ian Sims (ian.sims@univ-rennes.fr)
Tutorials – Elliot Ogden (elliot.ogden@univ-rennes.fr)

Website: https://perso.univ-rennes1.fr/ian.sims/DataFit/
Institut de Physique de Rennes

Administration

15 hours lectures – Ian Sims (ian.sims@univ-rennes.fr)
15 hours tutorials – Elliot Ogden (elliot.ogden@univ-rennes.fr)

10 sessions Fridays 09h00 - 12h00 starting on 08/09/2023 until 
24/11/2023  inclusive, but no course on Friday 15/09/2023 or 
03/09/2023. 
PNRB C@mpus numérique de Bretagne Salle TP Beaulieu
Connection from remote sites by video link

Website: https://perso.univ-rennes1.fr/ian.sims/DataFit/
(for lecture notes, tutorial sheets)

Assessment will be by individual tutorial sheet

References

Philip R. Bevington and D. Keith Robinson 
Data Reduction and Error Analysis for the Physical Sciences, 3rd ed.
McGraw-Hill, 2002, ISBN 0072472278

John R. Taylor
An Introduction to Error Analysis: The Study of Uncertainties in 
Physical Measurements, 2nd ed.
University Science Books, U.S., 1997, ISBN 093570275X
(French translation available in Library ISBN 2100043072)

Or more recent editions.

3

Part 1 – Error Estimation and Part 2 – Data Fitting
Course Contents
 

General Introduction: Data fitting and error estimation in the physical 
sciences.  
Part 1 – Error estimation 
Error estimation and statistical description of data; Introduction: 
Uncertainties in measurement (accuracy and precision); Distributions and 
averages; Central limit theorem; Error analysis – internal and external errors; 
Simple error estimation – propagation of errors; Rejection of outliers – 
Chauvenet’s criterion; Weighted means and weighted errors. 
Part 2 – Data fitting 
Linear Least-squares data fitting: χ2 minimisation; Straight line fit; Confidence 
limits; Testing the fit; Student’s t-distribution; General linear least squares.  
Non-linear least squares data fitting: Introduction; Examples of non-linear 
functions common in nature; Exponential decay; Methods of minimising χ2; The 
Marquardt algorithm.  
Other methods of data fitting: Least absolute deviation; Maximum likelihood 
method; Robust estimation; Data smoothing 
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1.1 Introduction: The importance of error estimation
As physical scientists, much of what we do involves measurement.
A result without an associated error estimation is of little use.
Take, for example, these three results for the rate coefficient between 
CN and O2 at room temperature:

– k = 2.3018 × 10-11 cm3 molecule-1 s-1

– k = (2.3018 ± 0.05) × 10-11 cm3 molecule-1 s-1

– k = (2.3 ± 0.1a) × 10-11 cm3 molecule-1 s-1

aerrors quoted correspond to ± 2𝜎 statistical error only.
It is essential that 

– we have some understanding of errors, and 
– we are able to estimate the error associated with any particular 

measurement.
Important also to minimise errors! Involves repeating measurements, 
and data analysis/reduction.
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1.2.1 Error Estimation: Uncertainties in measurement

Let’s have some definitions: what is error?
Error: “the difference between an observed or calculated value and the 
true value”
We assume there is a ‘true value’ to the quantity we are trying to 
measure. Is the difference between our quoted value and this ‘true 
value’ the error? 
If I knew the error, I’d know the ‘true value’ and quote this instead! So, 
the best I can do is quote my best estimate of both the measured value 
and the probable error. 
This isn’t a course on probability and statistics. Instead, I’ll recap some 
of the main results as and when they are needed. 

6
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1.2.2 Accuracy and Precision

Accuracy  
 what’s the difference?

Precision 

Accuracy : 
• a measure of how close the result of the experiment is to its 

true value

Precision : 
• a measure of how well the result has been determined, 

without reference to its agreement with the true value
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1.2.3 Types of error
What are the different types of error? 
• mistakes or blunders in measurement or computation

– we will not consider these further: repeated measurement and 
careful checking needed to identify and avoid

• random error
• systematic error 
Random error: 
• fluctuations in observations yielding results that differ from 

experiment to experiment, need repeated measurements to give 
precise results.

