The Galois groupoid of P_I and its irreducibility

Let \mathcal{F} be a holomorphic codimension 2 foliation of \mathbb{C}^n .

Définition. \mathcal{F} is reducible if there existe a sequence of differential fields

$$\mathbb{C}(x_1,\ldots,x_n)=K_0\subset K_1\subset\ldots\subset K_n$$

such that

(1) •
$$K_{i+1} = K_i(h_1, \dots, h_p)$$
 with $\frac{\partial h_\ell}{\partial x_j} = \sum A_{\ell,j}^k h_k$,
 $A_{\ell,j}^k \in K_i$,

• or $K_{i+1} = K_i (\langle h_1 \rangle)$ with $dh \wedge \omega = 0$, $\omega \in K_i \otimes \Omega^1_{\mathbb{C}^n}$,

• or K_{i+1} is algebraic on K_i

(2) there is H_1, H_2 in K_n , two independent first integrals

Let
$$\mathcal{F}_1$$
 be the foliation of \mathbb{C}^3 given by

$$X_1 = \frac{\partial}{\partial x} + y' \frac{\partial}{\partial y} + (6y^2 + x) \frac{\partial}{\partial y'}$$

Theorem. \mathcal{F}_1 is irreducible.

Proof :

- If \mathcal{F}_1 is reducible then
- (1) There is two independent first integrals satisfying a big system of pde.
- (2) The holonomy of \mathcal{F}_1 leaves this system invariant

 \Rightarrow it satisfies a *big* system of pde too

(3) The bigger system of pde satisfied by the holonomy describes the Galois groupoid of \mathcal{F}_1

 \Rightarrow computation of $Gal(\mathcal{F}_1)$ and contradiction

Définition. Let \mathcal{I} be a prime differential ideal of $\mathbb{C}(x_1, \ldots, x_n) < H_1, \ldots, H_p >$ and \mathcal{I}_{ℓ} the set of order less than ℓ equations.

Let V_{ℓ} be the variety defined by \mathcal{I}_{ℓ} and $c_{\ell} = \dim_{\mathbb{C}(x_1,...,x_n)} V_{\ell}$.

 $c_{\ell} \sim q\ell^a$ is called the type of \mathcal{I} .

Lemma. The type is well defined for field extension.

Lemma. The type of a reducible field extension is linear.

Définition. The Galois groupoid of \mathcal{F} is the smallest algebraic Lie groupoid which contains the holonomy pseudogroup.

(E. Vessiot and B. Malgrange)

$$\Rightarrow Gal(\mathcal{F}) \subset \bigcap_{\mathcal{I} \in Spec^{diff}\mathcal{O}_{\mathcal{F}}} Stab(\mathcal{I})$$

From E. Cartan (and S. Lie) local classification of regular pseudo-groups acting on \mathbb{C}^2 , we obtain a global classification of algebraic Lie groupoids acting on \mathbb{C}^n , leaving a codimension two foliation invariant and containing the holonomy of this foliation.

In case of \mathcal{F}_1 ,

let $\gamma = i_{X_1} dx \wedge dy \wedge dy'$ the closed 2-form vanishing on \mathcal{F}_1 , $Gal(\mathcal{F}_1) \subset Inv(\gamma)$

Proposition. We are in one of these cases :

- there is a rational first integal of \mathcal{F}_1 ,
- there is an algebraic integrable 1-form vanishing on \mathcal{F}_1 ,
- \mathcal{F}_1 is defined by two algebraic 1-foms $\Theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$ and there is a traceless matrix of algebraic 1-form Ω such that

 $d\Theta = \Omega \wedge \Theta \ et \ d\Omega = \Omega \wedge \Omega$

• $Gal(\mathcal{F}_1) = Inv(\gamma).$

$$\Rightarrow$$
 Theorem. $Gal(\mathcal{F}_1) = Inv(\gamma).$