Systematic error: 
• a ‘bias’ which makes results differ from the ‘true’ values by a 

reproducible discrepancy.
– hard to detect and not easily studied by statistical analysis.
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1.2.3 Types of error: significant figures
Both types of error can be reduced by paying careful attention to 
experiment, but
systematic errors may go undetected as we often lack the ability to 
estimate them.

Significant figures
Precision of experimental result implied by the number of digits 
recorded – though uncertainty should be quoted
Quote one more sig. fig. than dictated by precision, to reduce 
rounding errors
e.g., measure a time of t = 1.203 s, but we know that our real 
precision is only ± 0.1 s
so, quote t = (1.20 ± 0.1) s
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1.2.4 Parent and Sample Distributions
Parent distribution
• a hypothetical distribution which determines the probability of 

getting any particular observation.

Sample distribution
• hypothesise that the measurements are samples from the 

parent distribution, and they form the sample distribution. 
• In the limit of infinite measurements, the sample distribution 

becomes the parent distribution.
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1.2.4 Parent and Sample Distributions (contd)
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1.2.5 Mean, Median and Mode

If we make N measurements x1, x2, x3,… and so on, up to a final 
measurement xN, we write the sum of these measurements as follows:
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The mean of our experimental sample distribution is taken as

while the mean, μ, of the parent population is defined as 
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1.2.5 Mean, Median and Mode (contd)

The median of the parent population, μ½, is defined as that value for 
which, in an infinite number of determinations xI, half the 
determinations will be less than the median and half will be greater:

2
1)()( ½½ =³=< µµ ii xPxP

Not often used as a statistical parameter. 

The mode, or most probable value, μmax, of the parent population is 
defined as that value for which the parent distribution has the greatest 
value. In the limit of a large number of observations, this value will 
probably occur most often:

)()( maxmax µµ ¹³ xPP

For a symmetrical distribution these three quantities will be identical. 
For an asymmetrical distribution they will differ as shown.
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1.2.5 Mean, Median and Mode (contd)
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1.2.6 Deviations from the Mean

Average deviation, α

Inconvenient for statistical analysis. Better is standard deviation, σ, 
or the variance σ2. 
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σ is associated with the second moment of the data about the 
mean. We can only estimate the parameters of the parent 
population by measuring the standard deviation of the sample 
population, s:
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1.2.7 Probability Distributions

Three main types of probability distribution:
§ binomial distribution
§ Poisson distribution
§ Gaussian distribution

§ binomial distribution applied to experiments where result is one 
of a small number of possible final states, e.g. ‘heads’ or ‘tails’. 
The other two distributions considered as limiting cases of 
binomial distribution.

§ Poisson distribution appropriate for counting experiments e.g., 
radioactive decay

§ Gaussian or normal error distribution is most important as 
seems to describe the distribution of random observations for 
most experiments.
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1.2.7 Probability Distributions: the Binomial Distribution

If 
§ probability of observing ‘heads up’ any coin is p and
§ tails is q (= 1 – p), 

then the probability for observing each combination of x heads and n-x 
tails with n coins is pxqn-x

The probability PB(x; n, p) of observing x of the n items to be in a state 
with probability p is given by the binomial distribution
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The mean of the binomial distribution is simply 
μ = np

and the variance is given by
σ2 = np(1 – p)
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1.2.7 Probability Distributions: the Poisson Distribution

Approximation to binomial distribution for special case where average 
number of successes is much smaller than possible number, i.e. 

μ << n and p << 1
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The mean is simply given by the parameter μ and the standard 
deviation is equal to the square root of the mean.
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1.2.7 Probability Distributions: the Gaussian Distribution

Approximation to binomial distribution where np >> 1,
also limiting case for Poisson distribution when μ becomes large.
It is defined as 
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or as the standard Gaussian distribution with z = (x – μ)/σ:
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Mean and standard deviation correspond to the parameters μ and σ
Probabilities are about 68% and 96% that a given measurement will fall 
within one or two standard deviations of the mean.
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1.2.8 The Central Limit Theorem

This is a very useful theorem, the proof of which justifies our use of 
the Gaussian distribution. It states:
If you take the sum X of N independent variables, xi, where i = 
1,2,3,…,N, each taken from a distribution of mean μI and variance σi

2, 
the distribution for X
 a) has an expectation value <X> = Σ μI 
 b) has variance V(X) = Σ μi

2

 c) becomes Gaussian as N → ∞
CLT applies only when the variables are independent
c) is the reason that the Gaussian is so important. 
Proofs of the CLT may be found in many text books. 
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1.2.8 Central Limit Theorem: Repeated measurements
Suppose we measure the same quantity many times. We can use the 
CLT in a simple form since all the μI have the same value – call it μ – 
and all σi have the same value σ. 
From the CLT we have 

<X> = Σ μ = Nμ
and, in terms of the average 

µ== x
N
Xx            

and provided the measurements are independent the variance of the 
average is just the variance of X, divided by N2
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thus, the standard deviation of this average falls as N–½
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1.2.8 Repeated measurements (cont)
Reminder: for a measurement of a single parameter with normally 
distributed errors, we have the standard deviation s of the sample 
population (i.e., our measurements) given by

( ) 2
1

2

1
1

þ
ý
ü

î
í
ì -

-
= å xx
N

s i

We are usually relaxed about writing σ instead of s.
However, what we really want to know are the confidence limits for our 
measurement. 
For this, we first need the standard deviation of the distribution of our 
sample mean about the parent mean μ. This is called the standard error, 
σstd, and is related to the standard deviation of our sample as follows:

If N is large (or we think of the ‘parent population’), 68% of our data fall 
within ± σ of the mean, and 96% within ±2 σ.
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1.2.8 Repeated measurements (cont)
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1.2.8 Repeated measurements (cont)
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1.2.8 Repeated measurements (cont)

For small N, we must use the so-called Student’s t-factor to define our 
confidence limits.
This is usually defined at the 95% confidence limit, so our confidence 
range can be defined as ± (t0.95 × σstd)
Values of t can be found in many statistics textbooks, and they depend 
on the degrees of freedom, ν (= N – no. of parameters ≡ N – 1 in this 
case)
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1.2.8 Repeated measurements (cont)
ν (= N – 1 in this 

case)
t0.95

1 12.706
2 4.303

3 3.182

4 2.776

5 2.571

6 2.447

7 2.365

8 2.306

9 2.262

10 2.228

11 2.201

12 2.179

20 2.086

30 2.042

60 2.000

∞ 1.960
29

1.2.9 Error analysis

Instrumental and Statistical Uncertainties
Instrumental uncertainties arise from imprecision in the measuring 
instrument 
Two ways of estimating the uncertainty:
The external method of considering the equipment and the experiment 
itself, e.g.  precision of the measuring scale 
The internal method, calculate the standard deviation from the spread 
of measurements.
Statistical uncertainties arise from statistical fluctuations in the 
collections of finite numbers of counts over finite periods of time, e.g., 
photon counting experiments. 
We can directly estimate the standard deviation in this case, according 
to the Poisson distribution:
σ = √μ
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1.2.9 Error analysis: Propagation of errors

For x = f(u, v, …), the error propagation equation is:
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Fortunately, fluctuations in measurements of u and v are often uncorrelated, 
and this term vanishes:

+÷
ø
ö

ç
è
æ
¶
¶

s+÷
ø
ö

ç
è
æ
¶
¶

s»s
2

2
2

22

v
x

u
x

vux

31

1.2.9 Error analysis: Propagation of errors (example)
Derive one error propagation formula as example. If x = ae±  bu then:

bxabe
u
x bu ±=±=
¶
¶ ±

and the relative uncertainty becomes

u
x b
x

s±=
s

or if x = a±  bu then

u
x ab
x

s±=
s )ln(
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1.2.9 Error Analysis: Specific error propagation formulae
Derivations for the following can be found in most text books on errors:
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1.2.10 Chauvenet’s criterion: elimination of data points
Example: 100 measurements of the length of an object (parent mean 
10 cm, standard deviation 0.5 cm

– one measurement is recorded as 98.2 cm: blunder 
But what if we saw a measurement of, say, 12.1 cm? 4 standard 
deviations away from mean – 0.06% probability, so in 100 
measurements only expect to collect 0.06 such events.
Chauvenet’s criterion states 

– discard a data point if we expect less than half an event to be 
further from the mean than the suspect point. 

This will have a bigger effect on the standard deviation than on the 
mean, so beware of removing further points!

‘So unexpected was the hole that for several years computers 
analysing ozone data had systematically thrown out the readings that 
should have pointed to its growth.’
 New Scientist, 31 March 1988
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1.2.10 Elimination of data points: practical rules
1) Calculate mean value and average deviation dav of points excluding 
the suspect point
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2) Discard a point if it lies more than 4dav from this mean value
3) Do not discard more than one point in 5
4) Do not discard two data values if they are the same.
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1.3.1 Weighting data: weighted means

Problem: some data points might be measured with better or worse 
precision than others. 
Assume parent distributions with the same mean μ but different 
standard deviations σI. 
Assign to each data point xi, its own standard deviation σI, obtain:

ú
ú
û

ù

ê
ê
ë

é
÷
ø
ö

ç
è
æ

s
µ¢-

-÷
ø
ö

ç
è
æ

ps
=µ¢ åÕ

=

2

1 2
1exp

2
1)(

i

i
n

i i

xP

Method of maximum likelihood states that most probable value for μ’ 
is the one that gives maximum value to P(μ’), so minimise the 
argument in the exponential:
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This gives the most probable value as the weighted average of the 
data points:
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and the general formula for the uncertainty in the weighted mean is:
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1.3.1 Weighting data: weighted means and errors
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2.1.1 Linear least-squares data fitting

Data sample {(xi, yi)}, xi known exactly, yi have been measured, each 
with some known resolution σi. 
y is function f of x, depends on a parameter a
Invoking the CLT, the probability of a particular yi, for a given xi, is
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and the probability for the complete data set is then given by

38

2.1.1 Linear least-squares data fitting : χ2 minimisation
To maximise the likelihood, minimise the quantity 
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i.e., make the weighted sum of the squared differences as small as 
possible – the method of least squares
This weighted sum is known as 𝝌2
Least squares seems a reasonable estimator, appears to work in 
practice
Other estimators, e.g., least absolute deviation, might, in some 
circumstances, be better.
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2.1.2 Least squares fit to a straight line
If y0 = a0 + b0x then 𝝌2, the sum to be minimised is
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To find the values of a and b which yield minimum of 𝝌2, set to zero the 
partial derivatives of 𝝌2 with respect to each of the parameters. 
These equations can then be rearranged as a pair of linear 
simultaneous equations in the unknown parameters a and b, solution 
(preferably by the method of determinants) yields the following:
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2.1.3 Least squares fit to a straight line: confidence limits
For a parameter z we can write the variance σz

2, using the error 
propagation method
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For the straight line case, we obtain
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2.1.3 Straight line confidence limits: problems

What if we don’t know the individual σI’s of the data points? 
– set all of individual σI’s to 1

OK for parameter estimates, but error estimates will be incorrect, as 
they have been derived in part from the individual σI’s (set to 1).
For normally distributed errors, expect the value of the reduced 𝝌2 to 
approach 1. So, without any justification we simply assume that this is 
the case for our fit. 
Multiply initial estimates of σa and σb by (𝝌2 / (N – 2))½, using the value 
of 𝝌2 computed using the fitted parameters a and b
This gives the best estimate for the probable uncertainties.
If we define σ2 as 

then      )(
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2.1.3 Straight line confidence limits: unweighted fit
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2.1.4 Least squares fit to a straight line: testing the fit
Linear correlation coefficient: measures how well correlated y is with x 
It has a value of 0 for no correlation, and ±1 for complete correlation. 
Better are the following tests:
a) look at the fit! Or perhaps more usefully, examine the residuals 
((yi – f(xi)) versus xi): are they evenly distributed about 0?
b) if you have estimates of the individual σI’s then use a program which 
can calculate a ‘goodness-of-fit probability’, Q. 
Q is the probability that a value of 𝝌2 as poor (great) as the best fit 
value should occur by chance. If

Q > 0.1 – goodness of fit is believable. 
Q > 0.001 – may be acceptable if errors are nonnormal or 

moderately underestimated. 
Q < 0.001 – model and/or estimation procedure suspect. Best 

then to use unweighted fit.
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2.1.5 Student’s t-distribution (again)
Say you want to measure the rate coefficient k of the reaction 
OH + HCl → H2O + Cl
You operate under pseudo-first-order conditions (an excess of HCl) and obtain 6 
values of k1st vs [HCl] A linear plot of k1st vs [HCl] gives
k = 4.102 × 10-10 cm3 molecule-1 s-1 and σ  = 0.080 × 10-10 cm3 molecule-1 s-1

Your friend who does atmospheric modelling wants the value with 95% error 
limits. So, do you just quote k ± 2σ? Why not?
The value of σ obtained does take into account the number of data points: for 
small samples, errors are not distributed according to a Gaussian distribution, 
but rather 
Student’s t-distribution, which
varies according to the number of degrees of freedom, ν, and,
especially for small ν, has larger tails at the side. 
Presented as table of t for differing confidence limits and ν 
6 points, less 2 parameters gives ν = 4, and t0.95 = 2.776, so quote: 
k = (4.10 ± 0.22a) × 10-10 cm3 molecule-1 s-1

aerrors quoted are ±tσ random error where t is the appropriate value of 
Student’s t-distribution for the 95% point.
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2.1.6 General linear least-squares
Linear least-squares applicable to any function linear in its parameters.
An example would be the polynomial
y(x) = a1 +a2x + a3x2 +…+ aMxM – 1

could include sines and cosines etc., so long as the overall function is 
linear in its parameters ak:
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Routines available for generalised linear least squares optimisation, 
relying on matrix methods.
With the advent of fast computers, largely superseded by generalised 
non-linear routines.
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2.2.1 Non-linear least-squares fitting: Introduction

Standard linear least squares methods restricted to fitting functions that 
are linear in parameters ak:

[ ]å
=

=
M

k
kk xfaxy

1
)()(

Minimising 𝝌2 only yields coupled equations linear in M unknown 
parameters if fitting functions y(x) linear in the parameters 
Cannot obtain an analytic solution for minimising 𝝌2 in non-linear case
Non-linear functions are very common in nature, for example, any 
process whose rate depends upon the magnitude of a population, as is 
the case for first-order chemical reactions, will behave in this way:
A → products

( )kt
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=
-

=

exp]A[]A[

]A[
dt

]A[  reaction of rate

0
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2.2.2 Non-linear least-squares fitting: Exponential decay

For some cases, for example the single exponential decay with no 
background, can linearise function, and then use linear least squares:

Warning: this will place undue weight on data at low signal levels
Example: often, we measure rates of reactions under pseudo-first-order 
conditions, and measure a laser-induced fluorescence (LIF) signal 
which is proportional to the concentration of the decaying species:
i.e.  LIF signal ∝[A]
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2.2.2 Non-linear least-squares fitting: Exponential decay
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2.2.2 Non-linear least-squares fitting: Exponential decay
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2.2.3 NLLSQ: methods of minimising 𝝌2

Consider 𝝌2 surface, or hypersurface, as a f(ak). Various numerical 
techniques are available for finding the minimum:
grid search: calculate grid of 𝝌2 values by varying each ak in turn to 
find minimum value
§ robust, but extremely inefficient
gradient search: vary all parameters simultaneously, and go down 
direction of ‘steepest descent’
§ more efficient at first than grid search, but very inefficient near the 
minimum where gradient → 0
expansion methods: expand the 𝝌2 surface as an analytic function, 
e.g., a parabola, then calculate minimum directly
§ works well close to the minimum, but if started far away then results 
will be in error, and may even tend towards maximum
Marquardt method: see on
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2.2.4 NLLSQ: The Marquardt method
§ combines both gradient search and expansion methods, using an 

adjustable parameter 𝜆 to switch between an initial gradient search 
far from the minimum to a parabolic expansion near the minimum

§ though implementation is most complex of methods discussed, it is 
clearly best, used in most packages (e.g., Igor Pro, Origin)

§ Marquardt’s algorithm uses matrix algebra, with 𝜆 initially set (at 
0.001) to take advantage of both gradient and expansion methods: 
– an initial value for 𝝌2 is calculated, and then a step is taken 

according to the combined gradient/expansion algorithm. 
– If 𝝌2 increases, 𝜆 is increased by a factor 10, putting more 

emphasis on the line of steepest descent. 
– If 𝝌2 decreases, 𝜆 is decreased by a factor 10, tending towards 

the expansion method. 
– repeated until 𝝌2 ceases to vary (by more than a set tolerance). 
– minimum will have been calculated using a parabolic expansion, 

curvature yields the covariance matrix and hence the errors.
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2.2.4 NLLSQ: The Marquardt method (cont)
As with any method of fitting, we make a basic assumption about the 
functional form of our data. In the same way as for straight line data we 
must assess how well the data fit this form:
a) look at the fit! Or perhaps more usefully, the residuals ((yi – f(xi)) 
versus xi): are they evenly distributed about 0?
b) examine a goodness-of-fit criteria such as the value of 𝝌2

The Marquardt algorithm, while very powerful, is not fool-proof. It is still 
possible to find yourself stuck in a local minimum on the 𝝌2 surface, for 
example. 
Essential to examine the fit and, if necessary, choose alternative starting 
values or step sizes.
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2.3 Other methods of data fitting
Sometimes standard linear or non-linear least-squares data fitting may 
fail (as mentioned above). This may be due to (for example)
§ local minima when fitting complex functions with many parameters
§ undue influence of outliers – data points lying far from the mean – 

whose influence is over-emphasised in LSQ methods
This motivates the use of other so-called robust methods for data fitting, 
including so-called M-estimates (following from maximum-likelihood 
arguments) such as
§ least absolute deviation
or other robust minimisation methods such as the 
§ downhill simplex algorithm
as well as techniques involving a priori knowledge of the behaviour 
(often time-dependent behaviour) of model parameters and their co-
variances such as
§ Kalman filtering
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2.3 Other methods of data fitting
Figure from Numerical Recipes in Fortran. The Art of Scientific 
Computing, 2nd Edition, 1992, ISBN 0-521-43064-X.
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2.3.1 Maximum likelihood estimation
Suppose we fit N data points (xi, yi) i = 1, …, N to a model with M
adjustable parameters aj, j = 1, ..., M
f(x) = y(x) = y(x; a1...aM)
What do we minimise to get fitted values for the parameters aj? We 
have previously used least squares

But where does this come from? Leads to the idea of
§ maximum likelihood estimators
Define likelihood as
§ probability of the data given the parameters
and then 
§ fit the parameters to maximise the likelihood. 

   
minimise over a1…aM :  yi − y xi ;a1…aM( )⎡⎣ ⎤⎦

2

i=1

N

∑
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2.3.1 Maximum likelihood estimation (cont)
For normally distributed errors (Gaussian error distribution) the 
probability of the data set is the product of the probabilities of each 
point, as in Section 2.1.1

and maximising this probability is the equivalent to minimising the 
negative of its logarithm, namely

which leads to the least squares methods we have been studyng. 
HOWEVER, this is only strictly correct with Gaussian (Normal) errors. In 
reality, “outliers” exist which can skew the fit, and need robust methods.
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2.3 Other methods of data fitting
Figure from Numerical Recipes in Fortran. The Art of Scientific 
Computing, 2nd Edition, 1992, ISBN 0-521-43064-X.
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2.3.2 Robust estimation – local M-estimates
If we know our measurement errors are not normally distributed then we 
would write for the probability of the data given the parameters

where ρ is negative logarithm of the probability density, and we would 
want to minimise

Very often, ρ depends not independently on its two arguments but only 
on their difference, usually scaled by some weighting factors σi and the 
M-estimate is said to be local and we can 

where the function ρ(z) is a function of a single variable z ≡ [yi − y(xi)]/σi

If define derivative of ρ(z) as a function

then normally distributed errors will give 

   
P(y;a1,…aN ) = exp −ρ yi ,y(xi ;a1,…aN )( )⎡⎣ ⎤⎦Δy{ }

i=1

N

∏

   
ρ yi ,y(xi ;a1,…aN )( )
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ψ z( ) ≡ dρ z( )

dz

  
ρ z( ) = 1

2
z2 ψ z( ) ≡ z     (normal)60
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2.3.2 Robust estimation – local M-estimates (cont)
If the errors are distributed as a double or two sided exponential
then

and 

Maximum likelihood estimator is obtained by minimising mean absolute 
deviation – least absolute deviation method (available in Igor)
Another distribution with more extensive tails is the Lorentzian 
distribution 

ψ increases with deviation then decreases – true outliers are not counted

  

ρ z( ) = z ψ z( ) ≡ sgn z( )
(double exponential)

   
Prob yi − y xi( ){ } ∼ exp −

yi − y xi( )
σ i
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2
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      (Lorentzian)

2.3.3 Robust estimation – Simplex (Nelder-Mead) 
algorithm
Even when errors normally distributed (and we can use 𝜒2 minimisation) 
the Marquardt algorithm can fails due to local minima and/or 
discontinuities on the 𝜒2 surface.
One (expensive) solution is the simplex algorithm for 𝜒2 minimisation 
§ a simplex is a special polytope of n + 1 vertices in n dimensions e.g. 

a line segment on a line or a triangle on a plane
§ a simplex of n + 1 points is set up in the n-dimensional space of the 

variables (for example, in 2 dimensions the simplex is a triangle) 
§ vertex of the simplex with the largest 𝜒2 value is reflected in the 

centre of gravity of the remaining vertices and the 𝜒2 value at this 
new point is compared with the remaining 𝜒2 values

§ depending on the outcome of this test the new point is accepted or 
rejected, a further expansion may be made, or a contraction. 

§ when no further progress can be made the sides of the simplex are 
reduced in length and the method is repeated until no further 
improvement (according to predefined tolerance)

§ the method is very robust but can still be susceptible to local minima

Simplex algorithm

By Nicoguaro (Own work) [CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons
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2.3.4 Robust estimation – other techniques
Sometimes we may have a priori knowledge about probable values and 
probable uncertainties of some parameters we are trying to estimate 
from a data set:
§ neither completely freezing a parameter at a predetermined value
§ nor completely leaving it to “float” (be determined by the data set)
§ the formalism for this is called “use of a priori covariances”
Alternatively, in signal processing and control theory we may wish to 
“track” (maintain an estimate of) a time varying signal in presence of 
noise
§ if parameters vary only slowly, Kalman filtering may be used to 

produce best parameter estimates as a function of time
§ employs Bayesian inference and estimates a joint probability 

distribution over the variables for each timeframe. 
§ used in e.g. phase-locked loop (PLL) in radio receivers
We may wish to apply other techniques (e.g. filtering, deconvolution) 
before fitting the data. The simplest of these is smoothing.
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2.3.5 Data Smoothing
§ Concept of data smoothing lies in a murky area, just beyond the 

fringe of these better posed and more highly recommended 
techniques:
– least squares fitting to a parametric model
– optimal filtering of a noisy signal
– brutal honesty: show your data as it really is!

§ However, it is more useful to have some techniques available which 
are more objective than
“the smooth curve was drawn by eye through the original data”
– through each individual data point? 
– through the forest of scattered points? 
– by a draftsman? 
– or by someone who knows the hypothesis the data are 

supposed to substantiate?
§ Data smoothing: “art not science”
§ not supposed to be tied to any particular functional form y(x). 

However, it clearly involves some notion of averaging. Smoothing a 
set of values will not be the same as smoothing their logarithms. 65

2.3.5 Data Smoothing (cont)
§ Some common smoothing algorithms are
§ n-point smoothing

– each point on the ‘smoothed’ curve is 
an average of n neighbours

– quick, easy to program, but crude
§ Lowess smoothing

– locally weighted regression
– each point on the curve is produced by 

a regression of data points close by, 
with the closest points more heavily 
weighted 

§ Low-pass filtering
– removes high frequency components 

from signal 
– best algorithms based on Fourier 

transforms
– see later for more on filtering 66


